Закрыть

Выбор автомата по кабелю: ВЫБОР АВТОМАТА ПО СЕЧЕНИЮ КАБЕЛЯ И МОЩНОСТИ НАГРУЗКИ

Содержание

Выбор силового кабеля и автоматических выключателей для электропроводки в Хабаровске

Для электропроводки в квартире оптимально ее разбиение на несколько групп. Для каждой группы предусматривается провод или кабель определенного сечения и защитное автоматическое устройство, номинал которого рассчитан заранее. Например, для розеточной разводки — силовых групп медного провода с сечением жил 2,5 мм2; для осветительных групп – 1,5 мм2; для электроприборов повышенной мощности (электроплиты, электродуховки, варочные панели) — 4-6 мм2.

Внимание: медная проводка более предпочтительна, чем алюминиевая, т.к. более надежна и способна выдерживать более высокие токи.

Внимание: мощные бытовые приборы (духовка, варочная поверхность и т.д.) и приборы, которые в процессе работы используют воду (посудомоечная и стиральная машины, водонагреватель и др.), требуют отдельного подключения к распределительному щиту.

Медные провода
Сечение провода, мм2 Алюминиевые провода
Мощность, кВт Ток цепи, А Ток автомата, А Ток автомата, А Ток цепи, А Мощность, кВт
220 В 380 В 220 В 380 В
3,3 6,4 15 10 1,5 - - - -
4,6 9 21 20 2,5 16 16 3,5 6,8
5,9 11,5 27 25 4 20 21 4,6 9
7,4 14,5 34 32 6 25 26 5,7 11,1
11 21,4 50
50
10 32 38 8,3 16,3
15,4 30 70 63 16 50 55 12,1 23,5
18,7 36,4 85 80 25 63 65 14,3 27,8
22 42,9 100 100 35
63
75 16,5 32,1
29,7 57,9 135 125 50 100 105 23,1 45

*Табличные данные носят рекомендательный характер . Необходимо учесть все составляющие монтажа: способ, тип строения, назначение линии, марку кабеля и другие.


Для расчета электросети для одного бытового прибора используется формула I=P/U, в соответствии с которой I — сила тока, P — мощность (в ваттах) прибора (указана в паспорте или на корпусе), U — напряжение сети (обычно 220 вольт).

На примере бытовой электроплиты на 220В и мощностью 4,5 кВт видно, что ее токовая нагрузка составляет: 4500 ватт÷220 вольт=20,4 ампера. Следовательно, на линии электропитания данной плиты необходимо использовать  кабель сечением 4мм2 (лучше с запасом -6) и автомат номиналом не меньше чем 23 ампера. Поскольку приборов с таким номиналом не существует, нужно выбирать устройство, ближайший номинал которого составляет 25 ампер.

Для расчета токовой нагрузки группы потребителей вводится так называемый коэффициент спроса Кс (вероятность одновременной работы всех имеющихся потребителей в течение продолжительного периода времени). При Кс=1 значит, что одновременно работают потребители всей группы, что бывает крайне редко. Поэтому рассчитывается это значение в каждом случае отдельно: для отдельных комнат, отдельных потребителей и даже для различного стиля жизни жильцов. Например, коэффициент спроса для телевизора обычно равен 1,а коэффициент спроса пылесоса равен 0,1.

Расчетная мощность группы электропроводки рассчитывается по формуле:

P(расчетная)=Кс×P(мощность установочная для каждого прибора)
I=Р(мощность расчетная)/220 вольт.

Коэффициент спроса выбирается индивидуально. Для упрощения расчетов часто принимают Кс=1.

Затем выбор автомата и кабеля осуществляется по той же схеме, что и при одиночном потребителе. 

В нижеприведенной таблице, составленой на основе международного стандарта МЭК 364 и европейского стандарта HD 384, можно ознакомиться с рекомндациями по расчету электропроводки в жилых помещениях:

Тип нагрузки Условия Сечение кабеля (медь) Автоматический выключатель
Рекомендуемый Максимальный
Освещение не более 8 точек** 1,5 мм2 10 А 16 А
Группа розеток на 16 А не более 5 точек 1,5 мм2 10 А 16 А
не более 8 точек 2,5 мм2 16 А 20 А
Отдельные линии для электроприборов (не более 10 А) 1эл.
прибор
1,5 мм2 10 А 16 А
Отдельные линии для мощных электроприборов (не более 16 А) 1эл.прибор 2,5 мм2 16 А 20 А
Отдельные линии для мощных электроприборов (не более 32А) 1эл. прибор 6 мм2 (1фаза) 32 А 40 А
2,5 мм2 (3 фазы) 16 А 20 А
Водонагреватель (накопительный) 1эл.прибор 2,5 мм
2
16 А 20 А
Оборудование управления и контроля по необходимости 1,5 мм2 2-6 А 16 А
Электрическое отопление 2250 Вт 1,5 мм2 10 А 16А
3500 Вт 2,5 мм2 16 А 20 А
4500 Вт 4 мм2 25 А 32 А
5750 Вт 6 мм2 32 А 40 А
7250 Вт 10 мм2 40 А 50 А

** 1 точка — это:

  • для освещения: система из одной лампочки или групп лампочек (бра, люстра, группы точечных светильников, светодиодной подсветки и т. д.) общей мощностью не более 300Вт, находящихся в одном помещении
  • для розеток:
    • отдельно стоящая одинарная розетка
    • если в одном корпусе две розетки, то это считается как одна точка
    • если в одном корпусе три или четыре розетки, то это считается как две точки
    • если в одном корпусе больше четырех розеток, то это рассматривается как три точки

Вернуться к списку

Выбор автомата по мощности нагрузки, сечению кабеля и по току: как рассчитать автоматический выключатель

Для организации безотказно действующего внутридомового электроснабжения необходимо выделить отдельные ветки.  Каждую линию нужно оснастить собственным прибором защиты, оберегающим изоляцию кабеля от оплавления. Однако не все знают, какое устройство приобрести. Согласны?

Все про выбор автоматов по мощности нагрузки вы узнаете из представленной нами статьи. Мы расскажем, как определить номинал для поиска выключателя необходимого класса. Учет наших рекомендаций гарантирует покупку требующихся устройств, способных исключить угрожающие ситуации при эксплуатации проводки.

Содержание статьи:

  • Автоматические выключатели для бытовых сетей
    • Основные параметры и классификация
    • Конструктивное устройство расцепителей
    • Соблюдение принципов селективности
    • Простейшие правила установки
  • Расчет необходимого номинала
    • Определение суммарной мощности потребителей
    • Вычисление силы тока
    • Нюансы подбора сечения кабеля
    • Расчет параметров автомата
    • Выбор между несколькими номиналами
  • Выводы и полезное видео по теме

Автоматические выключатели для бытовых сетей

Электроснабжающие организации осуществляют подключение домов и квартир, выполняя работы по подведению кабеля к распредщиту. Все мероприятия по монтажу разводки в помещении выполняют его владельцы, либо нанятые специалисты.

Чтобы подобрать автомат для защиты каждой отдельной цепи необходимо знать его номинал, класс и некоторые другие характеристики.

Основные параметры и классификация

Бытовые автоматы устанавливают на входе в низковольтную электрическую цепь и предназначены они для решения следующих задач:

  • ручное или электронное включение или обесточивание электрической цепи;
  • защита цепи: отключение тока при незначительной длительной перегрузке;
  • защита цепи: мгновенное отключение тока при коротком замыкании.

Каждый выключатель имеет характеристику, выраженную в амперах, которую называют (In) или «номинал».

Суть этого значения проще понять, используя коэффициент превышения номинала:

K = I / In,

где I – реальная сила тока.

  • K < 1.13: отключение (расцепление) не произойдет в течение 1 часа;
  • K > 1.45: отключение произойдет в течение 1 часа.

Эти параметры зафиксированы в п. 8.6.2. ГОСТ Р 50345-2010. Чтобы узнать за какое время произойдет отключение при K>1.45 нужно воспользоваться графиком, отражающим времятоковую характеристику конкретной модели автомата.

При длительном превышении током значения номинала выключателя в 2 раза, размыкание произойдет за период от 8 секунд до 4-х минут. Скорость срабатывания зависит от настройки модели и температуры среды

Также у каждого типа автоматического выключателя определен диапазон тока (Ia), при котором срабатывает механизм мгновенного расцепления:

  • класс «B»: Ia = (3 * In .. 5 * In];
  • класс «C»: Ia = (5 * In .. 10 * In];
  • класс «D»: Ia = (10 * In .. 20 * In].

Устройства типа «B» применяют в основном для линий, которые имеют значительную длину. В жилых и офисных помещениях используют автоматы класса «С», а приборы с маркировкой «D» защищают цепи, где есть оборудование с большим пусковым коэффициентом тока.

Стандартная линейка бытовых автоматов включает в себя устройства с номиналами в 6, 8, 10, 16, 20, 25, 32, 40, 50 и 63 A.

Конструктивное устройство расцепителей

В современном присутствуют два вида расцепителей: тепловой и электромагнитный.

Биметаллический расцепитель имеет форму пластины, созданной из двух токопроводящих металлов с различным тепловым расширением. Такая конструкция при длительном превышении номинала приводит к нагреву детали, ее изгибу и срабатыванию механизма размыкания цепи.

У некоторых автоматов с помощью регулировочного винта можно изменить параметры тока, при котором происходит отключение. Раньше этот прием часто применяли для «точной» настройки устройства, однако эта процедура требует углубленных специализированных знаний и проведения нескольких тестов.

Вращением регулировочного винта (выделен красным прямоугольником) против часовой стрелки можно добиться большего времени срабатывания теплового расцепителя

Сейчас на рынке можно найти множество моделей стандартных номиналов от разных производителей, у которых времятоковые характеристики немного отличаются (но при этом соответствуют нормативным требованиям). Поэтому есть возможность подобрать автомат с нужными «заводскими» настройками, что исключает риск неправильной калибровки.

Электромагнитный расцепитель предотвращает перегрев линии в результате короткого замыкания. Он реагирует практически мгновенно, но при этом значение силы тока должно в разы превышать номинал. Конструктивно эта деталь представляет собой соленоид. Сверхток генерирует магнитное поле, которое сдвигает сердечник, размыкающий цепь.

Соблюдение принципов селективности

При наличии разветвленной электрической цепи можно организовать защиту таким образом, чтобы при коротком замыкании произошло отключение только той ветви, на которой возникла аварийная ситуация. Для этого применяют принцип селективности выключателей.

Наглядная схема, показывающая принцип работы системы автоматических выключателей с реализованной функцией селективности (выборочности) срабатывания при возникновении короткого замыкания

Для обеспечения выборочного отключения на нижних ступенях устанавливают автоматы с мгновенной отсечкой, размыкающие цепь за 0.02 – 0.2 секунды. Выключатель, размещенный на вышестоящей ступени, или имеет выдержку по срабатыванию в 0. 25 – 0.6 с или выполнен по специальной «селективной» схеме в соответствии со стандартом DIN VDE 0641-21.

Для гарантированного обеспечения лучше использовать автоматы от одного производителя. Для выключателей единого модельного ряда существуют таблицы селективности, которые указывают возможные комбинации.

Простейшие правила установки

Участок цепи, который необходимо защитить выключателем может быть одно- или трехфазным, иметь нейтраль, а также провод PE («земля»). Поэтому автоматы имеют от 1 до 4 полюсов, к которым подводят токопроводящую жилу. При создании условий для расцепления происходит одновременное отключение всех контактов.

Автоматы в щитке крепят на специально отведенную для этого DIN-рейку. Она обеспечивает компактность и безопасность подключения, а также удобный доступ к выключателю

Автоматы устанавливают следующим образом:

  • однополюсные на фазу;
  • двухполюсные на фазу и нейтраль;
  • трехполюсные на 3 фазы;
  • четырехполюсные на 3 фазы и нейтраль.

При этом запрещено делать следующее:

  • устанавливать однополюсные автоматы на нейтраль;
  • заводить в автомат провод PE;
  • устанавливать вместо одного трехполюсного автомата три однополюсных, если в цепь подключен хотя бы один трехфазный потребитель.

Все эти требования прописаны в ПУЭ и их необходимо соблюдать.

В каждом доме или помещении, к которому подведено электричество, устанавливают вводной автомат. Его номинал определяет поставщик и это значение прописано в договоре на подключение электроэнергии. Предназначение такого выключателя – защита участка от трансформатора до потребителя.

После вводного автомата к линии подключают счетчик (одно- или трехфазный) и , функции которого отличаются от работы автоматического и дифференциального выключателя.

Если в помещении выполнена разводка на несколько контуров, то каждый из них защищают отдельным автоматом, мощность которого . Их номиналы и классы определяет владелец помещения с учетом существующей проводки или мощности подключаемых приборов.

Счетчик электроэнергии и автоматические выключатели устанавливают в распределительном щите, который отвечает всем требованиям безопасности и легко может быть вписан в интерьер помещения

При выборе места для размещения необходимо помнить, что на свойства теплового расцепителя влияет температура воздуха. Поэтому желательно располагать рейку с автоматами внутри самого помещения.

Расчет необходимого номинала

Основная защитная функция автоматического выключателя распространяется на проводку, поэтому подбор номинала осуществляют по сечению кабеля. При этом вся цепь должна обеспечить штатную работу подключенных к ней приборов. Расчет параметров системы несложен, но надо учесть много нюансов, чтобы избежать ошибок и возникновения проблем.

Определение суммарной мощности потребителей

Один из главных параметров электрического контура – максимально возможная мощность подключенных к ней потребителей электроэнергии. При расчете этого показателя нельзя просто суммировать паспортные данные устройств.

Активная и номинальная компонента

Для любого прибора, работающего от электричества, производитель обязан указать активную мощность (P). Эта величина определяет количество энергии, которая будет безвозвратно преобразована в результате работы аппарата и за которую пользователь будет платить по счетчику.

Но для приборов с наличием конденсаторов или катушки индуктивности есть еще одна мощность с ненулевым значением, которую называют реактивной (Q). Она доходит до устройства и практически мгновенно возвращается обратно.

Реактивная компонента не участвует при подсчете использованной электроэнергии, но совместно с активной формирует так называемую «полную» или «номинальную» мощность (S), которая дает нагрузку на цепь.

cos(f) – параметр, с помощью которого можно определить полную (номинальную мощность) по активной (потребляемой). Если он не равен единице, то его указывают в технической документации к электроприбору

Считать вклад отдельного устройства в общую нагрузку на токопроводящие жилы и автомат необходимо по его полной мощности: S = P / cos(f).

Повышенные стартовые токи

Следующей особенностью некоторых типов бытовой техники является наличие трансформаторов, электродвигателей или компрессоров. Такие устройства при начале работы потребляют пусковой (стартовый) ток.

Его значение может в несколько раз превышать стандартные показатели, но время работы на повышенной мощности невелико и обычно составляет от 0.1 до 3 секунд. Такой кратковременный всплеск не приведет к срабатыванию теплового расцепителя, но вот электромагнитный компонент выключателя, отвечающий за сверхток КЗ, может среагировать.

Особенно эта ситуация актуальна для выделенных линий, к которым подключают оборудование типа деревообрабатывающих станков. В этом случае нужно посчитать ампераж и, возможно, имеет смысл использовать автомат класса «D».

Учет коэффициента спроса

Для цепей, к которым подключено большое количество оборудования и отсутствует устройство, которое потребляет наибольшую часть тока, используют коэффициент спроса (ks). Смысл его применения заключается в том, что все приборы не будут работать одновременно, поэтому суммирование номинальных мощностей приведет к завышенному показателю.

Коэффициент спроса на группы электропотребителей установлен в п. 7 СП 256.1325800.2016. На эти показатели можно опираться и при самостоятельном расчете максимальной мощности

Этот коэффициент может принимать значение равное или меньшее единице. Вычисления расчетной мощности (Pr) каждого прибора происходит по формуле:

Pr = ks * S

Суммарную расчетную мощность всех приборов применяют для вычисления параметров цепи. Использование коэффициента спроса целесообразно для офисных и небольших торговых помещений с большим числом компьютеров, оргтехники и другой аппаратуры, запитанной от одного контура.

Для линий с незначительным количеством потребителей этот коэффициент не применяют в чистом виде. Из подсчета мощности убирают те устройства, чье включение одновременно с более энергозатратными приборами маловероятно.

Так, например, мало шансов на единовременную работу в жилой комнате с утюгом и пылесосом. А для мастерских с небольшим числом персонала в расчет берут только 2-4 наиболее мощных электроинструмента.

Вычисление силы тока

Выбор автомата производят по максимальному значению силы тока, допустимому на участке цепи. Необходимо получить этот показатель, зная суммарную мощность электропотребителей и напряжение в сети.

Согласно ГОСТ 29322-2014 с октября 2015 года значение напряжения должно быть равным 230 В для обыкновенной сети и 400 В – для трехфазной. Однако в большинстве случаев, до сих пор действуют старые параметры: 220 и 380 В соответственно. Поэтому для точности расчетов необходимо провести замеры с применением вольтметра.

Измерить напряжение в домашней сети можно с помощью вольтметра или мультиметра. Для этого достаточно воткнуть его контакты в розетку

Еще одной проблемой, особенно актуальной для , является предоставление электроснабжения с недостаточным напряжением. Замеры на таких проблемных объектах могут показывать значения, выходящие за определенный ГОСТом диапазон.

Более того, в зависимости от уровня потребления соседями электричества, значение напряжения может сильно меняться в течение короткого времени.

Это создает проблему не только для функционирования приборов, но и для . При падении напряжения некоторые устройства просто теряют в мощности, а некоторые, у которых присутствует входной стабилизатор, увеличивают потребление электричества.

Качественно провести расчеты необходимых параметров цепи в таких условиях сложно. Поэтому либо придется прокладывать кабели с заведомо большим сечением (что дорого), либо решать проблему через установку входного стабилизатора или подключение дома к другой линии.

Стабилизатор устанавливают рядом с распределительным щитом. Часто бывает, что это единственный способ получить нормативные значения напряжения в доме

После того как была найдена общая мощность электроприборов (S) и выяснено значение напряжения (U), расчет силы тока (I) проводят по формулам, являющихся следствием закона Ома:

If = S / Uдля однофазной сети

Il = S / (1. 73 * Ul) для трехфазной сети

Здесь индекс «f» означает фазные параметры, а «l» – линейные.

Большинство трехфазных устройств используют тип подключения «звезда», а также именно по этой схеме функционирует трансформатор, выдающий ток для потребителя. При симметричной нагрузке линейная и фазная сила будут идентичны (Il = If), а напряжение рассчитывают по формуле:

Ul = 1.73 * Uf

Нюансы подбора сечения кабеля

Качество и параметры проводов и кабелей регулирует ГОСТ 31996-2012. По этому документу для выпускаемой продукции разрабатывают ТУ, где допускается некоторый диапазон значений базовых характеристик. Изготовитель обязан предоставить таблицу соответствия сечения жил и максимальной безопасной силы тока.

Максимально допустимая сила тока зависит от сечения жил проводов и способа монтажа. Они могут быть проложены скрытым (в стене) или открытым (в трубе или коробе) способом

Выбирать кабель необходимо так, чтобы обеспечить безопасное протекание тока, соответствующего расчетной суммарной мощности электроприборов. Согласно ПУЭ (правила устройства электроустановок) минимальное , используемых в жилых помещениях, должно быть не менее 1,5 мм2.

Стандартные размеры имеют следующие значения: 1,5; 2,5; 4; 6 и 10 мм2.

Иногда есть резон использовать провода с сечением на шаг больше, чем минимально допустимое. В этом случае существует возможность подключения дополнительных приборов или замена уже существующих на более мощные без дорогостоящих и длительных работ по прокладке новых кабелей.

Расчет параметров автомата

Для любой цепи должно быть выполнено следующее неравенство:

In <= Ip / 1.45

Здесь In – номинальный ток автомата, а Ip – допустимый ток для проводки. Это правило обеспечивает гарантированное расцепление при длительном превышении допустимой нагрузки.

Неравенство «In <= Ip / 1.45» является основным условием при комплектовании пары «автомат – кабель». Пренебрежение этим правилом может привести к возгоранию проводки

Рассчитать номинал автомата можно как по суммарной нагрузке, так и по сечению жил уже проложенной проводки. Допустим, что существует схема подключения электроприборов, но проводка еще не проложена.

В этом случае последовательность действий следующая:

  1. Вычисление суммарной силы тока подключенных к сети электроприборов.
  2. Выбор автомата с номиналом не меньше, чем вычисленная величина.
  3. Подбор сечения кабеля по номиналу автомата.

Пример:

  1. S = 4 кВт; I = 4000 / 220 = 18 A;
  2. In = 20 A;
  3. Ip >= In * 1.45 = 29 A; D = 4 мм2.

Если проводка уже проложена, то последовательность действий другая:

  1. Определение допустимого тока при известном сечении и способе прокладки проводки по предоставленной производителем таблице.
  2. Подбор автоматического выключателя.
  3. Вычисление мощности подключаемых устройств. Комплектование группы приборов таким образом, чтобы суммарная нагрузка на цепь была меньше номинала.

Пример. Пусть проложены два одножильных кабеля открытым способом, D = 6 мм2, тогда:

  1. Ip = 46 A;
  2. In <= Ip / 1.45 = 32 A;
  3. S = In * 220 = 7.0 кВт.

В пункте 2 последнего примера есть незначительное допустимое приближение. Точное значение In = Ip / 1.45 = 31.7 A округлено до значения 32 A.

Выбор между несколькими номиналами

Иногда возникает ситуация, когда можно выбрать несколько автоматов с разными номиналами для защиты контура. Например, при суммарной мощности электроприборов 4 кВт (18 A) была с запасом выбрана проводка с сечением медных жил 4 мм2. Для такой комбинации можно поставить выключатели на 20 и 25 A.

Если схема разводки электрики предполагает наличие многоярусной защиты, то нужно выбирать автоматы так, чтобы значение номинала вышестоящего (на рисунке он справа – 25 A) было больше, чем у выключателей более низких уровней

Плюсом выбора выключателя с наивысшим номиналом является возможность подключения дополнительных приборов без изменения элементов контура. Чаще всего так и поступают.

В пользу выбора автомата с меньшим номиналом говорит тот факт, что его тепловой расцепитель быстрее среагирует на повышенный показатель силы тока. Дело в том, что у некоторых приборов может возникнуть неисправность, которая приведет к росту потребления энергии, но не до значения короткого замыкания.

Например, поломка подшипника двигателя стиральной машины приведет к резкому увеличению тока в обмотке. Если автомат быстро среагирует на превышение разрешенных показателей и произведет отключение, то мотор не сгорит.

Выводы и полезное видео по теме

Конструкция автоматического выключателя и его классификация. Понятие времятоковой характеристики и подбор номинала по сечению кабеля:

Расчет мощности приборов и выбор автомата с использованием положений ПУЭ:

К выбору автоматического выключателя нужно отнестись ответственно, так как от этого зависит безопасность работы электросистемы дома. При всем множестве входных параметров и нюансов расчета необходимо помнить, что основная защитная функция автомата распространяется на проводку.

Пишите, пожалуйста, комментарии, задавайте вопросы, размещайте фото по теме статьи в расположенном ниже блоке. Делитесь полезной информацией, которая может пригодиться посетителям сайта. Расскажите о собственном опыте в выборе автоматических выключателей для защиты дачной или домашней электропроводки.

Правильный кабель повышает доступность вашей машины

| Стефан Хьюзель

Выбор правильного кабеля или линии для передачи сигналов на вашей машине существенно влияет на доступность машины. Обычно при определении приборов машин и установок большое внимание уделяется выбору правильных датчиков.

Например, пользователь определяет, какие принципы измерения используются для измерения уровня, какой источник питания должен быть подключен к машине и какой тип передачи сигнала должен использоваться. Обычно кабели, показанные на схемах проводки как простые соединительные линии между датчиком и СИП, являются проблематичными. Это создает интересный парадокс в технологии автоматизации: датчик испытывается на самые высокие требования, чтобы убедиться, что он соответствует требованиям приложения, в то время как кабель рассматривается просто как компонент, который предположительно гарантирует надежное соединение при любых обстоятельствах.

Однако кабели и разъемы являются одним из наиболее частых источников ошибок. Именно здесь можно найти непредвиденный потенциал для повышения эксплуатационной готовности оборудования. В ходе моего исследования я узнал, что в высоком двузначном проценте всех случаев известные производители кабелей связывают отказ датчиков на машинах с механическим повреждением кабеля из-за неправильной установки, обращения и особенно из-за выбора неподходящего кабеля. для конкретного приложения. В принципе, не существует патентных средств для определения того, какой кабель и какой штекерный разъем лучше всего подходит для вашего приложения.

Например, требования к гибкости кабелей, используемых в уровнемерах для измерения уровня в глубоких колодцах, невысоки, в то время как требования к прочности на растяжение, а также к высокой продольной и поперечной водонепроницаемости высокие. В датчиках уровня штекерные соединители практически не применяются из-за отсутствия постоянной герметичности. Для станков, устанавливаемых в заводских помещениях, используются самые простые кабельные материалы с простым разъемом М12. Однако в этом случае использование подходящего кабеля, который постоянно выдерживает такие условия окружающей среды, как перепады температуры, а также обладает устойчивостью к маслам и жирам, может значительно повысить эксплуатационную готовность вашей машины.

Использование кабельных сборок с разъемами, предварительно собранными на заводе, также предотвращает риск выхода из строя из-за неправильной сборки на месте. Следовательно, утверждение, что все кабели одинаковы и что любой данный кабель с достаточным количеством проводов подходит для применения, является заблуждением.

В одной из своих предыдущих статей я составил краткий обзор наиболее актуальных критериев выбора кабелей и разъемов. Потратьте некоторое время на определение подходящего кабеля для вашего приложения. Подумайте о требованиях, которым должно соответствовать штекерное соединение с датчиками и ПЛК. Индивидуально подобранная концепция электропроводки обеспечивает заметное увеличение эксплуатационной готовности машины и повышение безопасности во время работы.

Если вам нужна помощь или консультация по выбору подходящего датчика давления и соответствующего кабеля/разъема, обращайтесь к нам.


  • Электрическое соединение

Оставить комментарий

© 2022 WIKA Alexander Wiegand SE & Co. KG

Глава 4: Кабели

Что такое сетевой кабель?

Кабель — это среда, по которой информация обычно передается от одного сетевого устройства к другому. Существует несколько типов кабелей, которые обычно используются в локальных сетях. В некоторых случаях в сети будет использоваться только один тип кабеля, в других сетях будут использоваться различные типы кабелей. Тип кабеля, выбранного для сети, зависит от топологии, протокола и размера сети. Понимание характеристик различных типов кабелей и того, как они соотносятся с другими аспектами сети, необходимо для разработки успешной сети.

В следующих разделах обсуждаются типы кабелей, используемых в сетях, и другие связанные темы.

  • Кабель с неэкранированной витой парой (UTP)
  • Кабель с экранированной витой парой (STP)
  • Коаксиальный кабель
  • Волоконно-оптический кабель
  • Руководства по установке кабелей
  • беспроводных локальных сетей
  • Кабель с неэкранированной витой парой (UTP)

Витая пара бывает двух видов: экранированная и неэкранированная. Неэкранированная витая пара (UTP) является наиболее популярной и, как правило, лучшим вариантом для школьных сетей (см. рис. 1).

Рисунок 1. Неэкранированная витая пара

Качество UTP может варьироваться от телефонного провода до чрезвычайно высокоскоростного кабеля. Кабель имеет четыре пары проводов внутри оболочки. Каждая пара скручена с разным количеством витков на дюйм, чтобы устранить помехи от соседних пар и других электрических устройств. Чем туже скручивание, тем выше поддерживаемая скорость передачи и выше стоимость фута. EIA/TIA (Ассоциация электронной промышленности/Ассоциация телекоммуникационной промышленности) установила стандарты UTP и классифицировала шесть категорий проводов (появляются дополнительные категории).

Категории неэкранированной витой пары
Категория Скорость Использовать
1 1 Мбит/с Только голос (телефонный провод)
2 4 Мбит/с LocalTalk и телефон (используется редко)
3 16 Мбит/с 10BaseT Ethernet
4 20 Мбит/с Token Ring (используется редко)
5 100 Мбит/с (2 пары) 100BaseT Ethernet
1000 Мбит/с (4 пары) Гигабитный Ethernet
1000 Мбит/с Гигабитный Ethernet
6 10 000 Мбит/с Гигабитный Ethernet

Разъем для неэкранированной витой пары

Стандартным разъемом для неэкранированной витой пары является разъем RJ-45. Это пластиковый разъем, похожий на большой телефонный разъем (см. рис. 2). Слот позволяет вставлять RJ-45 только одним способом. RJ расшифровывается как Registered Jack, подразумевая, что разъем соответствует стандарту, заимствованному из телефонной индустрии. Этот стандарт определяет, какой провод подходит к каждому контакту внутри разъема.

Рис. 2. Разъем RJ-45

Хотя кабель UTP является наименее дорогим кабелем, он может быть восприимчив к радиочастотным и электрическим помехам (он не должен находиться слишком близко к электродвигателям, люминесцентным лампам и т. д.). Если вы должны разместить кабель в среде с большим количеством потенциальных помех или если вы должны разместить кабель в чрезвычайно чувствительной среде, которая может быть восприимчива к электрическому току в UTP, экранированная витая пара может быть решением. Экранированные кабели также могут помочь увеличить максимальную длину кабелей.

Кабель с экранированной витой парой доступен в трех различных конфигурациях:

  1. Каждая пара проводов индивидуально экранирована фольгой.
  2. Внутри оболочки имеется экран из фольги или оплетки, покрывающий все провода (группой).
  3. Вокруг каждой отдельной пары, а также вокруг всей группы проводов имеется экран (так называемая витая пара с двойным экраном).

Коаксиальный кабель имеет один медный проводник в центре. Слой пластика обеспечивает изоляцию между центральным проводником и плетеным металлическим экраном (см. рис. 3). Металлический экран помогает блокировать любые внешние помехи от флуоресцентных ламп, двигателей и других компьютеров.

Рис. 3. Коаксиальный кабель

Несмотря на сложность прокладки коаксиального кабеля, он обладает высокой устойчивостью к помехам. Кроме того, он может поддерживать большую длину кабеля между сетевыми устройствами, чем кабель витой пары. Два типа коаксиальных кабелей — толстые коаксиальные и тонкие коаксиальные.

Тонкий коаксиальный кабель также называют тонкой сетью. 10Base2 относится к спецификациям тонкого коаксиального кабеля, передающего сигналы Ethernet. Цифра 2 означает, что приблизительная максимальная длина сегмента составляет 200 метров. На самом деле максимальная длина сегмента составляет 185 метров. Тонкий коаксиальный кабель был популярен в школьных сетях, особенно в сетях с линейными шинами.

Толстый коаксиальный кабель также называют толстой сетью. 10Base5 относится к характеристикам толстого коаксиального кабеля, передающего сигналы Ethernet. Цифра 5 означает, что максимальная длина сегмента составляет 500 метров. Толстый коаксиальный кабель имеет дополнительную защитную пластиковую оболочку, предотвращающую попадание влаги на центральный проводник. Это делает толстый коаксиальный кабель отличным выбором при использовании длинных кабелей в сети линейных шин. Одним из недостатков толстого коаксиала является то, что он плохо гнется и его сложно установить.

Соединители коаксиального кабеля

Наиболее распространенным типом разъема, используемого с коаксиальными кабелями, является разъем Bayone-Neill-Concelman (BNC) (см. рис. 4). Для разъемов BNC доступны различные типы адаптеров, включая Т-образный разъем, бочкообразный разъем и терминатор. Разъемы на кабеле — самые слабые места в любой сети. Чтобы избежать проблем с вашей сетью, всегда используйте разъемы BNC, которые обжимают, а не накручивают кабель.

Рис. 4. Разъем BNC

Волоконно-оптический кабель состоит из центральной стеклянной сердцевины, окруженной несколькими слоями защитных материалов (см. рис. 5). Он передает свет, а не электронные сигналы, устраняя проблему электрических помех. Это делает его идеальным для определенных сред с большим количеством электрических помех. Это также сделало его стандартом для соединения сетей между зданиями из-за его невосприимчивости к воздействию влаги и освещения.

Волоконно-оптический кабель имеет возможность передавать сигналы на гораздо большие расстояния, чем коаксиальный и витая пара. Он также имеет возможность передавать информацию на гораздо более высоких скоростях. Эта способность расширяет коммуникационные возможности, включая такие услуги, как видеоконференции и интерактивные услуги. Стоимость оптоволоконного кабеля сопоставима с медным кабелем; однако его сложнее установить и изменить. 10BaseF относится к спецификациям оптоволоконного кабеля, передающего сигналы Ethernet.

Центральная жила волоконно-оптических кабелей изготовлена ​​из стеклянных или пластиковых волокон (см. рис. 5). Затем пластиковое покрытие амортизирует центр волокна, а кевларовое волокно помогает укрепить кабели и предотвратить их поломку. Наружная изолирующая оболочка из тефлона или ПВХ.

Рис. 5. Волоконно-оптический кабель

Существует два распространенных типа оптоволоконных кабелей — одномодовые и многомодовые. Многомодовый кабель имеет больший диаметр; однако оба кабеля обеспечивают высокую пропускную способность на высоких скоростях. Одиночный режим может обеспечить большее расстояние, но это дороже.

Технические характеристики Тип кабеля
10BaseT неэкранированная витая пара
10Base2 Тонкий коаксиальный
10Base5 Толстый коаксиальный
100BaseT неэкранированная витая пара
100BaseFX Оптоволокно
100BaseBX Одномодовое волокно
100BaseSX Многомодовое волокно
1000BaseT неэкранированная витая пара
1000BaseFX Оптоволокно
1000BaseBX Одномодовое волокно
1000BaseSX Многомодовое волокно

При прокладке кабеля лучше всего соблюдать несколько простых правил:

  • Всегда используйте больше кабеля, чем вам нужно. Оставьте много слабины.
  • Проверяйте каждую часть сети по мере ее установки. Даже если он совершенно новый, у него могут быть проблемы, которые потом будет сложно изолировать.
  • Держитесь на расстоянии не менее 3 футов от люминесцентных ламп и других источников электрических помех.
  • Если необходимо проложить кабель по полу, накройте кабель защитными приспособлениями.
  • Пометьте оба конца каждого кабеля.
  • Используйте кабельные стяжки (не ленту), чтобы скрепить кабели вместе в одном месте.

Все больше сетей работают без кабелей, в беспроводном режиме. Беспроводные локальные сети используют высокочастотные радиосигналы, лучи инфракрасного света или лазеры для связи между рабочими станциями, серверами или концентраторами. Каждая рабочая станция и файловый сервер в беспроводной сети имеет своего рода приемопередатчик/антенну для отправки и получения данных. Информация передается между приемопередатчиками, как если бы они были физически связаны. Для более дальних расстояний беспроводная связь также может осуществляться с помощью технологии сотовой связи, микроволновой передачи или спутниковой связи.

Беспроводные сети отлично подходят для подключения портативных компьютеров, портативных устройств или удаленных компьютеров к локальной сети. Беспроводные сети также полезны в старых зданиях, где прокладка кабелей может быть затруднена или невозможна.

Двумя наиболее распространенными типами инфракрасной связи, используемыми в школах, являются прямая видимость и рассеянное вещание. Связь в пределах прямой видимости означает, что между рабочей станцией и трансивером должна быть открытая прямая линия. Если человек находится в пределах прямой видимости во время передачи, информацию необходимо будет отправить снова. Такие препятствия могут замедлить работу беспроводной сети. Рассеянная инфракрасная связь — это широковещательная передача инфракрасных сигналов, рассылаемых в нескольких направлениях, которые отражаются от стен и потолков, пока в конечном итоге не достигают приемника. Сетевые коммуникации с помощью лазера практически аналогичны инфракрасным сетям прямой видимости.

Беспроводные стандарты и скорости

Wi-Fi Alliance — это глобальная некоммерческая организация, которая помогает обеспечивать стандарты и совместимость для беспроводных сетей, а беспроводные сети часто называют WiFi (Wireless Fidelity). Первоначальный стандарт Wi-Fi (IEEE 802.11) был принят в 1997 году. С тех пор появилось (и будет продолжать появляться) множество вариаций. Сети Wi-Fi используют протокол Ethernet.

Стандарт Максимальная скорость Типичный диапазон
802.11а 54 Мбит/с 150 футов
802.11b 11 Мбит/с 300 футов
802. 11g 54 Мбит/с 300 футов
802.11n 100 Мбит/с 300+ футов

Беспроводная безопасность

Беспроводные сети гораздо более уязвимы для несанкционированного использования, чем кабельные сети. Беспроводные сетевые устройства используют радиоволны для связи друг с другом. Наибольшая уязвимость сети заключается в том, что мошеннические машины могут «заглянуть» в радиосвязь. Передаваемая незашифрованная информация может отслеживаться третьей стороной, которая с помощью нужных инструментов (бесплатно загружаемых) может быстро получить доступ ко всей вашей сети, украсть ценные пароли к локальным серверам и онлайн-сервисам, изменить или уничтожить данные и/или или получить доступ к личной и конфиденциальной информации, хранящейся на ваших сетевых серверах. Чтобы минимизировать возможность этого, все современные точки доступа и устройства имеют параметры конфигурации для шифрования передачи. Эти методологии шифрования все еще развиваются, как и инструменты, используемые злоумышленниками, поэтому всегда используйте самое надежное шифрование, доступное в вашей точке доступа и подключаемых устройствах.

ПРИМЕЧАНИЕ О ШИФРОВАНИИ: На момент написания этой статьи шифрование WEP (Wired Equivalent Privacy) можно было легко взломать с помощью доступных бесплатных инструментов, которые распространяются в Интернете. WPA и WPA2 (WiFi Protected Access версии 1 и 2) намного лучше защищают информацию, но использование слабых паролей или парольных фраз при включении этих шифров может позволить их легко взломать. Если в вашей сети используется WEP, вы должны быть очень осторожны при использовании конфиденциальных паролей или других данных.

Для защиты сетей от несанкционированного использования беспроводной сети используются три основных метода. Используйте любой из этих методов при настройке точек беспроводного доступа:

Шифрование.
Включите самое надежное шифрование, поддерживаемое устройствами, которые вы будете подключать к сети. Используйте надежные пароли (надежные пароли обычно определяются как пароли, содержащие символы, цифры и буквы смешанного регистра, длиной не менее 14 символов).
Изоляция.
Используйте беспроводной маршрутизатор, который помещает все беспроводные соединения в подсеть, независимую от основной частной сети. Это защищает данные вашей частной сети от сквозного интернет-трафика.
Скрытый SSID.
Каждая точка доступа имеет идентификатор набора служб (SSID), который по умолчанию передается на клиентские устройства, чтобы можно было найти точку доступа. Отключив эту функцию, стандартное клиентское программное обеспечение для подключения не сможет «увидеть» точку доступа. Тем не менее, обсуждавшиеся ранее программы для наблюдения могут легко найти эти точки доступа, так что само по себе это не более чем скрывает имя точки доступа от случайных пользователей беспроводной связи.

Преимущества беспроводных сетей:

  • Мобильность. С портативного компьютера или мобильного устройства доступ может быть доступен на всей территории школы, в торговом центре, в самолете и т. д. Все больше и больше предприятий также предлагают бесплатный доступ к Wi-Fi («горячие точки»).
  • Быстрая настройка. Если на вашем компьютере есть беспроводной адаптер, найти беспроводную сеть можно так же просто, как щелкнуть «Подключиться к сети» — в некоторых случаях вы будете автоматически подключаться к сетям в пределах досягаемости.
  • Стоимость. Настройка беспроводной сети может быть намного более рентабельной, чем покупка и установка кабелей.
  • Расширяемость. Добавление новых компьютеров в беспроводную сеть так же просто, как включение компьютера (при условии, что вы не превысите максимальное количество устройств).

Недостатки беспроводных сетей:

  • Безопасность — Будьте осторожны. Будьте бдительны. Защитите свои конфиденциальные данные с помощью резервных копий, изолированных частных сетей, надежного шифрования и паролей, а также отслеживайте трафик доступа к сети, входящий и исходящий из вашей беспроводной сети.
  • Помехи. Поскольку в беспроводных сетях для передачи используются радиосигналы и аналогичные методы, они чувствительны к помехам от источников света и электронных устройств.
  • Нестабильные соединения. Сколько раз вы слышите сообщение «Подождите, я только что потерял соединение?» Из-за помех, создаваемых электрическими устройствами и/или предметами, блокирующими путь передачи, беспроводные соединения не так стабильны, как соединения по выделенному кабелю.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *