Закрыть

Монтаж дифференциального автомата: Как подключить дифференциальный автоматический выключатель. Как подключить дифференциальный автомат самостотяельно

Содержание

Без помощи профи: подключение дифавтомата просто и быстро

Произвести подключение дифавтомата к сети в 220 вольт, которую еще называют однофазной, не составляет большого труда. Сделать это можно разными способами:

– с заземлением;
– без заземления;
– по схеме селективной;
– по схеме неселективной.

Что такое дифавтомат: тонкости работы

 Прежде чем разобраться в схеме подключения дифавтомата в однофазной сети, важно выяснить назначение и принцип функционирования устройства.

Как видно из названия, это автомат дифференциальный, представляет собой электрическое устройство. Цель агрегата – уберечь электроцепь от потери тока на землю, от перегрузок, коротких замыканий. 

По сути, представляет собой симбиоз:

  • устройства защитного отключения;
  • автоматического выключателя.

Так, например, УЗО спасет технику от аварийного отключения. Выбрать УЗО правильно не сложно, следуя нашей инструкции в статье.

Отключение с целью защиты электрической цепи происходит в доли секунды. Сеть не успевает прийти в негодность, пострадать. Если говорить о бытовой необходимости для простого человека, то такой агрегат поможет защитить электрические приборы и устройства от преждевременного выхода из строя.

 Из-за скачков напряжения бытовая техника может выйти из строя.  

Автомат дифференциальный состоит из 3 важных элементов:

  • выключателя автоматического;
  • рейки сброса;
  • модуля дифференциальной защиты.

Первый элемент сработает, если произойдет короткое замыкание или перегруз. Второй – если воздействовать на него извне. Третий функционирует регулярно. Он постоянно производит сравнение входных и выходных токов, которые идут сквозь него. Разница даже в 2-3 ампера послужить поводом для отключения сети.

О работе автомата можно узнать из следующего видео:

Как подключить своими руками?

Существуют разные способы установки дифавтомата:

  • с заземлением;
  • без заземления.

Первый способ используют практически повсеместно, он считается надежным и безопасным. В таком случае проводник от дифавтомата будет проведен к земле, человек не сможет пострадать от воздействия электрического тока. Как и зачем подключить дифавтомат без заземления? Схема не отличается от подключения с заземлением. Сам дифавтомат и исполнит данную функцию.

Вообще, без заземления устанавливать не рекомендуется. Используют этот метод в старых домах. Там (по проектам) используется однофазная сеть без наличия заземления.

Электросеть там, как правило, двухпроводная. Автомат подключают по схеме: счетчик – автомат – потребитель.

Так выглядит схема подключения дифавтомата к однофазной сети

Практически же подключение дифавтомата в однофазной сети происходит:

  • селективно;
  • неселективно.

Селективно – автомат в случае ЧП отключит часть сети. Неселективно – автомат в случае ЧП отключит всю сеть целиком.

Поэтапно процесс установки оборудования выглядит так:

Монтаж Диф автоматов (дифференциальный автомат) в квартире, доме, на предприятии

Услуги электрика по установке диф автоматов (дифференциальный автомат)

Появление огромного количества  посудомоечных, стиральных машин, бойлеров, гидромассажных ванн в квартирах, технологического оборудования на предприятиях работающего с водой, потребовали более ответственного отношения к безопасности. Вода является проводником электричества, попадая на контакты электроприборов, поврежденную изоляцию проложенных кабелей представляет серьезную угрозу здоровью и жизни человека. Монтаж диф автоматов (дифференциальный автомат) , наравне с УЗО (устройство защитного отключения) в монтажной схеме многократно уменьшают риск поражения электрическим током. Смонтированные в распределительных щитах или специальных боксах приборы защищают групповые линии работающие во влажных помещениях от несанкционированных утечек тока, дифференциальные автоматы так же от перегрузок и короткого замыкания. В компании ООО Ск «Элит-Сервис» Вы можете срочно вызвать электрика для монтажа щита и системы защиты и автоматики. . В кратчайшие сроки, удобное время специалист выедет на объект и окажет услуги в области электромонтажа, установит диф автоматы (дифференциальные автоматы) , смонтирует автоматические выключатели, УЗО (устройство защитного отключения) с соблюдением СНиПов (строительные нормы и правила) и ПУЭ (правила устройства  электроустановок).

Для чего устанавливать диф автоматов (дифференциальный автомат

Почему монтаж  диф автомата (дифференциальный автомат) для защиты от утечки тока в электрических сетях предпочтительней. УЗО не срабатывает при перегрузках в рабочей цепи, не защищает от сверх токов, короткого замыкания,  дифференциальный автомат совмещает все эти функции. Обычный блок утечки в схеме должен обязательно монтироваться последовательно с автоматическим выключателем, что занимает дополнительное место в щите, ведет к удорожанию электромонтажных работ, усложнению дальнейшей  эксплуатации.  Диф автомат одинаково хорошо срабатывает на перегрузку и утечку тока. Напомним, при напряжении 220 вольт смертельным для человека является ток всего в 50-100 миллиампер, срабатывание устройства происходит при 10-30 миллиамперах утечки. В большинстве случаев поражение электрическим током происходит в нештатных ситуациях, повреждение изоляции проложенного кабеля, пробой на корпус и неисправность электроприборов, попадание воды в розетки, распределительные коробки. Установленный в распределительном щите диф автомат (дифференциальный автомат) защитит Вас от утечки тока, а проложенные кабели от перегрузки. Согласно ПУЭ (правила устройства  электроустановок) УЗО или ДИФ обязательно должен устанавливаться на группы питающие влажные помещения, в сухие помещениях установка обязательной не является, однако подумайте, выбор

Принцип действия ДИФа

В диф автомате как в обычном автоматическом выключателе есть два расцепителя. Тепловой, срабатывающий от перегрузки защищаемой группы и электромагнитный, отключающий линию при коротком замыкании. Аналогично УЗО в приборе используются  дифференциальный трансформатор в качестве датчика, срабатывающего при утечке тока. Принцип его работы основан на изменение дифференциального тока в проводниках, по которым электроэнергия подается на электроустановку, для которой организована защита. Без специального образования разобраться в хитросплетении терминов непросто. Упрощенная схема работы приведена на рисунке.  Монтируем  диф автомат (дифференциальный автомат) в электроцепь для защиты «Нагрузки». По линии обозначенной синим цветом ток протекает в нормальном режиме работы электрооборудования. Происходит нештатная ситуация, перегрузка — срабатывает тепловое. Короткое замыкание — приходит на помощь электромагнитный расцепитель. Самое опасное для человека утечка тока, возникающая от пробоя изоляции, попадания воды, касания оголенного провода.  Красной стрелкой на рисунке показана утечка, установленный  диф автомат (дифференциальный автомат) мгновенно отключит напряжение. Время срабатывания качественного ДИФа всего 25-30 м/секунд, ток утечки 10-30 миллиампер. Напомним, для жизни  человека опасными являются 50-100 миллиампер.

Технические характеристика наиболее популярных устанавливаемых в Санкт-Петербурге Диф автоматов

Дифференциальный автомат ABB

ABB, один из крупнейших мировых производителей электротехнического оборудования. Шведский концерн имеет производство и представительства во многих странах мира. Качество продукции очень высокое, цена вполне доступная. Компания ООО Ск «Элит-Сервис» выполняет монтаж и установку Диф автоматов (дифференциальный автомат), других комплектующих фирмы более десяти лет. За все время монтажа электропроводки нам не разу не попадалось некачественное оборудование.

Параметр

Значение

Номинальное напряжение Un, B

220, 380

Рабочая частота fn, Гц

50

Номинальный ток нагрузки In, A

16

Номинальный отключающий дифференциальный ток IDn, мА

30

Максимальный условный ток короткого замыкания  А Inc

6000

Время отключения при номинальном дифференциальном токе Тn, не более, мс

25

Максимальное сечение подключаемых проводов, мм2

25

Количество циклов электрических

6000

Количество циклов механических

10000 


Дифференциальный автомат Legrand

Международный концерн Legrand является крупнейшим производителем электроустановочных изделий. Наша компания достаточно давно работает с комплектующими французского изготовителя. Установка  Диф автоматов (дифференциальный автомат), наравне с монтажом другого электротехнического оборудования фирмы Legrand, является приоритетом обеспечения безопасности при проведении электромонтажных работ. Хорошее соотношение цена – качество.

Параметр

Значение

Номинальное напряжение Un, B

220, 380

Рабочая частота fn, Гц

50

Номинальный ток нагрузки In, A

16

Номинальный отключающий дифференциальный ток IDn, мА

30

Максимальный условный ток короткого замыкания  А Inc

6000

Время отключения при номинальном дифференциальном токе Тn, не более, мс

25

Максимальное сечение подключаемых проводов, мм2

25

Количество циклов электрических

4000

Количество циклов механических

10000


Дифференциальный автомат Schneider electric

Всемирно известный производитель Schneider electric  , выпускающий широкий ассортимент электрооборудования относительно недавно появился на рынке Санкт-Петербурга. Зарекомендовал себя с хорошей стороны. Монтаж и установку Диф автоматов (дифференциальный автомат) изготовителя ООО Ск «Элит-Сервис» проводит более пяти лет. Электротехническое оборудование Schneider electric очень доступно в недорогих сериях.

Параметр

Значение

Номинальное напряжение Un, B

220, 380

Рабочая частота fn, Гц

50

Номинальный ток нагрузки In, A

16

Номинальный отключающий дифференциальный ток IDn, мА

30

Максимальный условный ток короткого замыкания  А Inc

6000

Время отключения при номинальном дифференциальном токе Тn, не более, мс

30

Максимальное сечение подключаемых проводов, мм2

25

Количество циклов электрических

4500

Количество циклов механических

10000


Дифференциальный автомат IEK

Компаний IEK – крупнейший российский производитель электротехнической продукции. Основным плюсом является невысокая стоимость. Продукция сертифицирована по российским стандартам, очень распространена в новом строительстве массового жилья, бюджетных промышленных объектах. Устанавливается Диф автоматы (дифференциальный автомат) на вводах в квартиры, влажные помещения, обеспечивают защиту недорогого производственного оборудования.

Параметр

Значение

Номинальное напряжение Un, B

220, 380

Рабочая частота fn, Гц

50

Номинальный ток нагрузки In, A

16

Номинальный отключающий дифференциальный ток IDn, мА

30

Максимальный условный ток короткого замыкания  А Inc

6000

Время отключения при номинальном дифференциальном токе Тn, не более, мс

30

Максимальное сечение подключаемых проводов, мм2

25

Количество циклов электрических

4500

Количество циклов механических

10000


Дифференциальный автомат DEK

Компания DEKraft является очень молодым  российский производителем электротехнической продукции. Оборудование сертифицирована по российским стандартам, очень распространена в новом строительстве массового жилья, бюджетных промышленных объектах. Устанавливается Диф автоматы(дифференциальный автомат) на вводах в квартиры, влажные помещения, обеспечивают защиту недорогого промышленного оборудования. Основным плюсом является невысокая стоимость.

Параметр

Значение

Номинальное напряжение Un, B

220, 380

Рабочая частота fn, Гц

50

Номинальный ток нагрузки In, A

16

Номинальный отключающий дифференциальный ток IDn, мА

30

Максимальный условный ток короткого замыкания  А Inc

6000

Время отключения при номинальном дифференциальном токе Тn, не более, мс

30

Максимальное сечение подключаемых проводов, мм2

25

Количество циклов электрических

4500

Количество циклов механических

10000

 

Монтаж и установка диф автоматов (дифференциальный автомат) Что выбрать?

Характеристики пяти наиболее популярных в Санкт-Петербурге диф автоматов (дифференциальный автомат) мы рассмотрели выше, кратко описали производителей. На рынке электромонтажных работ в Санкт-Петербурге ООО Ск «Элит-Сервис» не один год. Многолетний опыт работы с оборудованием различных производителей позволяет делать определенные выводы, которыми готовы поделиться с коллегами и заказчиками. Установленные  диф автоматы и УЗО исчисляются сотнями. Когда был поставлен первый блок утечки тока вспомнить достаточно сложно. Изначально выполнялась установка дифференциальных автоматов концерна ABB. В те времена это была диковинка, СНиПы (строительные нормы и правила) и ПУЭ (правила устройства  электроустановок)  установки блоков утечки не предусматривали.  Проблем с ДИФами и устройствами защитного отключения ABB не возникало, однако цена была достаточно высока, не все клиенты выполняя  электромонтажные работы были готовы платить за безопасность. В Санкт-Петербурге начала появляться электротехническая продукция концерна Legrand, диф автомат (дифференциальный автомат) и УЗО стоили процентов на двадцать дешевле. Компания переключилась на Legrand. Известный в Европе производитель,  французское  качество. Каково было наше удивление, когда на третьем… или четвертом объекте из пяти установленных УЗО, два были неисправны, кнопка «Тест» не работала. Несколько лет мы не устанавливали эти блоки утечки. Время прошло, «обида» улеглась, сейчас монтируем Legrand  без опасений, наверное просто не повезло, может попалась подделка, однако осадок остался. Сейчас появилось большое количество дифференциальных автоматов разных уважаемых производителей,  ABB, Legrand,  Schneider electric, Hager, Siemens, а есть такие, упоминать не хочется. Блоки утечки  Schneider electric устанавливаем достаточно недавно, нареканий нет, достойные приборы. Хочу остановиться на ДИФах IEK, DEKraft. В принципе это одно и то же. За счет низкой стоимости и Российской сертификации приборы этих компаний получили широкое распространение. Процент брака достаточно большой, устройство может проработать много лет, а иногда вылетает в первый месяц эксплуатации. Компания ООО Ск «Элит-Сервис» не дает гарантию на системы защиты и автоматики собранных на комплектующих этих фирм. Господа!  Устанавливайте диф автоматы (дифференциальные автоматы) проверенных производителей, это сохранит время, нервы и деньги. Помните, скупой платит дважды! Качественное оборудование – это Ваша безопасность.

Оптимальное соотношение цены и качества — выбор умных людей.

Вам остается только позвонить и сделать заказ.

Т. +7 (812) 740-51-93

Заказать

Узо или дифференциальный автомат что выбрать, установка дома, на даче, в квартире, маркировка и характеристики

Дифференциальный автомат представляет собой устройство, объединяющее в одном корпусе устройство защитного отключения и автоматический выключатель.

Особенностью данного вида приборов является то, что использовать их в сетях где нулевой и защитный проводники совмещены нецелесообразно. При включении дифавтомата в такую сеть будет происходить постоянное срабатывание защиты.

Также не рекомендуется применение такого автоматического выключателя в сетях с отсутствующим защитным проводником. При этом защита от токов утечки не сработает пока не произойдет явного касания к токоведущим частям оборудования или проводнику.

Однако, защитить от опасного поражения электрическим током такой вариант поможет. Более подробно можно почитать про это в материале про УЗО.

Исходя из вышесказанного применение устройств защиты от токов утечки оправдано только в сетях с надежным заземлением частей оборудования, которые могут оказаться под напряжением в результате поломок или возникновения внештатных ситуаций, связанных с повреждением изоляции токоведущих частей и разделением защитного и заземляющего проводника.

Так как дифференциальный автомат является комбинированным устройством, то и его характеристики следует рассматривать в комплексе, а именно:

  • отключающая способность модуля токовой защиты;
  • ток отсечки устройства защитного отключения.

ХАРАКТЕРИСТИКИ И МАРКИРОВКА ДИФФЕРЕНЦИАЛЬНЫХ АВТОМАТОВ

В международной практике принята маркировка отключающей способности буквами латинского алфавита.

А – применяются в сетях с большой длинной проводников и имеют отключающую способность – 2-4 Iн.

В – применятся, как правило, в сетях исключающих индуктивную нагрузку; основном это сети, использующиеся для освещения; отключающая способность – 3-6 Iн.

С – дифференциальные автоматы с данной маркировкой могут применяться в сетях с комбинированной нагрузкой, то есть выдерживают краткосрочную токовую перегрузку, возникающую во время пуска электродвигателей; отключающая способность – 5-10 Iн.

D – выключатели данной группы также применяются в сетях с комбинированной нагрузкой, но в отличии от предыдущей группы имеют более высокую токовую уставку – 10-20 Iн.

К – узкоспециализированные устройства, применяющиеся в сетях, в которых индуктивная нагрузка составляет более 80% от общей нагрузки сети; отключающая способность данной группы составляет – 8-15 Iн.

Z – данная группа автоматов применяется в слаботочных сетях или цепях питания электронной аппаратуры не допускающей даже краткосрочных токовых перегрузок; отключающая способность – 1-3 Iн.

Что касается защиты от токов утечки, то здесь необходимо определиться с категорией помещения в сети которого устанавливается диф. автомат.

В настоящее время выпускаются устройства с различными уставками (IΔn) для защиты от токов утечки, а именно:

  • 10,30 мА– применяются для защиты человека от поражения электрическим током;
  • 100, 300, 500 мА – используются для исключения возгораний в результате повреждения изоляции, или замыкания токоведущих частей на «землю».

Также на корпусе дифференциального автомата находится буквенная маркировка определяющая возможность отключения при разном характере токов утечки:

АС – переменный характер токов утечки. Автоматы с данной маркировкой применяются в сетях с о значительной индуктивной нагрузкой, сетях освещения, цепях питания электродвигателей.

А – самый распространенный тип, рекомендованный к применению в цепях питания бытовых приборов. Рабочая характеристика токов утечки — переменно-пульсирующий.

В – данная категория дифференциальных автоматов используется исключительно в промышленных установках. Характер тока утечки – постоянный сглаженный и переменный.

S – используется для обеспечения многоуровневой, селективной защиты. Требуемая селективность достигается за счет задержки срабатывания устройства; задержка отключения равна – 0,1-0,5 с.

G — также используется для обеспечения селективности, но с меньшей задержкой срабатывания – 0,05-0,09 с.

По напряжению дифференциальные автоматы подразделяются на одно и трехфазные, соответственно для трехфазной сети следует устанавливать трехфазные устройства. При отсутствии однофазного дифавтомата, в качестве временной меры, возможна установка трехфазного в однофазную сеть, хотя и со снижением эффективности токовой защиты.

КАК ВЫБРАТЬ ДИФФЕРЕНЦИАЛЬНЫЙ АВТОМАТ

Ввиду большого набора характеристик доступных устройств логично встает вопрос какое же из доступных устройств выбрать для каждого конкретного случая? Разберем каждый момент в отдельности:

Установка дифференциального автомата в квартире.

В данном случае исключаются устройства с высокой индуктивной нагрузкой и большими пусковыми токами, а, значит номинал защитного токового устройства, как правило не превышает 16-25 А. При этом уставка защиты от токов утечки не должна превышать – 50 мА.

Монтаж дифференциального автомата с большим номиналом срабатывания от токов утечки не целесообразен, так как в квартирах уже давно проводка прокладывается скрытым способом, под штукатуркой.

Исходя из выше сказанного наиболее оптимальным выбором, для квартиры будет дифференциальный автомат категории В или С номиналом 16-25 А и с категорией защиты от токов утечки –А, с уставкой — 50 мА.

Дифференциальный автомат для дачи.

Для этого варианта токовую нагрузку рассчитывают для каждого случая в отдельности, так как на даче могут использоваться поливочные насосы или другое оборудование с повышенной электрической мощностью. К тому же следует учитывать одновременную работу нескольких приборов — насос, кондиционер, освещение.

Касательно уставки IΔn — следует учитывать состояние сети, и дифференцировать защиту. Это достигается разделением сети на силовые питающие цепи в которых имеются электродвигатели и сети освещения. Для каждой цепи устанавливаются дифавтоматы различных категорий как потоку отсечки, так и по характеристике тока утечки.

Отдельно стоит выделить полностью деревянные постройки, к которым применяются отдельные требования по прокладке электропроводки и разделению защиты на:

  • защита человека от воздействия токов утечки;
  • противопожарная.

Выбор дифференциального автомата для частного дома.

Здесь следует учитывать характер нагрузки активная, индуктивная или смешанная, а именно наличие и количество электродвигателей и вероятность их одновременного включения и работы. В случае если существует вероятность возникновения больших пусковых токов, то оптимальным выбором будет установка автоматического выключателя категории D.

Номинал токовой отсечки дифференциального автомата должен определяться исходя из существующей нагрузки и состояния питающей сети. Относительно защиты от токов утечки, оптимальным выбором будет устройство с характеристикой – А и сработкой при – 50 мА.

Также при наличии полностью деревянных конструкций с установленными в них электроприборами следует разделять защиту сетей от токов утечки — на противопожарную, и защитную.

УЗО ИЛИ ДИФФЕРЕНЦИАЛЬНЫЙ АВТОМАТ, ЧТО ВЫБРАТЬ?

Однозначного мнения по данному вопросу не существует некоторые специалисты советуют связку УЗО – автоматический выключатель, другие ратуют за установку диф. автоматов. Давайте рассмотрим достоинства и недостатки каждого из этих вариантов.

Место для монтажа – совместное подключение УЗО и автоматического выключателя занимает в щитке три посадочных места, дифференциальный автомат – два. Экономия налицо. Хотя, на рынке уже появились диф. автоматы занимающие в щитке одно посадочное место.

Сложность определения причины отключения дифференциального автомата. Вопрос не актуален, так как выпускаются устройства с сигнальными флажками, по которым можно определить какая часть устройства привела к отключению.

Трудоемкость подключения УЗО и автомата токовой защиты. Спорно, потому что для специалиста подключение такой схемы не вызывает никаких проблем, а дилетант может допустить ошибку и при подключении дифавтомата.

Важным фактором, на который стоит обратить внимание в данном вопросе является дифференциальные автоматы с электронным блоком дифференциальной защиты, их особенностью является потеря работоспособности при обрыве нулевого провода, при этом фазный проводник остается не отключенным, что может привести к поражению электрическим током.

Дифференциальные автоматы с электромеханическим блоком лишены данного недостатка и остаются работоспособными даже при обрыве нулевого проводника, что исключает возможность поражения людей. Единственный недостаток дифференциальных устройств с электромеханическим блоком – их высокая стоимость, по сравнению с аналогичными электронными конструкциями.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Дифференциальный ток. Дифференциальный автомат: характеристики, назначение

Для облегчения понимания дифференциала следует рассмотреть один физический процесс. Когда происходит касание изолированной проводящей линии, почему нет поражения электрическим током? Ответ очевиден: изоляция не позволяет току течь по телу человека. Но если жила оголена, встать на изолирующую подложку и коснуться провода? Эффект тот же — нет удара током. Подложка не дает цепи замыкаться через ствол на землю.

Понятие дифференциального тока

В природе не существует такого физического процесса, как дифференциальный ток. Это понятие представляет собой векторную величину, выраженную как сумма токов, присутствующих в цепи, взятых в виде среднего квадрата. Чтобы создать дифференциальный ток, должен произойти физический процесс, называемый током утечки. Но необходимо, чтобы выполнялось одно условие: корпус оборудования, в котором возник ток утечки, должен быть заземлен. В противном случае, если корпус не заземлен, возникновение тока утечки не приведет к появлению дифференциального тока.И выключатель дифференциального тока (ВДТ) не работает.

Взаимосвязь между дифференциальным током и током утечки

Когда в цепи присутствует ток утечки, он проходит к элементам, имеющим проводящий материал (металлический корпус для приборов, нагревательные трубы и т. Д.), От частей, находящихся под напряжением (электрические цепи, провода). Во время этих утечек нет короткозамкнутых участков. А значит нет факта неисправности цепи (ее явного повреждения).

Поскольку дифференциальный ток, если выразить его математически, представляет собой разность (в векторном значении) между током на выходе источника и током после нагрузки, то очевидно, что он почти идентичен току утечки.Но если последний действительно существует при нарушении, например, изоляции, повышенной влажности среды, через которую он может проходить, или чего-то еще, то дифференциальный ток появляется при подключении к земле.

Дифференциальные токи отключения и отключения

Под током отключения (или отключения) понимается такой дифференциальный ток, протекание которого приводит к отключению VDT с утечками в цепи.

Ток, протекание которого допустимо в цепи устройства защитного отключения (УЗО) и не возникает, называется дифференциальным незамкнутым током.

В нагруженной цепи, где работают устройства импульсного типа: выпрямители, дискретно-цифровые приборы для регулирования мощности — все это современная бытовая техника, есть фоновые дифференциальные токи. Но такие токи не являются токами повреждения, и в этом случае электрическая цепь не может быть отключена. Поэтому порог срабатывания УЗО выбирается так, чтобы не реагировать на рабочее значение фона, а отключать ток утечки, превышающий это значение.

УЗО или дифференциальный автомат

Для защиты цепи от токов короткого замыкания на землю большой величины были разработаны специальные автоматические выключатели. Схема устройства постоянно проверяет контролируемую цепь на наличие утечек. Как только сумма векторных значений линейных токов становится больше нуля и предел чувствительности прибора выходит за пределы, он немедленно отключает цепь. Такие системы ставятся как в однофазные, так и в трехфазные сети.

Характеристики дифференциальных выключателей

Различные модификации защитных устройств отличаются друг от друга:

  • конструктивными особенностями;
  • вид утечки электроэнергии;
  • параметры чувствительности;
  • скорость.

В зависимости от конструктивных особенностей бывают:

  • Устройства ВДТ (дифференциальный выключатель), где нет защиты от больших токов. Они реагируют на токи утечки, но для защиты их схемы необходимо постоянно включать предохранители.
  • Устройство RCBO, в котором предусмотрен автоматический выключатель. Это универсальное устройство с двойной функцией — для защиты от короткого замыкания и перегрузок, а также для контроля утечек.
  • Устройство с возможностью подключения машинного управления в точке подключения. Устройство предназначено для совместной установки с автоматическим выключателем. Его конструкция разработана таким образом, что допускает только одноразовое соединение с машиной.

В зависимости от формы токов утечки разработаны группы предохранительных устройств следующих модификаций:

  • АС — устройства, работающие с переменным синусоидальным током.Они не реагируют на дифференциальные импульсные токи, возникающие в момент включения, например, ламп люминесцентных, рентгеновских приборов, устройств обработки информационных сигналов, преобразователей на тиристорах.
  • А — устройства для защиты от постоянного импульсного и переменного тока. Пиковые значения утечки импульсных дифференциальных токов не распознаются. Они работают в схемах выпрямителей электронного типа, регуляторах фазоимпульсного преобразования. Предотвратите утечку на землю пульсирующего электричества, в котором присутствует постоянная составляющая напряжения.
  • B — системы, работающие с переменными, постоянными и пульсирующими токами утечки.

По чувствительности дифференциальный переключатель бывает следующих типов:

  • Системы малочувствительные, размыкающие цепь при косвенном прикосновении.
  • Системы с высокой чувствительностью. Защитите, если есть прямой контакт с токоведущим кабелем.
  • Противопожарные мероприятия.

По времени работы устройства:

  • Действия мгновенные.
  • Быстродействующий.
  • Для общего назначения.
  • С задержкой — селективного типа.

Устройства токовой защиты дифференциально-селективного устройства способны отключать только ту часть оборудования, где произошло нарушение.

Принцип работы переключателя дифференциального тока

УЗО состоит из сердечника в форме кольца и двух обмоток. Эти обмотки абсолютно одинаковые, то есть выполнены проводом одного сечения и одинаковым количеством витков.Ток проходит через одну обмотку в направлении входа нагрузки, а затем через нагрузку возвращается во вторую обмотку. Поскольку в каждой нагрузке проходит номинальный ток, суммарные токи на входе и выходе, по Киргофу, должны быть равны. В результате токи создают в обмотках одинаковые магнитные потоки, направленные в противоположном направлении. Эти потоки компенсируют друг друга, и система остается неподвижной. Если есть ток утечки, магнитные поля будут другими, реле дифференциального тока сработает, что приведет к размыканию электрических контактов.Линия электропередач будет полностью обесточена.

2.972 Как работает дифференциал


ОСНОВНЫЕ ФУНКЦИОНАЛЬНЫЕ ТРЕБОВАНИЯ: Распределите мощность от вала трансмиссии автомобиля на пару левых и правых колес (1-е ФУНКЦИОНАЛЬНОЕ ТРЕБОВАНИЕ), позволяя колеса для вращения с разной скоростью (ВТОРОЙ ФУНКЦИОНАЛЬНОЕ ТРЕБОВАНИЕ).

ДИЗАЙН ПАРАМЕТР: Дифференциал


ИСТОРИЯ: Дифференциал был впервые изобретен в Китае, в III век, А.Д.


ГЕОМЕТРИЯ / СТРУКТУРА:

Компоненты дифференциала Система

Зубья шестерни : коронное колесо и Зубья ведущей шестерни имеют спиральную форму, что позволяет двигаться вверх и вниз на неровной или неровной дороге условия.


ОБЪЯСНЕНИЕ, КАК ЭТО РАБОТАЕТ / ИСПОЛЬЗУЕТСЯ:

Зачем нужен дифференциал? : Когда машина поворачивает, одно колесо на «внутренней» дуге поворота, а другое колесо — на «снаружи.»Следовательно, внешнее колесо должно вращаться быстрее, чем внутреннее. один, чтобы преодолеть большее расстояние за то же время. Таким образом, поскольку два колеса не вращаются с одинаковой скоростью, необходим дифференциал. Машина дифференциал расположен посередине между ведущими колесами на передних, задних или обе оси (в зависимости от того, передний, задний или полноприводный автомобиль). В автомобили заднеприводные, дифференциал преобразует вращательное движение трансмиссии вал, лежащий параллельно движению автомобиля, до вращательного движения полуосей (на концах которых расположены колеса), которые лежат перпендикулярно движению автомобиля.

Повороты, колеса разные Скорости Расположение дифференциала в автомобиле

Как это работает: Предполагая, что колеса не проскальзывают и не вращаются управления, следующие два примера движения автомобиля описывают, как работает дифференциал, когда автомобиль движется вперед и при повороте. (см. раздел Дифференциал повышенного трения для колеса скольжение).

Дифференциал при въезде автомобиля Прямая линия (колеса с одинаковой скоростью)

Когда автомобиль едет прямо, оба колеса едут одновременно скорость. Таким образом, шестерни планетарной передачи свободного хода не вращаются вообще. Вместо этого, как вал трансмиссии вращает коронное колесо, вращательное движение передается непосредственно на полуоси, причем оба колеса вращаются с угловой скоростью коронного колеса (у них такая же скорость).

Дифференциал, когда автомобиль поворачивает A Угол (колеса 2 вне поворота)

Когда автомобиль поворачивает, колеса должны двигаться с разной скоростью. В В этой ситуации шестерни планетарной передачи вращаются относительно ведущего колеса, когда они вращаются. вокруг солнечных шестерен. Это позволяет неравномерно передавать скорость коронной шестерни на два колеса.


ДОМИНАНТНАЯ ФИЗИКА:

Переменная

Описание

Метрическая система Единицы

Английский Единицы

в

Скорость при точка контакта между шестернями

м / сек

дюйм / сек

выигрыш

Угловая скорость коронной шестерни

рад / с

об / мин

w1

Угловая скорость одной шестерни / колеса

рад / с

об / мин

w2

Угловая скорость другой шестерни / колеса

рад / с

об / мин

R1

Радиус шага одна передача

м

дюйм

r2

Радиус шага другая передача

м

В

Штифт

Входная мощность, от трансмиссия

Вт

Мощность

Pout1

Выход на Левый полуоси

Вт

Мощность

Pout2

Выход на Полуось правый

Вт

Мощность

T1

Крутящий момент передается на левое колесо

Н-м

фут-фунт

T2

Крутящий момент передается на правое колесо

Н-м

фут-фунт

N1

Количество зубьев на одной передаче

N2

Количество зубьев на другой передаче

Иллюстрация для объяснения Передаточное число

Передаточные числа: Передаточное отношение скоростей между шестернями зависит от соотношения зубьев двух смежных шестерен, так что

w 1 x N 1 = w 2 x N 2 ,

, где w — соответствующая угловая скорость, а N = количество зубьев. на шестерне.


Скорость : Когда две шестерни находятся в контакте и нет пробуксовки, v = w 1 x r 1 = w 2 x r 2 , где v — тангенциальная скорость в точке контакта между шестернями, а r — соответствующее продольный радиус шестерни. В дифференциале, поскольку скорость, передаваемая коронной шестерней используется обоими колесами (не обязательно движется с одинаковой скоростью),

w дюйм = (w 1 + w 2 ) / 2


Мощность:
Как правило, каждое зубчатое зацепление имеет потерю эффективности на 1-2%, поэтому с три различных сетки от вала трансмиссии до каждого полуоси, система фактически будет с КПД от 94% до 97%.Для упрощения предположим, что система на 100% эффективна; затем

P вход = P выход1 + P выход2 , или P в = (T 1 x 1 ) + (T 2 x 2 ),

, где P в — потребляемая мощность от передачи на дифференциал, а P out — выходная мощность от дифференциал к колесам.T — крутящий момент, приложенный к каждому полуоси соответственно.


ОГРАНИЧИТЕЛЬНАЯ ФИЗИКА:

Вещи, которые могут ограничивать или нарушать поведение дифференциала включают контактные напряжения между шестернями, что также ограничивает передачу крутящего момента как усталость, так и потери из-за трения между шестернями.


LIMITED SLIP ДИФФЕРЕНЦИАЛ:

Если одно из колес, прикрепленных к дифференциалу, решает удариться о лед, например, он проскальзывает и вращается со всей скоростью, которую должен распределять дифференциал.Таким образом, механизм блокировки или «дифференциал повышенного трения» позволяет одному колесу скольжение или вращение свободно, в то время как некоторый крутящий момент передается на другое колесо (надеюсь, на земля!).


УЧАСТКИ / ГРАФИКИ / ТАБЛИЦЫ:

Не отправлено


ГДЕ НАЙТИ ДИФФЕРЕНЦИАЛЫ:

В задних мостах большинства легковых и грузовых автомобилей.


ССЫЛКИ / ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ:

http: // www.srl.gatech.edu/education/ME3110/design-reports/RSVP/DR4/catalog/gearbas.htm

http://www.ul.ie/~gordons/lavelles/diflimed.html

Маколей, Дэвид. Как все устроено , стр. 49

Конспект лекций, курс 2.72


4 различных типа дифференциалов (и как они работают)

Последнее обновление 11 мая 2020 г.

Дифференциалы имеют долгую историю, которая, по мнению многих, восходит к 1 тысячелетию до нашей эры и была записана Китаем.

Ищете хорошее онлайн-руководство по ремонту? Щелкните здесь, чтобы увидеть 5 лучших вариантов.

Хотя в то время у них не было автомобилей, колесницы, повозки и повозки по-прежнему испытывали проблему проскальзывания колес и их волочения при поворотах, что приводило к повреждению колес, осей и дорог. Чтобы избежать этого, был изобретен простой дифференциал.

Сегодня в транспортных средствах используются четыре основных типа дифференциалов. Вот они с кратким описанием каждого типа.

Типы дифференциалов в легковых и грузовых автомобилях

Открытый дифференциал

Этот тип дифференциала является самым основным и позволяет изменять только частоту вращения или пробуксовку отдельных колес, но это все.В оптимальных дорожных условиях это позволяет внешнему колесу вращаться быстрее, чем внутреннему колесу. Проблема в том, что дорожные условия не идеальны, например, на мокром асфальте, льду, снегу или гравии.

При открытом дифференциале крутящий момент двигателя все равно передается, даже если колесо имеет нулевое тяговое усилие, так что скользящая шина просто вращается и никуда не поедет.

Открытые дифференциалы сегодня встречаются в большинстве автомобилей на дорогах, поэтому, вообще говоря, затраты на ремонт дифференциала меньше, чем у других типов дифференциалов (если такая же ось).

Дифференциал повышенного трения

В идеальных дорожных условиях дифференциал повышенного трения действует так же, как открытый дифференциал, и передает крутящий момент независимо на каждое колесо.

Но при резком повороте или резком ускорении, когда открытый дифференциал обычно вызывает скольжение шины, дифференциал ограниченного трения предотвращает передачу нормального крутящего момента на скользящую шину (с наименьшим сопротивлением).

Это достигается за счет использования муфт и пластин внутри дифференциала.Это позволяет автомобилю преодолевать повороты, с которыми может столкнуться автомобиль с открытым дифференциалом. В гоночных автомобилях и других транспортных средствах (а также на некоторых внедорожниках) используются дифференциалы повышенного трения.

Блокировка дифференциала

Встречающаяся на многих внедорожниках и некоторых автомобилях с высокими характеристиками, блокировка дифференциалов использует муфты и пружины для активации блокировки, которая передает одинаковое количество мощности на каждое колесо независимо от ситуации с тягой. По сути, это создает фиксированную ось.

Преимущество заключается в способности заблокированного дифференциала получить большее тяговое усилие, поскольку полный крутящий момент всегда доступен для колеса и не ограничивается более низким сцеплением с дорогой одного колеса.

На более высоких скоростях это отрицательно, но при движении по бездорожью или скалолазанию это большое преимущество.

См. Также: дифференциал с ограниченным проскальзыванием и дифференциал блокировки

Дифференциал с векторизацией крутящего момента

Самый сложный и продвинутый тип дифференциала, дифференциал с векторизацией крутящего момента использует набор датчиков и электроники для получения данных от различных вещи (дорожное покрытие, положение дроссельной заслонки, система рулевого управления и т. д.) для включения сцепления с электронным управлением и контроллера.

Также известные как активные дифференциалы, они работают наиболее эффективно, что приводит к действительно динамичному и высокопроизводительному вождению. Дифференциалы с вектором крутящего момента можно найти в некоторых высокопроизводительных заднеприводных и полноприводных автомобилях.

Как работает дифференциал

Все автомобили имеют либо передний, либо задний дифференциал как часть моста. Автомобиль с передним приводом будет иметь передний дифференциал, а автомобиль с задним приводом — задний.

Если у автомобиля полный привод, то он может иметь как передний, так и задний дифференциалы.

Дифференциал можно определить как коробку передач, которая имеет 3 общих элемента: боковую шестерню, коронную шестерню и ведущую шестерню. Его задача — управлять колесной парой на оси, но позволяя им вращаться с разной скоростью.

Это необходимо, когда ваша машина поворачивает на дорогу. Когда вы совершаете поворот, внешнему колесу необходимо преодолеть большее расстояние, чем внутреннему колесу, поэтому внешнее колесо должно вращаться быстрее.Дифференциал позволяет этому случиться.

Передний двигатель / задний привод (FR) Тип

Изображение предоставлено: HowStuffWorks.com

Двигатель → Трансмиссия → Приводной вал → Задний дифференциал → Осевой вал → Задние колеса

Передний двигатель / Передний привод (FF) Тип

Изображение предоставлено: HowStuffWorks.com Двигатель

→ Коробка передач и встроенный передний дифференциал → Передние колеса

Тип привода на четыре колеса

Изображение предоставлено: HowStuffWorks.com Двигатель

→ Трансмиссия → Раздаточная коробка → Вал переднего и заднего привода → Передний и задний Дифференциал → Вал переднего привода и вал заднего моста → Передние и задние колеса

На основании информации, приведенной выше, в настройке передний двигатель / передний привод используется передний дифференциал, встроенный вместе с трансмиссией / трансмиссией.Это означает, что ремонт этой установки зачастую дороже, чем другие.

Для ремонта дифференциала трансмиссия также должна быть снята и разобрана.

Что такое LVDT? | линейно-регулируемый дифференциальный трансформатор

LVDT (линейный регулируемый дифференциальный трансформатор = представляет собой электромеханический датчик, используемый для преобразования механического движения или вибраций, в частности прямолинейного движения, в переменный электрический ток, напряжение или электрические сигналы и наоборот.Исполнительные механизмы используются в основном в системах автоматического управления или в качестве механических датчиков движения в измерительной технике. Классификация электромеханических преобразователей включает принципы преобразования или типы выходных сигналов.

Короче говоря, линейный преобразователь обеспечивает величину выходного напряжения, связанную с измеряемыми параметрами, например, силой, для простой обработки сигнала. Устройства LVDT Sensor чувствительны к электромагнитным помехам. Снижение электрического сопротивления можно улучшить с помощью более коротких соединительных кабелей, чтобы исключить значительные ошибки.Для датчика линейных перемещений требуется от трех до четырех соединительных проводов для питания и подачи выходного сигнала.

Физически конструкция LVDT представляет собой полый металлический цилиндр, в котором вал меньшего диаметра свободно перемещается вперед и назад вдоль длинной оси цилиндра. Вал, или толкатель, заканчивается магнитопроводящим сердечником, который должен находиться внутри цилиндра или узла катушки, когда устройство работает.

В обычной практике толкатель физически прикреплен к подвижному объекту, положение которого должно быть определено (измеряемая величина), а узел катушки прикреплен к фиксированной контрольной точке.Движение измеряемой величины перемещает сердечник внутри узла катушки; это движение измеряется электрически.

Принцип преобразования:
  • Электромагнитный
  • Магнитоэлектрический
  • электростатический
Выходные сигналы:
  • Аналоговый и дискретный выход
  • Цифровой
Оценка электромеханических преобразователей:
  • Статические и динамические характеристики
  • Чувствительность или коэффициент передачи — E = Δy / Δx или Δy — это изменение выходной величины y, когда входная величина x изменяется на Δx
  • Выходной сигнал — диапазон рабочих частот
  • Статическая ошибка преобразования или сигнала

Виды ЛВДЦ

LD400: Миниатюрные преобразователи смещения постоянного тока с ацеталевыми подшипниками Датчики LVDT — определяют, нужно ли вам измерять относительный ток: C-in, AC-out, DC-in, DC-out; или измерение резонансных частот катушек в зависимости от положения катушек, устройства на основе частоты.

Невыпадающая арматура: Эти механизмы лучше подходят для больших рабочих диапазонов. Невыпадающие якоря помогают предотвратить перекос, поскольку они направляются и удерживаются узлами с низким коэффициентом трения.

Неуправляемые якоря: Бесконечное качество разрешения, механизм LVDT с неуправляемым якорем не подвержен износу и не ограничивает разрешающую способность измеренных данных. Этот тип механизма прикрепляется к измеряемому образцу, свободно вставляется в трубку, что требует отдельной поддержки корпуса линейного преобразователя.

Якоря с принудительным выдвижением: Используйте внутренние пружинные механизмы, пневматическое усилие или электродвигатели, чтобы непрерывно толкать якорь до максимально возможного полного выдвижения. Якоря с принудительным удлинением используются в LVDT для малоподвижных приложений. Эти механизмы не требуют соединения между образцом и якорем.

Линейные преобразователи переменного смещения обычно используются в современных обрабатывающих инструментах, авионике, робототехнике, а также в компьютеризованном управлении движением и автоматизации производства.Выбор применимого типа LVDT можно рассмотреть, используя следующие спецификации:

Линейность LVDT: Максимальное отклонение от прямой зависимости между измеренным расстоянием и выходным расстоянием в диапазоне измерения.

> 0,025 ±% полной шкалы
0,025 — 0,20 ±% полной шкалы
0,20 — 0,50 ±% полной шкалы
0,50 — 0,90 ±% полной шкалы
0,90 — ±% полной шкалы и более

Рабочие температуры: > — 32ºF, от -32 до 32ºF, от 32 до 175ºF, от 175 до 257ºF, 257ºF и выше.Диапазон температур, в котором устройство должно точно работать.

Диапазоны измерения: 0,02 дюйма, 0,02–0,32 дюйма, 0,32–4,0 дюйма, 4,0–20,0 дюйма, ± 20,0 дюйма (диапазон измерения или максимальное измеренное расстояние)

Точность LVDT: Описывает процент отклонения от фактическое / реальное значение данных измерения.

Выход: Напряжение, ток или частота

Интерфейс: Последовательный — стандартный протокол цифрового вывода (последовательный), такой как RS232, или параллельный — стандартный протокол цифрового вывода (параллельный), такой как IEEE488 .

Тип LVDT: Баланс токов AC / AC, DC / DC или на основе частоты

LD320: датчики смещения LVDT переменного тока высокой точности
Смещение:
Преобразователь линейного смещения — это электрический преобразователь, используемый для измерения линейного положения. Линейное смещение — это движение объекта в одном направлении вдоль одной оси. Измерение смещения указывает направление движения. Выходной сигнал датчика линейного перемещения представляет собой измерение расстояния, пройденного объектом, в миллиметрах (мм) или дюймах (дюймах).Прецизионные преобразователи смещения LVDT устанавливаются на большинстве современных производственных линий для автоматического измерения при сортировке, применениях «не годится» и в операциях по обеспечению качества. Конструкция валов из закаленной стали, уплотнительных колец и титановых толкателей оптимизирует прецизионную работу в большинстве промышленных условий. Использование гибридных IC-модулей обеспечивает линейный выходной сигнал мВ / В / мм или мВ / В / дюйм для взаимодействия со стандартными измерителями входного постоянного тока, промышленными контроллерами, записывающими устройствами и интерфейсами данных.Датчики

LVDT спроектированы и предназначены для использования во многих отраслях:

LD500: Прецизионные измерительные преобразователи постоянного тока LVDT для контроля качества или средств автоматизации
  • Общего назначения
  • Аэрокосмическая промышленность
  • Промывочная диафрагма
  • Heavy Duty / Industrial
  • Опасная зона
  • Монтаж на печатной плате
  • Высокая точность
  • Погружной
  • Санитарный
  • Для специальных целей
Электрически LVDT представляет собой устройство взаимной индуктивности.Внутри узла катушки находятся три обмотки трансформатора. Центральная первичная обмотка окружена двумя вторичными обмотками, по одной с каждой стороны; вторичные выходы соединены вместе, образуя последовательно встречный контур. Возбуждение переменным током применяется к первичной обмотке, вызывая индуктивные токи во вторичных обмотках, которые опосредуются магнитопроводящим сердечником. Когда сердечник находится в мертвой точке (на равном расстоянии от обеих вторичных обмоток), на вторичных выходах не появляется напряжение. Как только сердечник перемещается, даже на минимальную величину, на вторичном выходе индуцируется дифференциальное напряжение.Фаза напряжения определяется направлением смещения сердечника; амплитуда определяется более или менее линейно величиной отклонения сердечника от центра. Типовые преобразователи LVDT

Эта дифференциальная конструкция дает LVDT значительное преимущество перед устройствами потенциометрического типа, поскольку разрешение не ограничивается расстоянием между обмотками катушки. В линейном преобразователе любое движение сердечника вызывает пропорциональное изменение выходного сигнала. Таким образом, LVDT имеет теоретически бесконечное разрешение: на практике разрешение ограничено только внешней выходной электроникой и физическими подвесками.

Поскольку это трансформатор, LVDT требует управляющего сигнала переменного тока. Специальный блок электроники или формирователь сигнала обычно используется для генерации этого управляющего сигнала, а также для преобразования аналогового выхода переменного тока устройства в + 5 В постоянного тока, 4-20 мА или какой-либо другой формат, совместимый с оборудованием, расположенным ниже по потоку. Эта схема может быть внешней или может быть размещена внутри корпуса преобразователя. Внутренняя электроника позволяет пользователю подавать на преобразователь сигнал постоянного тока только среднего качества, что часто является преимуществом при использовании батарей и бортовых транспортных средств.Однако внешняя электроника предлагает более высокое качество и может предоставлять дополнительные функции, такие как калибровка, чтобы обеспечить прямое считывание в технических единицах.

Как работает LVDT?

Принцип вращающегося переменного дифференциального трансформатора Преобразователь линейных перемещений представляет собой миниатюрный трансформатор с одной первичной обмоткой, двумя симметрично намотанными вторичными обмотками и сердечником якоря, который может свободно перемещаться вдоль своей линейной оси в направляющих точных подшипников.Шток-толкатель соединяет контролируемый компонент с сердечником якоря, так что смещение этого компонента перемещает сердечник не по центру.

Типичный датчик LVDT имеет три соленоидные катушки, выровненные встык, окружающие трубку. Первичная обмотка находится в центре, а вторичные обмотки — сверху и снизу. Объект измерения положения прикреплен к цилиндрическому ферроматическому сердечнику и скользит по оси трубки. Переменный ток приводит в действие первичную катушку, вызывая напряжение, индуцируемое в двух вторичных катушках, пропорциональное длине соединительного сердечника.Диапазон частот обычно от 1 до 10 кГц.

Движение сердечника запускает связь от первичной к обеим вторичным катушкам, что изменяет наведенные напряжения. Дифференциал верхнего и нижнего вторичного выходного напряжения — это отклонение от калиброванной нулевой фазы. Использование синхронного детектора считывает выходное напряжение со знаком, которое относится к смещению. Линейные преобразователи LVDT могут иметь длину до нескольких дюймов и работать как датчик абсолютного положения, который является повторяемым и воспроизводимым.Другие действия или движения не повлияют на точность измерения. LVDT также отличается высокой надежностью, поскольку скользящий сердечник не касается внутренней части трубки и позволяет датчику находиться в полностью герметичной среде.

LVDT — это устройство переменного тока, что означает, что электроника должна преобразовывать его выходной сигнал в полезный сигнал постоянного тока. В основе обработки сигналов LVDT лежат два гибридных модуля; Осциллятор и Демодулятор.

осциллятор предназначен для обеспечения стабильного синусоидального сигнала для приведения в действие датчика, и ссылку прямоугольной формы для демодулятора.Демодулятор предназначен для усиления выходного сигнала преобразователя и преобразования его в высокоточное постоянное напряжение, которое прямо пропорционально смещению.

Для работы линейного преобразователя необходимо возбуждать первичную обмотку синусоидальной волной, а выходной сигнал вторичных обмоток состоит из синусоидальной волны с информацией о положении, содержащейся в амплитуде и фазе. Выходной сигнал в центре хода равен нулю, возрастая до максимальной амплитуды на любом конце хода.Выход находится в фазе с первичным приводом на одном конце хода и не в фазе на другом конце.

В высококачественном датчике линейных перемещений соотношение между положением и фазой / амплитудой является линейным. Осциллятор и демодулятор упрощают переход между положением и фазой / амплитудой.

Описание автогенератора

Функция осциллятора заключается в обеспечении точного синусоидального напряжения для управления преобразователем, стабильного как по амплитуде, так и по частоте.Он также обеспечивает опорную фазу прямоугольной формы для внутреннего использования и для установки нулей в демодуляторе. Осциллятор работает следующим образом. Синусоидальная волна для возбуждения преобразователя генерируется внутренним высокостабильным генератором моста Вина. Частота генератора устанавливается путем соединения контактов или добавления внешних резисторов. Затем синусоидальная волна проходит через усилитель мощности, чтобы обеспечить ток, достаточный для управления большинством преобразователей (50 мА), без необходимости использования внешних буферов.Усилитель мощности содержит схему защиты, поскольку в среде, где работает большинство преобразователей, вероятно короткое замыкание.

Синусоидальная волна выводится на преобразователь и используется внутри для генерации прямоугольной волны для привязки фазы к демодулятору. Выход осциллятора контролируется входом дистанционного датчика, который позволяет сделать поправку на падение напряжения на выводах преобразователя. Этот вход дискретизируется прямоугольной волной и сравнивается с опорным входом в регуляторе амплитуды, чтобы удерживать напряжение генератора на фиксированном уровне.Эталонный вход берется из эталонного выхода или логометрического выхода. обеспечение постоянного или пропорционального напряжению генератора напряжения питания.

Демодуляция и фильтрация сигнала LDVT

Описание демодулятора

Функция демодулятора состоит в том, чтобы принимать выходной сигнал переменного тока преобразователя и преобразовывать его в полезное постоянное напряжение, пропорциональное смещению, нагрузке и т. Д. Он также содержит схему, позволяющую регулировать усиление и ноль для работы с широким диапазоном преобразователей.

Демодулятор работает следующим образом. Выходной сигнал преобразователя подается в схему выбора грубого усиления, а затем усиливается. Этот усилитель может иметь коэффициент усиления 25 или 250, если используется опция x10, дополнительное усиление позволяет работать с датчиками с малой выходной мощностью, такими как тензодатчики.

Выполнение основного усиления с помощью сигнала переменного тока означает, что дрейф схемы уменьшается. Затем сигнал переменного тока высокого уровня передается на синхронный по фазе демодулятор, который использует прямоугольную волну от генератора для преобразования его в постоянное напряжение с некоторым наложенным переменным током.Затем он проходит через фильтр нижних частот, который удаляет большинство компонентов переменного тока, оставляя постоянное постоянное напряжение с небольшими колебаниями. Фильтр нижних частот включает схему для установки грубого нуля, точного нуля и точного усиления, а также имеет соединения, позволяющие изменять характеристики фильтра.

Инновации и приложения для линейного преобразователя

Серия LD620: высокоточные датчики смещения с выходным напряжением постоянного тока Существует множество вариантов установки.При желании узел катушки может быть прикреплен к измеряемой величине, в то время как толкатель прикреплен к фиксированной точке. Могут использоваться различные механические связи, так что движение сердечника может быть больше или меньше движения измеряемой величины.

Установка LVDT лучше для измерений на растяжение

При испытании материала на растяжение для определения его модуля упругости необходимо точно знать приложенную нагрузку и расстояние, на которое материал растягивается под этой нагрузкой. Традиционно эти параметры точно измеряются с помощью тензодатчика и датчика смещения LVDT соответственно.В последних случаях экстензометр с датчиком смещения подключается непосредственно к исследуемому образцу.

Этот метод имеет два явных недостатка:

  1. экстензометр должен быть настроен для каждого образца и имеет тенденцию ограничивать доступ к нему.
  2. : если образец испытывают до предела прочности, внезапный удар может повредить датчик.
Этих недостатков можно избежать, используя вместо этого буровую установку, имеющую измерительный преобразователь LVDT, перемещающийся в контакте с прецизионным механически обработанным «клиновым» передаточным механизмом.

В этом альтернативном методе измерительный линейный преобразователь крепится к зажиму, фиксирующему образец, который перемещается при растяжении материала. Когда измерительная головка измерительного преобразователя перемещается вверх по наклонной поверхности клина, вертикальное движение преобразуется в пропорциональное горизонтальное движение сердечника преобразователя. Выходной сигнал линейного напряжения с преобразователя подается на цифровой вольтметр или подобное измерительное устройство, которое может быть откалибровано с учетом угла наклонной поверхности, чтобы обеспечить прямое и точное измерение удлинения материала под нагрузкой.

LVDT в приложении для испытания на растяжение Поскольку прецизионный шариковый наконечник измерительного преобразователя свободно перемещается по гладкой обработанной поверхности наклона, а вал преобразователя вращается в прецизионных подшипниках, боковые нагрузки на вал преобразователя отсутствуют. Это дополнительно обеспечивается за счет использования очень малого угла наклона относительно направления движения, что также позволяет использовать датчик малого хода; горизонтальное перемещение сердечника преобразователя может быть в 10 раз меньше пройденного вертикального расстояния.

Измерительные преобразователи

имеют высокоточные линейные выходные сигналы даже для малых ходов, поэтому калиброванное измерение удлинения испытательного образца также очень точное. Для очень малых удлинений, например менее 1 мм при высоких прилагаемых нагрузках, экстензометр с датчиком линейных перемещений будет немного более точным. Однако измерительный преобразователь предпочтительнее для большинства применений и особенно подходит при испытании материалов, таких как мягкие металлы, пластмассы и резина, которые значительно растягиваются без разрушения.

Поскольку измерительный преобразователь закреплен сбоку зажима, он не препятствует доступу к исследуемому образцу. Кроме того, его не нужно настраивать каждый раз, когда новый образец помещается в испытательную машину. Если образец разбивается, наконечник датчика просто быстрее перемещается по склону без риска повреждения. Общий дизайн очень компактный.

Формы преобразователей с изменяющейся толщиной материала

Измерительные преобразователи обычно используются в промышленности для проверки того, что толщина изготовленного листового материала, такого как бумага или металл, остается в пределах указанных допусков.Если профиль измеряемой величины включает несколько различных толщин, например, сложная экструзия, может быть разработан измерительный стенд, включающий несколько линейных преобразователей для контроля различных размеров. В еще одном варианте этой идеи измерительные преобразователи типа LVDT были встроены в установку, предназначенную для измерения различной толщины природного производственного материала — обработанных шкур животных. Эти измерения профиля затем используются для построения изображения всей кожи, чтобы можно было вырезать из нее участки одинаковой толщины и использовать их с максимальной пользой; самая тонкая кожа выбирается, возможно, для перчаток, несколько более толстые — для сумочек и так далее.

Датчик толщины кожи животного Как и в случае листовых материалов одинаковой толщины, обшивка пропускается для измерения толщины в основном между двумя роликами, которые могут свободно вращаться вокруг своих осей. Нижний ролик закреплен в вертикальной плоскости, чтобы служить точкой отсчета для измерения. Другой может перемещаться вертикально, чтобы следовать за верхней поверхностью материала, расстояние, на которое он перемещается от исходной точки (т.е. толщина материала), измеряется измерительными преобразователями. Однако, чтобы приспособиться к разной толщине обшивки, верхний валик разделен в данном случае по ширине на шестнадцать отдельных секций.

Каждая секция подпружинена против общего поддерживающего шпинделя, который установлен на фиксированном расстоянии над опорным роликом. По мере того, как обшивка проходит между роликами, секции верхнего ролика удерживаются в положительном контакте с поверхностью материала пружинами, но при этом они могут перемещаться вверх и вниз при изменении толщины обшивки. Отдельный измерительный преобразователь LVDT предназначен для каждой секции ролика и отслеживает изменение толщины кожи в этой точке. Чтобы избежать бокового деформации чувствительной головки преобразователя, которое может быть вызвано прямым контактом с вращающимся роликом, вертикальное смещение механически передается преобразователю с помощью поворотной плоской планки, которая опирается своим свободным концом на ролик ( см. схему вида сбоку).

Выходной сигнал напряжения преобразователя калибруется на измерительном устройстве с учетом того факта, что расстояние, на которое перемещается головка преобразователя при таком расположении, немного отличается от фактического вертикального перемещения секции ролика. Высота шпинделя опоры верхнего ролика устанавливается в соответствии со средней толщиной обшивки. Количество и ширина роликовых секций были рассчитаны таким образом, чтобы соответствовать ожиданиям самого широкого пользователя. Когда кожа проходит между роликами, записанные измерения дают точное представление о различной толщине кожи вдоль линии каждого датчика.

«Контурная карта» всей кожи, показывающая области разной толщины, создается путем обработки выходных сигналов линейного преобразователя в компьютере и представления полученных данных. Цветовые коды или монохромные тона могут использоваться для прояснения областей разной толщины, так же как разная высота земли обозначена на карте нормалей.

Любой участок кожи необходимой толщины может быть легко идентифицирован для изготовления конкретных изделий, что облегчает позиционирование рисунков и оптимизирует использование материала с минимальными потерями.

Использование датчиков линейных перемещений для измерения давления и нагрузки

Измерение нагрузки с помощью датчика положения При использовании в сочетании с подходящим чувствительным к усилию устройством, таким как металлическая диафрагма или контрольное кольцо, преобразователи линейных перемещений могут обеспечить высокоточные и стабильные, но относительно недорогие средства измерения давления и нагрузки.

Одним из применений системы диафрагмы является измерение давления внутри защитной оболочки, например давления в блоке цилиндров двигателя во время разработки и испытаний.Датчик смещения, установленный внутри контрольного кольца, может иметь преимущества перед тензодатчиком при измерении очень малых нагрузок или при наличии возможности ударной нагрузки. Обычно извилистая металлическая диафрагма встроена в стенку резервуара под давлением и отклоняется под давлением. Толщина и чувствительность диафрагмы рассчитаны на диапазон давления.

Линейный преобразователь LVDT устанавливается под прямым углом к ​​диафрагме, а его удлинительный стержень сердечника прикреплен к центру диска.Доступны линейные преобразователи для рабочих температур до 600 ° C.

В качестве альтернативы для высоких температур можно использовать датчик приближения, который не контактирует с диафрагмой. Любое изгибание диафрагмы отражается сигналом выходного напряжения датчиков. Для калибровки можно использовать простой микрочип, просто создав одно известное высокое давление и одно низкое давление, поскольку движение диска линейно с давлением в центре. В результате получается недорогой и простой датчик давления с высокой повторяемостью и надежностью.

Измерение давления с помощью датчика положения Включение датчика линейных перемещений в контрольное кольцо дает системе измерения нагрузки значительные преимущества по сравнению с тензодатчиком в некоторых приложениях. Работая с очень небольшим фактическим движением, тензодатчики имеют тенденцию быть жесткими и нечувствительными к очень небольшим нагрузкам. Контрольное кольцо, с другой стороны, представляет собой сравнительно гибкую балку, способную более свободно перемещаться под нагрузкой — только условно, потому что пройденное расстояние должно быть меньше, чем общий ход e.г., ± 0,5 мм от линейного преобразователя. Следовательно, эта система более чувствительна к легким нагрузкам.

Хотя контрольное кольцо изгибается, на самом деле оно более прочное и упругое, чем тензодатчик. Жесткость тензодатчика имеет преимущество, когда нагрузка прикладывается и снимается быстро, поскольку жесткая система дает высокочастотный отклик. Однако, если тензодатчик ºº подвергается высокой ударной нагрузке, он может легко перегрузиться. С другой стороны, защитное кольцо может двигаться дальше, поглощая ударную нагрузку без вредного воздействия.

Использование датчика LVDT для подсчета

Высокоскоростной подсчет банкнот или аналогичных листов, требующих абсолютной числовой точности, может быть достигнут с помощью простого принципа конструкции, основанного на линейных преобразователях. Выходной сигнал напряжения от этих высокочувствительных датчиков LVDT можно использовать для: индивидуального подсчета банкнот на высокой скорости; обнаруживать, когда две или более банкноты считаются вместе; выявить проклеенный ремонт; указать, когда записка стала перевернутой; и предупредить оператора об отсутствии части примечания.

В стандартной конструкции машины банкноты подаются между двумя вращающимися роликами, один из которых движется в неподвижных подшипниках, а другой может двигаться линейно, чтобы изменять зазор между ними. Последний ролик удерживается в положительном контакте с банкнотой при соответствующей загрузке. На каждом конце этого подвижного ролика установлен миниатюрный линейный преобразователь для измерения его линейного смещения при прохождении банкнот через зазор.

Следовательно, когда одна банкнота проходит между роликами, сердечники LVDT смещаются на величину, равную толщине банкноты, и это создает выходные сигналы напряжения соответствующей интенсивности для обоих преобразователей.Сигнал поддерживается только тогда, когда банкнота проходит между роликами, и, таким образом, вырабатывается импульсный выходной сигнал, который можно использовать для электронного счета. Две ноты, проходящие вместе, удваивают интенсивность устойчивого сигнала и т. Д.

Другие приложения

Power Turbines: В турбинах электростанций по всему миру используются линейные переменные дифференциальные преобразователи в качестве датчиков положения с преобразователями сигналов для обеспечения необходимой рабочей мощности.Напряжения и частоты переменного тока, необходимые для индуктивных датчиков положения или датчиков положения LVDT, недоступны от источников питания.

Гидравлика: Датчики линейного положения служат датчиками заряда в гидроаккумуляторах, специальными внешними датчиками в суровых условиях с высокой устойчивостью к вибрации и ударам и включают все длины хода в пределах возможностей наших датчиков. Если вам требуется больший ход, позвоните нашим профессиональным инженерным специалистам в OMEGA для получения информации по индивидуальному дизайну.

Автоматизация: приложения автоматизации LVDT используют герметично закрытые датчики измерения размеров для работы за пределами ваших лабораторий НИОКР, производственных цехов и в суровых условиях окружающей среды, связанных с производственной автоматизацией, средами управления технологическими процессами, измерениями TIR и промышленным контролем. .

Самолет: В большинстве аэрокосмических / авиационных приложений используются миниатюрные или субминиатюрные датчики положения. Они представляют собой управляемые тросом механизмы определения смещения.OMEGA может разрабатывать прецизионные продукты для применения в коммерческих самолетах, космосе, авиации и экологических системах для космической среды обитания. Изделия устанавливаются в фиксированном положении, трос смещения прикрепляется к движущемуся объекту, например, шасси или элерону. Кабель втягивается и выдвигается при движении. В зависимости от формирования сигнала и системы крепления электрический выход будет отображать различные скорости, углы, длину и движения.

Спутники: Рассмотрим применение в спутниковых технологиях и в смежных областях, помимо производства спутников, датчики положения необходимы для космических аппаратов, грузовых самолетов, военных истребителей, дронов, экспериментальных самолетов, ракет, ядерных реакторов, имитаторов полета или высокоскоростные железные дороги.

13.1.2.2 Дифференциальный привод

13.1.2.2 Дифференциальный привод

13.1.2.2 Дифференциальный привод

Большинство домашних мобильных роботов не двигаются как машина. Например, рассмотрим платформу мобильной робототехники, показанную на рисунке 13.2а. Это пример самого популярного способа управлять домашними мобильными роботами. Есть два основных колеса, каждое из которых прикреплен к собственному мотору. Третье колесо (не видно на рисунке 13.2а) размещается сзади, чтобы пассивно катиться по предотвращая падение робота.

Рисунок 13.2: (а) Pioneer 3-DX8 (любезно предоставлено ActivMedia Robotics: MobileRobots.com) и многих других мобильных роботов. использовать дифференциальный привод. В дополнение к двум ведущим колесам, колесико (как на дне офисного стула) помещается в сзади по центру, чтобы робот не опрокинулся. (б) параметры обычного робота с дифференциальным приводом.
Рисунок 13.3: (а) Чистый перевод происходит, когда оба колеса движутся с одинаковой угловой скоростью; (б) чистое вращение возникает, когда колеса движутся с противоположными скоростями.

Построить простую модель ограничений, возникающих из дифференциальный привод, только расстояние между двумя колесами, и радиус колеса, необходимы. См. Рисунок 13.2b. Вектор действия прямо задает две угловые скорости вращения колеса (например, в радианах на второй). Рассмотрим, как движется робот, по разным действиям. применяется. См. Рисунок 13.3. Если , тогда робот движется вперед в направлении, указанном колесами.Скорость пропорциональна. В общем, если, то расстояние, пройденное за время, равно (потому что это полное угловое смещение колес). Если , то робот вращается по часовой стрелке, потому что колеса вращаются в противоположных направлениях. Это мотивирует размещение исходной точки кузов-рама в центре оси между колеса. При таком назначении перевода не происходит, если колеса вращаются с той же скоростью, но в противоположных направлениях.

На основании этих наблюдений уравнение перехода конфигурации имеет вид

(13.16)

Переводная часть содержит и части как и в простом автомобиле, потому что дифференциальный привод движется в направление, в котором указывают его ведущие колеса. Скорость перевода зависит от среднего значения угловых скоростей колес. Чтобы увидеть это, рассмотрим случай, когда одно колесо зафиксировано, а другое вращается. Это первоначально заставляет робота переводить со скоростью в сравнение с обоими вращающимися колесами. Скорость вращения пропорциональна изменению угловой скорости вращения колес.Робот скорость вращения растет линейно с радиусом колеса, но уменьшается линейно по отношению к расстоянию между колесами.

Иногда предпочтительнее трансформировать пространство действия. Позволять и . В этом случае, можно интерпретировать как переменную действия, что означает « переводить » и означает « вращать ». Используя эти действия, уравнение перехода конфигурации принимает вид

(13,17)

В таком виде уравнение перехода конфигурации напоминает (13.15) для простой машины (попробуйте установить и ). Дифференциальный привод легко имитируйте движения простой машины. Для дифференциального привода, скорость вращения можно установить независимо от поступательного скорость. Однако у простой машины скорость появляется в то выражение. Следовательно, скорость вращения зависит от поступательная скорость.
Рисунок 13.4: Кратчайший путь, пройденный центр оси — это просто отрезок линии, соединяющий начальный и позиции ворот в плоскости.Вращения кажутся бесплатными.

Напомним заданный вопрос о кратчайших путях для Ридс-Шеппа и Машины Дубина. Такой же вопрос получается по дифференциальному приводу быть неинтересным, потому что дифференциальный привод может вызвать центр его оси, чтобы следовать любому непрерывному пути в . В виде изображенный на рисунке 13.4, он может перемещаться между любыми двумя конфигурации: 1) сначала вращается так, чтобы колеса указывали на позиция цели, которая не вызывает перевода; 2) переводится на позиция ворот; и 3) поворачиваясь в желаемую ориентацию, что снова не вызывает перевода.Общее расстояние, пройденное центром оси всегда является евклидово расстояние в между две желаемые позиции.

Это может показаться странным эффектом из-за размещения начало координат. Кажется, ротация бесплатна. Это можно исправить за счет оптимизации общего количества оборотов колеса или необходимого времени, если скорость остается фиксированной [64]. Предположим, что . Определение минимального времени, необходимого для поездки между две конфигурации довольно интересны и рассматриваются в разделе 15.3. При этом правильно учитывается стоимость вращение робота, даже если это не вызывает смещения.

Стивен М. ЛаВалль 2012-04-20

ВАЛЫ ДИФФЕРЕНЦИАЛЬНЫЕ НАБИВНЫЕ. Когда необходимо использовать ДИФФЕРЕНЦИАЛЬНЫЙ ВАЛ?

Раздел 5: Обзор машины

Раздел 5: Обзор машины План этажа машины Технические характеристики машины Последовательность работы Теория работы Расположение датчика План этажа 2007 Douglas Machine Inc.5.1 План этажа машины Рисунок 5.1: Машина

Подробнее

Натяжение, намотка и размотка

Общая намотка — это процесс наматывания полотна или нити материала большой длины на балку, конус, сердечник, барабан или катушку; в первую очередь для удобства обращения с ними для конечного использования или повторной обработки.

Подробнее

Передние тормоза (FN- 3), обслуживание

j a t Передние тормоза (FN-3), обслуживание 46-1 Передние тормоза, обслуживание Примечание: Установите полный ремонтный комплект.После замены тормозных колодок и перед движением автомобиля нажмите педаль тормоза несколько раз до должного уровня

Подробнее

Руководство пользователя грейдера для рыбы

Грейдер Руководство пользователя Грейдер 1400 Содержание Основные детали … 2 Установка … 3 Необходимо установить плату управления … 3 Регулируемые ножки … 3 Регулируемый впускной клапан … 3 Двигатель … 3 Управление- плата … 4 Пульт дистанционного управления

Подробнее

ОБОРУДОВАНИЕ ДЛЯ ЧПУ И ОСНОВНЫЕ ИНСТРУМЕНТЫ

Компьютерное производство (CAM) АППАРАТНОЕ ОБЕСПЕЧЕНИЕ И ОСНОВЫ ИНСТРУМЕНТА с ЧПУ доц.Проф. Д-р Тамер С. Махмуд 1. Детали станков с ЧПУ Любой станок с ЧПУ по существу состоит из следующих частей: Программа обработки деталей,

Подробнее

Раскройные рамы для резки труб и снятия фасок

Раскройные трубы для резки труб и снятия фасок Кто мы — одна компания, полная поддержка, комплексные решения Уже более века Hydratight предлагает решения мирового класса для болтовых соединений и продолжает устанавливать международный стандарт

Подробнее

Особенности фрезерного патрона

Особенности фрезерного патрона С момента своего первого появления в отрасли в 1963 году Nikken продал более 2 000 000 штук по всему миру и никогда не переставал улучшать свой первоначальный дизайн.С многорядными роликовыми подшипниками

Подробнее

Датчик крутящего момента реакции

Усилие 1 1 Н · м до 1 000 1 000 Н · м Тип 9329A 9389A Эти простые в установке пьезоэлектрические датчики крутящего момента особенно подходят для измерения быстро меняющихся крутящих моментов на невращающихся валах.

Подробнее

СИСТЕМА РУЛЕВОГО УПРАВЛЕНИЯ — МОЩНОСТЬ

СИСТЕМА РУЛЕВОГО УПРАВЛЕНИЯ 1990 Nissan 240SX 1990 РУЛЕВОЕ УПРАВЛЕНИЕ Nissan — Power Rack & Pinion Axxess, Maxima, Pulsar NX, Sentra, Stanza, 240SX, 300ZX ОПИСАНИЕ Система гидроусилителя рулевого управления состоит из стойки и

Подробнее

Катушки для шлангов серии 30000

Инструкции по эксплуатации и список деталей для шланговых барабанов серии 30000 — С РУЧНЫМ ПРИВОДОМ — — СИЛОВОЙ ПРИВОД — МЕРЫ БЕЗОПАСНОСТИ При соблюдении надлежащих мер безопасности

могут возникнуть травмы и / или повреждение оборудования. Подробнее

Раздел M МОЩНЫЕ ПОДЪЕМНИКИ

Раздел M МОЩНЫЕ ЛИФТЫ Декабрь 2009 г. Индекс за 1 месяц 1.53-520244-000 Поликлиновой натяжной ролик 2. 53-520205-000 N.A. Монтажный кронштейн 3. 53-520212-000 Кабельный узел 4. 53-600149-000 Узел жгута проводов 5. 53-860322-010

Подробнее

КАРТЫ СЛАЙНОЙ ПРОИЗВОДИТЕЛЬНОСТИ

РУКОВОДСТВО ПО УСТАНОВКЕ КАРТОВ SLACK PERFORMANCE Благодарим вас за покупку шасси Slack Axiom 2013 года. Performance Mfg. Стремится предоставить вам самые лучшие шасси и компоненты на рынке сегодня.Ваше удовлетворение

Подробнее

ПРИВОД И ПРИВОДНОЙ ШКИВ

11 ЭЛЕКТРИЧЕСКИЙ ЧЕРТЕЖ ПРИВОДА И ПРИВОДНОГО ШКИВА ——————————————- —— 11-1 СЕРВИСНАЯ ИНФОРМАЦИЯ ————————————— ——— 11-2 УСТРАНЕНИЕ НЕПОЛАДОК ————————————- —————-

Подробнее

ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ

ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ Модель No.2012NB Описание Автоматический рейсмус толщиной 304 мм (12 дюймов) КОНЦЕПЦИЯ И ОСНОВНЫЕ ПРИМЕНЕНИЯ * Компактный и легкий (27 кг / 59 фунтов) автоматический строгальный станок для облегчения работы

Подробнее

НАМОТКА БОББИН — ВИДЫ И НАЗНАЧЕНИЕ

НАМОТОЧНАЯ МАШИНА — ТИПЫ И ФУНКЦИИ 13.1.006 Устройство намотки шпульки — это отдельный блок, привинченный к машине, рядом с балансирным колесом. Его функция — равномерно намотать запас хлопка на пустой

. Подробнее

ГЕНЕРАТОРЫ ПРЯМОГО ТОКА

ГЕНЕРАТОРЫ ПРЯМОГО ТОКА Редакция 12:50 14 ноя 2005 г. ВВЕДЕНИЕ Генератор — это машина, которая преобразует механическую энергию в электрическую, используя принцип магнитной индукции.Этот принцип

Подробнее

COIL PAC. Subec AB, Sprängarvägen 16, 132 38 Saltsjö-Boo, Швеция, тел .: +46 8 884633, факс: +46 8 977658, электронная почта: [email protected]

COIL PAC Subec AB, Sprängarvägen 16, 132 38 Saltsjö-Boo, Швеция, тел .: +46 8 884633, факс: +46 8 977658, электронная почта: [email protected] Описание машины Coil Pac 240 und Coil Pac 400 — это два типа

Подробнее

Натяжение резьбы Все машины

Ниже приведены элементы, относящиеся к натяжению и проблемам с натяжением нитей, которые встречаются на вышивальном оборудовании Brother.Они перечислены в том порядке, в котором они встречаются чаще всего. Используйте эту форму только в качестве руководства. Подписан

Подробнее

3000, 4000, 4100, 7500, 7700

3000, 4000, 4100, 7500, 7700 Идентификация барабанных токарных станков и дисковых тормозов ПРОЧИТАЙТЕ эти инструкции перед вводом устройства в эксплуатацию. ХРАНИТЕ эти и другие материалы, поставляемые с устройством, в папке рядом с

. Подробнее

13.ЗАДНЕЕ КОЛЕСО / ТОРМОЗ / ПОДВЕСКА

13. ЗАДНЕЕ КОЛЕСО / ТОРМОЗ / ПОДВЕСКА 13 3,5 ~ 4,5 кг-м 8,0 ~ 10,0 кг-м 0,8 ~ 1,2 кг-м 3,0 ~ 4,0 кг-м 2,4 ~ 3,0 кг-м 3,5 ~ 4,5 кг-м 6,0 ~ 8,0 кг- m 13-0 13. ЗАДНЕЕ КОЛЕСО / ТОРМОЗ / ПОДВЕСКА 13 ЗАДНЕЕ КОЛЕСО / ТОРМОЗ / ПОДВЕСКА СЕРВИСНАЯ ИНФОРМАЦИЯ …

Подробнее

SE-1200-EI. Руководство по эксплуатации и запчастям

SE-1200-EI Руководство по эксплуатации и деталям РУКОВОДСТВО ПОЛЬЗОВАТЕЛЯ SE 1200 EI Содержание 1.Руководство по установке 2. Инструкции по установке 3. Инструкции по эксплуатации 4. Очистка 5. Устранение неисправностей 6. Руководство по запчастям 7. Электрические

Подробнее

РЕШЕНИЕ ПРОБЛЕМ ЛАЗЕРНОЙ ПЕЧАТИ

РЕШЕНИЕ ПРОБЛЕМ ЛАЗЕРНОЙ ПЕЧАТИ Контроль влажности Высекание и пленка Загрязнение клеем Совместимые с лазером материалы Общие советы Другие частые проблемы Проблемы с лазерной печатью этикеток в первую очередь связаны с

Подробнее

Устранение неполадок Технические советы Эксплуатация

Компоненты рулевого управления Поиск и устранение неисправностей Технические советы Содержание Базовая работа системы рулевого управления 2 Регулировка вала секторов 4 Регулировка тягового рычага 5 Регулировка предохранительного / разгрузочного клапана 6 Ross TAS Automatic

Подробнее .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *