Измерение сопротивления изоляции мегаомметром
Как пользоваться мегаомметром, измерение сопротивления изоляции мегаомметром
Все мегаомметры в каталоге. Мегаомметр прибор для измерения сопротивления изоляции кабеля, изоляцию обмотки двигателя, диэлектрических материалов приборов. Современные мегаомметры позволяют вычеслять сразу коэффициент абсорбции и поляризации. Коэффициент абсорбции показывает степень увлажнения изоляции кабелей, трансформаторов, электродвигателей. Коэффициент поляризации показывает степень старения изоляции. Работа мегаомметра основана на измерении протекающего тока, при подаче стабильного высокого напряжения. У цифровых мегаомметров переключение диапазонов и определение единиц измерения производятся автоматически. Мегаомметры с испытательным напряжение которое создает ШИМ преобразователь не могут измерять сопротивления изоляции обмоток двигателя, цепи с высокой индуктивностью, например промышленный магнит.
При коэффициенте поляризации менее 1 изоляция проводника изношенная необходимо заменить, при значении от 1 до 2 проводник изношенный, но эксплуатация возможна.
Для работы с мегаомметром необходимо:
- выбрать испытательное напряжение в настройках прибора, чем больше испытательное напряжение чем больше максимальное значение сопротивления;
- выбрать время измерения. Из-за нестабильности сопротивления требуется проводить измерения не менее 1 минуты.
Клемму «минус», «GUARD», «0 V» необходимо подключать к тому проводнику, который заземлен. Измерения рекомендуется проводить дважды со сменной полярности испытательного напряжения для получения среднего результата. Полярность испытательного напряжения указана на гнёздах мегаомметра. Результаты измерений может выглядеть как на картинке ниже. Минимальное сопротивления изоляции проводки для бытовой сети 0,5 МОм, а для промышленной сети и производственного оборудования 1 МОм.
Для измерения сопротивления изоляции двухжильного кабеля необходимо клеммы плюс и минус мегаомметра подсоединить к проводникам. Если кабель одножильный тогда клеммы плюс и минус мегаомметра подключают к проводнику и экрану соответственно. При измерении сопротивления более 10 ГОм необходимо использовать экранированный измерительный кабель, экран измерительного кабеля подключается в соответствующее гнездо.
Если изоляция кабеля загрязненная и при больших значения сопротивления изоляции более 10 ГОм, для исключения влияния поверхностных токов утечки необходимо использовать схему подключения с тремя измерительными кабелями. Или экраннированным кабелем как у мегаомметра Е6-32, в комплекте не поставляется. К изоляции одного из проводников необходимо намотать колечко из фольги, обжать крокодилом и подключить крокодил к клемме заземления мегаомметра. При измерении сопротивления изоляции обмотки трансформатора, для исключения влияния поверхностных токов утечки так же необходимо использовать схему подключения с тремя измерительными кабелями.
Нормы сопротивления изоляции. Измерения необходимо производить при нормальных климатических условиях при температуре 25±10 °С и влажности воздуха не более 80%. Если в кабеле провода без экрана, то сопротивление изоляции измереяется между жилами проводов. Если провода с экраном в виде оплетки или фольги, то тогда сопротивление изоляции измеряется между жилой и экраном. Испытания проводят при отключеных электроустановках.
Электроустановки |
Значение сопротивления, не менее |
Испытательное напряжение |
Указания |
до 500 В |
более 0,5 Мом |
500 В |
Сопротивление изоляции должно быть стабильным 1 минуту |
500 . .. 1000 В |
более 1 Мом |
|
Сопротивление изоляции должно быть стабильным 1 минуту |
Все мегаомметры в каталоге.
Как выполняется замер сопротивления изоляции электропроводки
Замер сопротивление изоляции мегаомметром
Измерение сопротивления изоляции электропроводки должно выполняться во время приемо-сдаточных работ; периодически, согласно нормам и установленным правилам, а также после проведения ремонтов сети освещения. При этом производится не только замер сопротивления изоляции между фазных и нулевых проводов, но и сопротивление изоляции между ними и проводником заземления.
Это позволяет вовремя диагностировать и устранять возможные повреждения изоляции, что снижает риск коротких замыканий и пожаров.
Содержание
- Работа с мегаомметром
- Что такое мегаомметр?
- Кто и когда имеет право производить замеры мегаомметром
- Как работать с мегаомметром?
- Несколько слов о мультиметре
- Вывод
Работа с мегаомметром
Что такое мегаомметр?
Прибор для замера сопротивления изоляции электропроводки называется мегаомметр. Принцип его действия основан на измерении токов утечки между двумя точками электрической цепи. Чем они выше, тем ниже сопротивление изоляции, и, соответственно, данная электроустановка требует повышенного внимания.
Итак:
- На данный момент на рынке представлены мегаомметры двух основных типов. Приборы, работающие от встроенного в прибор генератора, и более современные мегаомметры с наличием аккумулятора.
На фото изображен универсальный мегаомметр
- По типоразмеру мегаомметры можно разделить на устройства с номинальным напряжением в 100В, 500В, 1000В и 2500В. Самые маленькие мегаомметры применяются для испытания электроустановок до 50В.В зависимости от номинальных нагрузок для цепей напряжением до 660В обычно применяют устройства на 500 или 1000В. Для цепей напряжением до 3кВ — мегаомметры на 1000В, а для электроустановок и проводников большего напряжения приборы на 2500В.
Кто и когда имеет право производить замеры мегаомметром
Приборы замера сопротивления изоляции электропроводки имеют определенные требования по работе с ними. Так для самостоятельной работы мегаомметром в электроустановках до 1000В вам необходима третья группа допуска по электробезопастности.
Итак:
- Периодичность замеров сопротивления изоляции электропроводки определяется ПТЭЭП (Правила технической эксплуатации электроустановок потребителей) и для электропроводки осветительной сети составляет 1 раз в три года. Такие же нормы действуют для электропроводки офисных помещений и торговых павильонов.
Обратите внимание! Наружная электропроводка и проводка, выполненная в особо опасных помещениях, должна проходить замер сопротивления изоляции ежегодно. Кроме того ежегодно проходит проверку электропроводка кранов, лифтов, детских и оздоровительных учреждений.
- Периодичность проверки сопротивления изоляции электропроводки электрических печей составляет 1 раз в полгода. При этом замеры должны производиться во время максимально нагретого состояния печи.
Кроме того раз в полгода следует визуально осматривать состояние заземления печи. Эти же нормы проверки относятся и к сварочным аппаратам.
Как работать с мегаомметром?
Для подключения к электрической сети прибор зaмерa сопротивления изоляции электропроводки имеет два вывода длиной до трех метров. Они дают возможность подключать прибор к электрической цепи.
Схема подключения мегаомметра в трехфазной цепи
Обратите внимание! Для работы с мегаомметром во всех электроустановках, на которых предстоит производить замеры, следует снять напряжение. Кроме того следует снять напряжение с соседних электроустановок, к которым возможно случайное прикосновение.
Итак:
- Перед применением мегаомметр должен быть проверен на работоспособность. Для этого сначала закорачиваем выводы прибора накоротко. Затем вращаем ручку генератора и проверяем наличие цепи по показаниям прибора. После этого изолируем выводы друг от друга и проверяем максимально возможные показания на приборе.
- После этого приступаем непосредственно к замерам.
- В сети освещения выкручиваем все лампы и отключаем все электроприборы от розеток.
- После этого включаем все выключатели сети освещения.
- Согласно ПБЭЭ (Правил безопасной эксплуатации электроустановок), все работы с мегаомметром должны выполняться в диэлектрических перчатках. Ведь напряжение на выводах прибора — минимум 500В, поэтому данным требованием не стоит пренебрегать.
- Подключаем выводы к фазному и нулевому проводу сети освещения. Производим замер. Согласно ПТЭЭП, он должен показать значение не меньше 0,5 МОм.
Обратите внимание! При выполнении замера должны быть приняты меры по предотвращению повреждения полупроводниковых и микроэлектронных приборов в цепи. Поэтому если в вашей цепи таковые присутствуют, их необходимо «выцепить» до проведения замеров.
- После выполнения замера фазный провод следует разрядить, прежде чем прикасаться к нему. Вообще емкость проводников освещения не велика и этот пункт можно бы было опустить, но, в случае наличия в вашей сети больших индуктивных или емкостных сопротивлений, снятие заряда с проводника обязательно, ведь цена невыполнения этого действия, может быть очень велика. Кстати по этой же причине мы не измеряем коэффициент абсорбции изоляции.
- Затем производим такие же замеры по отношению между фазным проводом и заземлением и нулевым проводом и заземлением. Во всех случаях показания должны быть выше 0,5МОм.
- Если необходимо выполнить замер сопротивления изоляции трехфазной цепи, то последовательность операций такая же. Только количество замеров больше, ведь нам необходимо замерить изоляцию между всеми фазными проводниками, нулевым проводом и землей.
Несколько слов о мультиметре
Мультиметр
Большинство мультиметров имеют функцию замера сопротивления. Но измеряют они не сопротивление изоляции, а сопротивление электрической цепи.
Поэтому для проведения периодических проверок сопротивления изоляции он не предназначен. Мультиметр позволит вам своими руками отыскать место повреждения провода, найти плохой контакт, проверить целостность заземляющего проводника, а также еще целый ряд необходимых задач. Но замерить сопротивление изоляции он не способен.
Вывод
Надеемся, наша инструкция поможет вам определиться со сроками и методами проведения проверки сопротивления изоляции. Ведь многочисленные видео в сети интернет зачастую дают информацию несоответствующую действительности о возможности использования для этих целей мультиметра.
Недаром в большинстве случаев такими измерениями занимаются специальные высоковольтные лаборатории, которые имеют все необходимое оборудование, специалистов и сертификацию, согласно действующего законодательства.
Испытание на устойчивость к изоляции> Chroma
949. 600.6400
Получите цитату
Тест устойчивости к изоляции
Изоляционная испытательная тестовая оборудование
. — любой стандартный анализатор электробезопасности. Простое и точное тестирование. Обязательно для тестирования медицинских устройств и соответствия требованиям IQOQ.
Тестер Guardian Hipot AC/DC/IR/SCAN
Chroma 19050
Усовершенствованные цифровые тестеры Hipot с регулировкой нагрузки и линии, которые помогают обеспечить достоверность измерений, а также многоступенчатая функция, позволяющая пользователям выполнять несколько тестов последовательно
Тестер частичного разряда – 19501-K
3
Chroma 19501-K
Специально разработан для тестирования высоковольтных полупроводниковых компонентов и материалов с высокими изоляционными свойствами.
Тестер Sentry Hipot AC/DC/IR
Chroma 19070
Компактные, легкие и недорогие тестеры безопасности для электронных компонентов
Тест сопротивления изоляции (IR) измеряет общее сопротивление между любыми двумя точками, разделенными электрической изоляцией.
Таким образом, испытание определяет, насколько эффективен диэлектрик (изоляция) в сопротивлении потоку электрического тока. Такие тесты полезны для проверки качества изоляции не только при первом изготовлении продукта, но и в процессе эксплуатации продукта.
Выполнение таких проверок через регулярные промежутки времени может выявить потенциальные повреждения изоляции до того, как они произойдут, и предотвратить несчастные случаи с пользователем или дорогостоящий ремонт изделия.
Как показано на рис. 15, 2-проводное незаземленное соединение рекомендуется для тестирования незаземленных компонентов. Это наиболее распространенная конфигурация для тестирования устройств с двумя выводами, таких как конденсаторы, резисторы и другие дискретные компоненты.
Как видно из рис. 16, двухпроводное измерение с заземлением является рекомендуемым соединением для проверки заземленных компонентов. Заземленный компонент — это компонент, в котором одно из его соединений идет на землю, тогда как незаземленный компонент — это компонент, в котором ни одно соединение не идет на землю. Измерение сопротивления изоляции кабеля в водяной бане является типичным применением двухпроводного соединения с заземлением.
Процедура измерения
Проверка сопротивления изоляции обычно состоит из четырех этапов: зарядка, выдержка, измерение и разрядка. Во время фазы заряда напряжение линейно изменяется от нуля до выбранного напряжения, что обеспечивает время стабилизации и ограничивает пусковой ток на ИУ. Как только напряжение достигает выбранного значения, напряжение
может оставаться на этом напряжении до начала измерений.
После измерения сопротивления в течение выбранного времени ИУ снова разряжается до 0 В на заключительном этапе.
Тестер сопротивления изоляции обычно имеет 4 выходных разъема – заземление, экран, (+) и (-) – для широкого спектра применений. Выходное напряжение обычно находится в диапазоне от 50 до 1000 вольт постоянного тока. При выполнении теста оператор сначала подключает ИУ, как показано на рисунках 15 или 16.
Прибор измеряет и отображает измеренное сопротивление. При подаче напряжения через изоляцию сразу начинает протекать некоторый ток. Этот ток состоит из трех компонентов: тока «диэлектрического поглощения», зарядного тока и тока утечки.
Диэлектрическое поглощение
Диэлектрическое поглощение — это физическое явление, при котором изоляция медленно «поглощает» и сохраняет электрический заряд с течением времени. Это демонстрируется приложением напряжения к конденсатору в течение длительного периода времени, а затем его быстрой разрядкой до нулевого напряжения. Если конденсатор оставить разомкнутым в течение длительного времени, а затем подключить к вольтметру, метр покажет небольшое напряжение. Это остаточное напряжение вызвано «диэлектрической абсорбцией». Это явление обычно связано с электролитическими конденсаторами.
При измерении IR различных пластиковых материалов это явление вызывает увеличение значения IR со временем. Завышенное значение IR вызвано тем, что материал медленно поглощает заряд с течением времени. Этот поглощенный заряд выглядит как утечка.
Зарядный ток
Поскольку любое изделие с изоляцией обладает основными характеристиками конденсатора, двух проводников, разделенных диэлектриком, приложение напряжения к изоляции вызывает протекание тока при зарядке конденсатора. В зависимости от емкости продукта этот ток мгновенно возрастает до высокого значения при подаче напряжения, а затем быстро экспоненциально спадает до нуля, когда продукт становится полностью заряженным. Зарядный ток спадает до нуля гораздо быстрее, чем ток диэлектрического поглощения.
Ток утечки
Установившийся ток, протекающий через изоляцию, называется током утечки. Оно равно приложенному напряжению, деленному на сопротивление изоляции. Целью испытания является измерение сопротивления изоляции. Чтобы рассчитать значение IR, подайте напряжение, измерьте ток утечки в установившемся режиме (после того, как токи диэлектрической абсорбции и зарядки упадут до нуля), а затем разделите напряжение на ток. Если сопротивление изоляции соответствует требуемому значению или превышает его, испытание считается успешным. Если нет, то тест провален.
Основы измерения сопротивления изоляции
Насколько важно измерение сопротивления изоляции? Поскольку 80 % работ по техническому обслуживанию и испытаниям электрооборудования связаны с оценкой целостности изоляции, ответ — «очень важно». Электрическая изоляция начинает стареть, как только она сделана. И, старение ухудшает его производительность. Суровые условия установки, особенно с экстремальными температурами и/или химическими загрязнениями, вызывают дальнейшее ухудшение качества. В результате могут пострадать безопасность персонала и надежность электроснабжения. Очевидно, что важно как можно быстрее определить это ухудшение, чтобы можно было принять необходимые корректирующие меры.
Что такое проверка сопротивления изоляции?
По сути, вы прикладываете напряжение (в частности, строго регулируемое стабилизированное напряжение постоянного тока) к диэлектрику, измеряете величину тока, протекающего через этот диэлектрик, а затем вычисляете (используя закон Ома) измерение сопротивления. Давайте проясним наше использование термина «текущий». Мы говорим о токе утечки. Измерение сопротивления в мегаомах. Это измерение сопротивления используется для оценки целостности изоляции.
Прохождение тока через диэлектрик может показаться несколько противоречивым, но помните, идеальная электрическая изоляция невозможна. Значит, будет течь какой-то ток.
Какова цель измерения сопротивления изоляции?
Вы можете использовать его как:
- Мера контроля качества во время производства единицы электрооборудования;
- Требование к установке, чтобы помочь обеспечить соответствие спецификациям и проверить правильность подключения;
- периодическое профилактическое обслуживание; и
- Инструмент устранения неполадок.
Как вы проводите испытание сопротивления изоляции?
Как правило, вы подключаете два провода (положительный и отрицательный) через изоляционный барьер. Третий вывод, который подключается к защитному терминалу, может быть доступен или отсутствовать в вашем тестере. Если это так, вы можете или не можете использовать его. Эта защитная клемма действует как шунт для исключения подключенного элемента из измерения. Другими словами, это позволяет вам избирательно оценивать определенные компоненты крупного электрооборудования.
Очевидно, неплохо иметь базовые знания о предмете, который вы тестируете. В принципе, вы должны знать, что предполагается изолировать от чего. Оборудование, которое вы тестируете, определит, как вы подключите свой мегомметр.
После выполнения подключений подается испытательное напряжение на 1 мин. (Это стандартный отраслевой параметр, который позволяет относительно точно сравнивать показания предыдущих тестов, проведенных другими техниками.)
В течение этого интервала показания сопротивления должны снижаться или оставаться относительно стабильными. Более крупные изоляционные системы будут демонстрировать устойчивое снижение; меньшие системы останутся стабильными, потому что емкостные токи и токи поглощения падают до нуля быстрее, чем в больших системах. Через 1 мин вы должны прочитать и записать значение сопротивления.
При проведении проверки сопротивления изоляции необходимо соблюдать последовательность. Почему? Поскольку электрическая изоляция будет демонстрировать динамическое поведение в ходе вашего испытания; является ли диэлектрик «хорошим» или «плохим». Чтобы оценить ряд результатов испытаний на одном и том же оборудовании, вы должны каждый раз проводить испытания одинаковым образом и при относительно одинаковых параметрах окружающей среды.
Ваши показания измерения сопротивления также будут меняться со временем. Это связано с тем, что электроизоляционные материалы обладают емкостью и будут заряжаться в ходе испытания. Новичка это может немного смутить. Тем не менее, это становится полезным инструментом для опытного техника.
По мере приобретения новых навыков вы познакомитесь с этим поведением и сможете максимально использовать его при оценке результатов теста. Это один из факторов, обуславливающих неизменную популярность аналоговых тестеров.
Что влияет на показания сопротивления изоляции?
Сопротивление изоляции чувствительно к температуре. При повышении температуры сопротивление изоляции уменьшается, и наоборот. Общепринятым эмпирическим правилом является изменение сопротивления изоляции в два раза на каждые 10 градусов C. Итак, чтобы сравнить новые показания с предыдущими, вам придется скорректировать свои показания до некоторой базовой температуры. Например, предположим, что вы измерили сопротивление 100 МОм при температуре изоляции 30 градусов по Цельсию. Скорректированное измерение при 20 градусах Цельсия будет 200 МОм (100 МОм умножить на два).
Кроме того, «приемлемые» значения сопротивления изоляции зависят от тестируемого оборудования. Исторически сложилось так, что многие полевые электрики используют несколько произвольный стандарт 1 МОм на кВ. Спецификация Международной ассоциации электрических испытаний (NETA) «Технические характеристики испытаний оборудования и систем распределения электроэнергии» обеспечивает гораздо более реалистичные и полезные значения.