Закрыть

Акустический метод поиска повреждений кабеля: Акустический метод поиска повреждений кабеля :: Ангстрем

Содержание

Акустический метод поиска повреждений кабеля :: Ангстрем

Акустический метод поиска повреждений кабеля практически универсален. Он позволяет находить повреждения различного типа: «заплывающие» пробои, однофазные и междуфазные повреждения с различными переход­ными сопротивлениями, обрывы одной или нескольких жил. При этом полное замыкание с маленьким переходным сопротивлением не дает искрового разряда и не может быть определено данным методом. В ряде случаев с помощью акустического метода поиска возможно найти несколько повреждений на одной кабельной линии.

Общий принцип

Сущность акустического метода обнаружения повреждений кабельных линий видна из самого его названия. Ин­формативным параметром является уровень кратковременного звукового сигнала — щелчка, удара, возникающего одновременно с электрическим искровым или дуговым разрядом, происходящим в месте повреждения (МП) кабеля в момент подачи на него высо­ковольтного импульса электрического напряжения.

Для контроля и индикации сигнала используется высокочувствительный аку­стический датчик (микрофон), преобразующий звуковой сигнал в электрический. Датчик подключен к переносному приемно-уси­лительному устройству, снабженному звуковой и визуальной ин­дикацией. Оператор, пошагово перемещая по поверхности вдоль трассы кабеля датчик, в направлении увеличения сигнала находит точку с максимальным сигналом, которая находится непосред­ственно над МП. Таким образом, локализуют место повреждения (рис.).

Определение точного местонахождения повреждения в кабельной линии

Акустический сигнал в грунте

Акустический сигнал в грунте довольно быстро затухает и область обнаружения МП акустическим методом при стандартной глу­бине прокладки кабеля ограничивается несколькими десятками метров. В самом лучшем случае это сотня метров. Ограничения связаны с характеристиками грунта, энергией разряда и чувстви­тельностью применяемой аппаратуры.

Виды повреждений

Очевидно, что необходимым условием для возникновения элек­трического пробоя является наличие достаточно большого элек­трического сопротивления в МП кабеля. Есть сопротивление — есть «предмет для пробоя». Нет сопротивления (короткое за­мыкание) — при подаче импульса напряжения будет импульс тока, но электрического разряда, а значит и акустического сигнала, не будет. Практика показывает, что сопротивление должно быть не меньше нескольких десятков Ом. Такое ограничение определя­ет виды повреждений, которые можно обнаруживать, используя акустический метод, т.е. область применения метода. Это утечки в изоляции, «заплывающие» пробои, однофазные и междуфазные повреждения с различными переходными сопротивлениями, об­рывы одной, двух или всех жил.

Схемы подключения генератора к кабелю

Для создания разряда необходимо специальное оборудование.Это импульсные, т.н. ударные генераторы, способные создать мощный электрический разряд. Энергия необходимая для создания разря­да накапливается в достаточно большой электрической емкости и через коммутатор или разрядник подается на кабель. Длительный опыт использования ударных генераторов показал, что в боль­шинстве случаев достаточно энергии до 2000 Дж.

Использование генераторов с энергией более 3000 Дж может быть опасным для кабеля, поскольку очень большие импульсные токи в момент раз­ряда порождают очень сильные магнитные поля, сопровождаю­щиеся мощными механическими воздействиями на элементы кон­струкции кабеля.

Схема определения места повреждения зависит от вида поврежде­ния КЛ. Если произошел «заплывающий» пробой (как правило, в муфтах), то сопротивление в месте повреждения большое — единицы и десятки мегаом. При этом с помощью генератора напряже­ние доводится до пробоя. При устойчивых замыканиях, имеющих переходное сопротивление в месте повреждения от единиц Ом до десятков килоом, используется генератор, разрядник и накопи­тельная (зарядная) емкость или емкость неповрежденных жил. Через разрядник высоковольтный импульс посылается в повре­жденную жилу кабеля, в месте повреждения которой происходит пробой, вызывающий акустический сигнал.

Способы подключения генератора к кабелю в зависимости от вида повреждения изображены на рисунках:

Схемы подключения генератора к кабелю 

Междуфазное повреждениеОднофазное повреждениеРазрыв жилы

Сочетание с индукционным методом поиска

Вариант акустического метода определения места повреждения кабельной линии в сочетании с индукционным методом мо­жет быть эффективным в сложных случаях, когда акустический сигнал слаб и имеет «размытую» характеристику без четкого мак­симума уровня. Это затрудняет локализацию МП, сильно умень­шает точность его определения. Для реализации этого метода не­обходимо акустический приемник дополнить электромагнитным каналом, состоящим из магнитной антенны и усилителя. Магнит­ное поле, возникающее при разряде, достигает магнитной антенны практически мгновенно, поскольку скорость его распространения сравнима со скоростью света (300 000км/сек). Скорость распро­странения звука в грунте измеряется сотнями метров в секунду. Принимая оба сигнала и измеряя время запаздывания звуково­го сигнала относительно магнитного можно оценить расстояние до места повреждения. При приближении к МП задержка будет уменьшаться и непосредственно над ним будет минимальна. По­следовательность действий при проведении поиска такая же, как и для акустического метода, но кроме (или вместо) контроля уров­ня акустического сигнала, увеличивающегося с приближением к МП, контролируется величина задержки, уменьшающаяся по мере приближения к МП.

Нестандартный вариант акустического метода

Нестандартный вариант акустического метода определения повреждений кабеля может использоваться, когда в МП сопротивление равно нулю, т.

е. имеет место короткое замыкание, а использование индукци­онного метода невозможно. Как уже упоминалось выше, при про­хождении большого тока по близко расположенным проводникам возникают мощные силы, притягивающие или отталкивающие эти проводники. Поскольку любая изоляция, разделяющая эти проводники, обладает определенной упругостью, она сжимается или растягивается (в зависимости от направления силы). Если ток носит импульсный характер механические взаимодействия меж­ду элементами конструкции кабеля — жилами, или жилой и обо­лочкой — тоже носят импульсный, взрывной характер. Жилы или жила-оболочка «хлещут» друг по другу. При этом возникают и звуковые щелчки – «шлепки». В отличие от «классического» случая с локальным разрядом и локальным же акустическим «щелчком» в описываемом случае звук порождается на всей протяженности кабеля, где протекает ток, т.е. до места КЗ. Это обстоятельство и позволяет локализовать МП. Если оператор слышит щелчки, он находится до МП. После прохождения МП звук постепенно уменьшается и исчезает, т.
к. ток в кабеле отсутствует и соответ­ственно отсутствует механическое взаимодействие порождающее звук. Место, где начинает уменьшаться уровень звукового сигнала и является МП. Естественно уровень акустического сигнала в рас­сматриваемом случае значительно меньше, чем в случае мощного разряда происходящего в МП, практически в одной точке и для успешной реализации метода требуется наличие высокочувстви­тельного оборудования.

Основные методы определения мест повреждения (ОМП) :: Ангстрем

Неизбежные материальные и финансовые потери, к которым приводит выход из строя кабельной линии (КЛ), заставляют искать наиболее эффективные, минимизирующие эти потери, способы устранения повреждений. Правильный выбор метода и оборудования для поиска мест повреждений определяют эффективность решения поставленной задачи, т.е. максимальную вероятность правильного определения места повреждения и минимальное время, затрачиваемое на это. Причины появления дефектов в кабелях весьма разнообразны.

Основные из них: механические или коррозионные повреждения, заводские дефекты, дефекты монтажа соединительных и концевых муфт, осушение изоляции вследствие местных перегревов кабеля и старение изоляции.

Основные виды повреждений силовых кабелей

  • однофазное замыкание на «землю»;
  • межфазное замыкание; межфазное замыкание на «землю»;
  • обрыв жил кабеля без заземления или с заземлением как оборванных, так и необорванных жил;
  • заплывающий пробой, проявляющийся в виде короткого замыкания (пробоя) при высоком напряжении и исчезающий (заплывающий) при номинальном напряжении.

Классификация методов ОМП

Рис. 1 — Дистанционные методыРис. 2 — Топографические методы

Виды повреждений и основные методы поиска

Виды повреждений Схема повреждения Переходное сопротивление, Ом Дистанционный метод Топографический метод Оборудование для определения мест повреждений
Замыкание фаз на оболочку кабеля Rп Импульсный Акустический РЕЙС-105М1,
ГП-24 «Акустик» , ПА-1000А
100 4 Мостовой Акустический,
накладная рамка
РЕЙС-305, SC40, ПКМ-105,
ГП-24 «Акустик» , ПА-1000А

Rп ≤ 50 Импульсный
Акустический,
индукционный,
накладная рамка
РЕЙС-105М1, КП-500К
100 4 Петлевой
(мостовой)
Акустический
РЕЙС-305, SC40, ПКМ-105,
ГП-24 «Акустик» , ПА-1000А
Rп ≤ 50 Импульсный
Акустический
РЕЙС-105М1, КП-500К
100 4 Мостовой Акустический,
индукционный
РЕЙС-305, SC40, ПКМ-105,
ГП-24 «Акустик» , ПА-1000А
Замыкания между фазами Rп Импульсный
Индукционный РЕЙС-105М1, КП-500К
Обрыв жил с заземлением и без заземления Rп > 106 Импульсный,
колебательного разряда
Акустический,
индукционный,
накладная рамка
РЕЙС-305, SC40, SDC50,
SD80, АИП-70,
ГП-24 «Акустик» , ПА-1000А,
КП-500К
Rп > 106 Импульсный,
колебательного разряда
Акустический РЕЙС-305, SC40, SDC50, SD80, АИП-70,
ГП-24 «Акустик» , ПА-1000А
0 Rп 3 Импульсный
Акустический,
индукционный
РЕЙС-105М1,
ГП-24 «Акустик»ПА-1000А,
КП-500К
Заплывающий пробой Rп > 106 Колебательного разряда Акустический РЕЙС-305, SC40, SD80,
АИП-70,
ГП-24 «Акустик» , ПА-1000А

Дистанционные (относительные) методы

  • Импульсный метод заключается в том, что в кабельную ли­нию посылаются электрические импульсы (зондирующие импуль­сы), которые, распространяясь по линии, частично отражаются от неоднородностей волнового сопротивления и возвращаются к месту, откуда были посланы. По времени прохождения импульса до неоднородности и обратно, которое пропорционально рассто­янию до него вычисляют расстояние. Можно определить рассто­яние до места повреждения, обрыва жилы, длину кабеля, Можно определять расстояния до неоднородностей, муфт, однофазных и междуфазных повреждений кабеля.
  • Емкостный метод возможно использовать при обрывах жил кабеля. Расстояние до места обрыва определяется по значе­нию измеренной емкости жил КЛ. Измерение проводится с помо­щью мостов переменного тока. Мостами переменного тока можно измерять емкость при обрывах с сопротивлением изоляции в ме­сте повреждения не менее 300 Ом. При меньших сопротивлениях точность измерения падает ниже допустимого значения.
  • Метод колебательного разряда используется при опре­делении расстояния до мест однофазных повреждений с переход­ным сопротивлением в месте повреждения порядка 10-100 килоом. С помощью высоковольтной испытательной установки на поврежденной жиле кабеля поднимается напряжение до пробоя. Короткое замыкание в заряженной жиле кабеля приводит к по­явлению электромагнитных волн, которые распространяются от места пробоя в месте дефекта к началу и к концу кабельной линии. Анализируя эпюры напряжения колебательного процесса можно вычислить расстояние до дефекта.
  • Волновой метод используется, в том случае, если сопро­тивление в месте повреждения составляет от нуля до сотен килоом. Осуществляется метод следующим образом. При пробое разрядника высоковольтной выпрямительной установки в линию посылается высоковольтная электромагнитная волна от заряжен­ного конденсатора, которая создает пробой в месте повреждения кабельной линии, что вызывает волновой колебательный процесс в цепи конденсатор-линия. При достижении электромагнитной волной, посланной от конденсатора, места повреждения произой­дет пробой в случае, если сопротивление в месте повреждения не равно нулю Ом, после чего отраженный от повреждения фронт волны вернется к месту посылки — конденсатору, отразится от него и вернется к месту повреждения. Если сопротивление в месте повреждения близко к нулю, разряда не произойдет и волна отраз­ится от короткого замыкания. Этот процесс будет продолжаться до тех пор, пока волна не затухнет. С помощью измерений времен­ной зависимости напряжения на зажимах кабеля во время коле­бательного процесса, можно установить время, за которое волна достигнет места пробоя, и рассчитать расстояние до него.
  • Петлевой метод основан на измерении сопротивления току жил кабеля (как правило, с помощью моста). Используется при определении места повреждения защитной пластмассовой изоляции. Точность определения расстояния до места поврежде­ния невелика и составляет около 15% измеряемой длины.

Топографические (абсолютные) методы

  • Акустический метод поиска основан на прослуши­вании над местом повреждения звуковых колебаний, возни­кающих в месте повреждения в момент искрового разряда от электрических импульсов, посылаемых в кабельную линию.
  • Потенциальный метод поиска основан на фиксации на поверхности грунта вдоль трассы электрических потенциалов, создаваемых протекающими по оболочке КЛ в земле токами.
  • Индукционный метод поиска основан на контроле магнитного поля вокруг кабеля, которое создается протекающим по нему током от специализированного генератора. Оценивая уровень магнитного поля, определяют наличие КЛ и глубину ее залегания, а по характеру изменения и уровню поля определяют место повреждения. Этот метод применяется для непосредственного отыскания на кабеле мест повреждения при пробое изоляции жил между собой или на «землю», обрыве с одновременным пробоем изоляции между жилами или на «землю», для определения трассы кабеля и глубины его залегания, для определения местоположения соединительных муфт.

Рассмотрим основные свойства и характеристики предъявляемые к поисковой аппаратуре

  • Высокая избирательность приемника. Этот параметр обеспечит электрическую помехозащищенность, позволяющую успешно проводить поиск при наличии мощных источников регулярных помех.
  • Высокая чувствительность приемника. В совокупности с высокой избирательностью обеспечит поиск коммуникаций со слабым сигналом на большой глубине.
  • Качество и временная стабильность выходного сигнала генератора. Это обеспечит и необходимую избирательность, и достаточную помехозащищенность. Кроме того, сигнал генератора не будет влиять на работу другой электронной аппаратуры.
  • Достаточно большая выходная мощность генератора, позволяющая работать на глубоко (до 10 метров) залегающих и протяженных (до нескольких десятков километров) КЛ. Это требование является совершенно необходимым для российских условий. Также мощный и надежный генератор с большим выходным током допустимо использовать в качестве устройства дожига кабеля.
  • Высокая надежность генератора, обеспечивающая неограниченное время работы на активную и реактивную нагрузку в диапазоне от короткого замыкания до холостого хода с возможными резкими изменениями по величине.
  • Высокие эксплуатационные характеристики. Минимальный диапазон рабочих температур эксплуатации: от -30 °С до +40 °С.
  • Достаточный набор рабочих частот генератора и частотных каналов приемника, обеспечивающий гарантированное выполнение функций трассопоиска и определения мест повреждений.
  • Универсальность, т.е. возможность работать индукционным, акустическим и потенциальным методами. Желательное свойство, позволяющее минимизировать необходимый комплект оборудования.

Все вышеуказанные свойства и характеристики позволяют с максимальной эффективностью, т. е. с минимальными затратами времени, средств и гарантированным результатом проводить поиск мест повреждений КЛ.

В наши дни поиск места повреждения кабеля осуществляется с помощью современных поисковых комплектов. Профессиональные поисковые комплекты, такие как, например, КП-500К, КП-250К и КП-100К позволяют в кратчайшие сроки выполнять поиск места дефекта и определить глубину залегания кабеля.

Акустический метод поиска повреждений кабеля

Акустический метод

 

Акустический метод применяется для определения места повреждения кабельной линии непосредственно на трассе для всех видов повреждения при условии, что в поврежденном месте может быть искусственно создан слышимый электрический разряд.

 

 

Метод основан на принципе прослушивания с поверхности земли или воды звука электрического разряда в месте повреждения изоляции КЛ.

Для создания искрового разряда в месте повреждения в зависимости от вида повреждения кабельной линии применяются три схемы.

Для всех трех видов схем в качестве генератора используется обычная испытательная кенотронная или другая выпрямительная установка, в схему которой дополнительно вводятся емкость и разрядник.

Схема на рисунке а), применяется для определения места повреждения в муфтах при заплывающих пробоях.

 

В этих случаях в месте повреждения между жилой и свинцовой оболочкой всегда происходит достаточно мощный искровой разряд, который может быть прослушан с поверхности земли.

 

Схема на рисунке б) применяется для определения места повреждения в кабельных линиях в случаях, когда в месте повреждения установилось устойчивое замыкание между одной из жил и свинцовой оболочкой кабеля.

При определении места повреждения на кабельной линии напряжением 35 кВ следует применять схему на рисунке в), используя емкость целых жил кабеля. Слышимость звука искрового разряда с поверхности земли в значительной степени от глубины залегания кабеля, а также от состояния почвы.

При глубине залегания кабеля более 2 м в большинстве случаев существующими приемниками звука определить место повреждения не представляется возможным. В зимних условиях, когда грунт мерзлый, слышимость звука искрового разряда значительно лучше.

В болотистых, торфяных почвах слышимость звука хуже.

 

При повреждении линии непосредственно в кабеле в случаях, когда длина канала искрового разряда очень небольшая, сила звука от искрового разряда получается наименьшей. В этом случае зона слышимости от места повреждения не превосходит 1 м.

Если в месте пробоя кабеля, помимо повреждения также свинцовая оболочка, то сила звука искрового разряда получается большой и в этом случае зона слышимости от места повреждения при нормальной глубине заложения кабеля достигает около 5 м.

 

Акустический метод с успехом используется для определения места повреждения подводных кабелей. Для прослушивания звука в этом случае пользуются двумя методами. Приемник звука ставится на дно лодки, чем достигается большая площадь соприкосновения с водой. если разряд в месте повреждения достаточной мощный, то он прослушивается уже на расстоянии 0,5 — 1,0 км. если звук искрового разряда слабый, то для его прослушивания применяется раструб с пьезодатчиком, который опускается в воду. В этом случае звуки разрядов прослушиваются на расстоянии 100-150 м от места повреждения КЛ.

В зимних условиях приемник звука устанавливается непосредственно на лед. Зона слышимости с поверхности льда достигает более 100 м.

 

Применение акустического метода на открыто проложенных кабелях не рекомендуется, так как из-за хорошего распространения звуковых колебаний по металлическим оболочкам кабеля можно допустить большую ошибку в определении места повреждения.

 

При применении акустического метода придерживаются следующей последовательности выполнения отдельных операций по определению места повреждения в КЛ. предварительно в зависимости от характера повреждения методом колебательного разряда, импульсным или петлевым методом определяется зона повреждения.

 

Оператор со звукоприемником отправляется в зону повреждения, в то время как на поврежденную жилу КЛ подаются импульсы с периодичностью порядка 1 имп/сек. Идя по трассе в зоне повреждения, оператор устанавливает приемник звуков на землю и в телефон прослушивает разряды.

Если разряды не прослушиваются, то приемник звука переносится на 1-2 м по трассе линии и так далее.

Над местом повреждения КЛ слышимость искровых разрядов наибольшая.

Для акустического метода требуется генератор импульсов и прибор АИП-3 или АИП-3м.

Разрядники можно применять различных конструкций, в том числе игольчатые и шаровые. Устанавливать разрядник следует возможно ближе к концевой разделке кабеля.

Прибор АИП-3 (акустический и индукционный) состоит из пьезоакустического датчика, трехлампового усилителя с батарейным питанием, головного телефона и выносной индукционной рамки. Прибором АИП-3 можно определять место повреждения непосредственно на трассе КЛ при акустическом и индукционном методах.

Индукционный метод | Режимщик

Индукционный метод

Индукционный метод применяется при определении места повреждения кабельной линии непосредственно на трассе при пробое изоляции двух или всех трех жил кабеля, а также в случае обрыва жил с одновременным пробоем изоляции между жилами или пробоя изоляции жил на землю.

 

 

Определить место повреждения индукционным методом можно только при условии, если искусственно перевести однофазное повреждение в двух- или трехфазные путем выжигания междуфазной изоляции в местеповреждения кенотронной или газотронной установкой.

Индукционный метод основан на принципе прослушивания с поверхности земли с помощью телефонных трубок звука, порождаемого магнитным полем, которое создается в результате протекания по жилам кабеля тока тональной частоты.

Для создания магнитного поля при применении индукционного метода собирается схема.

 

 

Оператор, снабженный рамкой (антенной), усилителем и телефоном, отправляется в заранее определенную каким-либо относительным методом зону повреждения, где передвигается по трассе кабельной линии, определяя ее расположение по звуку в телефоне и сверяя с исполнительными чертежами линии.

 

Звук в телефоне слышен на участке трассы, где по кабелю протекает ток звуковой частоты, то есть на участке от генератора до места повреждения. За местом повреждения ток по жилам кабеля не проходит, и поэтому звук прекращается. При этом надо иметь ввиду, что при движении вдоль трассы кабельной линии происходит периодическое изменение слышимости, вызываемое скруткой жил кабеля. Чем больше шаг скрутки, тем слышимость лучше, поэтому кабели больших сечений, имеющие большой шаг скрутки, прослушиваются лучше, чем кабели малых сечений.

 

Величина внешнего магнитного поля токов, протекающих по жилам кабеля с шагом скрутки менее 2 м, очень незначительна, поэтому прослушивать такие кабели с поверхности земли представляет большие трудности даже с помощью хороших усилителей.

 

При пользовании индукционным методом для уточнения места повреждения рекомендуется включить генератор с другого конца кабельной линии и произвести повторное определение места повреждения.

 

При следовании оператора по трассе звук в телефоне может усиливаться, а при поворотах и углублениях — совсем исчезать. В месте, где звук пропадает, следует производить проверку путем обхода этого места по концентрическим окружностям, начиная с радиуса 1-2 м и более.

 

При индукционном методе место повреждения для кабельных линий, проложенных на нормальной глубине, может быть найдено достаточно точно при величине тока 15 А и более и частоте 800-1200 кГц.

 

Для индукционного метода требуется следующее оборудование и аппараты: генератор звуковой частоты, приемная рамка (антенна), усилитель и телефон.

 

В качестве генератора звуковой частоты рекомендуется применять однофазный генератор напряжением 110-220 В, 1000 Гц мощностью не менее 2 кВт с собственным возбудителем на одном валу. В качестве привода применяется асинхронный электродвигатель.

 

Приемная рамка, усилитель и телефон укомплектованы в приборе АИП-3.

когда и как можно применять?

Изоляция кабелей служит гораздо меньше токоведущих жил, которые изготовлены из стойкого гомогенного металла (медь или алюминий). Знание точных координат места повреждения изоляции позволяет в случае аварии сократить количество заменяемого кабеля, поэтому предложено множество различных методов диагностики изоляции. В этой статье рассмотрим акустические методы диагностики изоляции кабельных линий.


Акустические локаторы применяются для поиска повреждений в кабелях и газопроводах

На каких кабелях применяется акустический метод диагностики?

Наиболее часто диагностику требуется проводить на высоковольтных кабельных линиях с полиэтиленовой изоляцией. Изоляция может быть изготовленной из любого материала: полиэтилена, поливинилхлорида, композитных составов, в том числе и маслонаполненные кабели. Также кабельная линия может иметь любой вольтаж. Он обязательно учитывается при выборке напряжения и мощности импульсов тока звуковой частоты при диагностике.

В подземных кабельных линия наиболее распространены кабели с изоляцией из сшитого полиэтилена. Связано это не только с отличными изоляционными качествами полиэтилена, но и с его низкой ценой. Это самый дешевый полимер в мире. При этом именно в сшитом полиэтилене возникает эффект так называемого водяного триинга, что является нормальным процессом старения полимеров в условиях влажного грунта. Данный дефект со временем переходит в «заплывающий пробой», когда электрическое сопротивление изоляции на низком напряжении нормальное, а с повышением возникает пробой, который исчезает при повторном снижении напряжения.

Акустический метод неразрушающего контроля хорошо подходит для поиска дефектов типа «заплывающий пробой» по нескольким причинам. Рассмотрим преимущества этого метода:

  1. Для диагностики используется переменный ток высокого напряжения, получаемый от кенотронного генератора. В месте заплывающего пробоя создается мощное электромагнитное и акустическое поле (звук, хорошо слышимый даже при подземной прокладке).

  2. Поиск возможен, когда соседние, или близко расположенные кабели, в силовой линии не обесточены. В этом случае полностью отключается электромагнитный приемник из-за наводок 50 Гц и включается акустический с геомикрофоном. Частота импульсов не является кратной 50 Гц и акустический тракт приемника имеет фильтры для отстройки.

  3. В условиях акустических шумов (например, вблизи автомобильных дорог), наоборот, задействуется электромагнитный приемник вместо акустического геомикрофона. Чувствительность электромагнитных сенсоров в разы выше акустических, соответственно, возрастает дальность обнаружения. В некоторых случаях она превышает 1000 м.

  4. Расстояние до места замыкания распознается очень точно, благодаря технологии подсчета задержек импульсов. По схожим технологиям работают многие высокоточные системы, например, лазерные дальномеры или навигация GPS.

 


Пример прокладки множества кабелей в одной траншее. Поиск места повреждения акустическими методами возможен без обесточивания близлежащих кабелей.

Ограничения акустического метода контроля

  1. Акустический метод исследования не позволяет обнаруживать водяные триинги и дефекты изоляции, не приведшие к пробою. Можно обнаружить только имеющиеся повреждения. Нельзя составить прогнозы, оценить степень старения изоляции.

  2. Обнаруживается только первый пробой. Если дефекты в виде заплывающих пробоев следуют один за другим, они не обнаруживаются.

  3. Акустические шумы и электромагнитные помехи снижают дальность определения.

Примеры оборудования

Генератор SWG и приемник ударных волн (акустический локатор) Digiphone

Передовой комплект оборудования для поиска мест повреждения изоляции акустическим методом. Генератор ударных волн SWG представляет собой блок с минимумом элементов управления. Оператору необходимо подключить генератор к испытуемым кабельным жилам (не менее двух), выставить энергию заряда, (например, 1000 дж) и частоту. При работе с прибором соблюдают меры предосторожности. Выходное напряжение — до 32 кВ. При включенном генераторе выполняется ручной поиск с помощью различных акустических локаторов. Сам генератор SWG универсален. Его можно использовать для диагностики кабелей иными методами.

Приемник ударных волн Digiphone имеет чувствительный узкополосный УНЧ и геомикрофон. Оборудование защищено от влаги, поиск может выполняться в любых условиях, в том числе и по мерзлому грунту, когда акустическая проводимость улучшается.

Приемник ударных волн Digiphone+


Акустический локатор Digiphone+

В отличие от акустического локатора Digiphone, Digiphone+ принимает не только акустические, но и электромагнитные волны. На практике это означает удлинение расстояния между точкой подключения генератора и уверенным распознаванием места повреждения. Приемник ударных волн Digiphone+ отличается высокой чувствительностью и строгим соответствием всем современным требованиям. Так выходной звуковой каскад имеет ограничение по звуку 84 дБ/А в соответствии с положениями об охране труда. Приемный тракт узкополосный с системой подавления посторонних шумов. Дополнительные плюсы: компас, цветной дисплей, удобная регулируемая ручка и вес всего 2,2 кг.

На следующем видео показано, как работать с акустическим локатором Digiphone+

Если вам нужна профессиональная консультация по диагностике изоляции кабеля, просто отправьте нам сообщение!

Примеры оборудования

Поделитесь этой страницей с друзьями и коллегами


Смотрите также:

 

Абсолютные методы определения места повреждения силового кабеля

1. Акустический метод.

Акустический метод основан на прослушивании над местом повреждения кабельной линии звуковых колебаний, вызванных искровым разрядом в канале повреждения. Акустический метод практически универсален и в большинстве случаев является основным абсолютным методом. Им можно определять повреждения различного характера: однофазные и междуфазные замыкания с различными переходными сопротивлениями, обрывы одной, двух или всех жил.

В отдельных случаях возможно определение нескольких повреждений на одной кабельной линии.

Искровые разряды, получаемые в месте повреждения кабеля, образуются двумя способами.

При «заплывающем пробое», который, как правило, обнаруживается при контрольных испытаниях, повреждение, в основном, бывает в муфтах.

Сопротивление в месте повреждения большое — единицы и десятки мегаом.

С помощью испытательной установки постоянного тока  к поврежденной жиле прикладывается напряжение (не более 5Uном, где Uном — рабочее напряжение кабеля).

Как только в месте повреждения происходит пробой, определяют расстояние до места повреждения, например, с помощью метода колебательного разряда.

После первого пробоя сопротивление в поврежденной жиле кабеля восстанавливается, и напряжение от испытательной установки постоянного тока возрастает опять до напряжения пробоя. Такая периодичность пробоев может продолжаться длительное время. В зоне измеренного расстояния до места повреждения оператор, передвигаясь вдоль трассы кабельной линии, четко фиксирует акустические сигналы, вызываемые пробоями в месте повреждения.

При замыканиях, имеющих переходное сопротивление в месте повреждения от единиц Ом до десятков кОм, используется высоковольтная установка постоянного тока, с помощью которой производится заряд конденсатора, после чего через разрядник (разрядник может быть как управляемый, так и неуправляемый воздушный) в месте повреждения происходит пробой, вызывающий акустический сигнал. В передвижных измерительных лабораториях имеются, как правило, две группы высоковольтных конденсаторов. Одна группа на рабочее напряжение до 5 кВ при емкости конденсаторов до 200 мкФ (низковольтная акустика), другая группа на рабочее напряжение до 30 кВ при емкости конденсаторов до 5 мкФ (высоковольтная акустика).

Установки для заряда конденсаторов первой группы имеют большую мощность, которая необходима для быстрой зарядки конденсаторов большой емкости (единицы секунд).

Если при использовании первой группы конденсаторов невозможно создать пробой вследствие большого сопротивления в месте повреждения, то необходимо использовать вторую группу конденсаторов. Оператор, перемещаясь вдоль трассы кабельной линии в предполагаемой зоне повреждения, измеренной импульсным или волновым методом, может точно определить место повреждения следующим способом.

При использовании кабелеискателя, ПК-100, имеющего один канал усиления, сигнал от акустического преобразователя усиливается приемником и поступает на стрелочный индикатор и головные телефоны. Передвигаясь по трассе кабельной линии, оператор прослушивает сигналы с помощью головных телефонов и только в месте непосредственного повреждения кабеля, когда акустические сигналы четко фиксируются, необходимо с помощью стрелочного индикатора выявить на трассе точку с максимальным отклонением стрелки, где и находится повреждение.

При использовании кабелеискателя, например, КАИ-90, имеющего два канала усиления (один для усиления сигналов акустического преобразователя, а другой для усиления сигналов, наведенных в индукционном преобразователе), поиск осуществляется следующим образом.

При перемещении вдоль кабельной линии сигнал, наведенный в индукционном преобразователе, поступает через усилительный тракт приемника на стрелочный индикатор, а сигнал с акустического преобразователя поступает через свой усилительный тракт на головные телефоны.

В зоне места повреждения, когда становится слышен акустический сигнал в головных телефонах, следует перейти в режим акустического поиска.

При этом акустический сигнал будет поступать через усилительный тракт приемника КАИ-90 как на головные телефоны, так и на стрелочный индикатор, по которому при максимальном его отклонении можно найти точное место повреждения.

При определении места растяжки (разрыва) жил в кабеле высоковольтную испытательную установку постоянного тока подключают поочередно к одной из жил или сразу ко всем трем жилам кабеля (рис. 8).

При подъеме испытательного напряжения до 5Uном зa счет ослабленной изоляции возникает пробой в месте разрыва между одной из жил и оболочкой кабеля. В случае, если пробой в месте повреждения не происходит, необходимо установить перемычку на дальнем конце кабеля между всеми жилами и оболочкой кабеля.

В этом случае при поднятии испытательного напряжения пробой происходит в месте разрыва жил кабеля.

В обоих случаях место повреждения находится акустическим методом.

Рис. Схема подключения высоковольтной испытательной установки при растяжке жил в кабеле:

1 — высоковольтная испытательная установка; 2 — поврежденный кабель; 3 — перемычка между жилами и оболочкой кабеля

2. Индукционно-импульсный метод.

Индукционно-импульсный метод используется при определении места повреждения вида «заплывающий пробой» на трассе кабельной линии. Определение места пробоя в кабеле производится методом контроля направления распространения электромагнитных волн, возникших в месте пробоя.

Так как при пробое возникают электромагнитные волны, направленные от места повреждения к концам кабельной линии, то место на трассе кабельной линии, в котором происходит изменение направления волн, соответствует месту повреждения.

Для определения места «заплывающего пробоя» кабельной линии к поврежденной жиле кабеля подключают высоковольтную установку и плавно поднимают постоянное напряжение до обеспечения периодических пробоев в кабеле.

Методом колебательного разряда производят измерение расстояния до места повреждения.

Точный поиск места повреждения в найденной зоне производится индукционно- импульсным кабелеискателем КИИ-83 или КИИ-89, переносимым вдоль трассы при создании в линии периодических пробоев.

При каждом пробое в линии в индукционном преобразователе (датчике) наводится напряжение, полярность которого фиксируется кабелеискателем (отклонением стрелки прибора).

Если место повреждения будет пройдено, то прибор будет фиксировать другой знак полярности, что является основанием для возвращения назад, и точного определения места повреждения кабеля.

Кабелеискатели КИИ-83 и КИИ-89 позволяют однозначно определить, в каком направлении следует вести поиск вдоль трассы линии, чтобы приблизиться к месту повреждения.

Это исключает ошибочные действия оператора. На трассе кабельной линии в зоне предполагаемого места повреждения (при изменении знака показывающего прибора) целесообразно для более точного определения места повреждения использовать акустический метод.

3. Индукционный метод.

Индукционный метод определения места повреждения, основан, на принципе определения характера изменения магнитного поля, над кабелем, по которому пропускается ток от генератора звуковой частоты. Частота тока от 480 до 10000 Гц. Метод обеспечивает высокую точность определения места повреждения и имеет широкое распространение.

Индукционным методом можно определить:

· трассу кабельной линии;

· глубину прокладки кабельной линии;

· искомый кабель в пучке кабелей;

· междуфазные повреждения кабельной линии;

· однофазные повреждения кабеля.

Методы измерения места повреждения кабеля

Меню

  • О нас
      • Профиль компании
      • Наши партнеры
          • HAEFELY
          • BAUR
          • ohv диагностика
          • Испытательные системы высокого напряжения
          • ZERO
          • EPRO
          • Партнер ERO Montena
          • Prana
          • Innco Systems
          • Pontis EMC
          • Frankonia
          • Schwarzbeck
          • Emzer
      • Карьера
      • Заявление о конфиденциальности
      • Условия использования
    9008
  • Тестирование и диагностика кабелей
      • Тестирование кабелей на очень низких частотах
          • Frida
          • Viola
          • PHG 80 Portable
      • VLF Tan Delta Diagnostics
          • TD12 TD120006
          • PHG 80 TD & PD
      • Демпфированные испытательные системы переменного тока
          • DAC M30 / M40 / M60
          • DAC h300
          • DAC h400
      • Диагностика частичного разряда
          • Ta 62 — Портативная система диагностики частичных разрядов
          • PD-TaD 80 Портативная система диагностики частичных разрядов
          • DDX 9121b
          • Tracy
      • Онлайн-тестирование частичных разрядов
          • Liona Online PD Spot Tester
          • ohv Ultradetect
          • Ultrasonic Probe
        • Портативное оборудование для высокопроизводительных испытаний постоянного тока
            • PGK 25
            • PGK 50 / PGK 80
        • Комбинированный диэлектрический тестер переменного / постоянного тока
        • RSKF Система для резонансных испытаний с переменной частотой
Место неисправности
    • Рефлектометры во временной области — TDR
        • TDR 500 / TDR 510
        • IRG 2000
        • IRG 4000
    • Компактные системы определения места повреждения кабеля
        • Syscompact 2000 M Pro
        • Syscompact 2000 Portable
        • Syscompact 2000 Portable
        • Syscompact
    • Система обнаружения повреждений кабеля Protrac
    • Генератор перенапряжения / кабельный глушитель
    • Локатор повреждений кабельной оболочки Shirla
    • Трансформатор сгорания — серия ATG
    • Кабельные локаторы / кабельные трассировщики
    • Система идентификации кабеля — KSG 200
  • Кабельная лаборатория — Titron
  • Тестирование частичного разряда
      • Детекторы частичного разряда
          • DDX 9121b Advanced PD & RIV Detector
          • HTP-2 Цифровой детектор частичных разрядов
          • HTP-2 UHF детектор частичных разрядов
          • ohv Ultradetect Ultrasonic Probe
          • PD-TaD 62 VLF PD Detector
          • Liona Online Spot Tester
      • Система контроля частичных разрядов
      • Конденсаторы связи
          • 9230 Series
          • KK Series
          • 9230/25/1-PD
          • 9230/30/9-PD
      • Измерение импедансов
          • AKV 9310 (до 3 A)
          • AQS 9110a (до 6 A)
          • AKV 9330 (до 300 A)
          • Полное сопротивление моста HBD-1
      • Калибраторы PD
          • KAL 9511 Базовый калибратор PD
          • Промежуточный калибратор частичного разряда KAL 9510
          • Двухимпульсный калибратор частичного разряда KAL 9520
          • KAL 9531/1 HP Calibrator
          • RIV6G
          • Генератор импульсов УВЧ
      • Датчики ЧР УВЧ
          • Датчик УВЧ CT-1
          • Датчик сливного клапана УВЧ-50/80
          • Втулка CT-2 Датчик УВЧ
          • 90 046
        • HTF-1 / HTF-2 PD-фильтры
        • Мультиплексоры
    • Тестирование дельты тангенса угла / коэффициента мощности
        • 2823 Прецизионный мост для измерения дельты тангенса угла тангажа
        • MIDAS 2883
        • MIDAS / 2881G
        • Стандартные конденсаторы
            • 3320 Стандартные воздушные конденсаторы
            • 3370 Стандартные газовые конденсаторы
            • 3388 Стандартный газовый конденсатор 25 кВ
            • 3730 Эталонный конденсатор 12 кВ
          • 9006
          • Easy Tan Insulation Test Delta
          • 9000 Delta
          • VLF Tan Delta Cable Diagnostics
          • 2830/2831 Анализатор масла и твердого диэлектрика
          • DTL C Power Factor / Tan Delta Oil Tester
      • Substation Test Equipment
          • Коэффициент мощности / Tan Delta и емкость Тестирование
              • MIDAS micro 2883
              • MIDAS 2 881 / 2881G
          • Измерители коэффициента поворотов трансформатора
              • TTR 2795
              • TTR 2796
          • WA 2293 Анализатор восстановления обмоток
          • FRA 5311 Анализатор частоты развертки
          • RVM
          • Измерители сопротивления изоляции
              • 5478 Измеритель ТОМ
              • 2226a Цифровой микроомметр
      • Оборудование для испытания изоляционного масла
          • Тестеры диэлектрического масла DP
            • Тестер пробоя
            • Лабораторный тестер пробоя масла DTA 100 C
        • Тестер коэффициента мощности DTL C / тангенса дельты
        • Менеджер отчетов
    • Испытания твердых изоляционных материалов
        • Измерители сопротивления изоляции
          • 90 008
          • 5478 TΩ Meter
          • 2226a Цифровой микроомметр
      • 2830/2831 Анализатор масла и твердого диэлектрика
      • Тест изоляции Tan Delta
      • Тестеры пробоя
  • Оборудование испытательного стенда
      • Испытательные системы
      • Резонансные испытательные системы переменного тока
      • Импульсные генераторы
      • Стандартные трансформаторы тока
      • Стандартные трансформаторы напряжения
  • Импульсные испытания
      • Генераторы импульсного напряжения
          • 26 Тип
          • SA
          • Тип SGVA
      • Генераторы импульсного тока серии SSG
      • HiAS 744 Система анализа импульсов
      • Элементы управления импульсным генератором
          • HVC 300
          • GC 257
      • Divider
      • Импульсное напряжение 08
        • Демпфированные емкостные делители импульсного напряжения
        • Резистивные делители импульсного напряжения
        • Универсальные опорные делители напряжения
        • RM 430 Ratio Meter
    • Отсекающие зазоры
        • 2 KFS
        • Шариковые зазоры
    • RSG 482 Генератор рекуррентных импульсов
    • Калибратор эталонных импульсов RIC 422
  • Тестирование трансформатора
      • Система тестирования распределительного трансформатора DTTS
      • SPTTS Система измерения потерь силового трансформатора
      • Система измерения потерь трансформатора TMS 580
      • Монитор тока шин
  • Тестирование измерительного трансформатора
      • 2763/2767/2769 Автоматические испытательные комплекты измерительного трансформатора
      • 3691 Программируемая электронная нагрузка по току
      • 3695 Программируемая Нагрузка на электронное напряжение
      • 4761/4762/4764 Компараторы тока
      • 4861 Стандартные электронные делители напряжения
  • Системы оконечной нагрузки для испытаний кабелей
      • KEV (≤ 100 кВ)
      • CTTS (≥ 100 кВ)
  • Тестирование электрических счетчиков
      • Портативные тестовые системы счетчиков
      • Стационарные тестовые системы счетчиков
  • Калибровочное оборудование
      • Прецизионные системы калибровки мощности и компараторы
      • Эталонные универсальные делители напряжения
      • RIC12 Эталонный импульсный калибратор 422
      • Измеритель коэффициента RM 430
      • Шаговый генератор блока USG 40
      • Калибраторы частичного разряда
  • Представители коммунальных предприятий
  • Испытательное оборудование ЭМС
      • Проведено Коммунальное оборудование / испытательное оборудование для переходных процессов
          • ESD3000 Тестер электростатического разряда (ESD)
          • Генераторы импульсных перенапряжений и генераторы EFT
          • Автоматические 3-фазные развязывающие сети (CDN)
          • Сети развязки линий передачи данных (CDN6)
          • Генераторы магнитного поля2
          • Генератор затухающих колебательных волн
          • Тестеры изоляции импульсного напряжения
          • Генераторы комбинированных волн 12 кВ и 24 кВ
          • Система испытания на устойчивость к наведенным радиочастотным помехам — IEC 61000-4-6
      • Оборудование для испытаний на кондуктивную эмиссию
          • & Анализатор мерцания
          • Приемник ЭМП EMSCOPE
      • Оборудование для испытаний на устойчивость к излучению
          • Система тестирования помехоустойчивости — IEC 61000-4-3
          • Ячейки GTEM
          • Измерители напряженности поля ВЧ
      • Военные / Испытательное оборудование авионики
          • Генератор CS115 и CS116
          • DO160 и MIL-STD-461G Система непрямого тестирования молнии
          • ЭМИ и восприимчивость к излучению (RS105)
          • Импульсный ток (PCI)
          • Эффективность экранирования 900v12
          • 300kD 900v12
          • 300k Генератор MIL-STD-1275E
          • Триггерный генератор 50 кВ
      • Усилители мощности ЭМС ВЧ
      • Оборудование для позиционирования ЭМС
          • Контроллер
          • Антенные стойки и мачты
          • Поворотные столы
          • 2 Линейные
          • Испытательные столы и аксессуары
      • Камеры ЭМС и передатчики данных
          • Камеры и аудиосистемы
          • Волоконно-оптические преобразователи
      • Антенны ЭМС и аксессуары для ВЧ-тестов
      • Представители
      • EMC
  • Сервисные решения
      • Услуги по установке и вводу в эксплуатацию
      • Калибровка
      • Ремонт
      • Модернизация / модернизация
      • Обучение
      • Расходные материалы
  • Ценовое предложение
      • Запросить ценовое предложение Оборудование для тестирования HV Запрос коммерческого предложения по испытательному оборудованию EMC
      • Запрос коммерческого предложения на обслуживание
  • Блог
  • Свяжитесь с нами
  • Поиск