Закрыть

Испытание кабеля повышенным напряжением – Испытание кабеля повышенным напряжением: нормы, методика, схема

Содержание

Испытание кабеля повышенным напряжением: нормы, методика, схема

Параметры современных электрических систем способны обеспечить необходимый уровень напряжения и его качество для любых потребителей. А за счет масштабной застройки больших городов, близкого расположения промышленных объектов, нагромождения их коммуникаций, большая часть линий выполняются силовыми кабелями. Из-за воздействия внешних факторов изоляция электрооборудования способна утрачивать защитные свойства, что приводит к сбоям и нарушению нормального режима работы. Для предотвращения аварийных ситуаций на кабельных линиях и своевременного выявления дефектов осуществляется испытание кабеля повышенным напряжением.

Подготовка к испытанию

В связи с тем, что повышенное напряжение несет потенциальную угрозу как самому оборудованию, так и персоналу, существует методика испытаний, регламентирующая определенную последовательность действий. Первым этапом является оформление работ, подготовка места работы, оборудования и самого кабеля.

Следует оговориться, что к электрическим испытаниям допускаются лишь те лица, которые достигли совершеннолетия, прошли медосмотр, периодическую проверку знаний по электробезопасности. Испытания, в обязательном порядке, оформляются нарядом, а бригаде проводится инструктаж по охране труда.

По отношению к испытуемой электроустановке предъявляются такие требования:

  • Перед испытанием с кабеля обязательно снимается напряжение, все металлические элементы (экраны, броня), на которые подача напряжения не производится, должны заземляться.
  • Предварительно с кабеля удаляется остаточный заряд, для этого провода и металлические части заземляются на 2 минуты.
  • До подачи повышенного напряжения на жилы кабеля, осмотрите его на наличие загрязнителей на видимых участках или в воронках. При обнаружении таковых поверхность очищается, после чего могут производиться высоковольтные процедуры.
  • При отрицательной температуре испытания не проводятся. Это обусловлено тем, что лед выступает в роли диэлектрика и сопротивление изоляции будет значительно больше реальной величины. Помимо этого, разработка траншеи и откопка кабеля в замерзшем грунте значительно усложняется. В связи с чем, при нулевых или более низких температурах, испытание целесообразно только в случае аварии.
  • До начала испытания посредством мегомметра обязательно проверяется сопротивление от каждой жилы к  металлической оболочке кабеля и между фазами.
  • Величину тока утечки, напряжение на киловольтметре можно начинать фиксировать только спустя минуту, с момента установки испытательного напряжения на нужной отметке.

Причины и физика испытания

Профиспытания повышенным напряжением используются для выявления слабых мест в изоляции кабеля. Не зависимо от материала диэлектрика: пластмассовый, резиновый, полиэтиленовый или маслонаполненный кабель воспринимает нагрузку от испытательной установки на одну жилу, а остальные металлические части подключаются к земле. В результате чего изоляция находится под потенциалом, в разы превышающим номинальный.

От подачи на жилы повышенного потенциала в изоляции возникает ионизация, а в местах нахождения каких-либо дефектов, неоднородностей или включений инородных материалов скапливается достаточное для протекания малых токов количество заряженных частиц. Такие включения и дефекты могли образоваться в результате неудовлетворительных условий эксплуатации, аварийных режимов или из-за естественного старения материала.

Все изъяны, из-за малого сопротивления, начинают ионизироваться и пропускать электрический ток все большей величины по микроскопическим каналам в диэлектрике. Из-за этого сопротивление изоляции уменьшается вплоть до пробоя. Если пробой не наступает, а дефект оказывает существенное влияние, его можно зафиксировать по изменению величины тока утечки.

Данная методика дает уверенность, что при номинальном токе изоляция кабеля выдержит нагрузку до следующих испытаний.

Схемы испытаний

Для проверки прочности изоляции кабеля могут использоваться различные устройства, обеспечивающие на выходе повышенное напряжение. Но, независимо от конкретной модели, схема  измерений и работы строится по такому принципу.

Рисунок 1. Схема измерений

Посмотрите на схему (рис. 1.), здесь изображено:

1 – обмотки трансформатора с функцией регулировки уровня напряжения (автотрансформатор),

2 – высоковольтный трансформатор для подачи напряжения на испытуемый объект,

3 – панель управления,

4 – испытуемый кабель,

5 – трансформатор питания катодной цепи кенотрона.

На схеме  рассматривается метод испытания, когда к одной из жил кабеля подведено повышенное напряжение, а остальные заземлены.

С началом испытаний от автотрансформатора  через киловольтметр подается напряжение на первичную обмотку испытательного агрегата. Вторичная обмотка которого заземляется через амперметр, именно он и показывает значение тока утечки. Испытуемая обмотка, помимо амперметра, содержит резистор R для ограничения  величины переменного тока, в случае пробоя. Вторым выводом резистор подключается к аноду кенотрона, катод которого запитывается от преобразователя накала.

Нормы испытаний

В ходе испытаний высоковольтный провод получает нагрузку повышенным напряжением, но поднимается оно плавно от нулевой отметки до установленной величины. Продолжительность воздействия составляет 5 минут для периодических и 10 минут во время приемо-сдаточных испытаний для кабелей с пластмассовой и бумажной изоляцией. После каких-либо ремонтных работ или при изменениях в схеме время испытания кабеля составляет 10 – 15 минут. Кабель с резиновой изоляцией испытывается повышенным напряжением  5 минут во всех случаях.

Все данные устанавливаются государственными документами – ПУЭ и ПТЭЭП. В зависимости от параметров сети и технических характеристик кабеля существуют такие пределы  подачи повышенного напряжения (см. таблицу ниже):

Тип кабеляНоминальное напряжение кабеля, кВИспытательное напряжение, кВПродолжительность испытания, мин
С бумажной изоляцией3—106 Uв10
20—355 Uв10
11030015
22045015
С резиновой изоляцией3615
6125

Посмотрите, в таблице вы можете увидеть значение выпрямленного напряжения, подаваемого непосредственно на сам кабель. Оно отличается от номинального напряжения, выдаваемого испытательным трансформатором и по величине и по роду. UВ обозначает номинальное напряжение кабеля, а цифры указывают во сколько раз испытательное напряжение должно превышать номинальное.

Ток утечки не является параметром для контроля или выбраковки. Но в случае его скачков, колебаний во время испытания повышенным напряжением, можно смело утверждать о наличии дефектов. В таком случае подачу напряжения на кабель необходимо осуществлять до пробоя, но не больше 15 минут. Вместе с током рассчитывают и коэффициент асимметрии,  их нормы вы можете увидеть в таблице:

Кабели напряжением, кВИспытательное напряжение, кВДопустимые значения токов утечки, мАДопустимые значения коэффициента асимметрии,
636

45

0,2

0,3

8

8

1050

60

0,5

0,5

8

8

201001,510
35140

150

175

1,8

2,0

2,5

10
110285не нормируетсяне нормируется
150 347не нормируетсяне нормируется
220510не нормируетсяне нормируется
330670не нормируетсяне нормируется
500865не нормируетсяне нормируется

Отклонение от значений, приведенных в таблице, может свидетельствовать о серьезных изменениях в изоляции кабельной линии. В случае, когда не было  пробоя, отсутствовали электрические разряды, хлопки, внезапное нарастание или колебания постоянного тока во время испытания, кабель считается годным. В частных случаях, лицо ответственное за электрохозяйство может самостоятельно устанавливать испытательные сроки и параметры в разрез заводских норм.

Аппараты для испытаний

  • АИИ – 70 – одна из наиболее популярных стационарных установок, применяемых в испытании и фазировке силовых кабелей, вводов, проверке прочности жидких диэлектриков на пробой и т.д. Может обеспечивать как постоянное напряжение на выходе (максимально 70 кВ), так и переменное (50 кВ).
  • АИД-70 – является диодным аналогом предыдущей модели. Наиболее широко применяется для испытания как постоянным, так и переменным напряжением в передвижках или переносных агрегатах, в лабораториях.
  • ИВК-5, АИ-2000, КУ-65 и прочие – установки с диодной схемой. Применяется для продавливания вторичных электрических цепей.
Принципиальная схема ИВК

Как и в других схемах, здесь используется трансформатор (АТ), диодные выпрямители (В), резисторы (Р), трансформатор тока (Т) сигнальные светодиоды и устройства для съема показаний (v, mA). На том же принципе основан ряд других портативных устройств.

Методика испытания кабеля повышенным напряжением

Возьмите кабель с несколькими жилами, и соедините вывод установки с одной из фаз, остальные заземлите, для одножильных кабелей ничего кроме брони или экрана заземлять не нужно. Если к одному проводнику подводится напряжение, а другие заземляются, то оголенные концы разводятся на расстояние не менее 15 см. В случае проведения профилактических испытаний, подключение испытательной установки осуществляется на концевых муфтах. В аварийных ситуациях присоединение может выполняться в местах раздела, как более целесообразных точках для измерений.

Схема подключения кабеля

Силовой трансформатор преобразует напряжение и ток промышленной частоты до нужного уровня, затем подает через выпрямитель на кабель. Методика измерений требует плавного наращивания напряжения со скоростью около 1 – 2кВ в течении одной секунды до получения необходимой величины. После того, как стрелка киловольтметра установится в нужную позицию, начинается отсчет времени. По результатам снимаются данные с приборов на установке и фиксируются в соответствующих документах – протоколах и кабельных журналах.

Для завершения  измерений  ручка автотрансформатора выводится в ноль. Отключается кнопка питания, устанавливается блокировка от случайной подачи напряжения. Обратите внимание, на высоковольтный вывод  обязательно завешивается заземление. После чего можно приступать к разборке схемы.

В случае если изоляция выполнена из сшитого полиэтилена, кабель не допускается испытывать выпрямленным током из-за возможности скопления  локальных объемных зарядов. По причине дороговизны таких кабелей, их порча чревата большими затратами. Поэтому следует прибегать к принципиально иной технологии проверки.

Кабель с изоляцией из сшитого полиэтилена

К кабелям таких марок целесообразно подводить переменное напряжение низкой частоты, с целью планомерного и полного рассеивания местных зарядов при переходе синусоиды через ноль. При этом удаляются даже те заряды, которые могли возникнуть в процессе эксплуатации из-за режима питания.

В завершение, для кабелей, продавленных повышенным напряжением, в обязательном порядке выполняется проверка электрической прочности их изоляции. Так как воздействие такого напряжения могло нарушить ее диэлектрические свойства.

Периодичность

Для кабелей, рассчитанных на напряжение от 2 до 35 кВ с пластмассовой и бумажной оболочкой, в течении первых 2 лет с момента запуска в работу устанавливается периодичность испытания повышенным напряжением раз в год. В случае отсутствия аварий, реконструкций, которые могли быть причиной каких-либо изменений, за первые два года, испытания разрешается проводить реже – раз в 2 года. В противном случае, сроки остаются теми же. Если такой кабель эксплуатируется на территориях подстанций, заводов и прочих промышленных объектов, где доступ к ним затруднен, разрешается проводить испытание не реже, чем раз в 3 года.

Кабели, рассчитанные на напряжение 110  – 500кВ подлежат проверке через 3 года с момента их ввода в эксплуатацию. После чего,  в случае отсутствия аварийных ситуаций или реконструкций, испытание может производиться с периодичностью раз в 5 лет.

Для кабелей, оснащенных резиновой изоляцией, в случае питания стационарных устройств электроустановок, периодичность высоковольтных испытаний составляет 1 раз в год. Для сезонных электроустановок испытания должны проводиться перед началом сезона. Такую же процедуру необходимо выполнять при пуске в эксплуатацию электроустановок после их длительного отключения.

Допускается не производить испытания кабелей с бумажной и пластмассовой изоляцией в случае если:

  • используется в качестве питающих вводов и длина кабеля менее 100 м;
  • срок их службы уже более 15 лет, а удельное количество отказов не менее 30 раз на 100 км в год;
  • в ближайшие 5 лет планируется их реконструкция или полный демонтаж.

Оформление результатов испытаний в виде протокола (пример)

После проведения испытаний, все данные заполняются в соответствующие графы протокола. Пример заполнения которого можно увидеть на рисунке.

Пример заполнения протокола

В графе о лицах, проводивших испытания, ставятся фамилии и подписи работников, участвовавших в соответствующих процедурах. После чего протокол визируется начальником лаборатории и хранится в установленном порядке.

Интересное видео

www.asutpp.ru

Испытание кабеля повышенным напряжением | Заметки электрика

Здравствуйте, уважаемые читатели блога «Заметки электрика».

Продолжаю Вам рассказывать об испытаниях кабельных линий.

И сегодня мы поговорим об испытании кабелей с бумажно-пропитанной, пластмассовой и резиновой изоляцией повышенным напряжением выпрямленного тока.

Контроль изоляции силового кабеля напряжением выше 1000 (В) производится методом приложенного напряжения, что позволяет обнаружить дефекты, которые могут при дальнейшей эксплуатации кабеля снизить электрическую прочность его изоляции.

 

Подготовка к испытанию кабеля повышенным напряжением

Сразу напомню Вам, что проводить испытания повышенным напряжением (высоковольтные испытания) разрешено работнику старше 18 лет, прошедшему специальную подготовку и проверку знаний (отражается в таблице проведения специальных работ его удостоверения). Выглядит это примерно вот так.

Кстати, для Вас я специально создал онлайн тест по электробезопасностиможете проверить свои знания.

Перед испытанием силового кабеля повышенным напряжением выпрямленного тока необходимо произвести его осмотр и протереть воронки от пыли и грязи. Если во время осмотра видны дефекты изоляции или наружная поверхность кабеля сильно загрязнена, то приступать к испытаниям запрещено.

Также стоит обратить внимание на температуру окружающего воздуха. 

Температура окружающего воздуха должна быть только положительной, потому что при отрицательной температуре воздуха и  при наличии внутри кабеля частичек воды, они будут находиться в замерзшем состоянии (лед является диэлектриком),  а такой дефект при высоковольтном испытании не проявится.

Непосредственно перед испытанием кабеля повышенным напряжением необходимо измерить сопротивление его изоляции. Более подробно об этом Вы можете прочитать в статье измерение сопротивления изоляции кабеля.

 

Схема испытания кабеля повышенным напряжением

Как я уже говорил выше, испытание силовых кабельных линий проводят повышенным напряжением выпрямленного тока.

Повышенное выпрямленное напряжение прикладывается к каждой жиле силового кабеля поочередно. Во время испытания другие жилы кабеля и металлические оболочки (броня, экраны) должны быть заземлены. В этом случае мы сразу проверяем прочность изоляции между жилой и землей, а также относительно других фаз.

Если силовой кабель выполнен без металлической оболочки (брони, экрана), то повышенное напряжение выпрямленного тока прикладываем между жилой и другими жилами, которые предварительно соединяем между собой и с землей.

Разрешается испытывать повышенным напряжением сразу все жилы силового кабеля, но в таком случае нужно измерять токи утечки по каждой фазе.

Силовой кабель полностью отключаем от электрооборудования или ошиновки, и разводим жилы на расстояние более 15 (см) друг от друга.

Нормы испытаний кабеля повышенным напряжением

Со схемой испытания выпрямленным напряжением силовых кабелей мы разобрались. Теперь нам нужно определиться с величиной и продолжительностью испытаний. Для этого открываем настольные книги электрика: ПТЭЭП и ПУЭ.

Вы можете воспользоваться и электронной версией этих книг. Я предлагаю Вам скачать прямо сейчас и совсем бесплатно электронную версию ПУЭ 7 издания.

Я Вам немного облегчил задачу и составил общую таблицу с учетом требований ПУЭ (глава 1.8, п.1.8.40) и ПТЭЭП (приложение 3.1., таблица 10).

Длительность испытаний кабельных линий напряжением до 10 (кВ) с бумажной и пластмассовой изоляцией после монтажа составляет 10 минут, а во время эксплуатации — 5 минут.

Длительность испытаний кабельных линий напряжением до 10 (кВ) с резиновой изоляцией составляет 5 минут.

Теперь рассмотрим нормируемые значения токов утечки и коэффициенты асимметрии при испытании кабельных линий повышенным напряжением выпрямленного тока.

Здесь есть небольшие разногласия между ПУЭ и ПТЭЭП (в скобках указаны значения из ПТЭЭП).

Если силовой кабель имеет изоляцию из сшитого полиэтилена, например, ПвВнг-LS(B)-10, то его не рекомендуется испытывать постоянным (выпрямленным) напряжением, к тому же величина испытательного напряжения у него значительно отличается. Более подробнее об этом я рассказывал в отдельной статье про нормы испытаний кабелей из сшитого полиэтилена (СПЭ).

Аппараты для испытания силовых кабелей

Ну вот мы плавно перешли к тому, с помощью чего проводят испытания кабелей повышенным напряжением выпрямленного тока. В нашей электролаборатории мы применяем, либо испытательный аппарат АИИ-70, либо АИД-70, либо ИВК-5. Последние два аппарата применяем чаще всего на выездах.

Более подробно об этих аппаратах мы поговорим в следующих статьях, и если не хотите пропустить выходы новых статей на сайте, то подписывайтесь на получение уведомлений на почту.

Методика испытания кабеля повышенным напряжением

Допустим нам необходимо провести эксплуатационные испытания силового кабеля 10 (кВ) марки ААШв (3х95).

С помощью аппарата АИИ-70 или ИВК-5 со скоростью 1-2 (кВ) в секунду поднимаем испытательное напряжение до значения 60 (кВ). С этого момента начинается отсчет по времени. В течение всех 5 минут пристально следим за величиной тока утечки. По истечении времени записываем полученный ток утечки и сравниваем со значениями в таблице, приведенной выше. Далее рассчитываем коэффициент асимметрии токов утечки по фазам — он должен быть не более 2, но иногда бывает и больше (смотрите таблицу).

Коэффициент асимметрии определяется делением максимального тока утечки на минимальный ток утечки.

После высоковольтных испытаний кабеля необходимо снова произвести его измерение сопротивления изоляции.

Cчитается, что кабель прошел испытания в том случае, когда:

  • во время испытания не произошло пробоя, перекрытия по поверхности и поверхностных разрядов
  • во время испытания не было увеличения тока утечки
  • величина сопротивления изоляции кабеля не уменьшилась

Случается на практике такое, что токи утечки превышают значения, указанные в таблицах. В этом случае кабель в работу вводится, но срок его следующего испытания сокращается.

Если во время испытаний стал увеличиваться ток утечки, но пробой не возникает, то испытание необходимо проводить не 5 минут, а больше. Если же после этого пробой не наступил, то кабель в работу вводится, но срок его следующего испытания сокращается.

Периодичность испытаний кабелей

Результаты и протокол испытания кабеля повышенным напряжением

После испытания кабеля повышенным напряжением выпрямленного тока необходимо оформить протокол. Ниже я приведу Вам форму протокола (пример), применяемую нашей электротехнической лабораторией (кликните на картинку для увеличения).

P.S. На этом статью об испытании кабеля повышенным напряжением я заканчиваю. Если имеются вопросы по материалу, то задавайте их в комментариях.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


zametkielectrika.ru

Испытание кабеля 10 кв повышенным напряжением. Высоковольтные испытания кабельных линий

Содержание:

  1. Условия проведения испытаний
  2. Испытание кабеля повышенным напряжением
  3. Проверка целостности жил
  4. Испытание кабеля с изоляцией из сшитого полиэтилена
  5. Испытание оболочки СПЭ-кабеля
  6. Поиск повреждения СПЭ-кабеля

Высоковольтные кабельные линии (КЛ) подвергаются воздействию веса и сдвига почвы, температурных перепадов и других внешних факторов. Проверить состояние изоляционного слоя и своевременно заменить поврежденные участки позволяет испытание кабельных линий повышенным напряжением. Регулярное проведение таких проверок является необходимым условием для безотказного функционирования КЛ, помогает не допустить аварий, материального ущерба и прочих неприятных последствий.

Испытание высоковольтного кабеля 10 кВ требуется:

  • после прокладки или замены кабеля – перед засыпкой траншеи и включением электролинии;
  • в отношении используемых КЛ – после продолжительного отключения и выполнения планового или внепланового ремонта;
  • в отношении оболочки кабеля, который проложен в грунте и работает без электрических пробоев, – с периодичностью в 5 лет;
  • для главных КЛ – с промежутком в 3 года;
  • для запасных – с 5-летней периодичностью;
  • для главных и запасных КЛ, питающих объекты особой важности, – ежегодно.

При реализации земляных работ, оползнях, осаждении или размыве грунта требуются внеочередные испытания КЛ. Дополнительные проверки выполняются по окончании работ.

Инженерный центр «ПрофЭнергия» имеет все необходимые лицензии для проведения испытаний высоковольтных кабелей, слаженный коллектив профессионалов и сертификаты, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!

Если Вы хотите заказать высоковольтные испытания, а также по другим вопросам, звоните по телефону: +7 (495) 181-50-34.

Условия проведения испытаний

Высоковольтные испытания силовых кабелей должны выполнять компетентные специалисты, которые достигли 18-летнего возраста и прошли соответствующее обучение. Вначале КЛ осматриваются с целью выявления дефектов изоляционного слоя. С поверхности убираются значительные загрязнения. Воронки протираются.

Допустимая температура воздуха для реализации испытательных работ – от 0 °С. Первостепенно мегомметром замеряется сопротивление изоляционного покрытия кабеля. Необходимое сопротивление повышенного напряжения – не ниже 1 МОм. Такие измерения позволяют обнаружить значительные дефекты, нарушение целостности и ошибки, допущенные при осуществлении ремонтных мероприятий.

Сопротивление изоляции измеряется так:

1. При помощи прибора увеличенного напряжения проверяется, обесточен ли кабель.

2. На кабельные жилы устанавливается заземление с зажимами.

3. С противоположной стороны кабельные выводы оставляют свободными. Здесь размещают предупреждения или оставляют контролирующее лицо, чтобы избежать попадания под напряжение случайных прохожих.

4. Сопротивление изоляции измеряется мегомметром, по 60 секунд на провод.

5. Полученные результаты замеров фиксируются в блокноте.

 

Испытание кабеля повышенным напряжением

Испытание кабеля 10 кВ повышенным напряжением дает возможность обнаружить проблемы, не выявленные мегомметром, и довести его до пробоя в неисправных местах. Увеличенное напряжение подается посредством высоковольтного провода специального оборудования на 1 жилу, а на остальные накладывается переносное заземление. Напряжение плавно увеличивается до максимума в 60 кВт.

Затем отсчитывается необходимое время проверки (5–10 минут), и тщательно отслеживается утечка тока и напряжения. На завершающей минуте отсчитывается утечка тока по показаниям микроамперметра. Напряжение плавно уменьшается до нулевого значения. Высоковольтный вывод оборудования заземляется. Аналогично проверяются все жилы. Итоги проверок вносятся в блокнот. Допустимая разница утечки токов по фазам – не выше 50%.

Кабель признается прошедшим испытание при отсутствии:

  • толчков тока, пробоев;
  • снижения сопротивления изоляционного слоя;
  • роста утечки тока;
  • поверхностных разрядов.

При возрастании утечки тока КЛ допускается к эксплуатации при условии, что ее будут чаще контролировать и испытывать. При выявлении пробоя проводимые работы приостанавливаются, и начинается поиск неисправных участков.

 

Проверка целостности жил

Целостность жил проверяется омметром. С жилой и проводником формируется замкнутая цепь, и последовательно замеряется сопротивление компонентов кабеля. Перед применением омметра осуществляется его осмотр на предмет отсутствия повреждений. Затем выполняется его пробное тестирование при разведенных и соединенных щупах.

При проверке механическим прибором для исключения погрешности его размещают на горизонтальной плоскости. Из-за изменчивости сопротивления изоляционного слоя в зависимости от внешних факторов проверка ведется минимум 1 минуту. Значения фиксируются с 15 секунды.

Проверка целостности жил включает в себя следующие шаги:

  • Отвод людей из испытываемой части электроустановки.
  • Заземление выводов объекта испытаний.
  • Контроль отсутствия напряжения.
  • Удаление и очистка изоляционного покрытия кабеля.
  • Установка измерительных щупалец мегомметра.
  • Снятие заземления.
  • Поочередная проверка изоляции всех жил.
  • Занесение результатов проверки в протокол.
  • Отключение автоматов и отсоединение нулевых проводов от клеммы.

Все проверочные работы выполняются в резиновых перчатках, со строгим соблюдением требований безопасности. В случае выявления дефекта проверяемая часть разбирается, чтобы отыскать и ликвидировать неисправность. По завершении работ остаточный заряд мегомметра снимается коротким замыканием, с разряжением щупов друг с другом.

 

Испытание кабеля с изоляцией из сшитого полиэтилена

Кабель со СПЭ-изоляцией испытывается напряжением переменного тока. Посредством меняющейся полярности заряда удается компенсировать и разрядить накопившиеся заряды. При проверке напряжением особо низкой частоты удается получить предельную скорость развития пробоя и обнаружить проблемы. Для недопущения повреждения КЛ подаваемое напряжение должно иметь вид строго симметричной синусоиды.

Испытания КЛ и вставок со СПЭ-изоляцией обязательны перед вводом линий в эксплуатацию и по окончании ремонтных мероприятий. Испытание кабеля из сшитого полиэтилена 10 кВ и другого напряжения осуществляется по инструкции УП-Б-1. Ее требования представлены в таблице:

Напряжение КЛ

Проверочное напряжение на 0,1 Гц 3хUo, кВ, где Uo – фазное напряжение КЛ

Продолжительность его действия

Продолжительность его приложения после проведения ремонта КЛ

6 кВ

12 кВ

30 минут

20 минут

10 кВ

18 кВ

20 кВ

35 кВ

35 кВ

60 кВ

 

Испытание оболочки СПЭ-кабеля

Оболочка кабелей со СПЭ-изоляцией нередко бывает повреждена вследствие механических или коррозионных воздействий. Если своевременно не устранить этот дефект, потеряет свои защитные качества главная изоляция, и произойдет пробой. Оболочка СПЭ-кабеля напряжением 10–20 кВ проверяется напряжением 5 В постоянного тока на протяжении 10 минут. При выявлении пробоя осуществляется локальный поиск месторасположения дефекта.

Оболочки кабелей 10–20 кВ со СПЭ-изоляцией обязательно подвергаются испытаниям:

  • перед сдачей КЛ в эксплуатацию;
  • спустя 2,5 года после запуска КЛ в эксплуатационный режим и в дальнейшем с промежутком в 5 лет;
  • после ремонта изоляционного слоя;
  • при раскопках, осуществляемых в охранной области КЛ, – из-за риска повреждения защитных оболочек.

Для комплексного испытания кабелей и их оболочек используется специальный аппаратный комплекс. Он определяет участки с повреждениями и с высокой точностью выявляет местонахождение дефектов, автоматически используя способ пошагового напряжения.

 

Поиск повреждения СПЭ-кабеля

При поиске дефектов кабеля с оболочкой из сшитого полиэтилена действия ведутся в 3-х направлениях: выявляются дефектные участки оболочки, изоляции и непосредственно жил кабеля. Для начальной локализации проблемных участков оболочки применяется мостовой метод замеров по Мюррею и Глейзеру. Для точного поиска месторасположения дефектов используется универсальный приемник и методика импульсного напряжения. Для комплексного решения данной задачи используется прецизионный мост.

Места дефектов изоляции также определяются в 2 стадии. Вначале выполняется предварительная локализация посредством петлевого метода и прецизионного моста, а затем – точное выявление дефектных мест при помощи методики шагового напряжения.

Для выявления мест повреждений самих жил используются различные технологии:

  • для 3-жильного кабеля – прожиг;
  • для начальной локализации – беспрожиговые методы;
  • для высокоточного выявления дефектов – акустический способ.

Своевременное проведение испытаний высоковольтных линий нужно для повышения надежности электросетей и увеличения срока их бесперебойного использования.

 

Наши услуги

Инженерный центр «ПрофЭнергия» оказывает профессиональные услуги по реализации испытаний высоковольтных кабельных линий. Работы выполняют бригады квалифицированных специалистов, имеющие соответствующие допуски и все необходимое оборудование для тщательной проверки КЛ. На основании выполненных работ составляется протокол испытаний. Он требуется для согласования эксплуатации объекта с МЧС и остальными уполномоченными организациями.

energiatrend.ru

Испытание кабелей повышенным напряжением: правила, технологии, оборудование

При эксплуатации кабельных линий электропередач большой проблемой является пробой изоляции там, где это невозможно определить ни визуальным осмотром, ни применением низковольтного мегаомметра. Наглядный пример — образование микротрещин в изоляции кабеля, которые заполняются влагой. Когда такие трещины не доходят от внешней поверхности кабеля до токопроводящей жилы, мегаомметр не может определить их наличие. В то же время, между трещиной, заполненной влагой, и токопроводящей жилой есть тонкий слой изоляции. При подаче рабочего напряжения этот тонкий слой изоляции не выдерживает и происходит пробой.

Поэтому кабели тестируют под напряжением выше номинального, что позволяет выявить скрытые дефекты. Правила испытаний описаны в действующем ПУЭ-7.

Для кабелей на напряжение, не превышающее 1 кВ, применяется только измерение сопротивления изоляции высоковольтным (на 2,5 кВ) мегаомметром. При этом оно не должно быть меньше 0,5 МОм. Исключение составляют лишь кабели на 1 кВ с пластмассовой изоляцией — они испытываются повышенным напряжением (см. табл. № 1).

Для кабелей на напряжение свыше 1 кВ используется испытание повышенным напряжением выпрямленного тока (использование в ПУЭ-7 термина «выпрямленного тока» связано с тем, что на практике применяются выпрямители без фильтров, то есть на выходе у них есть пульсации) согласно табл. № 1. Для кабелей в бумажной и пластмассовой изоляцией до 35 кВ длительность испытания составляет 10 мин., для кабелей с резиновой изоляцией на 3 – 10 кВ — 5 мин, для кабелей с любым типом изоляции на 110 – 500 кВ — 15 мин.

Таблица № 1. Испытательные напряжения выпрямленного тока для различных типов силовых кабелей

Кабели с бумажной изоляцией на напряжение, кВ

2

3

6

10

20

35

110

150

220

330

500

12

18

36

60

100

175

285

347

510

670

865

Кабели с пластмассовой изоляцией на напряжение, кВ

Кабели с резиновой изоляцией на напряжение, кВ

1

3

6

10

110

3

6

10

5

15

36

60

285

6

12

20

 

Если речь идет о кабеле в пластмассовой изоляции, не имеющем брони и расположенном на открытом пространстве, то его испытывать выпрямленным напряжением не требуется.

Кабели на 110 – 500 кВ с изоляцией любого типа, можно испытывать не только выпрямленным, но и переменным напряжением частотой 50 Гц. В таком случае эффективное значение напряжения должно составлять 1,73 от указанного в документации для данного кабеля номинального значения напряжения.
Сопротивления изоляции кабеля нужно измерять специальным мегаомметром, который дает разницу потенциалов на измерительных клеммах, равную 2,5 кВ. Измерения делаются до и после испытаний на пробой, по ним делаются выводы о состоянии изоляции. Но как трактовать результаты измерений, если для кабелей на напряжение свыше 1 кВ в ПУЭ-7 не нормируется значение сопротивления изоляции? Есть два варианта. Первый — следует или ориентироваться на характеристики, заявленные производителем кабеля. Если же таковых нет, то переходим ко второму варианту. Нужно воспользоваться эмпирическим правилом — данное сопротивление должно быть не менее 10 МОм.

Для кабелей на напряжение от 6 до 35 кВ нормируются ток утечки. Кроме этого, может нормироваться асимметрия токов утечки для нескольких жил в кабеле (отношение между минимальной и максимальной утечками тока). При испытаниях на наличие дефектов в изоляции важно не столько абсолютное значение тока утечки, сколько динамика его изменения за время испытаний. Если изоляция исправна, то ток должен быть стабильным, обнаруживая небольшую тенденцию к снижению. Возможно в самом начале возникновение всплеска тока утечки, который, на самом деле, связан с зарядом паразитной емкости кабеля. Если во время испытаний ток увеличивается, то это свидетельствует о возможном наличии дефектов изоляции. При колебаниях значения тока время испытаний увеличивают до момента, когда направление изменения тока стабилизируется и станет ясна ситуация с состоянием изоляции, но не более 15 минут. Нормы ПУЭ-7 по токам утечки и коэффициенту асимметрии приведены в табл. №2.

Таблица № 2. Токи утечки и коэффициенты асимметрии для силовых кабелей

Кабель напряжением, кВ

Испытательное напряжение, кВ

Допустимое значение тока утечки, не более, мА

Допустимое значение коэффициента асимметрии (Imax/Imin), не более

6

36

0,2

8

10

60

0,5

8

20

100

1,5

10

35

175

2,5

10

 

Испытание кабелей с изоляцией из сшитого полиэтилена

Для кабелей с пластмассовой изоляцией на 110 – 500 кВ в качестве изоляции для таких кабелей применяется сшитый полиэтилен. Основной проблемой при испытании кабелей с изоляцией из сшитого полиэтилена выпрямленным током является накопление объемного заряда в толще материала изоляции, что снижает срок службы кабелей. В США, где с такой проблемой столкнулись раньше, чем в нашей стране, уже действует стандарт IEEE400.2 – 2013, рекомендующий проводить испытания кабелей с изоляцией из сшитого полиэтилена напряжением синусоидальной или квазисинусоидальной формы очень низкой частоты (VLF – Very Low Frequency) — менее 1 Гц. На практике используются частоты от 0,01 до 0,1 Гц. При этом время испытания может достигать 60 мин. Наличие функции VLF является важным преимуществом применяемого для тестирования оборудования. И далее данная функция будет все более и более актуальной из-за все более широкого распространения кабелей с изоляцией из сшитого полиэтилена.

Указанная особенность, а также относительная новизна материала изоляции, являются основными причинами, почему в действующем ПУЭ для кабелей с пластмассовой изоляцией на 110 – 500 кВ параметры испытаний пока не нормируются. Следует пользоваться методиками испытаний, которые предлагает завод-изготовитель кабеля.

Функция прожига

После того, как высоковольтные испытания показали наличие дефектов, определяют места повреждения изоляции. Приборы, обнаруживающие такие повреждения, способны точно указать место, если сопротивление между жилами кабеля составляет менее 1 кОм. Чтобы обеспечить такое сопротивление, применяется прожиг — изменение напряжения и тока, подаваемого на жилы кабеля по определенному алгоритму с целью полного разрушения изоляции жил в месте, где наличествует дефект. В идеале, после прожига, две жилы соединяются между собой металлическим «мостиком». Помимо специального оборудования, функция прожига присутствует в некоторых моделях приборов для испытания изоляции кабелей.

Примеры оборудования для испытания кабелей

Для тестирования силовых кабелей повышенным напряжением выпускается разнообразное оборудование. Приведем несколько наиболее характерных примеров.

Прибор для испытаний HPG 70 K


Прибор для испытаний HPG 70 K

Установка для тестирования кабелей напряжением от 0 до 70 кВ постоянного тока. При этом ток можно но изменять в пределах от 0 до 10 мА. В базовой комплектации Установка состоит из двух блоков: управления и индикации HSG 1 и высоковольтного блока HPG-70 K. В HSG 1 имеются аналоговые вольтметр и миллиамперметр, а также таймер на время до 60 мин. Для проверки кабелей с изоляцией из сшитого полиэтилена по методу VLF добавляется третий блок. Он позволяет тестировать кабели под напряжением 36 или 52 кВ на частоте 0,1 Гц.

Прибор для прожига BT 5000-1


Прибор для прожига BT 5000-1 , 14 кВ DC, макс. 110 A

В зависимости от модификации, данная установка, состоящая из четырех блоков, способна проверять кабели напряжением постоянного тока до 14 кВ и максимальным током 8 – 17 мА, а также осуществлять прожиг изоляции на напряжении 14 кВ с током до 110 мА. Некоторые модификации имеют также функцию VLF тестирования кабелей переменным напряжением 54 кВ с частотой 0,1 Гц. Автоматический разряд емкости тестируемого кабеля после подачи на него высокого напряжения обеспечивает повышенный уровень безопасности персонала и оборудования.

Установка HV Tester 25


Установка HV Tester 25

Благодаря наличию встроенного аккумулятора SebaKMT HV Tester 25 можно использовать в самых различных условиях.

Нередко испытание кабеля приходится осуществлять в условиях аварийной ситуации, когда электропитание в место проведения работ не поступает. В таком случае выручит устройство SebaKMT HV Tester 25, питающееся от встроенного аккумулятора. В том случае, если емкости встроенного аккумулятора, например, при длительных работах по устранению неисправностей, оказывается недостаточно, можно подключить прибор к автомобильному аккумулятору. При этом выходное напряжение постоянного тока будет ограничено величиной 25 кВ, а выходной ток — 1,5 мА. Это позволяет испытывать кабели с бумажной и пластмассовой изоляцией на напряжение не более 3 кВ, а с резиновой изоляцией — не более 10 кВ. В установке есть функция автоматического разряда емкости кабеля. Прибор выполнен в виде моноблока, что удобно при транспортировке.

Если вам нужна профессиональная консультация по испытанию кабелей повышенным напряжением, просто отправьте нам сообщение!

Примеры оборудования


Смотрите также:

 

test-energy.ru

Методика испытания повышенным напряжением | Элкомэлектро

О компании » Электролаборатория » Методики измерений » Методика испытания повышенным напряжением

1. Общие положения.

К работе по проведению высоковольтных испытаний в электроустановках допускаются лица не моложе 18 лет, прошедшие специальную подготовку и проверку знаний схем испытаний и правил испытаний в условиях действующих электроустановок.

Лица, допущенные к проведению испытаний, должны иметь отметку об этом в удостоверении в графе “Свидетельство на право проведения специальных работ” и ПУЭ.

2. Сущность процесса высоковольтных испытаний.

Испытание изоляции повышенным напряжением позволяет убедиться в наличии необходимого запаса прочности изоляции, отсутствии местных общих дефектов, не обнаруживаемых другими способами. Испытанию изоляции повышенным напряжением должны предшествовать тщательный осмотр и оценка состояния изоляции другими методами (измерение сопротивления изоляции, определение влажности изоляции и т.п.).

Величина испытательного напряжения для каждого вида оборудования определяется установленными нормами “Правил эксплуатации электроустановок потребителей”.

Электрооборудование и изоляторы электроустановок, в которых они эксплуатируются, испытываются повышенным напряжением по нормам, установленным для класса изоляции данной установки.

Изоляция считается выдержавшей электрическое испытание повышенным напряжением в том случае, если не было пробоя, перекрытия по поверхности, поверхностных разрядов, увеличения тока утечки выше нормированного значения, наличия местных нагревов от диэлектрических потерь. В случае несоблюдения одного из этих факторов — изоляции электрического испытания не выдержала.

3. Измерение сопротивления изоляции мегаомметром.

Для измерения сопротивления изоляции используются мегаомметры типа М4100/1-5 на напряжение от 100 до 2500В. Эти приборы имеют собственный источник питания — генератор постоянного тока и позволяют производить непосредственный отсчет показаний в мегаомах.

При измерении сопротивления изоляции относительно земли с помощью мегаомметра зажим “Л” (линия) должен быть подключен к токоведущей части испытываемой установки, а зажим “З” (земля) к ее корпусу. При измерении сопротивления изоляции электрических цепей, не соединенных с землей, подключение зажимов мегаомметра может быть любым.

Использование зажима “Э” (экран) значительно повышает точность измерения при больших сопротивлениях изоляции, исключает влияние поверхностных токов утечки и тем самым не искажает результаты измерения.

Для присоединения мегаомметра к испытываемому объекту необходимо иметь гибкие провода с изолированными рукоятками и ограничительными кольцами на концах. Длина проводов должна быть как можно меньшей.

Перед началом измерения необходимо измерить сопротивление изоляции соединительных проводов. Значение этого сопротивления должно быть не менее верхнего предела измерения мегаомметра.

Мегаомметры дают правильные показания при вращении ручки генератора в пределах 90-150 об/мин и развивают номинальное напряжение при 120 об/мин и разомкнутой внешней цепи.

За сопротивление изоляции принимают 60-секундное значение сопротивления R-60, зафиксированное на шкале мегаомметра через 60 с, причем отсчет времени надо производить после достижения нормальной частоты вращения генератора.

При изменении сопротивления изоляции объектов с большой емкостью во избежание колебания стрелки прибора необходимо ручку генератора вращать с частотой, несколько выше номинальной, т.е. 130-140 об/мин (увеличивая скорость до успокоения стрелки) и отсчет показания производить только после того, стрелка займет устойчивое положение.

Перед началом измерений необходимо убедиться: в отсутствии напряжения на испытуемом объекте, в чистоте проверяемой аппаратуры, проводов, кабельных воронок и т.д., а также в том, что все детали с пониженной изоляцией или пониженным испытательным напряжением отключены и закорочены.

При производстве измерений в сырую погоду необходимо учитывать возможное искажение показаний мегаомметра за счет увлажнения поверхности изолирующих частей установки. В этом случае необходимо пользоваться зажимом мегаомметра “Э”, который должен быть присоединен таким образом, чтобы исключить возможность замера поверхностных токов утечки.

4. Определение увлажненности изоляции методом абсорбции.

Метод основан на сравнении показаний мегаомметра, снятых через 15 и 60 сек. после приложения напряжения. Метод применяется для определения увлажненности гигроскопической изоляции электрических машин и трансформаторов.

Измерение сопротивления изоляции производится между каждой обмоткой и корпусом и между обмотками при изолированных свободных обмотках.

Коэффициент абсорбции равен:

Кабс = R60/R15

где R60 и R15 — сопротивления изоляции, измеренные соответственно через 60 и 15 сек после приложения напряжения мегаомметром.

Для неувлажненных обмоток при t = 10-30оС этот коэффициент равен 1,3-2, для увлажненных обмоток он близок к единице.

Измерения производятся мегаомметром на напряжение 1000-2500В.

Измерение коэффициента абсорбции производится при t не ниже 10оС.

5. Описание процесса испытания повышенным напряжением.

5.1. Перед началом работы производителю работ необходимо проверить исправность испытательного оборудования.

5.2. При сборке испытательной цепи прежде всего выполняются защитное и рабочее заземление испытательной установки, и если потребуется, защитное заземление корпуса испытываемого оборудования.

Перед присоединением испытательной установки к сети 380/220В на ввод высокого напряжения установки накладывается заземление. Сечение медного провода, с помощью которого заземляется вывод должно, быть не менее 4 кв мм.

Сборку цепи испытания оборудования производит персонал бригады, проводящей испытания.

5.3. Присоединение испытательной установки к сети напряжением 380/220В производится через коммутационный аппарат с видимым разрывом цепи или через штепсельную вилку, расположенную на месте управления установкой.

5.4. Присоединить провод к фазе, полюсу испытываемого оборудования или к жиле кабеля; отсоединить его разрешается по указанию лица, руководящего испытанием, и только после их заземления.

Перед подачей испытательного напряжения на испытательную установку производитель работ обязан:

-проверить, все ли члены бригады находятся на указанных местах, удалены ли посторонние лица, можно ли подавать испытательное напряжение на оборудование;

-предупредить бригаду о подаче напряжения и убедившись, что предупреждение услышано всеми членами бригады, снять заземление с вывода испытательной установки, после чего подать на нее напряжение 380/220В;

-с момента снятия заземления вся испытательная установка, включая испытываемое оборудование и соединительные провода, считается находящейся под напряжением и производить какие-либо пересоединения в испытательной схеме и на испытываемом оборудовании запрещается;

-после окончания испытаний производитель работ должен снизить напряжение испытательной установки до 0, отключить ее от сети 380/220В, заземлить (или дать распоряжение о заземлении) вывод установки и сообщить об этом бригаде. Только после этого можно пересоединять провода от испытательной установки или в случае полного окончания испытания, отсоединять их и снимать ограждения.

6. Порядок проведения испытаний установкой АИИ-70.

Перед каждым испытанием необходимо следить за тем, чтобы стрелки всех приборов стояли на нуле, автоматический выключатель был отключен, рукоятка регулятора напряжения была повернута против часовой стрелки до отказа, а положение предохранителей соответствовало бы напряжению сети. При транспортировках высоковольтный трансформатор должен быть надежно закреплен внутри аппарата, рукоятка регулятора напряжения утоплена, дверцы закрыты, банка для испытания жидкого диэлектрика вынута из аппарата, а кенотронная приставка надежно закреплена.

При помощи щупа следует периодически проверять расстояние между электродами банки, которое должно быть равно 2,5 мм. Щуп должен входить между электродами без качки, но не очень туго.

6.1. Порядок проведения испытаний установкой УПУ-1М.

Перед каждым испытанием необходимо следить за тем, чтобы стрелки всех приборов стояли на нуле, сетевой выключатель был отключен, рукоятка регулятора напряжения была повернута против часовой стрелки до отказа. Данная установка предназначена только для испытаний электрозащитных средств.

ПРАВИЛА БЕЗОПАСНОСТИ

1. Прежде чем приступить к испытаниям, необходимо заземлить медным проводом, сечение которого не менее 4 мм2, аппарат, ручной разрядник (в случаях, оговоренных ниже)., высоковольтный трансформатор и кенотронную приставку.

РАБОТА БЕЗ ЗАЗЕМЛЕНИЯ НЕДОПУСТИМА!

2. Необходимо установить защитное ограждение с предупреждающими надписями. Его крепят со стороны изоляционных трубок к кенотронной приставке (к скобам на кожухе микроамперметра), а со стороны металлических стержней — к поворотным ушкам каркаса пульта управления.

3. Любые переключения как на высоковольтной, так и на низковольтной стороне аппарата производить после отключения аппарата от сети при надежном заземлении высоковольтных частей.

4. Кабель либо другой объект со значительной емкостью после испытания необходимо заземлить, так как на испытуемом объекте в процессе испытания и даже после сохраняется заряд, предоставляющий большую опасность для жизни. Без заземления кабеля дверцу на крыше аппарата не открывать!

5. Все высоковольтные испытания производить в резиновых перчатках, стоя на резиновом коврике

ИСПЫТАНИЯ КАБЕЛЯ

1. Заземлить аппарат и ручной разрядник. В случае, если кенотронная приставка и высоковольтный трансформатор вынесены за пределы аппарата, они также подлежат заземлению.

2. Откинуть заднюю верхнюю дверцу аппарата, установив ее на кронштейне. Откинуть заднюю нижнюю дверцу и установить на нее кенотронную приставку, заведя ее лапы под скобу и выдавки дверцы.

Вставить в отверстие верхней дверцы рукоятку переключения пределов и

сочленить ее при помощи ключа с переключателем пределов блока

микроамперметра. Рукоятку заземлить.

3. Достать из запасных частей пружину и присоединить ее одним концом к высоковольтному повышающему трансформатору, а другим к высоковольтному выводу кенотронной приставки, расположенной посередине цилиндра.

Вставит вилку кенотронной приставки в розетку пульта управления (сзади слева).

Рукоятку «Защита» установить в положение «Чувствительная».

4. Подключить при помощи кабеля испытуемый объект к кенотронной приставке (муфту кабеля навернуть на вывод блока микроамперметра до упора) и установить защитное ограждение. Аппарат в рабочем положении показан на рис. 1.

5. Включить вилку шнура питания в сеть и, встав на резиновый коврик, включить аппарат.

При этом загорается зеленый сигнал, а после нажатия кнопки автомата «Вкл.» — красный.

6. Плавно вращая рукоятку регулятора напряжения по часовой стрелке, повысить напряжение до испытательного (отсчет вести по шкале киловольтметра, отградуированной в киловольтах максимальных)

7. Переключая рукоятку переключения пределов с большей кратности на меньшую и нажимая кнопку в центре рукоятки, измерять ток утечки.

Примечание: при измерении показание микроамперметра в делениях умножить на кратность предела.

8.После испытания снизить испытательное напряжение до нуля и нажать кнопку «Откл.»

9. Поднести стержень ручного разрядника к разрядному крючку блока микроамперметра и снять емкостный заряд через разрядное сопротивление, встроенное внутри разрядника, а затем заземлить блок микроамперметра наглухо, повесив разрядник на крючок блока микроамперметра или на ручку кенотронной приставки.

Примечание: при необходимости аппарат можно включить через стабилизатор напряжения, однако при этом вследствие искажения формы кривой напряжения пользоваться градуировочными данными, снятыми при работе с конкретным стабилизатором.

Порядок испытания твердых диэлектриков такой же, как и кабеля.

7. Испытания повышенным напряжением промышленной частоты распределительных устройств (вместе с коммутационными аппаратами).

1. Подготовить испытываемый объект к испытаниям, для чего отключить от РУ трансформаторы напряжения, вентильные разрядники, кабели, которые должны быть закорочены и заземлены. Очистить оборудование от загрязнений, пыли и влаги.

2. В соответствии с разделом 3 данной Методики замерить сопротивление изоляции испытываемого оборудования (мегаомметром на напряжение 2,5кВ).

3. В соответствии с разделом 5 подготовить испытательную установку к работе.

8. В соответствии с разделом 6 настоящей Методики испытать повышенным напряжением распределительное устройство; величины испытательного напряжения приведены в таблице № 1. Продолжительность приложения испытательного напряжения 1 мин для керамической изоляции, 5 мин — для изоляции из твердых органических материалов. Продолжительность приложения нормированного испытательного напряжения величиной в 1кВ к изоляции вторичных цепей 1 мин.

Таблица № 1

Класс напряжения

Испытательное напряжение кВ, ячейки с изоляцией

(кВ)

керамической

из тв. орг. материалов

3

24

21.6

6

32

28.8

10

42

37.8

8.Испытание повышенным напряжением промышленной частоты измерительных трансформаторов.

1. Подготовить испытываемый объект к испытаниям, для чего отключить от испытываемого трансформатора первичные и вторичные цепи. Очистить оборудование от загрязнений, пыли и влаги.

2. В соответствии с разделом 3 данной Методики замерить сопротивление изоляции испытываемого оборудования (мегаомметром на напряжение 2.5кВ).

3. В соответствии с разделом 5 подготовить испытательную установку к работе.

4. В соответствии с разделом 6 настоящей Методики испытать повышенным напряжением первичную обмотку измерительного трансформатора повышенным напряжением промышленной частоты; величины испытательного напряжения приведены в таблице № 2. Продолжительности приложения испытательного напряжения: для трансформаторов напряжения 1 мин; для трансформаторов тока с керамической, жидкой или бумажно-масляной изоляцией 1 мин; для трансформаторов тока с изоляцией из твердых органических материалов или кабельных масс 5 мин. Продолжительность приложения нормированного испытательного напряжения величиной в 1кВ к изоляции вторичных обмоток вместе с присоединенными к ним цепями составляет — 1 мин.

Таблица № 2

Исполнение изоляции измерительного трансформатора

Испытательное напряжение кВ, при номинальном напряжении кВ

 

3

6

10

Нормальная

21,6

28,8

37,8

Ослабленная

9

14

22

9. Испытание силовых кабелей номинальным напряжением выше 1кВ повышенным напряжением выпрямленного тока.

1. В соответствии с разделом 3 измерить сопротивление изоляции мегаомметром на напряжение 2,5кВ. Для силовых кабелей напряжение выше 1кВ сопротивление изоляции не нормируется. Измерение изоляции повторить после испытания кабеля повышенным напряжением выпрямленного тока.

2. В соответствии с разделом 6 испытать силовой кабель повышенным напряжением выпрямленного тока. Значения испытательного напряжения и

длительность приложения испытательного напряжения приведены в таблице № 3. В процессе испытания повышенным напряжением выпрямленного тока обращается внимание на характер изменения тока утечки. Кабель считается выдержавшим испытания, если не произошло пробоя, не было скользящих разрядов и толчков тока утечки или его нарастания после того, как он достиг установившегося значения.

10. Оформление результатов испытаний.

Результаты испытаний по настоящей Методике оформляются протоколами установленного образца.

Испытательное напряжение выпрямленного тока для силовых кабелей.

Таблица № 3

Изоляция и марка кабеля

Испытательное напряжение для кабелей кВ

Продолжительность испытания (мин)

 

3

6

10

 

Бумажная

18

36

60

10

Резиновая

6

12

 

5

Пластмассовая

15

   

10

www.megaomm.ru

Испытание высоковольтного кабеля 10 кВ | Полезные статьи

Во время использования кабель 10 кВ подвергается влиянию различных факторов внешней среды: сдвиг почвы и ее вес, температурные колебания и прочие воздействия, от которых так или иначе зависят характеристики изоляции. Со временем изоляция портится. По этой причине важно проводить испытание кабеля 10 кВ повышенным напряжением. Благодаря этой процедуре удастся определить его состояние и своевременно произвести замену. Как результат — безотказное функционирование кабельной линии, отсутствие аварий и иных неприятных ситуаций, решение которых требуется больших трат. Но каким напряжением испытывают кабель 10 кВ?

Кабель 10 кВ с изоляцией из сшитого полиэтилена: как и чем проводится его проверка?

Проверка кабеля с изоляцией из сшитого полиэтилена на напряжение 6/10 кВ выполняется переменным напряжением частотой 0,1 Гц в течение 30 минут (после ремонта — 20 минут). 30 кВ — напряжение испытание кабеля 10 кВ, 18 кВ — кабеля 6 кВ. Применяется специальное СНЧ-оборудование, созданное зарубежными производителями (High Voltage Diagnostic, Швейцария; High Voltage, США; Seba, Германия и др.).

Методика испытаний кабеля 10 кВ такова:

1.    Осматриваются все элементы кабельной линии, туннелей и каналов, в которых она находится. Если концевые муфты имеют изъяны, то проверка продолжается только после их устранения. Экраны кабеля заземляются.
2.    Испытательное напряжение подается на кабель (при помощи таймера контролируется время), и оно неспешно поднимается до требуемого показателя (по киловольтметру СНЧ-оборудования уточняется величина напряжения).
3.    Величину напряжения и его изменение полярности демонстрирует киловольтметр. Одно значение полярности нередко отличается от другого на пять-десять процентов.
4.    По завершению установленного времени специальной рукояткой напряжение не спеша уменьшается до нулевого значения.

Испытание кабеля 10 кВ может осуществляться переменным номинальным напряжением на протяжении 24 часов, приложенным между металлическим экраном и жилой. Действовать нужно так:

•    Следует осмотреть все элементы линии, и если концевые муфты имеют изъяны, их требуется ликвидировать.
•    При проверке изоляции кабеля прикладывается напряжение к каждой жиле, а экран заземляется.
•    Напряжение аккуратно поднимите до предельного значения и поддерживайте его неизменным на протяжении всего времени. Время необходимо рассчитывать, начиная с момента установления предельного значения.

Проверка оболочки кабеля при прокладке его в земле осуществляется раз в 5 лет (если кабель не имеет электрических пробоев при работе). При проведении земляных работ или наблюдении осадков почвы, оползней, размывов выполняется внеочередное испытание. По завершении работ также проводится дополнительная проверка. Для проверки кабеля в таком случае используется постоянный ток и кенотронная установка типа КИИ-70. Напряжение от данного прибора прикладывается поочередно к каждой жиле, заземляет металлическая оболочка.

Для кабеля 6 кВ ток утечки не должен составлять более 200 мкА, для 10 кВ — до 500 мкА.

Кабель 6/10 кВ с пропитанной бумажной изоляцией: как и чем производится его проверка?

Проверка данного вида кабеля реализуется повышенным напряжением выпрямленного тока. 60 кВ — величина испытательного напряжения для кабеля 10 кВ, 36 кВ — для кабеля 6 кВ. В обоих случаях проверка длится 10 минут. Используется особый прибор типа АИД-70М. Действовать нужно в такой же последовательности, как и с предыдущим кабелем.

Испытание высоковольтного кабеля 10 кВ повышенным напряжением осуществляется согласно ГОСТу. Величина применяемого напряжения указана в ГОСТе либо в ТУ на определенные кабели.

Установлены следующие нормы испытания кабеля 10 кВ:

•    в случае перекладки и недавней прокладки — до включения и до того, как будет засыпана траншея;
•    эксплуатируемые — при продолжительном отключении, после проведения ремонтных мероприятий (не по плану либо согласно графику).

Проверка осуществляется со следующей периодичностью:

•    Один раз в 5 лет — запасные кабельные линии.
•    Один раз в 3 года — главные кабельные линии.
•    Один раз в 12 месяцев — запасные и главные линии, которые питают особо важных пользователей.

Теперь вы знаете, как проводится испытание кабеля 10 кВ, поэтому этот процесс не вызовет у вас сложностей. Главное, придерживайтесь действующих норм и соблюдайте технику безопасности.

cable.ru

Испытание кабеля повышенным напряжением: методика, нормы, сроки

Любой самый качественно изготовленный проводник, рассчитанный на повышенное напряжение, во время проведения монтажных работ может иметь технологические повреждения. Чтобы избежать аварийных ситуаций во время пуско-наладочных работ, когда будет подано повышенная нагрузка, необходимо убедиться в целостности кабельной линии. Во время эксплуатации происходят неизбежные процессы разрушения материала, из которого изготовлен проводник, поэтому он теряет свои изоляционные характеристики. Для обеспечения безопасной эксплуатации необходимо проводить периодические испытания кабеля повышенным напряжением. Далее мы расскажем, как именно проводят испытательные работы.

Типичные повреждения кабелей

Согласно статистическим данным наиболее частые повреждения являющимися причиной выхода из строя электрических кабелей являются:

  • Повреждение целостности защитной оболочки в результате неправильных технологических работ.
  • Разрушение изоляции по причине старения материала, из которого изготовлен кабель, из-за нарушения технологии испытаний.
  • Появление в защитном экране трещин и разрывов, которые нарушают изоляционные функции.

Разновидности испытаний

В соответствии с принятыми нормами и правилами испытаний электрооборудования необходимо убедится в соответствии заявленных характеристик кабеля, предъявляемым требованиям. Если будут выявлены какие-либо несоответствия, производить сдачи и тем более эксплуатировать такие линии категорически запрещено.

Виды испытаний:

  • Нарушение изоляции проверяется определением значения ее сопротивления с помощью прибора, который называется мегомметр, подачей напряжения значением 2,5кВ. Если сопротивление изоляции окажется выше 500 кОм, то считается что это достаточно, для кабельных линий до 1000 В. Если напряжение более 1000 В, нормирования нет, но согласно ПТЭЭП (п.6.1. и таблица 37) и ПУЭ (п. 1.8.37 и таблица 1.8.34), значение не должно быть ниже 10 МОм. Более подробно о том, как пользоваться мегаомметром, вы можете узнать из нашей статьи.
  • Выявить наличие повреждений можно, проведя испытания высоким напряжением. В этом методе наблюдают токи утечки, а именно их асимметричность по фазам и характер. Такой способ более эффективный, потому что позволяет выявить повреждения изоляции, которые не были обнаружены с помощью мегомметра. Повышенная нагрузка производит пробой в проблемных местах. Для осуществления такого испытания на одну из жил кабеля подают напряжение, а оставшиеся жилы и оболочку заземляют.

На рисунке выше приведена: а – электрическая схема для проверки изоляции; б – показана установка высоковольтная для проведения испытательных работ. На схеме:

  • 1 – это генератор (источник) повышенной нагрузки;
  • 2 – проверяемый на целостность проводник.

Различный тип изоляции требует определенное время для установления пробоя. Так, например, испытания кабельной линии на повышенное напряжение 2000-35000 В требуется 5 или 10 минут времени подачи постоянной нагрузки для каждой жилы. Если испытания предназначены для кабельной магистрали рассчитанной на 110000-500000 В, напряжение подается на кабель в течении 15 минут. Во время испытания, асимметрия тока, распределяемого по фазам, не должна превышать 50%.

В случае эксплуатации кабеля параллельно с другим, обязательно выполняют его фазировку. Достигается это методом подачи рабочего напряжения на один из концов кабеля и на другом конце измеряют напряжение.

  • Высоковольтная линия, имеющая маслонаполненную изоляцию, которая обычно используется в магистралях, где передается нагрузка 110-500 кВ, проходит испытание наполняющего ее масла или иной жидкости на соответствие заявленным характеристикам.
  • Линия высокого напряжения кабельной связи проверяется на защиту против коррозии:
    1. Когда кабель имеет оболочку металла, а изделия применяют для прокладки в грунте, удельное его сопротивление не превышает значение 20 Ом/м.
    2. Когда проводник имеет оболочку металла, а изделия применяют для прокладки в грунте, удельное его сопротивление меньше 20 Ом/м.
    3. Когда оболочка бронированная и ее необходимо проверить на наличие повреждений, а также разрушение защитных покровов.
    4. Когда кабель предназначен в зоне высокого давления стальных трубопроводов, а грунт имеет различную степень агрессивности. Высоковольтная линия кабельной связи подвергается замерам значений потенциалов и токов, блуждающих в оболочке.
  • Выполняется проверка линии высокого напряжения кабельной связи на целостность токопроводящих жил, а также фазировку посредством прибора омметра. Для чего определяют одну жилу и относительно ее продолжают проводить, поочередно, замеры сопротивлений замкнутых цепей всех жил. В качестве эталонной жилы может быть использован заведомо неповрежденный проводник.

где: 1 – прибор омметр; 2 – проверяемое изделие.

  • Высоковольтная линия, предназначенная для эксплуатации на повышенное напряжение 20000 В и больше, необходимо установить значение сопротивления каждой отдельно взятой жилы проверяемого кабеля.
  • Проверка на распределение тока по жилам. Значение неравномерности по жилам не должно превышать более 10%.
  • Линия высокого напряжения кабельной связи (от 110000 В до 500000 В), имеющая маслонаполненную изоляцию, подвергается определению содержания газов нерастворимых. Для таких магистралей их значение не должно превышать 0,1%.
  • Кабельная линия, где присутствует повышенное напряжение 20 кВ и выше, подвергается определению значения электрической емкости. Как правило, в таких случаях используется две методики: с помощью вольтамперметра, с применением способа определения с помощью схемы мостовой.

1 – источник нагрузки; 2 – проверяемое изделие.

  • Высоковольтную линию (от 110000 В до 500000 В), имеющую маслонаполненную изоляцию, необходимо проверить на содержания газов не только нерастворимых, но и растворимых. Для этого используется хроматографический способ определения таких веществ.
  • Также выполняются испытания сопротивления устройств заземления, муфт концевых и кабельных заделок, металлических конструкций, из которых состоят колодцы кабельные, а также пунктов подпитки.
  • Линии высокого напряжения кабельной связи (110000 В), оболочки которых изготовлены из пластмасс, проходят испытание в течение 1 мин подачей повышенного выпрямленного напряжения.

Что еще важно знать?

После проведения испытательных работ результат вносится в протокол, такой, как на образце:

Что касается сроков проведения испытаний, они следующие:

Ну и немаловажно сказать о том, что для проведения работ чаще всего используют такие приборы, как ИВК-5, АИД-70 и АИИ-70!

Напоследок рекомендуем просмотреть полезное видео по теме:

Вот мы и рассмотрели, как производится испытание кабеля повышенным напряжением. Теперь вы знаете, для чего нужно производить проверки и какие методики существуют на сегодняшний день!

Рекомендуем также прочитать:

samelectrik.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *