Методика измерения и испытания сопротивления изоляции кабелей, обмоток электродвигателей, аппаратов, вторичных цепей и электропроводок, и электрооборудования напряжением до 1кВ — Методики испытаний / Документы — Электротехническая лаборатория, г.Ханты-Мансийск
1. Цель проведения измерения.
Измерения проводятся с целью проверки соответствия сопротивления изоляции установленным нормам.
2. Меры безопасности.
2.1 Технические мероприятия.
До начала и в процессе измерений необходимо выполнять технические мероприятия согласно “Правилам техники безопасности” (ПТБ). При работе с мегомметром необходимо руководствоваться пунктами Б 3.7.17-Б 3.7.22 ПТБ.
2.2 Организационные мероприятия.
Измерения мегаомметром разрешается выполнять в установках напряжением выше 1000В двум лицам, одно которых должно иметь группу по электробезопасности не ниже IV. Работы выполняются по наряду. В установках напряжением до 1000В измерения выполняют два лица, одно из которых должно иметь группу не ниже III. Работы выполняются, в порядке текущей эксплуатации с последующей записью в оперативный журнал.
3. Нормируемые величины.
Периодичность испытаний и минимальная допустимая величина сопротивления изоляции должны соответствовать указанным в нормах испытаний электрооборудования и аппаратов “Правил технической эксплуатации электроустановок потребителей”. Как правило, сопротивление изоляции систем БССН и ФССН измеренное мегаомметром на 250 В должно быть не менее 0,25 Мом, силовых цепей до 500 В (кроме систем БССН и ФССН) измеренное мегаомметром на 500 В должно быть не менее 0,5 МОм, а вторичных цепей — не менее 1МОм. Сопротивление изоляции силовых цепей выше 500 В измеренное мегаомметром на 1000 В должно быть не менее 1.0 МОм, (ГОСТ Р50571.16-99). Сопротивление изоляции электропроводок, в том числе и осветительных сетей измеренное мегаомметром на 1000 В должно быть не менее 0.
5 МОм, (ПТЭЭП п. 28.1)
4.
Применяемые приборы.
Для измерения сопротивления изоляции применяются мегаомметры типов: MI 3102H (на напряжение 100 В, 250 В, 500 В 1000 В и 2500 В) и, Е6-24 (на напряжение 500 В 1000 В и 2500 В). Эти приборы имеют собственный источник питания — генератор постоянного тока и позволяют производить непосредственный отсчет показаний в мегаомах и гигаомах.
5. Измерение сопротивления изоляции электрооборудования.
5.1. Измерение сопротивления изоляции силовых кабелей и электропроводок
При измерении сопротивления изоляции необходимо учитывать следующее:
— измерение сопротивления изоляции кабелей (за исключением кабелей бронированных) сечением до 16 мм2 производится мегаомметром на 1000 В, а выше 16 мм2 и бронированных — мегаометром на 2500 В; измерение сопротивления изоляции проводов всех сечений производится мегаометром на 1000 В.
При этом необходимо производить следующие замеры:
— на 2 — и 3-проводных линиях — три замера: L-N, N-РЕ, L-РЕ;
— на 4-проводных линиях — 4 замера: L1-L2L3РЕN, L2 — LЗL1РЕN, LЗ-L1L2РЕN, РЕN-L1L2L3, или 6 замеров: L1-L2, L2-L3,
L1-L3, L1-РЕN, L2-РЕN, LЗ-РЕN— на 5-проводных линиях — 5 замеров: L1—L2L3 NРЕ, L2-L1L3NРЕ, LЗ-L1L2РЕ, N-L1L2L3РЕ, РЕ-NL1L2L3, или
10 замеров: L1-L2, L2-L3, L1-L3, L1-N, L2-N, L3-N, L1-РЕ, L2-РЕ, LЗ-РЕ, N-РЕ.
Допускается не проводить измерения сопротивления изоляции в осветительных сетях, находящихся в эксплуатации, если это требует значительных работ по демонтажу схемы, в этом случае, не реже 1 раза в год, требуется выполнять визуальный контроль совместно с проверкой надежности срабатывания средств защиты от сверхтоков (определение токов однофазных замыканий в соответствии с п. 1.7.79 ПУЭ).
Если электропроводки, находящиеся в эксплуатации, имеют сопротивление изоляции менее 0,5 МОм, то заключение об их пригодности делается после испытания их переменным током промышленной частоты напряжением 1 кВ в соответствии с приведенными в данном издании рекомендациями.
5.2. Измерение сопротивления изоляции силового элекрооборудования
Значение сопротивления изоляции электрических машин и аппаратов в большой степени зависит от температуры. Замеры следует производить при температуре изоляции не ниже +5°С кроме случаев, оговоренных специальными инструкциями. При более низких температурах результаты измерения из-за нестабильного состояния влаги не отражают истинной характеристики изоляции. При существенных различиях между результатами измерений на месте монтажа и данными завода-изготовителя, обусловленных разностью температур, при которых проводились измерения, следует откорректировать эти результаты по указаниям изготовителя.
Степень увлажненности изоляции характеризуется коэффициентом абсорбции, равным отношению измеренного сопротивления изоляции через 60 секунд после приложения напряжение мегаомметра (R60) к измереннму сопротивлению изоляции через 15 секунд (R15),
Кабс = R60/R15
При измерении сопротивления изоляции силовых трансформаторов используются мегаомметры с выходным напряжением 2500 В.
Измерения проводятся между каждой обмоткой и корпусом и между обмотками трансформатора.
При этом R60, должно быть приведено к результатам заводских испытаний в зависимости от разности температур, при которых проводились испытания.
Значение коэффициента абсорбции должно отличаться (в сторону уменьшения) от заводских данных не более, чем на 20%, а его величина должна быть не ниже 1,3 при температуре 10—30°С. При невыполнении этих условий трансформатор подлежит сушке.
Минимально допустимое сопротивление изоляции для установок, находящихся в эксплуатации, приведены в приложении 3 ПТЭЭП, таблица 9 а для установок, вводимых в эксплуатацию, — в гл. 1.8. ПУЭ, таблица 8. Сопротивление изоляции ручных электрических машин измеряется относительно корпуса и наружных металлических частей при включенном выключателе.
Корпус электроинструмента и соединенные с ним детали, выполненные из диэлектрического материала, на время испытания должны быть обернуты металлической фольгой, соединенной с контуром заземления.
Если сопротивление изоляции при этом будет не менее 10 МОм, то испытание изоляции повышенным напряжением может быть заменено измерением ее сопротивления мегаомметром с выходным напряжением 2500 В в течение 1 минуты.
У переносных трансформаторов измеряется сопротивление изоляции между всеми обмотками, а также между обмотками и корпусом. При измерениях сопротивления изоляции первичной обмотки, вторичная должна быть замкнута и соединена с корпусом.
Сопротивление изоляции автоматических выключателей и УЗО производятся:
1. Между каждым выводом полюса и соединенными между собой противоположными выводами полюсов при разомкнутом состоянии выключателя или УЗО.
2. Между каждым разноименным полюсом и соединенными между собой оставшимися полюсами при замкнутом состоянии выключателя или УЗО.
3. Между всеми соединенными между собой полюсами и корпусом, обернутым металлической фольгой.
При этом для автоматических выключателей бытового и аналогичного назначения (ГОСТ Р50345-99) и УЗО при измерениях по п.п. 1, 2 сопротивление изоляции должно быть не менее 2 Мом, по п. 3 — не менее 5 Мом.
Для остальных автоматических выключателей (ГОСТ Р50030.2-99) во всех случаях сопротивление изоляции должно быть не менее 0,5 МОм.
6. Измерение сопротивления изоляции прибором Е6-24
6.1.
Внешний вид прибора показан на рисунке 1
Рисунок 1
1, 2, 3 — гнезда для подключения кабелей
4 — индикатор
5 — индикатор единиц измерения (сверху вниз соответственно:
— напряжение, В
— сопротивление Гом
— сопротивление Мом
6 — индикатор испытательных напряжений (слева направо соответственно: 500В, 1000В, 2500В)
7 — индикатор заряда батареи
8 — переключатель вкл и выкл состояния прибора
9 — кнопка установки испытательного напряжения
10 — кнопка вывода результатов из памяти
11 — кнопка измерения сопротивления
6. 2.
Перед началом измерений необходимо убедится, что на испытываемом объекте нет напряжения, тщательно очистить изоляцию вблизи точки замера от пыли и грязи и на 2-3 мин. Заземлить объект для снятия с него возможных остаточных зарядов. После окончания измерений испытываемый объект необходимо разрядить кратковременным заземлением.
Для присоединения мегаомметра к испытываемому аппарату или линии следует применять раздельные провода с большим сопротивлением изоляции (обычно не меньше 100 МОм).
Перед пользованием мегаомметр следует подвергнуть контрольной проверке, которая заключается в проверке показания по шкале при разомкнутых и короткозамкнутых проводах. В первом случае стрелка должна находиться у отметки шкалы “бесконечность”, во втором — у нуля.
Для того, чтобы на показания мегаомметра не оказывали влияния токи утечки по поверхности изоляции, особенно при проведении измерении в сырую погоду, мегомметр подключают к измеряемому объекту с использованием зажима Э (экран) мегаомметра. При таком подключении токи утечки по поверхности изоляции отводятся в землю, минуя обмотку прибора.
Значение сопротивления изоляции в большей степени зависит от температуры. Сопротивление изоляции следует измерять при температуре изоляции не ниже +5°С кроме случаев, оговоренных специальными инструкциями. При более низких температурах результаты измерения из-за нестабильного состояния влаги не отражают истинной характеристики изоляции.
При измерении сопротивления изоляции относительно земли с помощью мегаомметра зажим “+” рекомендуется подключать к токоведущей части испытываемой установки, а зажим “-” (земля) к ее корпусу. При измерении сопротивления изоляции электрических цепей, не
соединенных с землей, подключение зажимов мегаомметра может быть любым.
Использование зажима “Э” (экран) значительно повышает точность измерения при больших сопротивлениях изоляции, исключает влияние поверхностных токов утечки и тем самым не искажает результаты измерения.
Для присоединения мегаомметра к испытываемому объекту необходимо иметь гибкие провода с изолированными рукоятками и ограничительными кольцами на концах. Длина проводов должна быть как можно меньшей.
Перед началом измерения необходимо измерить сопротивление изоляции соединительных проводов. Значение этого сопротивления должно быть не менее верхнего предела измерения мегаомметра.
За сопротивление изоляции принимают 60-секундное значение сопротивления R-60, зафиксированное на индикатору мегаомметра через 60 с, которое отсчитывается автоматически.
Перед началом измерений необходимо убедиться: в отсутствии напряжения на испытуемом объекте, в чистоте проверяемой аппаратуры, проводов, кабельных воронок и т.д., а также в том, что все детали с пониженной изоляцией или пониженным испытательным напряжением отключены и закорочены. При наличие на объекте переменного напряжения мегаомметр определит его автоматически. При отсутствии напряжения можно начинать проводить измерения.
6.3. Переключение значения испытательного напряжения 500 В, 1000 В и 2500 В производится кратковременным нажатием кнопки «UR».
6.4. Для проведения измерения необходимо нажать и удерживать кнопку «RX». После отпускания кнопки процесс измерения прекратится. Двойное нажатие кнопки «RX» приводит к её захвату, и процесс измерения будет происходить в течение заданного интервала времени без её удержания (от 1 до 10 минут), выставить который можно кнопками UR и МRх/К после включения мегаомметра при нажатой кнопке «RX». При необходимости досрочного отключения процесса измерения следует повторно нажать кнопку «RX».
6.5. Загорание на индикаторе символа «П» (переполнение) указывает что сопротивление объекта измерения превышает предел показания прибора 99,9 Гом. Так же индикация «П» может появляться при переходных процессах, поэтому в таком случае следует продолжать измерение в течении ещё 10 секунд.
6.6. Отстыковку кабелей от объекта следует проводить не ранее 10 секунд после окончания подачи испытательного напряжения.
7.1. Порядок проведения измерения сопротивления изоляции
Шаг 1 Посредством поворотного переключателя выберите функцию Изоляция.
С помощью кнопок и осуществляется выбор между функциями «R ISO» и «ДИАГНОСТИКА». Выберите опцию «R ISO». Подключите измерительный кабель к прибору EurotestХЕ 2,5 кВ.
Шаг 2 Установите значения следующих параметров и пределов измерения:
Номинальное измерительное напряжение,
Минимальное предельно допустимое значение сопротивления.
Шаг 3 Подключите измерительный кабель к испытываемому объекту. Для проведения измерения сопротивления изоляции следуйте схеме подключения, показанной на рисунке 2. При необходимости обратитесь к меню помощи. Для измерений сопротивления изоляции при напряжении UN= 2,5 кВ должны использоваться специальные измерительные провода, так как испытательный сигнал подается на другие измерительные клеммы, чем при измерениях при UN≤ 1 кВ! Стандартный трехпроводный измерительный кабель, кабель с евро — вилкой и щупы «commander» могут использоваться только при измерениях сопротивления при напряжении UN≤ 1 кВ!
Рисунок.2: Подключение 3-проводного измерительного кабеля и щупа с
наконечником (UN ≤1 кВ)
Для измерений сопротивления изоляции при напряжении UN= 2,5 кВ должен использоваться двухпроводный 2,5 кВ-й измерительный кабель. Подключение в соответствие со схемой подключения, показанной на рисунке 3
Рисунок 3: Подключение двухпроводного 2,5 кВ-го измерительного кабеля (UN =2,5 кВ)
Шаг 4 Перед началом измерений проверьте отображаемые предупреждения и оперативное напряжение / выходной монитор. Если измерение разрешено, нажмите и удерживайте кнопку ТEST, пока результат не стабилизируется. Во время измерений на дисплее отображается фактическое значение сопротивления. После того, как кнопка TEST отпущена, отображается последнее измеренное значение, сопровождающееся оценкой результата в виде «соответствует / не соответствует» (если применяется).
Отображаемые результаты:
R… … … … Сопротивление изоляции,
Um… … … Измерительное напряжение.
Сохраните результаты измерений для дальнейшего документирования.
7.2. Классификация результатов измерения сопротивления изоляции при сохранении
При сохранении, после нажатия кнопки Память, доступны десять подфункций сопротивления изоляции:
ISO L1/PE,
ISO L2/PE,
ISO L3/PE,
ISO L1/N,
ISO L2/N,
ISO L3/N,
ISO N/PE,
ISO L1/L2,
ISO L1/L3,
ISO L2/L3.
Процедура измерения сопротивления изоляции протекает одинаково, в независимости от того, какая подфункция выбрана. Однако важно выбирать соответствующую подфункцию, чтобы в дальнейшем правильно классифицировать результаты измерений для их корректного занесения в протоколы измерений.
8. Оформление результатов измерений.
Результаты измерения сопротивления изоляции проводов, кабелей, обмоток машин и аппаратов записываются в протокол, заключительная часть которого характеризует качество изоляции. Оформленный протокол прилагается к отчету по наладке электрооборудования.
РАЗРАБОТАЛ:
Начальник электролаборатории
Методика измерения сопротивления изоляции проводов, кабелей, силового электрооборудования и аппаратов
Измерения проводятся с целью проверки соответствия сопротивления изоляции установленным нормам
Данная методика предназначена для производства измерений сопротивлений изоляции электропроводок, электрооборудования (комплектных низковольтных устройств: ВРУ, щитков этажных и квартирных, и др. ), а также изолирующих полов и стен при сертификационных испытаниях электроустановок зданий с целью оценки качества изоляции элементов электроустановок и сравнения с нормами табл. 43 приложения 1 ПЭЭП и табл. 61 А стандарта МЭК 364-6-61. В соответствии с этими нормативными документами норма сопротивления изоляции цепей электроустановки должны быть не менее 0, 5 мОм
Измерения сопротивления изоляции должны производиться согласно п. 612. 3 стандарта МЭК 364-6-61:
а) между токоведущими проводниками, взятыми по очереди «два к двум»,
б) между каждым токоведущим проводником и «землей».
Измерения должны проводиться при отсоединенных электроприборах, при снятых предохранителях, вывернутых лампах и т. д.
Если цепь имеет электронные приборы, то должно быть сделано только измерение сопротивления изоляции между фазными и нейтральными проводниками, соединенными вместе, и «землей».
Примечание: эта мера предосторожности необходима, т. к. выполнение испытаний без соединения токоведущих проводников может вызвать повреждение электронных приборов.
При измерении параметров изоляции электрооборудования следует учитывать требования п. 1. 20 приложения 1 ПЭЭП.
В соответствии с п.413.3 ГОСТ Р 50571.3-94 изолирующие (непроводящие) помещения, зоны, площадки имеют целью предотвратить одновременное прикосновение к частям, оказавшимся под разными потенциалами в случае повреждения изоляции токоведущих частей.
Требования считаются выполненными, если пол и стены помещения являются изолирующими и выполняется одно или несколько условий приведенных ниже:
а) открытые проводящие части и сторонние проводящие части, а также открытые проводящие части друг от друга удалены не менее 2м, а за пределами зоны досягаемости — 1,25 м;
б) установлены эффективные приборы между открытыми проводящими частями и сторонними проводящими частями;
в) сторонние проводящие части изолированы. Сопротивление изолирующего пола и стен, измеренное в каждой точке должно быть не ниже:
— 50 кОм при номинальном напряжении электроустановок не выше 500. В;
— 100 кОм при номинальном напряжении электроустановок выше 500 В.
В каждом помещении и для каждой поверхности в соответствии с п. 612.5 стандарта МЭК 364-6-61 должны быть сделаны три измерения. Одно измерение должно быть выполнено примерно в 1 м от сторонних проводящих частей, находящихся в помещении. Другие измерения должны быть сделаны на большем удалении.
Сопротивление изоляции практически во всех случаях измеряется мегаомметром — прибором, состоящим из источника напряжения — генератора постоянного (или переменного с выпрямителем) тока, измерительного механизма (магнитоэлектрического логометра) и добавочных резисторов.
В настоящее время наиболее распространены мегаомметры типа М4100 (пяти модификаций М4100/1-М4100/5).
Ф4101, Ф4102 — на номинальное рабочее напряжение 100, 500, 1000. В. и Ф. 4101, Ф4102 на напряжение 2500В. Мегаомметры серии Ф. 4100 — электронного типа с питанием от электросети (или 12В).
Мегаомметры выпуска последних лет; ЭС-0202/1Г (на 100, 250, 500 В) и ЭС0202/2Г (500, 1000 и 2500) сняты с производства, но допускаются к эксплуатации мегаомметры типа M l101 М, МС-05, МС-06.
Класс точности приборов должен быть не более 4.
Мегаомметры к схеме присоединяют гибкими одножильными проводами с сопротивлением изоляции не менее 100 Мом длиной 2-3 м, концы которых маркируются. Концы присоединяемые к мегаомметру должны иметь оконцеватели, а противоположные — зажимы типа «крокодил» с изолированными ручками или специальными щупами. При измерениях специальные провода не должны касаться друг друга, почвы, заземленных конструкций, оболочек кабелей.
При измерении сопротивления изоляции относительно земли зажимы «з» (земля) соединяются с заземленным корпусом аппарата, заземленной металлической оболочкой кабеля или с защитным заземлением, а зажим «л» (линия) -к проводнику тока (см. рис. 1.1. а, б, в). Схема замещения при измерении сопротивления изоляции фазы относительно земли и других заземленных фаз представлена на рис. 1.2.
1.1. Измерение сопротивления изоляции силовых кабелей и электропроводок
Перед началом измерения необходимо:
— убедиться, что на испытуемом кабеле нет напряжения;
— на 2-3 минуты заземлить токоведущие жилы для снятия с них возможных остаточных зарядов;
— тщательно очистить изоляцию от пыли и грязи.
Выбрать соответствующий предел измерений (в соответствии с ожидаемой величиной сопротивления изоляции) и подвергнуть мегаомметры контрольной проверке, которая заключается в проверке показаний на шкале при разомкнутых и замкнутых проводах. В первом случае стрелка должна находиться у отметки шкалы «Бесконечность» , во втором — у нуля.
Как правило, измеряется сопротивление изоляции каждой фазы кабеля относительно заземленных фаз (см. рис. 1.1 а, 1.2). Если измерения по этой схеме (сокращенный вариант — 3 замера) дадут неудовлетворительный результат, то необходимо измерить сопротивление изоляции каждой фазы относительно земли (остальные фазы не заземляются) — см. рис.1. З-х и между каждыми двумя фазами (см. рис. 1.36). Всего выполняется 6 замеров для 3-х жильных кабелей и соответственно 4 и 8 для 4-х жильных.
Значениями сопротивлений изоляции, измеренные по схемам рис. 1.3, ближе к действительным и должны удовлетворять требованиям норм
Вместе с записью результатов в отчетных документах необходимо указывать схему, с помощью которых они получены.
Измерения (снятие показаний), следует производить при устойчивом положении стрелки прибора. Для этого нужно вращать ручку прибора со скоростью 120 об/мин.
Сопротивление изоляции определяется показанием стрелки прибора через 15 и 60 с. после начала вращения.
Если определение коэффициента абсорбции К абс не требуется, отсчет показаний производится после успокоения стрелки, но не ранее 60 с. от начала вращения.
При неправильно выбранном пределе измерения, необходимо снять заряд с испытуемой фазы, наложив заземление, переключить предел и повторить измерение на новом пределе. При наложении и снятии заземления пользоваться диэлектрическими перчатками.
При измерениях сопротивления изоляции кабелей на напряжение до 100. В. с нулевыми жилами необходимо помнить следующее:
а) согласно п.п. 1.7.81, 2.1.35 ПУЭ «Нулевые рабочие и нулевые защитные проводники должны иметь изоляцию, равноценную изоляции фазных проводников»;
б) как со стороны источников питания, так и со стороны приемника нулевые проводники должны быть отсоединены от заземленных частей;
в) схема испытания изоляции аналогична указанным выше, различия лишь в количестве замеров (4 или 8 вместо 3 или 6) и в отсутствии необходимости использовать зажим «Экран» на мегаомметрах.
Измерение сопротивление изоляции силовых и осветительных электропроводок производится при снятом напряжении, выключенных выключателях, снятых предохранителях, отключенных электроприемниках, приборах, аппаратах, вывернутых электролампах.
1.2. Измерение сопротивления изоляции силового электрооборудования
Значение сопротивления изоляции электрических машин и аппаратов в большой зависит от температуры. Замеры следует производить при температуре изоляции не ниже +- 5°С кроме случаев оговоренных специальными инструкциями. При более низких температурах результаты измерения из-за нестабильности состояния влаги не отражают истинной характеристике изоляции.
Сопротивление изоляции класса «А» при понижении температуры на каждые 10°С увеличивается в полтора раза и наоборот. Сопротивление изоляции класса «В» при повышении температуры 10°С снижается примерно в два раза.
На основе этого «нормами испытания электрооборудования» определены коэффициенты (Кт — для электрических машин, Кз — для силовых трансформаторов) приведения результатов измерений к одной температуре, например, к данным завода-изготовителя.
Таблица 1.1.
Разность температур t2 – t1 | 1 | 2 | 3 | 4 | 5 | 10 | 15 | 20 | 25 | 30 |
Коэффициент перерасчета | 1,04 | 1,08 | 1,13 | 1,17 | 1,22 | 1,5 | 1,84 | 2,25 | 2,75 | 3,4 |
- t1 — температура, при которой производятся замеры на месте монтажа;
- t2 — температура, при которой производились замеры на заводе-изготовителе.
Минимально допустимое сопротивление изоляции электроустановок перед вводом в эксплуатацию должно соответствовать величинам, установленным ПУЭ. Нормы сопротивления изоляции для установок, находящихся в: эксплуатации приведены в ПЭЭП.
Сопротивление изоляции у переносного электроинструмента (электромашин) измеряется относительно корпуса и наружных металлических частей при включенном выключателе.
Корпус электроинструмента и соединенные с ним детали, выполненные из диэлектрического материала, на время испытания должны быть обернуты металлической фольгой, соединенной с контуром заземления.
У переносных трансформаторов для электроинструмента измеряется сопротивление изоляции между всеми обмотками, а также между обмотками и корпусом. При измерениях первичной обмотки, вторичная должна быть закорочена и соединена с корпусом.
1.3.Проверки изоляции пола и стен
Проверке изоляции сопротивления пола и стен должна предшествовать работа по изучению и анализу проектной документации и документации предыдущих замеров и испытаний, а также работа по визуальному осмотру помещений подлежащих испытаниям.
1.3.1. Цель проверки.
Целью проверки изолирующих (непроводящих) помещений, зон, площадок является определение уровней сопротивления пола и стен относительно сторонних проводящих элементов и конструкций, находящихся в испытуемом помещении. Достаточный уровень сопротивления будет как мера защиты. Основной задачей этих мер будет предотвращение от одновременного прикосновения к частям, оказавшимся под разными потенциалами в случае повреждения основной изоляции токоведущих частей.
1.3.2. Методика проверки.
При необходимости выполнения требований п.413.3 для изол
Методика измерения и испытания сопротивления изоляции кабелей, обмоток электродвигателей, аппаратов, вторичных цепей и электропроводок, и электрооборудования напряжением до 1 кВ
1. Цель проведения измерения.
Измерения проводятся с целью проверки соответствия сопротивления изоляции установленным нормам.
2. Меры безопасности.
2. 1 Технические мероприятия.
До начала и в процессе измерений необходимо выполнять технические мероприятия согласно “Правилам техники безопасности” (ПТБ). При работе с мегомметром необходимо руководствоваться пунктами Б 3.7.17-Б 3.7.22 ПТБ.
2.2 Организационные мероприятия.
Измерения мегаомметром разрешается выполнять в установках напряжением выше 1000В двум лицам, одно которых должно иметь группу по электробезопасности не ниже IV. Работы выполняются по наряду. В установках напряжением до 1000В измерения выполняют два лица, одно из которых должно иметь группу не ниже III. Работы выполняются, в порядке текущей эксплуатации с последующей записью в оперативный журнал.
3. Нормируемые величины.
Периодичность испытаний и минимальная допустимая величина сопротивления изоляции должны соответствовать указанным в нормах испытаний электрооборудования и аппаратов “Правил технической эксплуатации электроустановок потребителей”. Как правило, сопротивление изоляции систем БССН и ФССН измеренное мегаомметром на 250 В должно быть не менее 0,25 Мом, силовых цепей до 500 В (кроме систем БССН и ФССН) измеренное мегаомметром на 500 В должно быть не менее 0,5 МОм, а вторичных цепей — не менее 1МОм. Сопротивление изоляции силовых цепей выше 500 В измеренное мегаомметром на 1000 В должно быть не менее 1.0 МОм, (ГОСТ Р50571.16-99). Сопротивление изоляции электропроводок, в том числе и осветительных сетей измеренное мегаомметром на 1000 В должно быть не менее 0.5 МОм, (ПТЭЭП п. 28.1)
4.
Применяемые приборы.
Для измерения сопротивления изоляции применяются мегаомметры типов: MI 3102H (на напряжение 100 В, 250 В, 500 В 1000 В и 2500 В) и , Е6-24 (на напряжение 500 В 1000 В и 2500 В). Эти приборы имеют собственный источник питания — генератор постоянного тока и позволяют производить непосредственный отсчет показаний в мегаомах и гигаомах.
5. Измерение сопротивления изоляции электрооборудования.
5.1. Измерение сопротивления изоляции силовых кабелей и электропроводок
При измерении сопротивления изоляции необходимо учитывать следующее:
— измерение сопротивления изоляции кабелей (за исключением кабелей бронированных) сечением до 16 мм2 производится мегаомметром на 1000 В, а выше 16 мм2 и бронированных — мегаометром на 2500 В; измерение сопротивления изоляции проводов всех сечений производится мегаометром на 1000 В.
При этом необходимо производить следующие замеры:
— на 2 — и 3-проводных линиях — три замера: L-N, N-РЕ, L-РЕ;
— на 4-проводных линиях — 4 замера: L1-L2L3РЕN, L2 — LЗL1РЕN, LЗ-L1L2РЕN, РЕN-L1L2L3, или 6 замеров: L1-L2, L2-L3,
L1-L3, L1-РЕN, L2-РЕN, LЗ-РЕN— на 5-проводных линиях — 5 замеров: L1—L2L3 NРЕ, L2-L1L3NРЕ, LЗ-L1L2РЕ, N-L1L2L3РЕ, РЕ-NL1L2L3, или
10 замеров: L1-L2, L2-L3, L1-L3,L1-N, L2-N, L3-N, L1-РЕ, L2-РЕ, LЗ-РЕ, N-РЕ.
Допускается не проводить измерения сопротивления изоляции в осветительных сетях, находящихся в эксплуатации, если это требует значительных работ по демонтажу схемы, в этом случае, не реже 1 раза в год, требуется выполнять визуальный контроль совместно с проверкой надежности срабатывания средств защиты от сверхтоков (определение токов однофазных замыканий в соответствии с п. 1.7.79 ПУЭ).
Если электропроводки, находящиеся в эксплуатации, имеют сопротивление изоляции менее 0,5 МОм, то заключение об их пригодности делается после испытания их переменным током промышленной частоты напряжением 1 кВ в соответствии с приведенными в данном издании рекомендациями.
5.2. Измерение сопротивления изоляции силового элекрооборудования
Значение сопротивления изоляции электрических машин и аппаратов в большой степени зависит от температуры. Замеры следует производить при температуре изоляции не ниже +5°С кроме случаев, оговоренных специальными инструкциями. При более низких температурах результаты измерения из-за нестабильного состояния влаги не отражают истинной характеристики изоляции. При существенных различиях между результатами измерений на месте монтажа и данными завода-изготовителя, обусловленных разностью температур, при которых проводились измерения, следует откорректировать эти результаты по указаниям изготовителя.
Степень увлажненности изоляции характеризуется коэффициентом абсорбции, равным отношению измеренного сопротивления изоляции через 60 секунд после приложения напряжение мегаомметра (R60) к измереннму сопротивлению изоляции через 15 секунд (R15),
Кабс = R60/R15
При измерении сопротивления изоляции силовых трансформаторов используются мегаомметры с выходным напряжением 2500 В.
Измерения проводятся между каждой обмоткой и корпусом и между обмотками трансформатора.
При этом R60, должно быть приведено к результатам заводских испытаний в зависимости от разности температур, при которых проводились испытания.
Значение коэффициента абсорбции должно отличаться (в сторону уменьшения) от заводских данных не более, чем на 20%, а его величина должна быть не ниже 1,3 при температуре 10—30°С. При невыполнении этих условий трансформатор подлежит сушке.
Минимально допустимое сопротивление изоляции для установок, находящихся в эксплуатации, приведены в приложении 3 ПТЭЭП, таблица 9 а для установок, вводимых в эксплуатацию, — в гл. 1.8. ПУЭ, таблица 8. Сопротивление изоляции ручн
Методика измерения сопротивления изоляции / Справка / Energoboard
1. ОБЛАСТЬ ПРИМЕНЕНИЯ
Настоящий документ разработан для электротехнического персонала электролабораторий, электротехнических участков промышленных объектов, проводящих работы по измерению сопротивления изоляции электрооборудования, проводов и кабелей в действующих и реконструируемых электроустановках для всех потребителей электроэнергии независимо от их ведомственной принадлежности.
2. НО РМАТИВНЫЕ ССЫЛКИ
В настоящем документе используются ссылки на следующие нормативные документы:
- Правила технической эксплуатации электроустановок потребителей 1992 г.;
- Правила техники безопасности при эксплуатации электроустановок потребителей 1994 г.;
- Правила устройства электроустановок 1986 г.;
- Нормы испытания электрооборудования и аппаратов электроустановок потребителей 1982 г.;
- Нормы испытания электрооборудования 1978 г.;
- ГОСТ 26567-85. Преобразователи электроэнергии полупроводниковые. Методы испытаний;
- ГОСТ 3345-76. Кабели, провода и шнуры. Метод определения электрического сопротивления изоляции;
- ГОСТ 3484-88. Трансформаторы силовые. Методы электромагнитных испытаний;
- ГОСТ 3484.3-83. Трансформаторы силовые. Методы измерений диэлектрических параметров изоляции.
3.ОПРЕ ДЕЛЕНИЯ
3.1. В настоящей методике используются термины, установленные в ГОСТ 3345-76, ГОСТ 3484.3-83, ГОСТ 3484.1-88, ГОСТ 16504, ГОСТ 23875.
Распр е дел ительное устройство — распределительное устройство генераторного напряжения электростанции или вторичного напряжения понизительной подстанции района (предприятия), к которому присоединены сети района (предприятия).
Обозн а чения и сокращения:
- ВН — обмотки высшего напряжения;
- СН — обмотки среднего напряжения;
- НН — обмотки низкого напряжения;
- НН1, НН2 — обмотки низшего напряжения трансформаторов с расщепленной обмоткой;
- R15 — пятнадцатисекундное значение сопротивление изоляции в МОм;
- R60 — одноминутное значение сопротивление изоляции в МОм;
- ПЭЭП — правила эксплуатации электроустановок потребителей;
- ПТБЭЭП — правила техники безопасности при эксплуатации электроустановок потребителей;
- ПУЭ — Правила устройства электроустановок.
4. МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ
4.1 Измеряемые показатели
Сопротивление изоляции измеряют мегомметрами (100-2500В) со значениями измеренных показателей в Ом, кОм и МОм.
4.2 Средства измерений
К средствам измерения изоляции относятся мегомметры: ЭСО 202, Ф4100, М4100/1-М4100/5, М4107/1, М4107/2, Ф4101. Ф4102/1, Ф4102/2, BM200/G и другие, выпускаемые отечественными и зарубежными фирмами.
4.3 Требования к квалификации
К выполнению измерений сопротивления изоляции допускается обученный электротехнический персонал, имеющий удостоверение о проверке знаний и квалификационную группу по электробезопасности не ниже 3-й, при выполнении измерений в установках до 1000 В, и не ниже 4-й, при измерении в установках выше 1000 В.
К обработке результатов измерений могут быть допущены лица из электротехнического персонала со средним или высшим специальным образованием.
Анализ результатов измерений должен проводить персонал, занимающийся вопросами изоляции электрооборудования, кабелей и проводов.
5. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ
- При выполнении измерений сопротивления изоляции должны быть соблюдены требования безопасности в соответствии с ГОСТ 12.3.019.80, ГОСТ 12.2.007-75, Правилами эксплуатации электроустановок потребителей и Правилами техники безопасности при эксплуатации электроустановок потребителей.
- Помещения, используемые для измерения изоляции, должны удовлетворять требованиям взрыво- и пожарной безопасности по ГОСТ 12.01.004-91.
- Средства измерений должны удовлетворять требованиям безопасности по ГОСТ 2226182.
- Измерения мегомметром разрешается выполнять обученным лицам из электротехнического персонала. В установках напряжением выше 1000 В измерения производят по наряду два лица, одно из которых должно иметь по электробезопасности не ниже IV группы. Проведение измерений в процессе монтажа или ремонта оговаривается в наряде в строке «Поручается». В установках напряжением до 1000 В измерения выполняют по распоряжению два лица, одно из которых должно иметь группу не ниже III. Исключение составляют испытания, указанные в п. БЗ.7.20.
- Измерение изоляции линии, могущей получить напряжение с двух сторон, разрешается проводить только в том случае, если от ответственного лица электроустановки, которая присоединена к другому концу этой линии, получено сообщение по телефону, с нарочным и т.п. (с обратной проверкой) о том, что линейные разъединители и выключатель отключены и вывешен плакат «Не включать. Работают люди».
- Перед началом испытаний необходимо убедиться в отсутствии людей, работающих на той части электроустановки, к которой присоединен испытательный прибор, запретить находящимся вблизи него лицам прикасаться к токоведущим частям и, если нужно, выставить охрану.
- Для контроля состояния изоляции электрических машин в соответствии с методическими указаниями или программами измерения мегомметром на остановленной или вращающейся, но не возбужденной машине, могут проводиться оперативным персоналом или, по его распоряжению, в порядке текущей эксплуатации работниками электролаборатории. Под наблюдением оперативного персонала эти измерения могут выполняться и ремонтным персоналом. Испытания изоляции роторов, якорей и цепей возбуждения может проводить одно лицо с группой по электробезопасности не ниже III, испытания изоляции статора — не менее чем два лица, одно из которых должно иметь группу не ниже IV, а второе — не ниже III.
- При работе с мегомметром прикасаться к токоведущим частям, к которым он присоединен, запрещается. После окончания работы необходимо снять остаточный заряд с проверяемого оборудования посредством его кратковременного заземления. Лицо, производящее снятие остаточного заряда, должно пользоваться диэлектрическими перчатками и стоять на изолированном основании.
- Производство измерений мегомметром запрещается: на одной цепи двухцепных линий напряжением выше 1000 В, в то время когда другая цепь находится под напряжением; на одноцепной линии, если она идет параллельно с работающей линией напряжением выше 1000 В; во время грозы или при ее приближении.
- Измерение сопротивления изоляции мегомметром осуществляется на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления. Заземление с токоведущих частей следует снимать только после подключения мегомметра. При снятии заземления необходимо пользоваться диэлектрическими перчатками.
6. УСЛОВИЯ ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ
- Измерения изоляции должны проводиться в нормальных климатических условиях по ГОСТ 15150-85 и при нормальном режиме питающей сети или оговоренных в заводском паспорте — техническом описании на мегомметры.
- Значение электрического сопротивления изоляции соединительных проводов измерительной схемы должно превышать не менее чем в 20 раз минимально допускаемое значение электрического сопротивления изоляции испытуемого изделия.
- Измерение проводят в помещениях при температуре 25±10 °С и относительной влажности воздуха не более 80%, если в стандартах или технических условиях на кабели, провода, шнуры и оборудование не предусмотрены другие условия.
7. ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ
- Проверяют климатические условия в месте измерения сопротивления изоляции с измерением температуры и влажности и соответствие помещения по взрыво- пожароопасности для подбора, к соответствующим условиям, мегомметра.
- Проверяют по внешнему осмотру состояние выбираемого мегомметра, соединительных проводников, работоспособность мегаомметра согласно техническому описанию на мегомметр.
- Проверяют срок действия госповерки на мегомметр.
- Подготовку измерений образцов кабелей и проводов выполняют согласно ГОСТ 3345-76.
- При выполнении периодических профилактических работ в электроустановках, а также при выполнении работ на реконструируемых объектах в электроустановках подготовку рабочего места выполняет электротехнический персонал предприятия, где выполняется работа согласно правилам ПТБЭЭП и ПЭЭП.
8. ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ
Отсчет значений электрического сопротивления изоляции при измерении проводят по истечении 1 мин с момента приложения измерительного напряжения к образцу, но не более чем через 5 мин, если в стандартах или технических условиях на конкретные кабельные изделия или на другое измеряемое оборудование не предусмотрены другие требования.
Перед повторным измерением все металлические элементы кабельного изделия должны быть заземлены не менее чем за 2 мин.
Электрическое сопротивление изоляции отдельных жил одножильных кабелей, проводов и шнуров должно быть измерено:
- для изделий без металлической оболочки, экрана и брони — между токопроводящей жилой и металлическим стержнем или между жилой и заземлением;
- для изделий с металлической оболочкой, экраном и броней — между токопроводящей жилой и металлической оболочкой или экраном, или броней.
Электрическое сопротивление изоляции многожильных кабелей, проводов и шнуров должно быть измерено:
- для изделий без металлической оболочки, экрана и брони — между каждой токопроводящей жилой и остальными жилами, соединенными между собой или между каждой токопроводящей; жилой и остальными жилами, соединенными между собой и заземлением;
- для изделий с металлической оболочкой, экраном и броней — между каждой токопроводящей жилой и остальными жилами, соединенными между собой и с металлической оболочкой или экраном, или броней.
При по ниженном сопротивлении изоляции кабелей проводов и шнуров, отличной от нормативных правил ПУЭ, ПЭЭП, ГОСТ, необходимо выполнить повторные измерения с отсоединением кабелей, проводов и шнуров от зажимов потребителей и разведением токоведущих жил.
При измерении сопротивления изоляции отдельных образцов кабелей, проводов и шнуров, они должны быть отобраны на строительные длины, намотанные на барабаны или в бухты, или образцы длиной не менее 10 м, исключая длину концевых разделок, если в стандартах или технических условиях на кабели, провода и шнуры не оговорена другая длина. Число строительных длин и образ цов для измерения должно быть указано в стандартах или технических условиях на кабели, провода и шнуры.
9. ИЗМЕРЕНИЕ ИЗОЛЯЦИИ ПРЕОБРАЗОВАТЕЛЕЙ
9.1. Измерение электрического сопротивления, изоляции преобразователей проводят в соответствии с требованиями настоящего стандарта, а при воздействии климатических факторов измерение сопротивления изоляции проводят с учетом ГОСТ/16962-71.
Средства измерений: мегомметры и омметры по ГОСТ 16862-71.
Измерение электрического сопротивления изоляции проводят:
- в нормальных климатических условиях; при верхнем значении температуры окружающей среды после установления в преобразователе теплового равновесия;
- при верхнем значении относительной влажности.
Сопротивление изоляции измеряют между электрически не соединенными между собой цепями, электрическими цепями и корпусом. В ТУ или конструкторской документации на преобразователи конкретных серий и типов указывают выводы, между которыми должно быть измерено сопротивление и значение постоянного напряжения, при котором проводится это измерение. Если один из выводов или элементов по схеме соединен с корпусом, то эта цепь на время испытаний должна быть разъединена.
При измерении сопротивления изоляции преобразователей должны выполняться следующие условия:
Таблица 1.
Номинальное напряжение цепи, В | Напряжение измерительного прибора, В |
До 100 включительно Свыше 100 до 500 включительно Свыше 500 до 1000 включительно Свыше 1000 |
100 250-1000 500-1000 2500 |
- перед испытаниями преобразователь должен быть отсоединен от внешних питающих сетей и нагрузки;
- входные (выходные) выводы преобразователя, конденсаторы, связанные с силовыми цепями, а также анодные, катодные и выводы управления силовых полупроводниковых приборов должны быть соединены между собой или зашунтированы;
- контакты коммутационной аппаратуры силовых цепей должны быть замкнуты или зашунтированы;
- электрические цепи, содержащие полупроводниковые приборы и микросхемы, необходимо отключить и, при необходимости, подвергнуть испытаниям отдельно;
- напряжение измерительного прибора при измерении сопротивления изоляции в зависимости от номинального (амплитудного) значения напряжения цепи выбирают по табл. 1.
При необходимости сопротивление изоляции измеряют при более высоких напряжениях, но не превышающих испытательное напряжение цепи.
Измерение сопротивления изоляции преобразователей, состоящих из нескольких шкафов, допускается проводить отдельно по каждому шкафу.
Если измеряют сопротивление изоляции каждого шкафа и (или) конструктивного узла преобразователя, то значение сопротивления изоляции каждого шкафа и (или) конструктивного узла должно быть указано в ТУ на преобразователи конкретных серий и типов.
Величины минимально-допустимых сопротивлений изоляции для силовых кабелей, выключателей, выключателей нагрузки, разъединителей, вентильных разрядников, сухих реакторов, измерительных трансформаторов, КРУ 6-10 кВ внутренней установки, электродвигателей переменного тока, стационарных, передвижных и комплектных испытательных устройств приведены в табл. 2.
10. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ
10.1. Если измерение для кабельных изделий проводилось при температуре, отличающейся от 20 °С, а требуемое стандартами или техническими условиями на конкретные кабельные изделия, значение электрического сопротивления изоляции нормировано при температуре 20 °С, то измеренное значение электрического сопротивления изоляции пересчитывают на температуру 20°С по формуле:
R20=KRt,
где R20 — электрическое сопротивление изоляции при температуре 20 °С, МОм;
Rt — электрическое сопротивление изоляции при температуре измерения, МОм;
К — коэффициент для приведения электрического сопротивления изоляции к температуре 20 °С, значения которого приведены в приложении к настоящему стандарту.
При отсутствии переводных коэффициентов арбитражным методом является измерение электрического сопротивления изоляции при температуре (20±1)°С.
10.2. Пересчет электрического сопротивления изоляции R на длину 1 км должен быть проведен по формуле:
R=R20L,
где R20 — электрическое сопротивление изоляции при температуре 20 °С, МОм;
L — длина испытуемого изделия без учета концевых участков, км.
Коэффициент К приведения электрического сопротивления изоляции к температуре 20 °С.
Погрешность величины сопротивления изоляции подсчитывают по рекомендациям, указанным в технических описаниях и инструкциях по эксплуатации на мегомметры с учетом внешних влияющих факторов.
11. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ
Результаты измерений вносятся в протоколы испытания кабелей до и свыше 1000 В, а также в протоколы по профилактическим наладочным работам по устройствам РЗА и электрооборудования.
Таблица 2.
Наименование измерений сопротивления изоляций |
Нормируемое значение, Мом, не менее | Напряжения мегомметра, В | Указания |
Кабели силовые выше 1000 В | Не нормируется | 2500 | При испытании повышенным напряжением сопротивление изоляции R60 должно быть одинаковым до и после испытаний |
Кабели силовые до 1000В | 1 | 1000 | |
Масляные выключатели: | |||
1. Подвижных и направляющих | |||
частей выполненных из органического материала. 3-10кВ, | 300 | 2500 | |
15-150кВ | 1000 | ||
220кВ | 3000 | ||
2. Вторичных цепей, в том числе включающих и отключающих катушек. |
1 | 1000 | |
З.Выключатели нагрузки: измерение сопротивления изоляции включающей и отключающей катушек | 1 | 500-1000 | Сопротивление изоляции силовой части не измеряется, а испытывается повышенным напряжением промышленной частоты |
4. Разъединители, короткозамыкатели и отделители: | Производится только при положительных температурах окружающего воздуха | ||
1 .Поводков тяг, выполненным | |||
из органических материалов | |||
3-10кВ | 300 | 2500 | |
15-150кВ | 1000 | 2500 | |
220кВ | 3000 | 2500 | |
Измерение сопротивления элемента вентильного разрядника на напряжение: |
Сопротивление разрядника или его элемента должно отличаться не более чем на 30% от результатов измерения |
||
выше 3 кВ и выше | 2500 | ||
менее 3 кВ | 1000 | на заводе-изготовителе или предыдущих измерений при эксплуатации | |
Сухие реакторы. Измерение сопротивления обмоток относительно болтов крепления |
0,5 | 1000-500 | После капитального ремонта. |
0,1 | 1000-500 | В эксплуатации | |
Измерительные трансформаторы напряжения выше 1000В: |
Не нормируется. | 2 500 | При оценке состояния вторичных обмоток можно ориентироваться на следующие средние значения сопротивления исправной обмотки: у встроенных ТТ — 10 МОм, у выносных ТТ- 50 МОм |
первичных обмоток, вторичных обмоток |
Не ниже 1 вместе с под- соединенными цепями |
1000 | |
КРУ 3-10кВ: первичны е цепи вторичны е цепи |
300 | 2 500 | Измерение выполняется при полностью собранных цепях |
1 | 500-1000 В | ||
Э лектродвигатели переменного тока вы ше 660 В |
Не | Должны учитываться при необходимости сушки. | |
нормируется | 2500 | ||
обм. статора. до 660 В | 1 | 1000 | |
Обмотки статора у эл. двигателей на напряжение вы ше 3000 В или мощность более 3000 кВТ |
R60/R15 | 2500 | Производится у синхронны х двигателей и асинхронных двигателей с фазным ротором напряжением 3000 В и выше или мощностью выше 1000 кВт |
Не нормиру- | 1000В | ||
Обмотки ротора | ется | ||
Стационарные, передвижные, переносные комплектные испытательные установки. | Не нормируется | 2500 | |
Измерение изоляции цепей и аппаратуры напр. выше 1000В. |
|||
Цепей и аппаратуры на напряжение до 1000 В |
1 | 1000 | |
Машины постоянного тока: | Сопротивление изоляции обмоток | ||
измерение изоляции обмоток и бандажей до 500В, | 0,5 | 500 | измеряется относительно корпуса, а бандажей — относительно корпуса и |
выше 500В | 1 000 | удерживаемых им обмоток вместе с соединенными с ними цепями и кабелями | |
Силовые и осветительные электропроводки | 0,5 | 1000 | |
Распределительные устройства, щиты и токопроводы |
0,5 | 1000 | |
Вторичны е цепи управления, защиты и автоматики Шинки постоянного тока |
1 | 500-1000 | |
10 | 500-1000 | ||
Каждое присоединение вторичных цепей и цепей питания приводов выключателей |
1 | 500-1000 | |
Цепи управления, защиты, автоматики, телемеханики, возбуждения машин пост. тока на напряжение 500-1000В, присоединенным к цепям главных РУ |
1 | 500-1000 | Сопротивление изоляции цепей напряжением до 60 В, нормаль но питающихся от отдельных источников, измеряется мегом- метром на 500 В и должно быть не менее 0,5 МОм |
Цепи, содержащие устройства с микроэлектронными элементами: |
|||
выше 60 В | 0,5 | 500 | |
60 и ниже | 0,5 | 100 |
Измерение сопротивления изоляции
1.ЦЕЛЬ ПРОВЕДЕНИЯ ИЗМЕРЕНИЙ.
Измерения проводятся с целью проверки соответствия сопротивления изоляции установленным нормам.
2. МЕРЫ БЕЗОПАСНОСТИ
2.1. Организационные мероприятия
В электроустановках напряжением до 1000 В измерения выполняются по распоряжению двумя работниками, один из которых должен иметь группу по электробезопасности не ниже III.
В электроустановках до 1000 В, расположенных в помещениях, кроме особо опасных в отношении поражения электрическим током, работник, имеющий группу III и право быть производителем работ, может проводить измерения единолично.
Измерения сопротивления изоляции ротора работающего генератора разрешается выполнять по распоряжению двумя работниками, имеющими IV и III группу по электробезопасности.
В случаях, когда измерения мегаомметром входят в содержание работ по испытаниям (например испытания электрооборудования повышенным напряжением промышленной частоты), оговаривать эти измерения в наряде или распоряжении не требуется.
Положения настоящей методики обязательны к использованию специалистами электролаборатории в Краснодаре и Краснодарском крае ООО «Энерго Альянс»
2.2. Технические мероприятия
Перечень необходимых технических мероприятий определяет лицо, выдающее наряд или распоряжение в соответствии с требованиями ПОТЭЭ. Измерения сопротивления изоляции мегаомметром должно осуществляться на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления. Заземление с токоведущих частей следует снимать только после подключения мегаомметра.
3. НОРМИРУЕМЫЕ ВЕЛИЧИНЫ
Периодичность испытаний и минимальная допустимая величина сопротивления изоляции должны соответствовать указанным в нормах испытаний электрооборудования и аппаратов Правил устройства электроустановок (ПУЭ), Правил технической эксплуатации электроустановок потребителей (ПТЭЭП). В соответствии с ГОСТ Р 50571.16-99 нормируемые величины сопротивления изоляции электроустановок зданий приведены в таблице 1
Таблица 1.
Номинальное напряжение цепи, В |
Испытательное напряжение постоянноготока, В |
Сопротивление изоляции, МОм |
Системы безопасного сверхнизкого напряжения (БССН) и функционального сверхнизкого напряжения ФССН) |
250 |
0,25 |
До 500 включительно, кроме систем БССН и ФССН |
500 |
0,5* |
Выше 500 |
1000 |
1,0 |
* Сопротивление стационарных бытовых электрических плит должно быть не менее 1 МОм.
Вместе с тем, в соответствии с гл. 1.8 ПУЭ для электроустановок, напряжением до 1000 В допустимые значения сопротивления изоляции представлены в таблице 2.
Таблица 2.
Испытуемый элемент |
Напряжение мегаомметра, В |
Наименьшее допустимое значение сопротивления изоляции, МОм |
1. Шины постоянного тока на щитах управления и в распределительных устройствах (при отсоединенных цепях) |
500-1000 |
10 |
2. Вторичные цепи каждого присоединения и цепи питания приводов выключателей и разъединителей1 |
500-1000 |
1 |
3. Цепи управления, защиты, автоматики измерений, а так же цепи возбуждения машин постоянного тока, присоединенные к силовым цепям |
500 — 1000 |
1 |
4. Вторичные цепи и элементы при питании от отдельного источника или через разделительный трансформатор, рассчитанные на рабочее напряжение 60 В и ниже2 |
500 |
0,5 |
5. Электропроводки, в том числе осветительные сети3 |
1000 |
0,5 |
6. Распределительные устройства4, щиты и токопроводы (шинопроводы) |
500 — 1000 |
0,5 |
1 Измерение производится со всеми присоединенными аппаратами (катушки проводов, контакторы, пускатели, автоматические выключатели, реле, приборы, вторичные обмотки трансформаторов тока и напряжения и т.п.)
2 Должны быть приняты меры для предотвращения повреждения устройств, в особенности микроэлектронных и полупроводниковых элементов.
3 Сопротивление изоляции измеряется между каждым проводом и землей, а также между каждыми двумя проводами.
4 Измеряется сопротивление изоляции каждой секции распределительного устройства.
Анализ этих требований показывает противоречия в части тестирующего напряжения и сопротивления изоляции для вторичных цепей напряжением до 60 В (ПУЭ, гл. 1.8) и систем БССН и ФССН, входящих в этот диапазон (50 В и ниже), согласно ГОСТ 50571.16-99.
Кроме того сопротивление внутренних цепей вводно-распределительных устройств, этажных и квартирных щитков жилых и общественных зданий в холодном состоянии в соответствии с требованиями ГОСТ 51732-2001 и ГОСТ 51628-2000 должно быть не менее 10 МОм (по ПУЭ, гл. 1.8 — не менее 0,5 МОм).
В данной ситуации при определении нормированных величин сопротивления изоляции до введения в действие соответствующих технических регламентов следует руководствоваться более четкими требованиями.
4. ПРИМЕНЯЕМЫЕ ПРИБОРЫ
Для изменения сопротивления изоляции будет применяться мегаомметр Е6-24 с испытательным напряжением от 50 до 2500 В (шаг установки 10 В).
Пределы допускаемой основной абсолютной погрешности установки испытательного напряжения, %: от 0 до плюс 15.
Ток в измерительной цепи при коротком замыкании не более 2 мА.
Диапазоны измерения сопротивления |
Пределы допускаемой основной абсолютной погрешности |
от 1кОм до 999 МОм |
(0,03×R+ 3 е.м.р.) |
от 1,00 до 9,99 ГОм |
(0,05×R + 5 е.м.р.) (испытательные напряжения менее 250 В) |
от 10,0 до 99,9 ГОм |
(0,05×R + 5 е.м.р.) (испытательные напряжения не менее 500 В) |
от 100 до 999 ГОм |
(0,15×R + 10 е.м.р.) (испытательные напряжения не менее 500 В) |
Мегаомметр обеспечивает автоматическое переключение диапазонов и определение единиц измерения.
Погрешность нормирована при использовании кабеля измерительного РЛПА.685551.001.
5. ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ ИЗОЛЯЦИИ ЭЛЕКТРООБОРУДОВАНИЯ
5.1. Измерение сопротивления изоляции силовых кабелей и электропроводок
При измерении сопротивления изоляции необходимо учитывать следующее:
— измерение сопротивления изоляции кабелей (за исключением кабелей бронированных) сечением до 16 мм2 производится мегаометром на 1000 В, а выше 16 мм2 и бронированных — мегаометром на 2500 В; измерение сопротивления изоляции проводов всех сечений производится мегаометром на 1000 В.
При этом необходимо производить следующие замеры:
— на 2- и 3-проводных линиях — три замера: L-N, N-РЕ, L-PE;
— на 4-проводных линиях — 4 замера: L1-L2L3PEN, L2-L3L1PEN, L3-L1L2PEN, PEN-L1L2L3, или 6 замеров: L1-L2, L2-L3, L1-L3, L1-PEN, L2-PEN, L3-PEN;
— на 5-проводных линиях — 5 замеров: L1-L2L3NPE, L2-L1L3NPE, L3-L1L2NPE, N-L1L2L3PE, PE-NL1L2L3, или 10 замеров: L1-L2, L2-L3, L1-L3, L1-N, L2-N, L3-N, L1-PE, L2-РЕ,L3-РЕ, N-PE.
Если электропроводки, находящиеся в эксплуатации, имеют сопротивление изоляции менее 1 МОм, то заключение об их пригодности делается после испытания их переменным током промышленной частоты напряжением 1 кВ в соответствии с приведенными в данном издании рекомендациями.
5.2. Измерение сопротивления изоляции силового электрооборудования
Значение сопротивления изоляции электрических машин и аппаратов в большой степени зависит от температуры. Замеры следует производить при температуре изоляции не ниже +5 С кроме случаев, оговоренных специальными инструкциями. При более низких температурах результаты измерения из-за нестабильного состояния влаги не отражают истинной характеристики изоляции. При существенных различиях между результатами измерений на месте монтажа и данными завода-изготовителя, обусловленных разностью температур, при которых проводились измерения, следует откорректировать эти результаты по указаниям изготовителя.
Степень увлажненности изоляции характеризуется коэффициентом абсорбции, равным отношению измеренного сопротивления изоляции через 60 секунд после приложения напряжения мегаомметра (R60) к измеренному сопротивлению изоляции через 15 секунд (R15), при этом:
Кабс = R60/R15
При измерении сопротивления изоляции силовых трансформаторов используются мегаомметры с выходным напряжением 2500 В. Измерения проводятся между каждой обмоткой и корпусом и между обмотками трансформатора. При этом R60 должно быть приведено к результатам заводских испытаний в зависимости от разности температур, при которых проводились испытания. Значение коэффициента абсорбции должно отличаться (в сторону уменьшения) от заводских данных не более, чем на 20 %, а его величина должна быть не ниже 1,3 при температуре 10 — 30 С. При невыполнении этих условий трансформатор подлежит сушке. Минимально допустимое сопротивление изоляции для установок, находящихся в эксплуатации, приведены в таблице 3.
Сопротивление изоляции автоматических выключателей и УЗО производятся:
1. Между каждым выводом полюса и соединенными между собой противоположными выводами полюсов при разомкнутом состоянии выключателя или УЗО.
2. Между каждым разноименным полюсом и соединенными между собой оставшимися полюсами при замкнутом состоянии выключателя или УЗО.
3. Между всеми соединенными между собой полюсами и корпусом, обернутым металлической фольгой. При этом для автоматических выключателей бытового и аналогичного назначения (ГОСТ Р 50345-99) и
УЗО при измерениях по пп. 1, 2 сопротивление изоляции должно быть не менее 2 Мом, по п. 3 — не менее 5 Мом.
Для остальных автоматических выключателей (ГОСТ Р 50030.2-99) во всех случаях сопротивление изоляции должно быть не менее 0,5 Мом.
Таблица 3. Минимально допустимые значения сопротивления изоляции электроустановок напряжением до 1000В. (Приложение 3; 3.1 ПТЭЭП)
Наименование элемента |
Напряжение |
Сопротивление |
Примечание |
|
|
|||||||
мегаомметра, В |
изоляции, МОм |
|
|
|||||||||
|
|
|
|
|||||||||
1 |
2 |
3 |
4 |
|
|
|||||||
Электроизделия и аппараты на |
|
|
|
|
|
|||||||
номинальное напряжение, В: |
|
|
|
|
|
|||||||
до 50 |
100 |
Должно |
При измерениях полупроводниковые приборы в |
|
|
|||||||
свыше 50 до 100 |
250 |
соответствовать |
изделиях должны быть зашунтированы |
|
|
|||||||
свыше 100 до 380 |
500 — 1000 |
указаниям |
|
|
|
|||||||
свыше 380 |
1000 — 2500 |
изготовителей, |
|
|
|
|||||||
|
|
но не менее 0,5 |
|
|
|
|||||||
Распределительные устройства, щиты |
1000 — 2500 |
Не менее 1 |
При измерениях полупроводниковые приборы в |
|
|
|||||||
и токопроводы |
|
|
изделиях должны быть зашунтированы |
|
|
|||||||
Электропроводки, в том числе |
1000 |
Не менее 0,5 |
Измерения сопротивления изоляции в особо |
|
|
|||||||
осветительные сети |
|
|
опасных помещениях и наружных помещениях |
|
|
|||||||
|
|
|
производятся 1 раз в год. В остальных случаях |
|
|
|||||||
|
|
|
измерения производятся 1 раз в 3 года. При |
|
|
|||||||
|
|
измерениях в силовых цепях должны быть приняты |
|
|
||||||||
меры для предотвращения повреждения устройств, в особенности микроэлектронных и полупроводниковых приборов. |
|
|||||||||||
|
|
|
полупроводниковых приборов. В осветительных сетях должны быть вывинчены лампы, штепсельные розетки и выключатели присоединены. |
|
||||||||
|
|
|
|
|
|
|
|
|
|
|||
Вторичные цепи распределительных |
1000 — 2500 |
Не менее 1 |
Измерения |
производятся |
со |
всеми |
|
|||||
устройств, цепи питания приводов |
|
|
присоединенными |
аппаратами |
(катушки, |
|
||||||
выключателей и разъединителей, цепи |
|
|
контакторы, пускатели, выключатели, реле, |
|
||||||||
управления, защиты, автоматики, |
|
|
приборы, вторичные обмотки трансформаторов |
|
||||||||
телемеханики и т.п. |
|
|
напряжения и тока) |
|
|
|
|
|
||||
Краны и лифты |
1000 |
Не менее 0,5 |
Производится не реже 1 раз в год |
|
|
|
||||||
Стационарные электроплиты |
1000 |
Не менее 0,5 |
Производится при нагретом состоянии плиты не |
|
||||||||
|
|
|
реже 1 раз в год |
|
|
|
|
|
|
|||
Шинки постоянного тока и шинки |
500 — 1000 |
Не менее 10 |
Производится при отсоединенных цепях |
|
|
|||||||
напряжения на щитах управления |
|
|
|
|
|
|
|
|
|
|
||
Цепи управления, защиты, |
500 — 1000 |
Не менее 1 |
Сопротивление изоляции цепей, напряжением до 60 |
|
||||||||
автоматики, телемеханики, |
|
|
В, питающихся от отдельного источника, |
|
||||||||
возбуждения машин постоянного тока |
|
|
измеряются мегаомметром на напряжение 500 В и |
|
||||||||
на напряжение 500 — 1000 В, |
|
|
должно быть не менее 0,5 МОм |
|
|
|
||||||
присоединенных к главным цепям |
|
|
|
|
|
|
|
|
|
|
||
Цепи, содержащие устройства с |
|
|
|
|
|
|
|
|
|
|
||
микроэлектронными элементами, |
|
|
|
|
|
|
|
|
|
|
||
рассчитанные на напряжение, В: |
|
|
|
|
|
|
|
|
|
|
||
до 60 |
100 |
Не менее 0,5 |
|
|
|
|
|
|
|
|
||
выше 60 |
500 |
Не менее 0,5 |
|
|
|
|
|
|
|
|
||
Силовые кабельные линии |
2500 |
Не менее 0,5 |
Измерение производится в течение 1 мин. |
|
|
|||||||
Обмотки статора синхронных |
1000 |
Не менее 1 |
При температуре 10 — 30 С |
|
|
|
|
|||||
электродвигателей |
|
|
|
|
|
|
|
|
|
|
||
Вторичные обмотки измерительных |
1000 |
Не менее 1 |
Измерения |
производятся |
вместе |
с |
|
|||||
трансформаторов |
|
|
присоединенными к ним цепями |
|
|
|
||||||
Анализ требований ПУЭ (приемо-сдаточные испытания) и ПТЭПП (эксплуатационные испытания) к минимально допустимым значениям сопротивления изоляции показывает наличие серьезных противоречий, а именно: для распределительных устройств при приемо-сдаточных испытаниях достаточное сопротивление изоляции 0,5 МОм, а при межремонтных профилактических — 1 МОм.
Данное обстоятельство может привести к тому, что при приемо-сдаточных испытаниях РУ может быть признано годным, а при первых межремонтных — забракованным (при 0,5 < Rиз < 1 МОм).
5.3. Порядок проведения измерений
При измерении сопротивления изоляции следует учитывать, что для присоединения мегаомметра к испытываемому объекту необходимо пользоваться гибкими проводами с изолирующими рукоятками на концах и ограничительными кольцами перед контактными щупами. Длина соединительных проводов должна быть минимальной исходя из условий проведения измерений, а сопротивление их изоляции не менее 10 МОм. Электролаборатория в Краснодаре и Краснодарском крае ООО «Энерго Альянс» для измерения сопротивления изоляции использует мегаомметр Е6-24 или его модификацию Е6-32.
5.3.1 Измерения сопротивления изоляции мегаомметром Е6-24 проводятся в следующей последовательности:
1. Проверить отсутствие напряжения на испытываемом объекте;
2. Очистить изоляцию от пыли и грязи вблизи присоединения мегаомметра к испытываемому объекту;
3. Подключение кабелей к мегаомметру Е6-24 для проведения измерения
сопротивления изоляции на примере кабеля показано на рисунке 1.
Рисунок 1.
Для измерения сопротивлений более 10 ГОм с заданной точностью необходимо подключить экранированный измерительный кабель РЛПА.685551.001, как показано на рисунке
Рисунок 2.
Для исключения влияния поверхностных токов утечки (например, вызванных загрязнением поверхности измеряемого объекта), используйте схемы подключения с тремя измерительными кабелями, как показано на рисунках 3 и 4.
Рисунок 3. Подключение к защитному кольцу
Рисунок 4. Подключение к трансформатору
В первом случае используется защитное кольцо (отрезок фольги, неизолированный провод и т.п., на рисунке закрашен черным цветом) одетое на изолятор одного из проводников, во втором — экранируется корпус (как вариант, сердечник) трансформатора. При измерении сопротивления изоляции свыше 10 ГОм также рекомендуется применять экранированный измерительный кабель.
При использовании кабеля измерительного экранированного периодически необходимо проверять электрическое сопротивление между сигнальной и экранной вилками. Сопротивление должно быть не менее 3 ГОм при испытательном напряжении 2500 В.
4. Включить прибор
5. Кнопкой «Режим» выбрать необходимое испытательное напряжение.
6. Для начала измерений дважды нажать кнопку «Rx» Далее в течении установленного времени произвести измерения. Следует учитывать, что достоверными являются установившиеся показания.
Для досрочного прекращения измерения нажмите кнопку «Rx». Результаты проведенного измерения отображаются на экране в течении 20 сек. После этого мегаомметр переходит в режим измерения напряжения.
Для кратковременных измерений нажмите и удерживайте кнопку «Rx». При отпускании кнопки измерение прекращается.
По окончании измерения автоматически начинается снятие остаточного напряжения с объекта, текущее значение которого отображается на индикаторе: «Uн» — измеренное напряжение на объекте.
7.Оценить погрешность измерения.
5.3.2 Вычисление коэффициентов абсорбции и поляризации.
Коэффициент абсорбции ( КАБС ) применяется для оценки степени увлажнения изоляции кабельных линий, трансформаторов, электродвигателей и т.п.: оценивается скорость заряда абсорбционной емкости (емкости вызванной неоднородностями и загрязнением материала, включениями воздуха и влаги) изоляции при приложении испытательного напряжения. Коэффициент абсорбции автоматически вычисляется по результатам измерения сопротивления изоляции через 15 секунд (R15) и 60 секунд (R60) после начала измерения:
КАБС=R60/ R15
Состояние изоляции считается отличным, если КАБС>1.6 (происходил длительный процесс заряда абсорбционной емкости малыми токами), опасным – если КАБС<1.3 (происходил кратковременный процесс заряда абсорбционной емкости большими токами) в диапазоне температур от 10 ºС до 30 ºС. В последнем случае, а также при снижении коэффициента абсорбции более чем на 20% относительно заводских данных, рекомендуется сушка изоляции.
Для индикации коэффициента абсорбции во время или по окончанию измерения нажмите кнопку «Дисп Меню»
Рисунок 5. Результат измерения сопротивления изоляции. (Вариант отображения с коэффициентом абсорбции)
Коэффициент поляризации ( КПОЛ ) применяется для оценки степени старения изоляции кабельных линий, дорогостоящих трансформаторов и электродвигателей. Он учитывает изменение структуры диэлектрика и, как следствие, повышение способности заряженных частиц и диполей перемещаться под действием электрического поля. Коэффициент КПОЛ автоматически вычисляется по результатам измерения сопротивления изоляции через 60 секунд (R60) и 600 секунд (R600) после начала измерения:
Кпол = R600/R60
Рекомендуется использовать следующие показатели КПОЛ для оценки качества изоляции:
КПОЛ<1 — ресурс изол
Как измерить заземление мегаомметром — Electrik-Ufa.ru
Измерение сопротивления изоляции мегаомметром
Несмотря на то, что мегаомметр считается профессиональным измерительным прибором, в некоторых случаях он может быть востребован и в быту. Например, когда необходимо проверить состояние электрической проводки. Использование мультиметра для этой цели не позволит получить необходимые данные, максимум, он способен — зафиксировать проблему, но не определить ее масштаб. Именно поэтому измерение сопротивления изоляции мегаомметром остается наиболее эффективным способ испытаний, подробно об этом рассказано в нашей статье.
Устройство и принцип работы мегаомметра
Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.
В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).
Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.
Конструктивно модели мегаомметров принято разделять на два вида:
- Аналоговые (электромеханические) — мегаомметры старого образца. Аналоговый мегаомметр
- Цифровые (электронные) – современные измерительные устройства. Электронный мегаомметр
Рассмотрим их особенности.
Электромеханический мегаомметр
Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы
Упрощенная схема электромеханического мегаомметраОбозначения:
- Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
- Аналоговый амперметр.
- Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
- Сопротивления.
- Переключатель измерений кОм/Мом.
- Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.
Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:
- Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
- На отображаемые данные влияет равномерность вращения динамо-машины.
- Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
- Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.
Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.
Современная аналоговая модель мегаомметра Ф4102
Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.
Электронный мегаомметр
Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.
Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.
Как правильно пользоваться мегаомметром?
Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов. Пример такой таблицы приведен ниже.
Таблица 1. Соответствие уровня напряжения допустимому значению сопротивления изоляции.
Испытуемый объект | Уровень напряжения (В) | Минимальное сопротивление изоляции (МОм) |
Проверка электропроводки | 1000,0 | 0,5> |
Бытовая электроплита | 1000,0 | 1,0> |
РУ, Электрические щиты, линии электропередач | 1000,0-2500,0 | 1,0> |
Электрооборудование с питанием до 50,0 вольт | 100,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Электрооборудование с номинальным напряжением до 100,0 вольт | 250,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Электрооборудование с питанием до 380,0 вольт | 500,0-1000,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Оборудование до 1000,0 В | 2500,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Перейдем к методике измерений.
Пошаговая инструкция измерения сопротивления изоляции мегаомметром
Несмотря на то, что пользоваться мегаомметром несложно, при испытаниях электроустановок необходимо придерживаться правил и определенного алгоритма действий. Для поиска дефектов изоляции генерируется высокий уровень напряжения, которое может представлять опасность для жизни человека. Требования ТБ при проведении испытаний будут рассмотрены отдельно, а пока речь пойдет о подготовительном этапе.
Подготовка к испытаниям
Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).
Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм 2 . Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.
Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.
Подключение прибора к испытуемой линии
Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.
Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:
- Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к гнезду «З». Подобная схема подключения приведена на рисунке. Подключение мегаомметра
Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.
- Каждый из проводов проверяется относительно земли.
- Осуществляется проверка каждого провода относительно других жил.
Алгоритм испытаний
Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:
- Подготовительный этап (полностью описан выше).
- Установка переносного заземления для снятия электрического заряда.
- На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
- В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
- Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
- Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
- Отключение переносного заземления с тестируемого объекта.
- Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
- Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
- Снимаем остаточное напряжение при помощи переносного заземления.
- Производим отключение измерительных щупов.
Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.
По итогам испытаний принимается решение о возможности эксплуатации электроустановки.
Правила безопасности при работе с мегаомметром
При испытаниях электрооборудования к работе с мегаомметром должен допускаться электротехнический персонал, у которого группа электробезопасности не ниже третьей. Даже если измерения производятся в быту, тем, кто намерен использовать мегаомметр следует ознакомиться с основными требованиями ТБ:
- При тестировании следует использовать диэлектрические перчатки, к сожалению, данное требование часто игнорируется, что приводит к частым травмам.
- Перед проведением испытаний, необходимо убрать посторонних лиц с тестируемого объекта, а также вывесить соответствующие предупреждающие плакаты.
- При подключении щупов необходимо касаться их изолированных участков (рукоятей).
- После каждого из измерений, следует не забывать подключать переносное заземление, прежде чем отключать контрольные кабели.
- Измерения должны проводиться только при сухой изоляции, если ее влажность превышает допустимые пределы, испытания переносятся.
Все об измерениях сопротивления заземления
Заземляющее устройство – это совокупность проводников из металла, соединенных с деталями электроустановки, и заземлителя (один или несколько проводников, которые закапываются в землю). Их используют, чтобы повысить безопасность электроустановок и с целью защиты людей от воздействия электрического тока.
Если возникает аварийная ситуация, когда происходит пробой изоляции проводника, напряжение через заземление уходит в землю, не причиняя вреда человеку, который соприкасается с оборудованием. Именно поэтому необходимо, чтобы заземление всегда находилось в исправном состоянии.
Одной из его важных характеристик является сопротивление, величина которого регламентируется нормативными документами.
Основные понятия
Сопротивление заземляющего устройства (оно так же именуется сопротивление растеканию тока) имеет прямо пропорциональную взаимосвязь с напряжением и обратно пропорциональную с током растекания в «землю».
Можно выделить три вида заземлений:
- рабочее. С его помощью заземляются определенные места, оно используется в процессе эксплуатации электрооборудования;
- защита от молний. Молниеприемники заземляются с целью перенаправления на металлические конструкции токов, которые возникают под воздействием молний;
- защитное. Используется для защиты от поражающего действия электрического тока, если кто-то непреднамеренно соприкоснется с деталью, которая при нормальной работе не должна пропускать ток.
Существует несколько методик измерения сопротивления заземляющих устройств, которые будут рассмотрены более детально. Способы измерений определяются специалистами электротехнической лаборатории и зависят от конкретных условий эксплуатации оборудования.
Применение амперметра и вольтметра
Метод заключается в следующем. С двух сторон от конструкции заземления, которое подлежит проверке, на равном удалении (около 20 метров) размещают два электрода (основной и дополнительный), после чего на них подается переменный ток. По образованной таким образом цепи начинает протекать электрический ток, а его значение отображается на дисплее амперметра.
Подключенный к заземляющему устройству и основному заземлителю вольтметр покажет уровень напряжения. Чтобы определить общее сопротивление заземления нужно воспользоваться законом Ома, разделив значение напряжения, показанного вольтметром, на ток, значение которого показывает амперметр.
Этот способ измерений является наиболее простым, но имеет невысокий уровень точности, поэтому чаще всего используются иные методы.
Компенсационный метод
Данная методика дает возможность проводить измерения сопротивления заземления с использованием готовых приборов, которые выпускает промышленность. Известные модели таких приборов – Ф4103-М1, М416, ИС-10 и другие.
Как и в предыдущей методике, здесь применяются два электрода, углубляемые аналогичным образом в почву. Далее необходимо к заземляющему устройству подключить сам измерительный прибор, а его провода зафиксировать на укрепленных в грунте электродах.
Генерируется ток, движущийся сквозь первичную обмотку трансформатора прибора, которым осуществляется измерение сопротивления заземляющего проводника. Одновременно с этим на вторичной обмотке наводится ЭДС, и вольтметр показывает определенное значение.
С помощью реохорда на измерительном приборе добиваются того, чтобы стрелка на вольтметре находилась в нулевом положении. Это будет свидетельствовать о равенстве напряжений U1 и U2. Вращая ручку реостата, необходимо зафиксировать значение сопротивления заземления по показаниям стрелки реохорда.
Трехпроводный метод
В этом методе измерение сопротивления заземления проводится с помощью специальных измерителей, как старого образца (например, мегаомметром), так и современного, использующих цифровые технологии и микропроцессоры (например, MRU-200).
Необходимо очистить от коррозии шинопровод заземляющего устройства, после чего подключить к нему контакт измерителя. На указанном в инструкции расстоянии в почву вбиваются электроды, к которым прикрепляются катушки.Их концы подключают к измерительному прибору и убеждаются, что схема готова к функционированию.
Необходимо учитывать, что напряжение помехи между укрепленными в земле электродами не должно быть больше чем 24 Вольта. Если этого не удалось добиться, то необходимо электроды разместить иначе.
Нажатием кнопки на приборе запускают процесс автоматического измерения сопротивления, наблюдая на дисплее показания. Для большей точности следует провести несколько замеров и убедиться, что показания отличаются друг от друга не более чем на 5%.
Если имеется необходимость добиться повышенной точности измерения, может использоваться четырехпроводный метод, который исключает влияние сопротивления измерительных приборов.
Токовые клещи
Главным достоинством данного метода является то, что не нужно использовать дополнительное оборудование и производить отключение заземления.
Достаточно просто использовать клещи для измерения величины сопротивления.
Токовые клещи функционируют на основе взаимоиндукции. В головке измерительных клещей спрятана обмотка (первичная обмотка). Ток в ней генерирует ток в заземляющем проводнике, играющем роль вторичной обмотки.
Чтобы узнать величину сопротивления, нужно разделить показатель ЭДС вторичной обмотки на значение тока, которое было измерено клещами (оно появляется на дисплее клещей).
В более современных приборах ничего делить не надо. При соответствующих настройках значение сопротивления заземления сразу же отображается на дисплее.
Периодичность проверки
Проведение визуальных осмотров, измерений и вскрытие грунта (если это нужно) проводится на основании графика, который составляется и утверждается предприятием, однако эти сроки должны находиться в пределах 12 лет.
Наиболее корректные результаты можно получить, если померить сопротивление заземления в середине лета или зимы. Именно тогда почва обладает максимальным сопротивлением.
Важно помнить, что измерения стоит проводить в сухую погоду.
Минимальный уровень сопротивления заземляющих устройств, который допускается, нормируется «Правилами устройства электроустановок».
Если электроустановка работает с напряжением до 1000 В, то значение сопротивления должно находиться в пределах от 2 до 8 Ом в зависимости от уровня напряжения (2 – если 660 В, 4 – если 380 В, 8 – если 220 В).
В электроустановках напряжением свыше 1000 В уровень сопротивления не должен превышать 0,5 Ом.
Составление протокола
Когда осмотр окончен, проведены все необходимые измерения и испытания, работники организации, проводившей работы, составляют «Протокол измерения сопротивления заземления». Он оформляется в соответствии с ГОСТом Р 50571.16-2007 Электроустановки низковольтные. Часть 6. Испытания. Приложение Н.
Этот нормативный акт условно состоит из трех структурных частей:
- данные о специальной организации, которая выполняла порученные работы по измерению сопротивления заземления, и заказчике этих работ;
- начальная статичная информация;
- итоги проведения измерений.
Основываясь на ГОСТе, сведения об организации, проводившей измерения, должны представляться в развернутом виде. Необходимо указать название и адрес, на который зарегистрирована данная лаборатория, номер регистрации, информацию об аттестатах аккредитации (когда был выдан и до какой даты действует).
Указывают название организации, которая проводила аккредитацию или свидетельство о регистрации в структуре Государственного Энергонадзора.
Помимо этого протокол должен содержать сведения о заказчике, монтажной и проектной организациях.
Начальная статичная информация – это данные об электроустановке и ее системе заземления, информация о почве, в которой закреплено заземление, температуры окружающей среды, уровень атмосферного давления на момент испытаний. То есть это все данные об условиях, в которых проводились измерения сопротивления заземления, и приборах, которые для этого использовались.
Итоги проведенных измерений вносят в табличную форму, где указывают полученные приборами данные.
В конце протокола обязательно дается заключении о пригодности заземления для дальнейшего использования, а так же отражаются фамилии работников, которые проводили измерительные работы.
Как измерить сопротивление заземления с помощью мультиметра и мегаомметра
«Диагностика» контура делается довольно часто. Измерение величины заземления проводится как при его обустройстве (последний, заключительный этап работы), так и в плане контроля состояния уже имеющегося.
Например, для проверки целостности стержня, оценки возможности использования контура без его реконструкции при значительном увеличении нагрузки на домашнюю электросеть, и в ряде других случаев. И уж тем более определение номинала сопротивления важно, если в цепи эл/питания нет защитных устройств (АВ, УЗО или дифференциального автомата).
Дело в том, что все перечисленные приборы для проведения официальных измерений не подходят. Для этого необходима специальная тестирующая аппаратура. Для «домашнего» же контроля состояния заземления можно использовать любой из образцов, который есть под рукой. Хотя результат будет лишь приблизительным, и это следует учитывать.
Измерение мультиметром
Этот универсальный прибор, если все делать по стандартной, официально утвержденной методике, для таких целей, как отмечено, не подходит. Мультиметр на практике используется лишь для примерной оценки состояния заземления, выявления явных обрывов, то есть отсутствия надежного контакта соответствующего проводника с грунтом. Как это правильно делать описано здесь.
Почему данный тип измерительного прибора применяется лишь в редких случаях?
- Большая погрешность измерений не дает истинного представления о реальном значении сопротивления.
- Стандартная (рекомендуемая) методика не может быть применена, так как согласно ей прибор должен подключаться к 4-м точкам, к тому же разнесенным территориально. С мультиметром это сделать невозможно.
- Официального заключения по результатам измерений таким прибором (задокументированного) не выдаст ни один специалист. Причина вполне объяснима – в нормативных актах использование мультиметра при проверке заземления не предусмотрено.
Тем не менее, есть ситуации, когда без мультиметра не обойтись. Например, на территории с довольно плотной застройкой. Это не позволяет производить измерения на больших расстояниях от здания. А согласно методике, оно должно быть в пределах 30±10 м. Подробнее, как измерить сопротивление с помощью мультиметра можно из видео:
Как подготовить мультиметр
Задача любого измерения – добиться максимальной точности показаний. Что необходимо проделать:
- подобрать «хороший» мультиметр (у друзей, соседей и так далее). Какой лучше выбрать для различных целей описывали вот в этой статье. Подразумевается достаточно новый, а не выпущенный десятилетия тому назад, неповрежденный, с максимально возможным классом точности для этого типа приборов;
- заменить элемент питания. Старая батарейка, частично разряженная, только увеличит погрешность измерения;
- произвести калибровку (если она предусмотрена для конкретной модели).
Как подготовить рабочее место
Даже если вспомогательный электрод изначально при организации заземления и был установлен, то его еще нужно найти. Тем более, если дом построен много лет назад, и территория вокруг него уже несколько раз подвергалась перепланировке, обустройству и так далее. Следовательно, его «дубликат» необходимо поставить самостоятельно.
Для измерения сопротивления подойдет любой металлический штырь (то же арматурный пруток) сечением порядка 5 мм, который вгоняется в землю минимум на 1,5 м на расстоянии 7,5±2,5 от основного. Его найти намного проще, тем более что место расположения должно быть помечено (знаком, символом на стене дома). Хотя несложно определить и визуально – к нему часто тянется по-над поверхностью металлическая проволока (шестерка или восьмерка).
Где измерять сопротивление
Между основным штырем заземления и вновь установленным (дополнительным). Схема показана на рисунке.
Результат замеров позволяет понять, насколько отвечает стержень заземления тем требованиям, которые к нему предъявляются. По сути, измеряется суммарное сопротивление его и грунта. Дело в том, что большая его часть заглублена. В процессе длительной эксплуатации металл подвергается коррозии.
- Предварительно определяется сопротивление дополнительного стержня. Его значение при оценке результата не учитывается.
- Величина R заземления должна быть Измерение мегаомметром
Принцип измерений тот же самый. Отличия лишь в некоторых моментах.
- Для получения максимально точных показаний прибор необходимо установить в строго горизонтальной плоскости. Перекос ни по одной из осей не допускается.
- Подготовка мегаомметра (измеритель сопротивления заземления) сводится к его проверке на пригодность к измерениям. Сделать это достаточно просто (пример – модель М416).
- Переключатель – в «Контроль».
- Нажимается кнопка и производится вращение рукоятки. Стрелка должна встать на отметке 5 (±0,3). Если показание иное, прибор отбраковывается.
- Как правильно подключать к клеммам измеритель сопротивления заземления провода в зависимости от схемы измерения, показано на его корпусе.
Методик измерения сопротивления заземления довольно много. Они предполагают использование различных приборов, схем, и оптимальное решение принимается для конкретного контура индивидуально. Но для самостоятельной диагностики его состояния в домашних условиях достаточно и двух описанных выше.
Если же есть сомнения в правильности определения результатов, большой погрешности и так далее, следует обратиться к профессионалам. К заземлению, учитывая, что оно – составная часть схемы эн/снабжения, пренебрежительно относиться не стоит.
Измерение сопротивления изоляции мегаомметром
Несмотря на то, что мегаомметр считается профессиональным измерительным прибором, в некоторых случаях он может быть востребован и в быту. Например, когда необходимо проверить состояние электрической проводки. Использование мультиметра для этой цели не позволит получить необходимые данные, максимум, он способен — зафиксировать проблему, но не определить ее масштаб. Именно поэтому измерение сопротивления изоляции мегаомметром остается наиболее эффективным способ испытаний, подробно об этом рассказано в нашей статье.
Устройство и принцип работы мегаомметра
Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.
В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно закону Ома ( I = U/R и R=U/I ).
Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.
Конструктивно модели мегаомметров принято разделять на два вида:
- Аналоговые (электромеханические) — мегаомметры старого образца. Аналоговый мегаомметр
- Цифровые (электронные) – современные измерительные устройства. Электронный мегаомметр
Рассмотрим их особенности.
Электромеханический мегаомметр
Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы
Упрощенная схема электромеханического мегаомметраОбозначения:
- Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
- Аналоговый амперметр.
- Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
- Сопротивления.
- Переключатель измерений кОм/Мом.
- Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.
Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:
- Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
- На отображаемые данные влияет равномерность вращения динамо-машины.
- Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
- Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.
Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.
Современная аналоговая модель мегаомметра Ф4102
Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.
Электронный мегаомметр
Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.
Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.
Как правильно пользоваться мегаомметром?
Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов. Пример такой таблицы приведен ниже.
Таблица 1. Соответствие уровня напряжения допустимому значению сопротивления изоляции.
Испытуемый объект | Уровень напряжения (В) | Минимальное сопротивление изоляции (МОм) |
Проверка электропроводки | 1000,0 | 0,5> |
Бытовая электроплита | 1000,0 | 1,0> |
РУ, Электрические щиты, линии электропередач | 1000,0-2500,0 | 1,0> |
Электрооборудование с питанием до 50,0 вольт | 100,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Электрооборудование с номинальным напряжением до 100,0 вольт | 250,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Электрооборудование с питанием до 380,0 вольт | 500,0-1000,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Оборудование до 1000,0 В | 2500,0 | 0,5 или более в зависимости от параметров, указанных техническом паспорте |
Перейдем к методике измерений.
Пошаговая инструкция измерения сопротивления изоляции мегаомметром
Несмотря на то, что пользоваться мегаомметром несложно, при испытаниях электроустановок необходимо придерживаться правил и определенного алгоритма действий. Для поиска дефектов изоляции генерируется высокий уровень напряжения, которое может представлять опасность для жизни человека. Требования ТБ при проведении испытаний будут рассмотрены отдельно, а пока речь пойдет о подготовительном этапе.
Подготовка к испытаниям
Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).
Следующее действие подготовительного этапа – установка переносного заземления. С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм 2 . Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.
Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.
Подключение прибора к испытуемой линии
Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.
Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:
- Каждый провод в кабеле тестируется относительно остальных жил, которые соединены вместе. Тестируемый провод подключается к гнезду «Л», остальные, соединенные вместе жилы к гнезду «З». Подобная схема подключения приведена на рисунке. Подключение мегаомметра
Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.
- Каждый из проводов проверяется относительно земли.
- Осуществляется проверка кажд
Номер изображения / модели | Описание | Кол-во / Цена |
Biddle 235000 Тестер устройств 100M / 500V, НАЖМИТЕ для увеличения изображения! | 1.5KVAC Biddle 235000 / 23J2 ПРОСТО ПРИБЫЛ! Этот прочный портативный прибор объединяет множество тестовых функций в одной удобной коробке. Используя 3-проводную заземленную розетку и дополнительный внешний зажим заземления, он проверяет ток утечки, целостность высокого сопротивления заземления и пробой изоляции до 1500 В переменного тока. Полная система тестирования для большинства элементов 120VAC. Вы можете скачать полное руководство по в формате PDF ЗДЕСЬ.Все эти бывшие в употреблении агрегаты были очищены, отремонтированы и калиброваны, а также был проведен прослеживаемый сертификат калибровки. могут быть предоставлены по запросу для ваших записей CSA / UL за дополнительные 50 долларов США. Мы предоставляем копию печатного руководства к каждому устройству. У нас было много запросов на эти устройства, и, наконец, мы получили еще несколько. Также известен как испытательный комплект 23J2. | Последние 1 НАЖМИТЕ ДЛЯ ЗАКАЗА |
PPM Inc. PPM R1M-B Мегомметр 500V НАЖМИТЕ для увеличения PIC! Сделано в США | PPM Inc. Мегометр R1M-B ТОЛЬКО ПРИБЫЛ! Бывшие в употреблении, но полностью отремонтированные и откалиброванные счетчики представляют собой исключительную ценность! Эти прочные единиц производства США построены в соответствии с военными стандартами MILT-T-28800, тип III, класс 3, стиль E , для таких суровых условий эксплуатации, как судовые, и для эксплуатации в полевых условиях.Они красиво сделаны внутри и полностью герметичны на уровне доски, чтобы выдерживать суровые условия. Уникальная конструкция R1M-B позволяет безопасно измерять сопротивление изоляции в потенциально НАПРЯЖЕННЫХ цепях, поскольку он сначала автоматически проверяет напряжение (переменного или постоянного тока) (и загорается красный светодиодный предупреждающий индикатор, если он обнаружен), и может безопасно обрабатывать до входов 600 В. Если напряжение отсутствует, он автоматически возвращается в мегомный режим и подает испытательное напряжение 500 В постоянного тока (+/- 10%), позволяя 1-199.Диапазон сопротивления 9 МОм. Всего одна тестовая кнопка управляет устройством, и все функции в этом случае автоматические, с ЖК-дисплеем на 3 1/2 цифры с индикацией низкого заряда батареи. Полная шкала — 199,9 МОм . Испытательное напряжение ограничено током 1 мА, но при 500 В постоянного тока это может быть болезненным шоком, поэтому будьте осторожны при работе. Питание осуществляется от внутренней батареи 9 В постоянного тока. Полный заводской паспорт ЗДЕСЬ .
Они поставляются с новой высококачественной промышленной батареей Duracell, перепечаткой инструкции по эксплуатации, парой испытательных проводов нового типа и калибровкой тока. | Есть 20 249 $ каждый НАЖМИТЕ ДЛЯ ЗАКАЗА |
Victor VC60B Insulation Tester VC60B, НАЖМИТЕ для увеличения PIC! VC60B, НАЖМИТЕ для увеличения изображения! | 250V / 500V / 1000V Обновленный Victor тестер изоляции VC60B ПРОСТО ПРИБЫЛ! Новые заводские 3-х разрядные цифровые тестеры изоляции (мегомметры) Victor Victor в штучной упаковке, с 3 испытательными напряжениями (250 В, 500 В и 1 кВ постоянного тока), а также диапазоном напряжения 750 В переменного тока.Эти новые версии от Victor имеют твердый корпус с крышкой и ремень для переноски, а также полный набор свинцовых элементов и аккумуляторы. Отображение в МОмах с возможностью выбора разрешения. Использует щелочную батарею AA4 или также принимает внешний адаптер 9 В постоянного тока для непрерывного использования. В каждом устройстве установлены новые батареи Duracell / Maxell, которые проверяются перед отправкой. Отличное качество! ВНИМАНИЕ! ВЫСОКОЕ НАПРЯЖЕНИЕ НА ИСПЫТАТЕЛЬНЫХ ПРОВОДАХ! | ИЗВИНИТЕ, ПРОДАНО НАЖМИТЕ ДЛЯ ЗАКАЗА |
ROD-L M500AVS4 НАЖМИТЕ для увеличения изображения! НАЖМИТЕ для увеличения изображения! | ROD-L Возможность тестирования 2500VAC ROD-L M500AVS4 Этот промышленный стандартный тестер Hi-pot может обеспечивать до 2500 В переменного тока (3 кВ макс.) При макс. 350 мА., с регулируемым током отключения (настраивается сзади) и регулируемым испытательным напряжением (настраивается сзади). Это полуавтоматический набор для тестирования, который определяет возврат к земле и предварительно рассчитывает время теста с полным сообщением о прохождении / отказе. Б / у агрегат, после капитального ремонта и калибровки. Время внутреннего тестирования полностью регулируется, мы установили его на 10 секунд, но мы сделаем все необходимые изменения перед отправкой. Имеет задний интерфейс для дополнительных устройств ROD-L. тестовое соединение осуществляется через стандартный трехконтактный линейный соединитель переменного тока, тест — между землей и обоими линейными соединениями.Рис — M100AV, но выглядит так же, за исключением масштабирования текущего измерителя. Очищено, отремонтировано и откалибровано. ВНИМАНИЕ! ВЫСОКОЕ НАПРЯЖЕНИЕ НА ИСПЫТАТЕЛЬНЫХ ПРОВОДАХ! | Всего 1 $ 995 НАЖМИТЕ ДЛЯ ЗАКАЗА |
Изображение / Номер модели | Описание | Кол-во / Цена |
ROD-L M100DC 5.5-5 НАЖМИТЕ для увеличения изображения! НАЖМИТЕ для увеличения изображения! НАЖМИТЕ для увеличения изображения! | ROD-L 5500VDC Возможность тестирования ROD-L M100DC 5.5-5 Этот промышленный стандартный тестер Hi-pot может выдавать до 5,5 кВ постоянного тока (6 кВ макс.) При 5 мА с регулируемым током отключения (настраивается сзади) и регулируемое испытательное напряжение (настраивается сзади). Это полуавтоматический набор для тестирования, который определяет возврат к земле и предварительно рассчитывает время теста с полным сообщением о прохождении / отказе.Имеет ШЕСТЬ предустановленных профилей (A / B) на задней панели и 4 внутренних, а также возможность переключения переменного / постоянного тока на другое устройство, чтобы иметь одно тестовое соединение, ПЛЮС разъемы для двух ручных переключателей безопасности для максимальной безопасности оператора. Б / у агрегат, после капитального ремонта, очистки и калибровки. Время внутреннего тестирования полностью регулируется, мы установили его на 10 секунд, но мы сделаем все необходимые изменения перед отправкой. Имеет задний интерфейс для дополнительных устройств ROD-L. Тестовое соединение осуществляется через стандартный трехконтактный линейный соединитель переменного тока, тест — между землей и обоими линейными соединениями.Загружен расширенными опциями и в отличном состоянии! Очищено, отремонтировано и откалибровано. ВНИМАНИЕ! ВЫСОКОЕ НАПРЯЖЕНИЕ НА ИСПЫТАТЕЛЬНЫХ ПРОВОДАХ! | Всего 1 $ 1,195 НАЖМИТЕ ДЛЯ ЗАКАЗА |
Изображение / Номер модели | Описание | Кол-во / Цена |
ROD-L M100DC 5.5-10 НАЖМИТЕ, чтобы увеличить изображение! НАЖМИТЕ для увеличения изображения! НАЖМИТЕ для увеличения изображения! | ROD-L Возможность тестирования 5500VDC ROD-L M100DC 5.5-10 Этот промышленный стандартный тестер Hi-pot может выдавать до 5,5 кВ постоянного тока (6 кВ макс.) При 10 мА с регулируемым током отключения (настраивается сзади) и регулируемым испытательным напряжением (настраивается сзади). Это полуавтоматический набор для тестирования, который определяет возврат к земле и предварительно рассчитывает время теста с полным сообщением о прохождении / отказе. Имеет два предустановленных профиля (A / B) на задней панели и возможность передачи переменного / постоянного тока на другое устройство для одного тестового соединения. Б / у агрегат, после капитального ремонта, очистки и калибровки.Время внутреннего тестирования полностью регулируется, мы установили его на 10 секунд, но мы сделаем все необходимые изменения перед отправкой. Имеет задний интерфейс для дополнительных устройств ROD-L. Тестовое соединение осуществляется через стандартный трехконтактный линейный соединитель переменного тока, тест — между землей и обоими линейными соединениями. Очищено, отремонтировано и откалибровано. ВНИМАНИЕ! ВЫСОКОЕ НАПРЯЖЕНИЕ НА ИСПЫТАТЕЛЬНЫХ ПРОВОДАХ! | Всего 1 $ 1,195 НАЖМИТЕ ДЛЯ ЗАКАЗА |
Изображение / Номер модели | Описание | Кол-во / Цена |
ROD-L M25 GCT НАЖМИТЕ для увеличения изображения! НАЖМИТЕ для увеличения изображения! НАЖМИТЕ для увеличения изображения! | ROD-L 25A Возможность проверки заземления ROD-L M25-GCT Этот стандартный тестер заземления может выдавать до 25A для измерения безопасности заземления с регулируемым сопротивлением срабатывания (настраивается сзади).Это полуавтоматический испытательный комплект, который определяет качество заземления кабеля (до 0,15 Ом) и предварительно рассчитывает время испытания с полным сообщением о прохождении / отказе. Включает проверку неисправности входной линии переменного тока. Время внутреннего тестирования полностью регулируется, мы установили его на 10 секунд, но мы сделаем все необходимые изменения перед отправкой. Имеет задний интерфейс для дополнительных устройств ROD-L и переключатель выбора теста на передней панели. Тестовое соединение осуществляется через стандартный трехконтактный линейный соединитель переменного тока, тест — между заземлением и внешней перемычкой заземления. Очищено, отремонтировано и откалибровано. ВНИМАНИЕ! АКТУАЛЬНОЕ НАЛИЧИЕ ИСПЫТАНИЙ! | ИЗВИНИТЕ, ПРОДАНО, еще впереди! $ 795 |
Associated Research 4050A HyPot Jr. Tester НАЖМИТЕ для увеличения PIC! | НАЖМИТЕ, чтобы посетить! AR 4050A HyPot Jr. Tester Bench Hypot Jr. высоковольтный испытательный комплект, с выходным соединением и гнездами для датчиков. Регулируется до 5 кВ переменного тока. для тестирования, имеет встроенную линию заземления и диагностический кабель для диагностики (требуется целостность внешнего заземления (шасси) для продолжения проверки. Максимальный испытательный ток, 25 мА, в настоящее время установлен (на заднем фартуке) на ток отключения 5 мА , имеет дополнительные разъемы на задней панели для подключения испытательного оборудования. Точность полной шкалы 2%. Отлично подходит для высоковольтной проводки UL / CSA и тестирования устройств (обычно 2x линии + 1 кВ). Может использоваться с дополнительными модулями пандуса Associated Research и устройствами выдержки времени, подключенными к задний фартук для создания полностью автоматизированного испытательного оборудования. Измерительный провод высокого напряжения с зажимом в комплекте. Обратите внимание, что для всех тестов требуется заземляющий заземляющий провод, подключенный к проверяемому оборудованию для обеспечения безопасности и возможности тестирования. ( Испытательное напряжение до 5000 В переменного тока ). НАЖМИТЕ для PDF Factory СПЕЦИФИКАЦИЯ . ВНИМАНИЕ! ВЫСОКОЕ НАПРЯЖЕНИЕ НА ИСПЫТАТЕЛЬНЫХ ПРОВОДАХ! | ИЗВИНИТЕ, ПРОДАНО 695 $ |
Associated Research 5040A HyPot Jr. Тестер НАЖМИТЕ для увеличения изображения! | НАЖМИТЕ, чтобы посетить! AR 5040A HyPot Jr. Tester Bench Hypot Jr. высоковольтный испытательный комплект, с выходным соединением и гнездами для датчиков. Регулируется до 4 КВ постоянного тока для тестирования, имеет встроенную линию заземления и диагностический кабель для диагностики (требуется целостность внешнего заземления (шасси) для продолжения проверки. Максимальный испытательный ток, 5 мА, в настоящее время установлен (на заднем фартуке) на ток отключения 5 мА , имеет дополнительные разъемы заднего переключателя для подключения испытательного оборудования.Точность полной шкалы 2%. Отлично подходит для испытаний высоковольтной проводки и оборудования UL / CSA (обычно 2 линии + 1 кВ). Может использоваться с дополнительными модулями пандуса и временной выдержки Associated Research, подключенными к заднему фартуку , для создания полностью автоматизированного испытательного оборудования. Измерительный провод высокого напряжения с зажимом в комплекте. Обратите внимание, что для всех тестов требуется заземляющий заземляющий провод, подключенный к проверяемому оборудованию для обеспечения безопасности и возможности тестирования. ( Испытательное напряжение до 4000 В постоянного тока ). НАЖМИТЕ для PDF Factory СПЕЦИФИКАЦИЯ . ВНИМАНИЕ! ВЫСОКОЕ НАПРЯЖЕНИЕ НА ИСПЫТАТЕЛЬНЫХ ПРОВОДАХ! | ИЗВИНИТЕ, ПРОДАНО 695 $ |
Duoyi DY30-1 Тестер сопротивления изоляции НАЖМИТЕ для увеличения изображения! | НАЖМИТЕ, чтобы посетить! Тестер сопротивления изоляции Duoyi DY30-1 до 2000 МОм / 1 кВ Набор для испытаний высокого напряжения с питанием от батареи, с возможностью выбора испытательного напряжения постоянного тока (250, 500, 1000 В) и 3 1/2 разрядным ЖК-дисплеем с сопротивлением до 2000 МОм (3% полной шкалы + точность 5 разрядов).Также проверяет напряжение переменного тока до 700 В (2% полной шкалы + точность 5 разрядов). Фактические тесты показали точность намного лучше, чем их спецификации. СОВЕРШЕННО НОВЫЙ, в заводской коробке, плюс мы загрузили свежие батареи Duracell и полностью проверили все функции. Включает дорожный футляр на молнии, дополнительные батареи и измерительные провода. Полные заводские данные ЗДЕСЬ . НОВЫЙ и откалиброванный со всеми принадлежностями. ВНИМАНИЕ! ВЫСОКОЕ НАПРЯЖЕНИЕ НА ИСПЫТАТЕЛЬНЫХ ПРОВОДАХ! | Всего 1 295 $ НАЖМИТЕ ДЛЯ ЗАКАЗА |
Duoyi DY30-2 Тестер сопротивления изоляции НАЖМИТЕ для увеличения изображения! | НАЖМИТЕ, чтобы посетить! Duoyi DY30-2 Тестер сопротивления изоляции до 20 ГОм / 2.5кВ Комплект для испытания высокого напряжения с питанием от батареи, с выбираемым испытательным напряжением постоянного тока (500, 1000, 2500 В) и 3 1/2 разрядным ЖК-дисплеем с сопротивлением до 20 ГОм (3% полной шкалы + точность 5 знаков). Также проверяет напряжение переменного тока до 700 В (2% полной шкалы + точность 5 разрядов). Фактические тесты показали точность намного лучше, чем их спецификации. СОВЕРШЕННО НОВЫЙ, в заводской коробке, плюс мы загрузили свежие батареи Duracell и полностью проверили все функции. Включает дорожный футляр на молнии, дополнительные батареи и измерительные провода. Полные заводские данные ЗДЕСЬ . НОВЫЙ и откалиброванный со всеми принадлежностями. ВНИМАНИЕ! ВЫСОКОЕ НАПРЯЖЕНИЕ НА ИСПЫТАТЕЛЬНЫХ ПРОВОДАХ! | Всего 2 349 $ НАЖМИТЕ ДЛЯ ЗАКАЗА |
Biddle Model 21059 Major Megger НАЖМИТЕ для увеличения PIC! | Biddle Model 21059 Major Megger. Это усиленный мегомметр с питанием от переменного тока , работающий при , 100, 250, 500 и 1000 В постоянного тока для проведения измерений.Также напряжение переменного тока и основное сопротивление до 5 кОм. Превосходная точность в соответствии с нашими стандартами 10 и 100 МОм. Очищено и откалибровано. ВНИМАНИЕ! ВЫСОКОЕ НАПРЯЖЕНИЕ НА ИСПЫТАТЕЛЬНЫХ ПРОВОДАХ! Входы питания переменного тока (шнур в комплекте) | Всего 1 495 $ НАЖМИТЕ ДЛЯ ЗАКАЗА |
Biddle Model 230315 AC High-Pot Tester НАЖМИТЕ для увеличения изображения! | Испытательный комплект 3 кВ переменного тока Biddle Model 230315 High-Pot Tester Отличный портативный тестер 3 кВ переменного тока позднего производства с регулируемой точкой срабатывания от 0.От 5 до 12 мА. Имеет тест на замыкание на землю, синхронизированное тестирование, двойную розетку переменного тока и соединения тестовых выводов высокого напряжения (выводы хранятся в крышке корпуса). Это устройство позволяет проводить испытания изоляции и диэлектрической прочности практически в соответствии со всеми стандартами безопасности CSA / UL. Все в этом отремонтированном и калиброванном наборе находится в отличном состоянии. Устанавливаемый пользователем порог тока для индикации неисправности с помощью сигнальной лампы, большой счетчик для отображения испытательного напряжения. В комплект входит встроенная инструкция по эксплуатации на крышке корпуса, а также высоковольтные измерительные провода и сетевой шнур, упакованные в компактный желтый переносной футляр, очень удобный для полевых испытаний. Включает полное заводское руководство по обслуживанию и эксплуатации, которое ОЧЕНЬ сложно найти! Очищено и откалибровано. ВНИМАНИЕ! ОЧЕНЬ ВЫСОКОЕ НАПРЯЖЕНИЕ НА ТЕСТОВЫХ ПРОВОДАХ! | ИЗВИНИТЕ, ПРОДАНО $ 749 |
Biddle Model 305 AC High-Pot Tester НАЖМИТЕ для увеличения PIC! НАЖМИТЕ для увеличения изображения! | Испытательный комплект 3 кВ переменного тока Тестер высокого напряжения переменного тока Biddle Model 305 Отличный портативный тестер 3 кВ переменного тока / 5 мА (ток короткого замыкания), позволяет проводить испытания изоляции и диэлектрической прочности в соответствии с большинством стандартов. Устанавливаемый пользователем порог тока для индикации неисправности с помощью сигнальной лампы, большой счетчик для отображения испытательного напряжения. В комплекте со встроенным внутренним руководством по эксплуатации, высоковольтными измерительными проводами и сетевым шнуром, все упаковано в компактный бежевый переносной кейс, очень удобный. Очищено и откалибровано. ВНИМАНИЕ! ОЧЕНЬ ВЫСОКОЕ НАПРЯЖЕНИЕ НА ТЕСТОВЫХ ПРОВОДАХ! | ИЗВИНИТЕ, ПРОДАНО $ 640 |
Biddle Model 405 AC High-Pot Tester НАЖМИТЕ для увеличения PIC! НАЖМИТЕ для увеличения изображения! | Комплект для испытаний переменного тока 4 КВ Тестер высокого напряжения переменного тока Biddle, модель 405 Отличный портативный тестер 4 КВ переменного тока / 5 мА (ток короткого замыкания), позволяет проводить испытания изоляции и диэлектрической прочности в соответствии с большинством стандартов. Устанавливаемый пользователем порог тока для индикации неисправности с помощью сигнальной лампы, большой счетчик для отображения испытательного напряжения. В комплекте с оттиском руководства пользователя, высоковольтными испытательными проводами и шнуром питания, все упаковано в компактный синий переносной футляр. Очищено и откалибровано. ВНИМАНИЕ! ОЧЕНЬ ВЫСОКОЕ НАПРЯЖЕНИЕ НА ТЕСТОВЫХ ПРОВОДАХ! | ИЗВИНИТЕ, ПРОДАНО $ 695 |
General Radio 1863 Мегомметр НАЖМИТЕ для увеличения PIC! | Мегомметр General Radio 1863 Высокопроизводительный портативный мегомметр General Radio, с выбираемым испытательным возбуждением 50 В, 100 В, 200 В, 250 В и 500 В , способный измерять очень высокое сопротивление, в диапазоне 10 Тераом при самом высоком испытательном напряжении .Складывается в компактный, полностью защищенный дорожный пакет и имеет сигнальную лампу высокого напряжения, когда на испытательных клеммах присутствует высокое напряжение. Капитальный ремонт и калибровка, состояние отличное. Встроенная функция разряда для тестового образца, поэтому его можно использовать с конденсаторами и коаксиальными кабелями. После капитального ремонта и калибровки. ВНИМАНИЕ! ВЫСОКОЕ НАПРЯЖЕНИЕ НА ИСПЫТАТЕЛЬНЫХ ПРОВОДАХ! | ИЗВИНИТЕ, ПРОДАНО $ 695 |
Associated Research 2025D Digital Meg-Chek НАЖМИТЕ для увеличения PIC! НАЖМИТЕ для увеличения изображения! | НАЖМИТЕ, чтобы посетить! AR 2025D Meg-Check Цифровой тестер изоляции Портативный высоковольтный набор для измерения сопротивления изоляции, в комплекте с переносным футляром и всеми принадлежностями (даже батареями!).Испытательное напряжение 500 В постоянного тока с диапазоном полной шкалы 2 м, 20 м, 200 м и 2000 м, плюс диапазон напряжения переменного тока для общих испытаний электропроводки. Переключатель включения / выключения высокого напряжения и предупреждающий индикатор, блоки в отличном состоянии и очень точные (обычно лучше 2%). Включает полное руководство по эксплуатации. Прекрасное дополнение к любому комплекту для проверки электрических параметров. Испытательное напряжение до 500 В постоянного тока ). Очищено и откалибровано, состояние отличное. ВНИМАНИЕ! ВЫСОКОЕ НАПРЯЖЕНИЕ НА ИСПЫТАТЕЛЬНЫХ ПРОВОДАХ! | Всего 2 349 $ НАЖМИТЕ ДЛЯ ЗАКАЗА |
Associated Research 2211 и 2224 Meg-Cheks НАЖМИТЕ для увеличения PIC! НАЖМИТЕ для увеличения изображения! | AR 2211 и 2224 Мег-Чекс. Это усиленные мегомметры с батарейным питанием (с низким диапазоном сопротивления), которые имеют прочный металлический корпус и защитную крышку. Использует большие батареи 1,5 В, инструкции по эксплуатации находятся в защищенном корпусе, а также место для хранения измерительных проводов. НАЖМИТЕ ЗДЕСЬ , чтобы увидеть крупным планом 2211 счетчик ( испытательное напряжение 1000 В постоянного тока ). НАЖМИТЕ ЗДЕСЬ , чтобы увидеть увеличенное изображение прибора 2224 ( испытательное напряжение 500 В постоянного тока ). Очищено и откалибровано, в очень хорошем состоянии, свежие батареи. ВНИМАНИЕ! ВЫСОКОЕ НАПРЯЖЕНИЕ НА ИСПЫТАТЕЛЬНЫХ ПРОВОДАХ! | 2211 Только 295 $ НАЖМИТЕ ДЛЯ ЗАКАЗА |
Megger MJ159 НАЖМИТЕ для увеличения изображения! Блок с откидной ручкой для переноски НАЖМИТЕ, чтобы увеличить PIC! | Megger MJ159, современные портативные мегомметры с ручным заводом Это надежный ручной мегомметр , работающий при 100, 250, 500 и 1000 В постоянного тока для проведения измерений. Превосходная точность в соответствии с нашими стандартами 10 и 100 МОм. Имеет красную кнопку безопасности для считывания показаний, чтобы убедиться, что никакая рука не касается измерительных проводов. Все в очень хорошем состоянии, это электронные версии более позднего поколения. Один полный, у другого отсутствует складывающаяся ручка для переноски (дешевле). Обратите внимание: на этих моделях рукоятка НЕ складывается для хранения. Очищено и откалибровано. ВНИМАНИЕ! ВЫСОКОЕ НАПРЯЖЕНИЕ НА ИСПЫТАТЕЛЬНЫХ ПРОВОДАХ! | ИЗВИНИТЕ, ПРОДАНО $ 430 |
Канадский научно-исследовательский институт AVC-25V Рабочий режим Режим отключения / неисправности НАЖМИТЕ для увеличения PIC! | Канадский научно-исследовательский институт AVC-25V Очень широко используемый испытательный набор для проверки соответствия изоляции CSA.Это более поздняя модель с добавленным большим сигнальным огнем, но у продаваемого устройства немного другие красные линзы, чем показано, в остальном то же самое. Имеет источник 0–2,5 кВ и ограниченный по току порог дуги, срабатывает сигнальная лампа при нарушении изоляции. Имеет экранированные и защищенные измерительные провода высокого напряжения, большую красную сигнальную лампу, когда датчики активны. Полностью отремонтирован и откалиброван, состояние очень хорошее. ВНИМАНИЕ, в токовых блоках НЕТ большой лампы, у них есть сигнализаторы обычного размера. Картинка доступна по запросу. Очищено и откалибровано. ВНИМАНИЕ! ВЫСОКОЕ НАПРЯЖЕНИЕ НА ИСПЫТАТЕЛЬНЫХ ПРОВОДАХ! | ИЗВИНИТЕ, ПРОДАНО, еще впереди! Пожалуйста, напишите о наличии на складе. $ 595 |
Criterion Instruments DV-25V-5 Рабочий режим Режим отключения / неисправности НАЖМИТЕ для увеличения PIC! | Испытательный комплект постоянного тока 2,75 кВ Criterion Instruments DV-25V-5 Набор для испытаний на диэлектрическую прочность Позднее производство (серийный номер 8162), широко используемый набор для испытаний на соответствие изоляции CSA.Это более поздняя модель с дополнительным обнаружением неисправности сетевого шнура, большими сигнальными лампами и фиксированным током отключения 5 мА. Имеет источник 0–2750 В постоянного тока и ограниченный по току порог дуги, включает сигнальную лампу при нарушении изоляции. Имеет закрытый / выдвижной испытательный зонд высокого напряжения (немного отличается от показанного). Полностью отремонтирован и откалиброван, состояние очень хорошее. ЗЕЛЕНЫЙ СВЕТ — включение питания КРАСНЫЙ СВЕТ — наличие высокого напряжения ЖЕЛТЫЙ СВЕТ — неисправность Очищено и откалибровано. ВНИМАНИЕ! ВЫСОКОЕ НАПРЯЖЕНИЕ НА ИСПЫТАТЕЛЬНЫХ ПРОВОДАХ! | ИЗВИНИТЕ, ПРОДАНО еще ! $ 695 |
Biddle Model 21160 Major Megger НАЖМИТЕ для увеличения PIC! | Biddle Model 21160 Major Megger. Это усиленный ручной мегомметр , работающий при 50, 100, 150, 250 и 500 В постоянного тока для проведения измерений. Превосходная точность в соответствии с нашими стандартами 10 и 100 МОм.Ручка рукоятки складывается в корпус прибора для безопасной транспортировки, все в отличном состоянии. Очищено и откалибровано. ВНИМАНИЕ! ВЫСОКОЕ НАПРЯЖЕНИЕ НА ИСПЫТАТЕЛЬНЫХ ПРОВОДАХ! | ИЗВИНИТЕ, ПРОДАНО $ 395 |
Высокоэффективные тестеры изоляции от создателей
ИСПЫТАНИЯ ИЗОЛЯЦИИ
Электрооборудование Испытание изоляции необходимы столько же, сколько и сами электрические активы.Хорошо задокументированные недостатки ранних систем изоляции стали очевидны почти сразу после того, как более 125 лет назад были заложены первые системы освещения. Хотя с тех пор изоляционные системы претерпели значительные изменения, необходимость в их тестировании никогда не исчезает. Последствия неудачи слишком велики.
ИСПЫТАНИЯ ИЗОЛЯЦИИ ПОСТОЯННОГО ТОКА
Самые ранние испытания систем изоляции включали приложение постоянного напряжения к изоляции и измерение утечки или резистивного тока через нее.Истоки мостов постоянного тока восходят к 1833 году и относятся к Сэмюэлю Хантеру Кристи, который изобрел первый мост, известный как мост Уитстона, в честь Чарльза Уитстона, который просто более четко описал схему Кристи и ее преимущества. Первый портативный тестер изоляции постоянного тока был разработан в 1889 году нашими основателями Сиднеем Эвершедом и Эрнестом Виньолесом, а к 1903 году продавался как тестер изоляции Megger®.
Проверка сопротивления изоляции, также известная как «тест мегомметра», актуальна как никогда и во многих приложениях предпочтительнее других методов проверки изоляции.Сегодня Megger предлагает лучшую линейку тестеров сопротивления изоляции 5 кВ, 10 кВ и 15 кВ (постоянного тока), доступных в любом месте. В частности, наша линейка тестеров изоляции серии S1 предлагает непревзойденные возможности, включая работу от батареи или линии, лучшие диапазоны измерения, высочайшую шумостойкость, пять автоматических тестов, хранение данных, загрузку через RS232 или USB и МНОГОЕ ДРУГОЕ.
ИСПЫТАНИЯ ИЗОЛЯЦИИ ПЕРЕМЕННОГО ТОКА
В начале 1900-х годов, по мере совершенствования систем изоляции, возникла необходимость обнаружения различных типов диэлектрических повреждений.Например, испытание коэффициента мощности (также известное как тангенс дельта или испытание на рассеяние) стало важным испытанием диэлектрика из-за его уникальной способности обнаруживать локальные загрязнения в многослойной системе изоляции. Емкостный ступенчатый ввод, исторически известный как конденсаторный ввод, представленный около 1910 года, является наиболее узнаваемым активом с такой системой изоляции; Широкое распространение этих вводов, следовательно, закрепило популярность теста коэффициента мощности. Между тем, в литературе говорится, что производители кабелей использовали тесты изоляции коэффициента мощности в лаборатории с самого начала 1900-х годов.
Серия Delta 4XXX — это специальный прибор Megger для измерения коэффициента мощности / коэффициента рассеяния (PF / DF) и измерения емкости для использования в полевых условиях. TRAX в сочетании с TDX также обеспечивает возможности тестирования PF / DF. Это не обычные наборы коэффициента мощности. Они однозначно корректируют влияние температуры на результаты испытаний PF / DF (см. Бюллетень ITC TLM) — необходимо, чтобы укрепить уверенность в ваших выводах по результатам испытаний — и позволяют проводить измерения частотной характеристики узкополосной диэлектрической проницаемости (NB DFR) — следующий шаг вперед в тестировании коэффициента мощности .
ТЕСТ ЧАСТОТНОГО ДОМЕНА
Опыт и исследования показали, что традиционный тест коэффициента мощности не очень чувствителен к механизмам полностью диэлектрического повреждения. Например, факторы проводящих потерь (например, вода), если они присутствуют на низких уровнях, практически останутся незамеченными, если полагаться на одно измерение коэффициента мощности. Этот недостаток может быть восполнен путем повторения испытаний коэффициента мощности на нескольких заданных частотах (также известных как диэлектрическая частотная характеристика или DFR).
Компания Megger продолжает оставаться лидером в области диэлектрической оценки и сегодня, поскольку мы были в авангарде разработки испытательного оборудования для измерения диэлектрической проницаемости, представив первый коммерчески доступный инструмент для измерения диэлектрической проницаемости более 20 лет назад — IDAX. Большинство аспирантов, изучающих диэлектрики, расширили свои знания за счет использования IDAX.
Область диэлектриков большая. Методы оценки широки, потому что есть много параметров тестирования, таких как уровень стресса (т.e., величина источника испытания), которому должен подвергаться испытательный образец во время испытания, и особенности применения, в котором используются системы изоляции. Например, кабели создают проблемы для испытаний на переменном токе, потому что они представляют собой очень большие емкостные образцы, особенно когда кабели становятся довольно длинными.
ИЗОЛЯЦИЯ КАБЕЛЯ — ИСПЫТАНИЯ ПОСТОЯННОГО, ПЕРЕМЕННОГО И СНЧ
В конкретном приложении для оценки кабеля, в дополнение к возможностям тестирования DFR, Megger предлагает различные решения для тестирования изоляции переменного, постоянного и СНЧ.VLF-тестирование сочетает в себе преимущества тестирования переменного тока с преимуществами, присущими источнику тестирования постоянного тока.
Измерения и анализ ошибок
«Лучше быть примерно правым, чем совершенно неправым». — Алан ГринспенНеопределенность измерений
Некоторые числовые утверждения точны: у Мэри 3 брата и 2 + 2 = 4. Однако все измерения имеют некоторую степень неопределенности, которая может быть получена из различных источников.Процесс оценки неопределенности, связанной с результатом измерения, часто называют анализом неопределенности или анализом ошибки . Полный отчет об измеренном значении должен включать оценку уровня уверенность, связанная с ценностью. Правильное сообщение экспериментального результата с его неопределенностью позволяет другим людям судить о качестве экспериментируйте, и это облегчает значимые сравнения с другими аналогичными значениями или теоретическое предсказание.Без оценки неопределенности невозможно ответить на основной научный вопрос: «Согласуется ли мой результат с теоретическим предсказанием или результатами из других экспериментов? »Этот вопрос является основополагающим для решения вопроса о том, гипотеза подтверждена или опровергнута. Когда мы проводим измерения, мы обычно предполагаем, что существует какое-то точное или истинное значение в зависимости от того, как мы определяем, что измеряется. Хотя мы, возможно, никогда не узнаем это истинное значение точно, мы пытаемся найти это идеальное количество в меру наших возможностей с помощью время и ресурсы.Поскольку мы проводим измерения разными методами или даже при выполнении нескольких измерений одним и тем же методом, мы можем получить немного разные результаты. Итак, как мы сообщаем о наших результатах для нашей наилучшей оценки этого неуловимого истинного значения ? Самый распространенный способ показать диапазон значений, который, по нашему мнению, включает истинное значение:(1)
измерения = (наилучшая оценка ± неопределенность) единиц
Возьмем пример. Предположим, вы хотите найти массу золотого кольца, которое вы хотел бы продать другу.Вы не хотите подвергать опасности свою дружбу, поэтому вы хотите чтобы получить точную массу кольца по справедливой рыночной цене. Вы оцениваете масса должна составлять от 10 до 20 граммов в зависимости от того, насколько тяжелой она ощущается в руке, но это не очень точная оценка. После некоторых поисков вы найдете электронные весы, которые массовое чтение 17,43 грамма. Хотя это измерение намного точнее , чем исходная оценка, откуда вы знаете, что она точная , и насколько вы уверены, что это измерение представляет собой истинное значение массы кольца? Поскольку цифровой дисплей баланс ограничен двумя знаками после запятой, вы можете указать массу какм = 17.43 ± 0,01 г.
Предположим, вы используете те же электронные весы и получили еще несколько показаний: 17,46 г, 17,42 г, 17,44 г, так что средняя масса оказывается в диапазоне17,44 ± 0,02 г.
Теперь вы можете быть уверены, что знаете массу этого кольца с точностью до ближайшего сотые доли грамма, но откуда вы знаете, что истинная ценность определенно лежит между 17,43 г и 17,45 г? Если честно, вы решили использовать другой баланс, который дает значение 17.22 г. Это значение явно ниже диапазона значений, найденных на первый баланс, и при нормальных обстоятельствах вам может быть все равно, но вы хотите быть справедливым своему другу. Так что вы будете делать теперь? Ответ заключается в том, чтобы знать кое-что о точность каждого инструмента. Чтобы ответить на эти вопросы, мы должны сначала определить термины точность и точность : Точность — это степень соответствия измеренного значения истинному или принятому значению.Ошибка измерения . — это величина неточности.Точность — это мера того, насколько хорошо результат может быть определен (без ссылки на теоретическое или истинное значение). Это степень согласованности и согласия между независимыми измерениями одной и той же величины; а также надежность или воспроизводимость результата.
Неопределенность Оценка , связанная с измерением, должна учитывать как точность, так и прецизионность измерения.
Примечание: К сожалению, термины ошибка и неопределенность часто используются взаимозаменяемо для описать как неточность, так и неточность. Это использование настолько распространено, что невозможно чтобы полностью избежать. Когда вы сталкиваетесь с этими условиями, убедитесь, что вы понимаете относятся ли они к точности или точности, или к тому и другому. Обратите внимание, что для определения точности конкретного измерения у нас есть знать идеальную, истинную ценность.Иногда у нас есть «учебное» измеренное значение, которое хорошо известно, и мы предполагаем, что это наше «идеальное» значение, и используем его для оценки точность нашего результата. В других случаях мы знаем теоретическое значение, которое рассчитывается из основные принципы, и это тоже можно принять за «идеальное» значение. Но физика — это эмпирическая наука, что означает, что теория должна быть подтверждена экспериментом, а не наоборот. Мы можем избежать этих трудностей и сохранить полезное определение понятия точность , если предположить, что даже когда мы не знаем истинного значения, мы можем полагаться на наилучшее из имеющихся принятое значение , с которым можно сравнить наше экспериментальное значение.В нашем примере с золотым кольцом нет приемлемого значения для сравнения, и оба измеренных значения имеют одинаковую точность, поэтому у нас нет оснований полагать, что больше, чем другие. Мы могли бы найти характеристики точности для каждого весов как предоставленные производителем (приложение в конце этого лабораторного руководства содержит данные о точности для большинства инструментов, которые вы будете использовать), но лучший способ оценить точность измерения заключается в сравнении с известным стандартом .В этой ситуации это может быть возможность калибровки весов с помощью стандартной массы, которая является точной в узком допуска и прослеживается до стандарта первичной массы в Национальном институте Стандарты и технологии (NIST). Калибровка весов должна устранить Расхождение между показаниями и более обеспечивают точность измерения массы . Прецизионность часто выражается количественно с использованием относительной погрешности или дробной погрешности :(2)
Относительная неопределенность =неопределенность |
измеренное количество |
м = 75.5 ± 0,5 г
имеет дробную погрешность: Точность часто выражается количественно с помощью относительной ошибки :(3)
Относительная ошибка =измеренное значение — ожидаемое значение |
ожидаемое значение |
Примечание: Знак минус означает, что измеренное значение на меньше , чем ожидаемое. значение.
При анализе экспериментальных данных важно понимать разницу между точностью и точностью. Точность указывает качество измерения без какой-либо гарантии, что измерение «правильное». Точность , с другой стороны, предполагает наличие идеального значения и показывает, насколько далеко ваш ответ от этого идеального, «правильного» ответа. Эти концепции напрямую связаны с случайными и систематическими ошибками измерения.