Закрыть

Что такое переходное сопротивление – Что такое переходное сопротивление 🚩 измерение переходного сопротивления контактов 🚩 Наука 🚩 Другое

Содержание

Что такое переходное сопротивление 🚩 измерение переходного сопротивления контактов 🚩 Наука 🚩 Другое

Определение

В электрической цепи, в месте соприкосновения двух или более проводников, создается электрический переходный контакт, или токопроводящее соединение, по которому ток течет из одной части в другую. При простом наложении контактируемая поверхность соединяемых проводников не дает хорошего контакта. Реальная площадь соприкосновения в несколько раз меньше всей контактной поверхности , подтверждение чему можно увидеть с помощью микроскопа.

Ввиду малой площади соприкосновения контактное соединение дает весьма заметное сопротивление при прохождении тока из одной поверхности в другую и называется переходным контактным сопротивлением. Само переходное сопротивление контакта априори больше, нежели сопротивление сплошного проводника такой же формы и размеров.

Факторы, влияющие на величину переходного сопротивления

Сопротивление зоны контакта не зависит от размера контактных поверхностей и определяется силой давления или силой контактного нажатия. Контактным нажатием называется усилие, с которым одна контактирующая поверхность действует на другую. В целом, от величины силы нажатия и прочности материала контакта будет зависеть суммарная площадь соприкосновения. Число же соприкосновений в контакте всегда растет при нажатии.

При небольших давлениях происходит пластическая деформация контакта, при этом вершины выступов сминаются и затем, при увеличении давления, всё новые и новые точки приходят в соприкосновение. В результате, давление должно быть довольно большим, чтобы обеспечить небольшое переходное сопротивление, но и не должно порождать пластических деформаций в металле контакта, приводящих к его разрушению.

Переходное сопротивление в значительной мере зависит от степени окисления контактных поверхностей соединяемых проводников. Независимо от материала проводника, пленка окиси создает большее электрическое сопротивление.

Интенсивность окисления проводников зависит от температуры контакта и чем она быстрее, тем больше переходное сопротивление.

Весьма сильно подвержены окислению алюминиевые проводники. Например, образующаяся на воздухе их окисная пленка обладает удельным сопротивлением в 1012 ом*см.

Со времени свойства контактного соединения могут изменяться. Только новый, хорошо обработанный и зачищенный переходной контакт может иметь наименьшее вероятное переходное контактное сопротивление при достаточном давлении.

При формировании контактных соединений применяют разные способы скрепления проводников. Например, спайку, сварку, опрессовку, механическое соединение с помощью болтов, а также приведение в соприкосновение с помощью упругого нажатия пружин.

Фактически при любом способе соединения проводов можно добиться неизменно малого переходного контактного сопротивления. Важно, при этом, соединять провода строго по технологии и с использованием для каждого способа соединения проводов необходимого инструмента и материалов.

Контактное соединение электрохимически несовместимых проводников являет собой контакт двух окислов, которые будут иметь высокое значение переходного сопротивления.

В целях снижения переходного контактного сопротивления учитывают все вышеперечисленные факторы, влияющие на его величину и проводят соответствие видов соединительных контактов материалам проводников и условиям их эксплуатации.

www.kakprosto.ru

Зависимость величины переходного сопротивления электроконтактов

Понятие переходного электрического сопротивления в электрических контактах

Переходным электрическим сопротивлением называется сопротивление, возникающее в местах перехода тока с одного провода на другой или с провода на какой-либо электрический аппарат, при наличии плохого контакта, например, в местах соединений и оконцеваний проводов, в контактах машин и аппаратов. При прохождении тока нагрузки в таких местах за единицу времени выделяется некоторое количество тепла, величина которого пропорциональна квадрату тока и сопротивлению места переходного контакта, которое может нагреваться до весьма высокой температуры. Если нагретые контакты соприкасаются с горючими материалами, то возможно их зажигание, а при наличии взрывчатой системы возможен взрыв. В этом и состоит пожарная опасность переходных контактных сопротивлений, которая усугубляется тем, что места с наличием переходного сопротивления трудно обнаружить, а защитные аппараты сетей и установок, даже правильно выбранные, не могут предупредить возникновение пожаров, так как ток в цепи не возрастает, а нагрев участка с переходным сопротивлением происходит только вследствие увеличения сопротивления.

От чего зависит величина переходного электрического сопротивления

Величина переходного сопротивления контактов зависит от материала, из которого они изготовлены, геометрической формы и размеров, степени обработки поверхностей контактов, силы нажатия контактов и степени окисления. Особенно интенсивное окисление происходит во влажной среде и с химически активными веществами, а также при нагреве контактов выше 70 — 75 С.

Величина переходного контактного сопротивления не должна превышать более чем на 20% величину сопротивления сплошного участка этой цепи примерно такой же длины.

Величина переходного электрического сопротивления контакта зависит от степени окисления соединяемых контактных поверхностей проводников. Металл контактов взаимодействует с окружающей средой, кислородом воздуха, агрессивными тазами и влагой и вступает с ними в химические реакции, вызывая химическую коррозию металла. Пленка окиси, образующаяся на поверхности металла (например, алюминия) от воздействия воздуха и окружающей среды, создается чрезвычайно быстро и обладает очень большим электрическим сопротивлением. Загрязненные или покрытые окислами контактные поверхности имеют более высокое переходное сопротивление, так как в этом случае в ряде точек нет непосредственного соприкосновения металлов. Окисление идет тем быстрее, чем выше температура контактных поверхностей и чем легче доступ воздуха к ним. Переходное сопротивление контактного соединения или контакта вследствие окисления может возрасти в десятки и сотни раз, так как окислы большинства металлов являются плохими проводниками. В результате реакции окисления проводящая конструкция постепенно разрушается. Если при этом она находится под нагрузкой, то уменьшение ее сечения приводит к дополнительному нагреву (закон Джоуля-Ленца), что в итоге может привести к ее расплавлению.

Величина переходного сопротивления контакта зависит от его конструкции, материала соприкасающихся частей и силы прижатия их друг к другу. Контактные поверхности всегда имеют микроскопические возвышения и впадины; поэтому соприкосновение происходит только в отдельных точках-небольших площадках. Действительная площадь касания увеличивается с ростом силы прижатия контактов друг к другу. Под влиянием силы прижатия металл в точках касания сминается и размеры площадок увеличиваются, возникает соприкосновение в новых точках. Это приводит к снижению переходного сопротивления.

Проверка расстояния. Величина переходного сопротивления контактов выключателей (на одну фазу) для масляных выключателей 200 а составляет не более 350 мком и для выключателей 1000 а-100 мком. Для всей цепи одной фазы воздушных выключателей сопротивление контактов должно быть не более 500 мком.

Величина переходных сопротивлений контактов выключателей зависит от их типа.

На величину переходного сопротивления контакта, как показывают опытные данные, оказывает влияние ряд причин. Оно зависит от материала контактного соединения, давления, испытываемого контактными элементами, величины поверхности их соприкосновения и ее состояния, а также температуры контакта.

Сопротивление зависит от материала контактного соединения, давления, испытываемого контактами, величины поверхности соприкосновения, состояния поверхности и температуры контакта.

Большое влияние на большие переходные сопротивления контактов оказывает их окисление. Контакты, помещенные в масло, подвергаются значительно меньшему окислению, чем работающие в воздухе.

Конструкция контактов должна быть такова, чтобы замыкание и размыкание контактов сопровождалось трением одной поверхности о другую, что способствует их очищению от оксидной пленки.

Когда не так важна величина переходного сопротивления контакта, как его постоянство (например, в измерительной аппаратуре), применяют гальваническое осаждение палладия, имеющего электропроводность в семь раз меньшую, чем у серебра, но весьма стойкого к химической коррозии и твердого.

При очень больших силах нажатия величина переходного сопротивления контактов меняется чрезвычайно не-значительно. Кроме того, слишком большие силы нажатия вызывают чрезмерные напряжения в материале контактных элементов, вследствие чего контакты утрачивают упругость и становятся менее прочными.

По виду касания различают размыкаемые контакты точечные, линейные и плоскостные. Поверхности контактов из-за шероховатости соприкасаются в ограниченном числе точек. Величина переходного сопротивления контакта зависит от силы сжатия контактов, пластичности их материала, качества обработки поверхности и ее состояния, а также от удельного сопротивления материала и вида касания.

www.smazelektro.ru

Переходное сопротивление контактов: нормы и методика измерений

Самое хорошее контактное соединение – это то, с помощью которого переходное сопротивление образует небольшое значение на длительное время. Соединительные контакты являются неотъемлемой частью любой электрической цепи, а так как от них зависит стабильная работа электрических приборов и проводки, то необходимо понимать, что собой представляет переходное сопротивление контактов, от чего оно зависит и какие нормы значения существуют на сегодняшний день.

Причины возникновения явления

Соединительные контакты объединяют в электрической цепи два или несколько проводника. На месте соединения образуется токопроводящее соприкосновение, в результате которого ток протекает из одной области цепи в другую.

Если контакты наложить друг на друга, не обеспечится хорошее соединение. Это объясняется тем, что поверхность соединительных элементов неровная и прикосновение не осуществляется по всей их поверхности, а только в некоторых точках. Даже если тщательно отшлифовать поверхность, на ней все равно останутся незначительные впадины и бугорки.

Некоторые книги по электрическим аппаратам предоставляют фото, где под микроскопом видна площадь соприкосновения и она намного меньше общей контактной площади.

Из-за того что контакты имеют небольшую площадь, это дает существенное переходное сопротивление для прохождения электрического тока. Переходное контактное сопротивление – это такая величина, которая возникает в момент перехода тока из одной поверхности на другую.

Для того чтобы соединить контакты используют различные способы надавливания и скрепления проводников. Нажатие – это усилие, с помощью которого поверхности взаимодействуют между собой. Способы крепления бывают:

  1. Механическое соединение. Применяют различные болты и клеммники.
  2. Соприкосновение происходит за счет упругого надавливания пружин.
  3. Спаивание, сваривание и опрессовка.

От чего зависит сопротивление?

При соприкосновении двух проводников, общая площадь и численность площадок зависит как от уровня силы нажатия, так и от прочности самого материала. То есть переходное контактное сопротивление зависит от силы нажатия: чем сила больше, тем оно будет меньше. Только давление следует увеличивать до определенной цифры, так как при больших механических нагрузках переходное сопротивление практически не изменяется. Да и такое сильное давление может привести к деформации, в результате которой контакты могут разрушиться.

Также переходное сопротивление контактов существенно зависит и от температуры. Когда электрическое напряжение проходит по проводникам и их поверхностям, контакты нагреваются и температура повышается, как следствие переходное сопротивление увеличивается. Только это увеличение происходит медленнее, чем повышение удельного сопротивления материала конструкции, так как, нагреваясь, материал теряет свою твердость.

Чем сильнее нагревается устройство, тем интенсивнее идет процесс окисления, которое в свою очередь также влияет на увеличение переходного сопротивления. Так, например, медная проволока активно окисляется при температуре от 70 °С. При обычной комнатной температуре (порядка 20 °С) медь окисляется незначительно и образовывающая окислительная пленка легко разрушается при сжатии.

На картинке указывается зависимость величины от нажатия (А) и температуры (Б):

Алюминий окисляется при комнатной температуре гораздо быстрее и окислительная пленка, которая образовывается, устойчивее и имеет высокое противодействие. Исходя из этого, можно сделать вывод, что нормального соприкосновения со стабильными значениями, в ходе использования устройства, добиться тяжело. Поэтому использование проводников из алюминия в электрике опасно.

Для того чтобы получить устойчивые и долговечные соединительные контакты необходимо качественно зачистить и обработать саму поверхность кабеля. Также создать достаточное давление. Если все сделано правильно (вне зависимости от того каким методом было осуществлено соединение), то измеритель укажет стабильное значение.

Методика измерения

Измерять переходное сопротивление необходимо при установленных значениях тока и напряжения. Как определить эту величину? Обычные приборы в виде омметра или тестера не подойдут, так как они пропускают через электрическую цепь при напряжении до 2 В токи 0,5–1 мА. При таких небольших нагрузках большинство мощных устройств не могут предоставить паспортные данные этого явления. Определение его возможно, если собрать обычную схему измерения. Она предоставлена ниже:

Балластное противодействие (R) приостанавливает ток через контакты, а уменьшение напряжения на них при определенном токе дает возможность определить переходное сопротивление по формуле. Подбирая элементы в схему необходимо вводить при тестировании токи, которые предоставляет таблица ниже (данные указываются с учетом нормы, ПУЭ и ГОСТ):

Рабочий ток контактов реле, А Ток проверки контактного сопротивления, мА
0,01 – 0,1 10
0,1 – 1 100
>1 1000

Вместо предоставленной выше схемы измерения можно использовать специальные приборы, например Микроомметр Ф4104-М1 или же импортный аналог C.A.10. О том, как измерить данное значение, показывается на видео:

Важно отметить, что результаты тестирования зависят от того, насколько контакты загрязнены и какая у них температура. Поэтому проводя измерения необходимо выбирать такой ток и напряжение, которые будут соответствовать определенным условиям употребления реле в указанной схеме.

Какое должно быть переходное контактное сопротивление? Максимально допустимое значение этой величины является нормируемым и равняется 0,05 Ом.

При установлении больших нагрузок не стоит забывать про первоначальное высокое противодействие контакта. После коммутации оно существенно уменьшается под воздействием электрической очистки. Если устройство применяется в сигнальных цепях, то этой величиной можно пренебречь.

Вот и все, что хотелось рассказать вам о том, что такое переходное сопротивление контактов, какое у него допустимое значение и как выполняются измерения величины. Надеемся, информация была для вас полезной и интересной!

Будет полезно узнать:

samelectrik.ru

Переходное сопротивление контакта

В
месте перехода тока из одного проводника
в другой возникает электрическое
сопротивление, которое называется
переходным сопротивлением контакта.
Сопротивление контактного соединения
Rк представляет собой сумму двух
сопротивлений: металла контакта R и
переходного Rп, т. е.
.
Сопротивление металла контакта R зависит
от материала контактов и размеров
соединения.

Переходное
сопротивление контакта в основном
обусловлено наличием поверхностных
пленок окисления, препятствующих
протеканию тока, и стягиванием линий
тока в объеме контактирующих частей к
площадке касания.

Рис.
1.2.15. Микроструктура электрического
контакта

В судовой аппаратуре
контактируемые поверхности обычно
выполняются в виде накладок из серебра
или металлокерамики. Поэтому поверхностные
пленки окисления влияют на переходное
сопротивление незначительно. Таким
образом, переходное сопротивление
контакта можно представить как результат
резкого повышения плотности тока в
площадках соприкосновения по сравнению
с плотностью тока в самом контакте.

На
рис. 1.2.15 схематично показана в увеличенном
виде граница соприкосновения между
двумя проводниками. Действительное
сопротивление между ними происходит
по микроскопическим бугоркам в точках
А, В, С. В местах соприкосновения
проводников ток проходит через участки
с малым сечением, которые представляют
собой большое сопротивление. Сужение
сечения приводит к увеличению плотности
тока в них, росту потерь и падению
напряжения.

Рис.
1.2.16. Зависимость переходного
сопротивления от силы нажатия

Рис.
1.2.17. Зависимость переходного
сопротивления от температуры

Если контакты сжимаются
относительно небольшой силой, то
образование контактных площадок
происходит в основном за счет пластической
деформация выступов на контактируемых
поверхностях. На переходное сопротивление
оказывает влияние удельное сопротивление
и предел прочности на смятие материала
проводников контактного соединения.
Чем меньше эти величины, тем меньше
сопротивление контакта. Поэтому контакты,
выполненные из твердого металла,
покрывают более мягким. Медные и латунные
контакты покрывают серебром, золотом
или оловом, а стальные — оловом или
кадмием.

На
переходное сопротивление контакта
существенное влияние оказывает также
сила нажатия на соприкасающиеся
контактные поверхности. Переходное
сопротивление контакта тем меньше, чем
больше эта сила, так как от нее зависит
действительная площадь соприкосновения
контактов. Зависимости переходного
сопротивления контакта от силы нажатия
на контактные поверхности в соответствии
с уравнением приведены на рис. 1.2.16,а.
Кривая 1 соответствует возрастанию
контактного нажатия, кривая 2—уменьшению
нажатия. Различный ход кривых объясняется
наличием остаточных деформаций отдельных
бугорков, по которым происходило
соприкосновение. Нужно иметь в виду,
что переходное сопротивление одного и
того же контакта при одном и том же
нажатии в случае каждого замыкания
может быть несколько различным. Это
объясняется тем, что размер и количество
площадок соприкосновения при каждом
замыкании получаются разными. Поэтому
практически величина переходного
сопротивления в зависимости от нажатия
выражается не кривой, а областью,
ограниченной двумя кривыми (рис.
1.2.16,б).

Обычно
за норму силы нажатия берут максимальное
давление, выше которого сопротивление
контакта мало уменьшается при увеличении
силы взаимного нажатия. Максимальное
давление определяет собой усилие затяжки
болтов, пружин и т. д. В неподвижных
контактах для болтовых соединений сила
взаимного нажатия должна быть такой,
чтобы обеспечить малое переходное
сопротивление и в то же время не вызвать
в материале недопустимо больших
напряжений.

Переходное
сопротивление контактов является важным
фактором, определяющим их нагревание.
Однако оно зависит не только от давления,
но и от температуры контактов. Особенно
сильно влияет на переходное сопротивление
окисление их поверхности.

На
основании опытных данных получена
зависимость переходного сопротивления
контакта от температуры (рис. 1.2.17). Для
обычных контактов данная зависимость
справедлива в случаях, когда температура
нагрева материала не превышает 200°, что
соответствует участку 1 — 2 кривой на
рис. 1.2.17. При достижении этой температуры
происходит размягчение материала
контакта, увеличение числа мест
контактирования и уменьшение переходного
сопротивления при неизменном нажатии
(участок 2 — 3). Если температура продолжает
расти, то наступает плавление контактов
в точках касания, сваривание их и
переходное сопротивление падает почти
до нуля. Положение точек, соответствующих
размягчению 2 и плавлению 4 материала
контактов, практически не зависит от
силы нажатия на контакты. При прохождении
тока в контактной площадке из-за
переходного сопротивления будет
выделяться энергия. Так как теплоотдача
в окружающую среду происходит с
поверхности контакта, то температура
контактной площадки будет выше средней
температуры контакта. Превышение
температуры контактной площадки над
температурой поверхности теплоотдачи
пропорционально квадрату падения
напряжения в переходном сопротивлении
контакта. Таким образом, с ростом
температуры изменяется переходное
сопротивление контакта. При нагревании
контактных точек изменяются также
удельное сопротивление материала и его
механическая прочность. Материал
размягчается и увеличивается действительная
поверхность соприкосновения контактов.
При расчете контактных соединений
необходимо учитывать нормы допустимой
плотности тока. По допустимой плотности
тока выбирается размер поверхности
соприкосновения контактов.

Переходное
сопротивление зависит от состояния и
обработки контактных поверхностей.
Например, шлифовка контактных поверхностей
приводит к сглаживанию на них выступов,
уменьшению числа точек соприкосновения
и их размеров. Поэтому переходное
сопротивление шлифовальных контактов
выше, чем контактов с более грубой
обработкой.

Контактные
поверхности при отсутствии специальных
мер защиты покрыты адсорбированными
из окружающей среды молекулами газов.
Эти молекулы вступают в химическую
реакцию с материалом контакта, и на
поверхности металла возникают пленки
с очень высоким удельным сопротивлением.
В процессе работы контактов пленка
разрушается и осыпается, и это приводит
к постепенному разрушению контактных
поверхностей. Явление химического
разрушения поверхности контактов
называется коррозией.

Возрастание
переходного сопротивления контактов
из-за коррозии вызывает увеличение
температуры контактного соединения и
может привести к недопустимому перегреву.
Неразмыкающиеся контактные соединения
и длительно не выключаемые размыкающиеся
контакты особенно подвержены окислению.
Эффективным средством защиты их от
коррозии является применение защитных
антикоррозионных покрытий. Медные,
латунные и бронзовые контакты покрывают
слоем олова или серебра, алюминиевые —
слоем цинка.

Серебро,
олово и цинк мало подвержены окислению.
Кроме того, окислы серебра имеют
электропроводность того же порядка,
что и чистое серебро. Размыкаемые
контакты, длительно работающие под
током, не выключаясь, выполняются из
серебра или металлокерамики на основе
серебра. Контакты, рассчитанные на малые
токи и малые нажатия, могут выполняться
из золота, платины. Во многих аппаратах
пленка окислов разрушается при их
включении за счет проскальзывания
одного контакта относительно другого,
либо за счет большого нажатия на контакты
(самозачистка контактов).

Контактные
соединения из разнородных металлов
подвержены коррозии больше, чем соединения
из однородных металлов. Разнородные
металлы в контактных соединениях
образуют микропару с определенной
разностью потенциалов, что и усиливает
коррозию.

studfiles.net

Что такое переходное контактное сопротивление и как с ним бороться — Статьи

Как только вопрос касается способов соединения проводов, то сразу возникают споры вокруг того, какой из вариантов соединения лучше и надежнее. Наиболее качественным соединением контактов всегда будет то, которое обеспечивает наиболее низкое значение переходного контактного сопротивления как можно более длительное время.

 

Контактные соединения в большом количестве входят во все электрические цепи и аппараты и являются их очень ответственными элементами. Так как от состояния электрических контактов в наибольшей степени зависит безаварийная работа электрооборудования и электропроводки, то в этой статье давайте разберемся что же это такое — «переходное контактное сопротивление» и от каких факторов зависит его величина. Опираться при этом будем на теорию электрических аппаратов, так как именно в этой дисциплине вопросы электрического контактирования исследованы наиболее хорошо и подробно.

Итак. Контактное соединение – это конструктивное устройство, в котором осуществляется электрическое и механическое соединения двух или нескольких отдельных проводников, которые входят в электрическую цепь. В месте соприкосновения проводников образуется электрический контакт – токопроводящее соединение, через которое ток протекает из одной части в другую.

Простое наложение контактных поврехностей соединяемых проводников не обеспечивает хорошего контакта, так как действительное соприкосновение происходит не по всей поверхности, а только в немногих точках. Причина этого — неровность поверхности контактирующих элементов и даже при очень тщательной шлифовке на поверхностях остаются микроскопические возвышения и впадины.

В книгах по электрическим аппаратам можно встретить подтверждение этому на фотографиях сделанных с помощью микроскопа. Действительная площадь спорикосновения во много раз меньше общей контактной поверхности.

Из-за малой площади соприкосновения контакт представляет довольно значительное сопротивление для прохождения тока. Сопротивление в месте перехода тока из одной контактной поверхности в другую называется переходным контактным сопротивлением. Сопротивление контакта всегда больше, чем сплошного проводника таких же размеров и формы.

Переходное контактное сопротивление – это резкое увеличение активного сопротивления в месте перехода тока из одной детали в другую.

Его величина определяется по формуле, которая выведена опытным путем в результате многочисленных исследований:

Rп = ε / (0,102 Fm ),

где ε – коэффициент, который зависит от свойств материала контактов, а также от способа обработки и чистоты контактной поверхности (ε зависит от физических свойств материалов контактов, удельного электрического сопротивления, механической прочности, способности материалов контактов к окислению, теплопроводности), F – сила контактного нажатия, Н, m – коэффициент, зависящий от числа точек соприкосновения контактных поверхностей. Этот коэффициент может принимать значения от 0,5 до 1. Для плоскостного контакта m = 1.

Из уравнения также следует, что сопротивление контакта не зависит от размера контактных поверхностей и для контакта определяется прежде всего силой давления (контактного нажатия).

Контактное нажатие – усилие, с которым одна контактная поверхность воздействует на другую. Число соприкосновений в контакте быстро растет при нажатии. Даже при небольших давлениях в контакте происходит пластическая деформация, вершины выступов сминаются и с увеличением давления все новые точки приходят в соприкосновение. Поэтому при создании контактных соединений применяют различные способы нажатия и скрепления проводников:

— механическое соединение при помощи болтов (для этого используются различные клеммники)

— приведение в соприкосновение при помощи упругого нажатия пружин (клеммники с плоско-пружинным зажимом),

— сварку, спайку, опрессовку.

Если два проводника соприкасаются в контакте, то число площадок и суммарная площадь соприкосновения будут зависеть от величины силы нажатия и от прочности материала контакта (его временного сопротивления на смятие).

Переходное контактное сопротивление тем меньше, чем больше сила нажатия, так как от нее зависит действительная площадь соприкосновения. Однако давление в контакте целесообразно увеличивать только до некоторой определенной величины, потому что при малых значениях давления переходное сопротивление уменьшается быстро, а при больших – почти не изменяется.

Таким образом, давление должно быть достаточно большим для того, чтобы обеспечить малое переходное сопротивление, но не должно вызывать пластических деформаций в металле контактов, что может привести к их разрушению.

Свойства контактного соединения могут с течением времени меняться. Только новый, тщательно обработанный и зачищенный контакт при достаточном давлении имеет наименьшее возможное переходное контактное сопротивление.

В процессе эксплуатации под действием разнообразных факторов внешнего и внутреннего характера переходное сопротивление контакта увеличивается. Контактное соединение может настолько ухудшиться, что иногда становится источником аварии.

В очень большей степени переходное контактное сопротивление зависит от температуры. При протекании тока контакт нагревается и повышение температуры вызывает увеличение переходного сопротивления. Однако увеличение переходного сопротивления контакта идет медленнее, чем увеличение удельного сопротивления материала контакта, так как при нагреве снижается твердость материала и его временное сопротивление смятию, что, как известно, уменьшает переходное сопротивление.

Нагрев контакта приобретает особенно важное значение и в связи с его влиянием на процесс окисления контактных поверхностей. Окисление вызывает очень сильное увеличение переходного сопротивления. При этом окисление поверхности контакта идет тем интенсивнее, чем выше температура контакта.

Медь окисляется на воздухе при обычных температурах жилых помещений (около 20 оС). Образующаяся при этом окисная пленка не обладает большой прочностью и легко разрушается при сжатии. Особенно интенсивное окисление меди начинается при температурах выше 70 оС.

Алюминиевые контакты на воздухе окисляются более интенсивно, чем медь. Они быстро порываются пленкой окиси алюминия, которая является очень устойчивой и тугоплавкой и обладает такая пленка довольно высоким сопротивлением – порядка 1012 ом х см.

Отсюда можно сделать вывод, что добиться нормального контактирования со стабильным переходным контактным сопротивлением, которое не будет увеличиваться в процессе эксплуатации в этом случае очень тяжело. Именно по этому использовать алюминий в электропроводке неудобно и опасно и большинство проблем с электропроводкой, которые описываются в книгах и в Интернете случаются именно при использовании проводов и кабелей с алюминиевыми жилами.

Таким образом, состояние контактных поврехностей оказывает решающее влияние на рост переходного сопротивления контакта. Для получения устойчивости и долговечности контактного соединения должна быть выполнена качественная зачистка и обработка контактной поверхности, а также создано оптимальное давление в контакте. Показателями хорошего качества контактов служат его переходное контактное сопротивление и температура нагрева.

Фактически используя любой из известных способов соединения проводов (клеммники разных видов, сварка проводов, пайка, опрессовка) можно добиться стабильно низкого переходного контактного сопротивления. При этом, важно соединять провода правильно, обязательно соблюдая технологию с использованием необходимого для каждого способа соединения и ответвления проводов материалов и инструмента.

www.alprof.info

Что такое переходное контактное сопротивление?

Самое хорошее контактное соединение – это то, с помощью которого переходное сопротивление образует небольшое значение на длительное время. Соединительные контакты являются неотъемлемой частью любой электрической цепи, а так как от них зависит стабильная работа электрических приборов и проводки, то необходимо понимать, что собой представляет переходное сопротивление контактов, от чего оно зависит и какие нормы значения существуют на сегодняшний день.

Причины возникновения явления

Соединительные контакты объединяют в электрической цепи два или несколько проводника. На месте соединения образуется токопроводящее соприкосновение, в результате которого ток протекает из одной области цепи в другую.

Если контакты наложить друг на друга, не обеспечится хорошее соединение. Это объясняется тем, что поверхность соединительных элементов неровная и прикосновение не осуществляется по всей их поверхности, а только в некоторых точках. Даже если тщательно отшлифовать поверхность, на ней все равно останутся незначительные впадины и бугорки.

Некоторые книги по электрическим аппаратам предоставляют фото, где под микроскопом видна площадь соприкосновения и она намного меньше общей контактной площади.

Из-за того что контакты имеют небольшую площадь, это дает существенное переходное сопротивление для прохождения электрического тока. Переходное контактное сопротивление – это такая величина, которая возникает в момент перехода тока из одной поверхности на другую.

Для того чтобы соединить контакты используют различные способы надавливания и скрепления проводников. Нажатие – это усилие, с помощью которого поверхности взаимодействуют между собой. Способы крепления бывают:

  • Механическое соединение. Применяют различные болты и клеммники.
  • Соприкосновение происходит за счет упругого надавливания пружин.
  • Спаивание, сваривание и опрессовка.
  • От чего зависит сопротивление?

    При соприкосновении двух проводников, общая площадь и численность площадок зависит как от уровня силы нажатия, так и от прочности самого материала. То есть переходное контактное сопротивление зависит от силы нажатия: чем сила больше, тем оно будет меньше. Только давление следует увеличивать до определенной цифры, так как при больших механических нагрузках переходное сопротивление практически не изменяется. Да и такое сильное давление может привести к деформации, в результате которой контакты могут разрушиться.

    Также переходное сопротивление контактов существенно зависит и от температуры. Когда электрическое напряжение проходит по проводникам и их поверхностям, контакты нагреваются и температура повышается, как следствие переходное сопротивление увеличивается. Только это увеличение происходит медленнее, чем повышение удельного сопротивления материала конструкции, так как, нагреваясь, материал теряет свою твердость.

    Чем сильнее нагревается устройство, тем интенсивнее идет процесс окисления, которое в свою очередь также влияет на увеличение переходного сопротивления. Так, например, медная проволока активно окисляется при температуре от 70 °С. При обычной комнатной температуре (порядка 20 °С) медь окисляется незначительно и образовывающая окислительная пленка легко разрушается при сжатии.

    На картинке указывается зависимость величины от нажатия (А) и температуры (Б):

    Алюминий окисляется при комнатной температуре гораздо быстрее и окислительная пленка, которая образовывается, устойчивее и имеет высокое противодействие. Исходя из этого, можно сделать вывод, что нормального соприкосновения со стабильными значениями, в ходе использования устройства, добиться тяжело. Поэтому использование проводников из алюминия в электрике опасно.

    Для того чтобы получить устойчивые и долговечные соединительные контакты необходимо качественно зачистить и обработать саму поверхность кабеля. Также создать достаточное давление. Если все сделано правильно (вне зависимости от того каким методом было осуществлено соединение), то измеритель укажет стабильное значение.

    Методика измерения

    Измерять переходное сопротивление необходимо при установленных значениях тока и напряжения. Как определить эту величину? Обычные приборы в виде омметра или тестера не подойдут, так как они пропускают через электрическую цепь при напряжении до 2 В токи 0,5–1 мА. При таких небольших нагрузках большинство мощных устройств не могут предоставить паспортные данные этого явления. Определение его возможно, если собрать обычную схему измерения. Она предоставлена ниже:

    Балластное противодействие (R) приостанавливает ток через контакты, а уменьшение напряжения на них при определенном токе дает возможность определить переходное сопротивление по формуле. Подбирая элементы в схему необходимо вводить при тестировании токи, которые предоставляет таблица ниже (данные указываются с учетом нормы, ПУЭ и ГОСТ):

    Рабочий ток контактов реле, А Ток проверки контактного сопротивления, мА
    0,01 – 0,1 10
    0,1 – 1 100
    >1 1000

    Вместо предоставленной выше схемы измерения можно использовать специальные приборы, например Микроомметр Ф4104-М1 или же импортный аналог C.A.10. О том, как измерить данное значение, показывается на видео:

    Важно отметить, что результаты тестирования зависят от того, насколько контакты загрязнены и какая у них температура. Поэтому проводя измерения необходимо выбирать такой ток и напряжение, которые будут соответствовать определенным условиям употребления реле в указанной схеме.

    Какое должно быть переходное контактное сопротивление? Максимально допустимое значение этой величины является нормируемым и равняется 0,05 Ом.

    При установлении больших нагрузок не стоит забывать про первоначальное высокое противодействие контакта. После коммутации оно существенно уменьшается под воздействием электрической очистки. Если устройство применяется в сигнальных цепях, то этой величиной можно пренебречь.

    Вот и все, что хотелось рассказать вам о том, что такое переходное сопротивление контактов, какое у него допустимое значение и как выполняются измерения величины. Надеемся, информация была для вас полезной и интересной!

    15.12.2016

    gopb.ru

    Что такое переходное контактное сопротивление и как с ним бороться

    Что такое переходное контактное сопротивление и как с ним бороться

    Наиболее качественным соединением контактов всегда будет то, которое обеспечивает наиболее низкое значение переходного контактного сопротивления как можно более длительное время.

    Контактные соединения в большом количестве входят во все электрические цепи и аппараты и являются их очень ответственными элементами. Так как от состояния электрических контактов в наибольшей степени зависит безаварийная работа электрооборудования и электропроводки, то в этой статье давайте разберемся что же это такое — «переходное контактное сопротивление» и от каких факторов зависит его величина. Опираться при этом будем на теорию электрических аппаратов, так как именно именно в этой дисциплине вопросы электрического контактирования исследованы наиболее хорошо и подробно.

    Итак. Контактное соединение — это конструктивное устройство, в котором осуществляется электрическое и механическое соединения двух или нескольких отдельных проводников, которые входят в электрическую цепь. В месте соприкосновения проводников образуется электрический контакт — токопроводящее соединение, через которое ток протекает из одной части в другую.

    Простое наложение контактных поврехностей соединяемых проводников не обеспечивает хорошего контакта, так как действительное соприкосновение происходит не по всей поверхности, а только в немногих точках. Причина этого — неровность поверхности контактирующих элементов и даже при очень тщательной шлифовке на поверхностях остаются микроскопические возвышения и впадины.

    В книгах по электрическим аппаратам можно встретить подтверждение этому на фотографиях сделанных с помощью микроскопа. Действительная площадь спорикосновения во много раз меньше общей контактной поверхности.

    Из-за малой площади соприкосновения контакт представляет довольно значительное сопротивление для прохождения тока. Сопротивление в месте перехода тока из одной контактной поверхности в другую называется переходным контактным сопротивлением. Сопротивление контакта всегда больше, чем сплошного проводника таких же размеров и формы.

    Переходное контактное сопротивление — это резкое увеличение активного сопротивления в месте перехода тока из одной детали в другую.

    Его величина определяется по формуле, которая вываедена опытным путем в результате многочисленных исследований:

    Rп = ε / (0,102 Fm ),

    где ε — коэффициент, который зависит от свойств материала контактов, а также от способа обработки и чистоты контактной поверхности (ε зависит от физических свойств материалов контактов, удельного электрического сопротивления, механической прочности, способности материалов контактов к окислению, теплопроводности), F — сила контактного нажатия, Н, m — коэффициент, зависящий от числа точек соприкосновения контактных поверхностей. Этот коэффициент может принимать значения от 0,5 до 1. Для плоскостного контакта m = 1.

    Из уравнения также следует, что сопротивление контакта не зависит от размера контактных поверхностей и для контакта определяется прежде всего силой давления (контактного нажатия).

    Контактное нажатие — усилие, с которым одна контактная поверхность воздействует на другую. Число соприкосновений в контакте быстро растет при нажатии. Даже при небольших давлениях в контакте происходит пластическая деформация, вершины выступов сминаются и с увеличением давления все новые точки приходят в соприкосновение. Поэтому при создании контактных соединений применяют различные способы нажатия и скрепления проводников:

    — механическое соединение при помощи болтов (для этого используются различные клеммники)

    — приведение в соприкосновение при помощи упругого нажатия пружин (клеммники с плоско-пружинным зажимом, например WAGO),

    — сварку, спайку, опрессовку.

    Если два проводника соприкасаются в контакте, то число площадок и суммарная площадь соприкосновения будут зависеть от величины силы нажатия и от прочности материала контакта (его временного сопротивления на смятие).

    Переходное контактное сопротивление тем меньше, чем больше сила нажатия, так как от нее зависит действительная площадь соприкосновения. Однако давление в контакте целесообразно увеличивать только до некоторой определенной величины, потому что при малых значениях давления переходное сопротивление уменьшается быстро, а при больших — почти не изменяется.

    Таким образом, давление должно быть достаточно большим для того, чтобы обеспечить малое переходное сопротивление, но не должно вызывать пластических деформаций в металле контактов, что может привести к их разрушению.

    Свойства контактного соединения могут с течением времени меняться. Только новый, тщательно обработанный и зачищенный контакт при достаточном давлении имеет наименьшее возможное переходное контактное сопротивление.

    В процессе эксплуатации под действием разнообразных факторов внешнего и внутреннего характера переходное сопротивление контакта увеличивается. Контактное соединение может настолько ухудшиться, что иногда становится источником аварии.

    В очень большей степени переходное контактное сопротивление зависит от температуры. При протекании тока контакт нагревается и повышение температуры вызывает увеличение переходного сопротивления. Однако увеличение переходного сопротивления контакта идет медленнее, чем увеличение удельного сопротивления материала контакта, так как при нагреве снижается твердость материала и его временное сопротивление смятию, что, как известно, уменьшает переходное сопротивление.

    Нагрев контакта приобретает особенно важное значение и в связи с его влиянием на процесс окисления контактных поверхностей. Окисление вызывает очень сильное увеличение переходного сопротивления. При этом окисление поверхности контакта идет тем интенсивнее, чем выше температура контакта.

    Медь окисляется на воздухе при обычных температурах жилых помещений (около 20 оС). Образующаяся при этом окисная пленка не обладает большой прочностью и легко разрушается при сжатии. Особенно интенсивное окисление меди начинается при температурах выше 70 оС.

    Алюминиевые контакты на воздухе окисляются более интенсивно, чем медь. Они быстро порываются пленкой окиси алюминия, которая является очень устойчивой и тугоплавкой и обладает такая пленка довольно высоким сопротивлением — порядка 1012 ом х см.

    Отсюда можно сделать вывод, что добиться нормального контактирования со стабильным переходным контактным сопротивлением, которое не будет увеличиваться в процессе эксплуатации в этом случае очень тяжело. Именно по этому использовать алюминий в электропроводке неудобно и опасно и большинство проблем с электропроводкой, которые описываются в книгах и в Интернете случаются именно при использовании проводов и кабелей с алюминиевыми жилами.

    Таким образом, состояние контактных поврехностей оказывает решающее влияние на рост переходного сопротивления контакта. Для получения устойчивости и долговечности контактного соединения должна быть выполнена качественная зачистка и обработка контактной поверхности, а также создано оптимальное давление в контакте. Показателями хорошего качества контактов служат его переходное контактное сопротивление и температура нагрева.

    Фактически используя любой из известных способов соединения проводов (клеммники разных видов, сварка, пайка, опрессовка) можно добиться стабильно низкого переходного контактного сопротивления. При этом, важно соединять провода правильно, обязательно соблюдая технологию с использованием необходимого для каждого способа соединения и ответвления проводов материалов и инструмента.

    А что вы думаете по этому поводу?

    Андрей Повный

    Читайте самые интересные истории ЭлектроВестей в
    Telegram и Viber

    elektrovesti.net

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о