Закрыть

Монтажные схемы электрооборудования: Монтажная Электрическая Схема — tokzamer.ru

Содержание

Монтажная Электрическая Схема — tokzamer.ru

В зависимости от назначения электрические схемы принято классифицировать по типам.


Конечно, с монтажом простых бытовых устройств, например блоков питания или усилилелей ЗЧ все намного проще.

В свою очередь монтажные провода крепятся к клеммам лампового патрона с помощью пайки, как и провода к выключателю. Поскольку данный способ наиболее распространен, распишем порядок его разработки.
Как читать электрические схемы

Такая смесь будет более пластичная, а время застывания будет около получаса. Следовательно, следующим электроприемником должна быть обмотка магнитного пускателя.

Его данные и указания о местонахождении приводятся в перечне элементов данной схемы.

Что-то вроде скелета проекта, да некоторые моменты и нюансы не указаны, но для специалиста этой информации достаточно!

Для возможности различения участков цепей, относящихся, например, к разным агрегатам, допускается в обозначении цепей добавлять последовательные числа и другие принятые для агрегатов обозначения, отделяя их дефисом.

Для кабелей указывается количество жил, их сечение и марка.

Электросхема представляет собой документ, в котором по определённым правилам обозначаются связи между составными частями устройств, которые работают за счёт протекания электроэнергии.

Схемы и оборудование эл.шкафа «Умного дома». Обзор, часть №1 «Схемы».

Порядок разработки монтажной электрической схемы

Согласно этому стандарту все участки электрических цепей, разделённые контактами аппаратов, обмотками реле, приборов, машин, резисторами и другими элементами, должны иметь разное обозначение. Просто в жизни у каждого человека возникают такие ситуации, когда нужно разбираться в том, на что вас не учили. Связь перечня с условными графическими обозначениями элементов осуществляется через позиционные обозначения.


Если посмотрите внимательнее, то на схеме 2 увидите так называемую перемычку, которая соединяет контакты -А- элементов и релюшек -К4- и -К5- между собой. На первом этапе монтажа на все вторые концы проводов одеваются кембрики с указанием маршрутов, концы завязывают в узел, чтобы кембрик не вылетел и провод бросают.

Простота и экономичность проектируемых схем обеспечивается применением стандартной, наиболее дешевой аппаратуры и типовых нормализованных узлов; сокращением до минимума числа элементов в схеме и ограничением их номенклатуры; применением систем электропривода производственных механизмов, обеспечивающих высокие энергетические показатели в установившихся и переходных режимах работы, и т.

Итоги урока На этом уроке мы говорили об электрических схемах. Сложность построения оптимального варианта усугубляется тем, что одним и тем же условиям может удовлетворять значительное число различных схем.

Кроме этого, указываются номера проводов жил и кабелей [2, п.

Схемы используются также при контроле, эксплуатации и ремонте изделий в процессе эксплуатации.

На диаграмме ниже я отобразил типы электрических схем с небольшими примерами.
Как научиться читать электрические схемы

Вступление

Разберем каждый тип электрических схем в отдельности.

НА всех элементах схемы нужно проставить их номиналы: можность, напряжение, сила тока. Они дополняют информацию друг у друга, выполняются по единым стандартам, понятным всем пользователям, но имеют отличия в своём назначении.

Старайтесь не прокладывать много жгутов, если в монтажной схеме есть элементы, которые соединяются между собой экранированным проводом, то экранированные провода нужно прокладывать отдельно, а сами экраны нужно соединять с общим проводом или землей.


Мы же будем рассматривать только соединение элементов между собой проводами. При разнесённом способе составные части элементов и устройств или отдельные элементы устройств изображают на схеме в разных местах таким образом, чтобы отдельные цепи были изображены наиболее наглядно. Для чтения принципиальных схем необходимо знать алгоритм функционирования схемы, понимать принцип действия приборов, аппаратов, на базе которых построена принципиальная схема. Графическое обозначение элементов и соединяющие их линии связи необходимо стремиться располагать на схеме таким образом, чтобы обеспечить наилучшее представление о взаимодействии её составных частей.

Самое сложное, требующее особого внимания при подключении, это подсоединение проходных выключателей с управлением с двух, трех и более мест. Такие перемычки обычно рисуют в тех случаях, когда проще провести линию между элементами, особенно если они располагаются рядом друг с другом, чем писать маршрут на схеме. Сейчас прошли те времена, когда в комнате была одна лампочка и две розетки, а возле счетчика стояли две пробки, предохраняющие от возможных перегрузок и короткого замыкания.

Вы смотрели


Цифры и буквы, входящие в обозначения, следует выполнять одним размером шрифта. Исключительное право сохранено за автором текста. На экране вы видите простейшую принципиальную электрическую схему цепи.

Ахахаха Если честно иной раз когда работаю с чертежами, понимаю что попросту разбираюсь в них только по тому, что сам в голове четко знаю что где находиться и для меня не составляет прочитать какую то закорючку. Допускается помещать на схемы технические данные изделия в виде диаграмм, таблиц или текста. При составлении чертежа важно учесть расстановку и мощность стационарной техники, условия использования электроприборов, комфортное для использования размещение розеток и выключателей.

Схемка такая: С освещением чуть сложнее. В общем случае принципиальные схемы содержат: 1 условные изображения принципа действия того или иного функционального узла системы автоматизации; 2 поясняющие надписи; 3 части отдельных элементов приборов, электрических аппаратов данной схемы, используемые в других схемах, а также элементы устройств из других схем; 4 диаграммы переключений контактов многопозиционных устройств; 5 перечень используемых в данной схеме приборов, аппаратуры; 6 перечень чертежей, относящихся к данной схеме, общие пояснения и примечания. Механическое удерживание земляных масс : Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций При этом обе линии одновременно запитывают как освещение, так и розетки для подключения электроприборов.

КОМПАС Электрик Часть 2 Разработка схемы принципиальной Э3

Содержание

Важно определить и места их размещения, так как использование удлинителей и фильтров в дальнейшем создаст дополнительные проблемы для сети и испортит дизайн интерьера.

Работает — замыкает и размыкает контакты 1 — 2 и 1 — 3. Допускается все обозначения пропорционально уменьшать, однако при этом просвет между двумя соседними линиями условного графического обозначения должен быть не менее 1 мм.

Если на одной схеме изображаются цепи различного функционального назначения например, силовые цепи, цепи управления и т. Также эти устройства могут предотвратить возникновение пожаров из-за неисправностей проводки или электроприборов.

Конечно, с монтажом простых бытовых устройств, например блоков питания или усилилелей ЗЧ все намного проще. Схема подключений электропривода соответствует схемам на рис.

Читайте также: Сто объемы и нормы

Такие задачи возникают при наладке и устранении неполадок в процессе эксплуатации; г установить элементы, в которых могут быть нарушены временные зависимости либо в результате неправильной регулировки, либо из-за неправильной оценки проектировщиком реальных условий эксплуатации. Масштаб при этом можно не соблюдать. Требования к обозначению цепей принципиальных электрических схем определены ГОСТ 2. Чтение принципиальной схемы всегда начинают с общего ознакомления с нею и перечнем элементов, находят на схеме каждый из них, читают все примечания и пояснения.

Это достигается, во-первых, введением специальной системы условных графических обозначений аппаратов и их отдельных элементов и, во-вторых, системой буквенно-цифровых обозначений элементов схем. В общем то, сложности возникают только в первое время, если вы устроились на какое то предприятие, консультируйтесь с работниками или инженером, с тем, кто рисовал монтажку.

Я дизайнер с профессиональным образованием, был у меня один сложный заказ, самостоятельно не смогла сделать проект, обращалась в эту компанию. Допускается, если это не вызывает ошибочного подключения, обозначать фазы цепей переменного тока буквами А, В, С на рис.

Электрические схемы. Типы. Правила выполнения

Для этого не обязательно использовать алебастр в чистом виде. Так же на схеме указывают технические параметры функциональных частей в виде поясняющих надписей.

Так, на рис. Условные обозначения: 1 — вентиль шарового типа, установленный на подающую линию; 2 — вентиль шарового типа, на выходе; 3 — очищающий фильтр; 4 — клапан на обратную линию; 5 — трехходовая смесительная запорная арматура; 6 — клапан для перезапуска; 7 — насос, обеспечивающий циркуляцию рабочей жидкости; 8 — кран, перекрывающий обратный коллектор; 9 — запорная арматура, перекрывающая вход в подающий коллектор; 10 — корпус обратного коллектора; 12 — запорная арматура шарового типа, перекрывающая обратку; 13 — вентили для перекрытия подачи; 14 — кран для стравливания воздуха; 15 — дренажная запорная арматура; 16 — батарея центрального отопления.

В первую очередь на чертеж наносится контур устройства, в который вписаны используемые в оборудовании элементы, например, клемники или рейки с зажимами. Ложные цепи иногда образуются не только при непредвиденном соединении, но и при незамыкании, контакта, перегорании одного предохранителя, в то время как остальные остались исправными.
Как читать электрические схемы. Радиодетали маркировка обозначение

Монтажные электрические схемы —

§ 31. Принципиальные и монтажные электрические схемы

Простейшая демонстрационная электрическая цепь может содержать всего три элемента: источник, нагрузку и соединительные провода. Однако реальные работающие цепи намного сложнее. Помимо основных элементов они содержат различные выключатели, рубильники, пускатели, контакторы, предохранители, реле в автоматах, электроизмерительные приборы, розетки, вилки и др. При сборке электротехнических цепей электромонтажник руководствуется принципиальной электрической схемой.

Принципиальная электрическая схема представляет собой графическое изображение электрической цепи, на котором её элементы изображаются в виде условных знаков (табл. 10).

Таблица 10.
Условные обозначения элементов электрической цепи


На рисунке 54, а представлена простейшая принципиальная электрическая схема цепи, содержащая источник электрической энергии в виде батареи гальванических элементов, нагрузку в виде лампы накаливания и выключатель.

Рис. 54. Электрические схемы соединения элементов: а — принципиальная, б — монтажная

Принципиальная электрическая схема устройства является графическим документом. Условные обозначения и правила выполнения электрических схем определяются государственным стандартом, который обязаны соблюдать все инженеры и техники.

При вычерчивании электрических схем необходимо соблюдать размеры и пропорции условных графических обозначений (рис. 55).

Рис. 55. Размеры и пропорции условных электротехнических обозначений

Линии связей между элементами схемы проводят параллельно или взаимно перпендикулярно, соблюдая условие замкнутости цепи, наклонные линии не применяются.

Принципиальная схема показывает соединение только основных элементов цепи, без комплектующей арматуры (электророзетки, вилки, ламповые патроны). Поэтому электромонтажнику необходимо иметь ещё одну схему — монтажную.

Монтажная электрическая схема отображает точное расположение элементов относительно друг друга, комплектующую арматуру и места подключения проводов. Пример монтажной схемы приведён на рисунке 54, б. По этой схеме электромонтажник видит, что все элементы электрической цепи крепятся на монтажной плате. Источником служит батарея от карманного фонарика. Монтажные провода, идущие к батарее, припаиваются непосредственно к её электродам. Малогабаритная лампочка вворачивается в ламповый патрон, закреплённый на плате. Монтажные провода крепятся к клеммам лампового патрона с помощью пайки, как и провода к выключателю. Контакты выключателя закреплены также на монтажной плате.

Новые слова и понятия

Принципиальная и монтажная схемы, комплектующая арматура, элементы электрической цепи.

Схема электропроводки в квартире

Вступление

Здравствуй Уважаемый читатель! Схемы электропроводки в квартире являются основными документами для электрика. На основе схем электропроводки выполняются все работы по организации электропитания квартиры. Вся электрика в квартире должна выполняться в соответствии со схемами электропроводки, которые в свою очередь делаются в строго соответствии с нормативными документами.

Для электрики в квартире делается несколько различных схем электропроводки. Все они относятся к одному виду схем-электрические схемы, но различаются по типу. Каждый тип электрических схем имеет свою информационную нагрузку и, соответственно, различный внешний вид.

Типы электрических схем электропроводки в квартире

Все электрические схемы электропроводки отображают основные функциональные части проводки (розетки, светильники, автоматы защиты, УЗО и т. п.) и основные взаимосвязи между ними.

К основным типам электрических схем электропроводки в квартире относятся:

  • Структурная схема;
  • Функциональная схема;
  • Принципиальная схема;
  • Расчетная схема;
  • Монтажная схема (соединений).

На диаграмме ниже я отобразил типы электрических схем с небольшими примерами.

Разберем каждый тип электрических схем в отдельности.

Структурная схема электропроводки квартиры

Структурная схема электропроводки делается самой первой. На ней в виде прямоугольников иллюстрируются взаимосвязи между распределительным щитом, электрическим вводом в квартиру и всеми планируемыми электроприборами, которые в квартире будут установлены.

Графическое построение структурной схемы должно максимально полно отобразить все электрические взаимосвязи. Связи на структурной схеме желательно отобразить в виде стрелок. НА всех элементах схемы нужно проставить их номиналы: можность, напряжение, сила тока. Все это нужно для функциональной электрической схемы квартиры.

Функциональная(принципиальная) схема электропроводки квартиры

В этой схеме электрические связи между элементами электропроводки и сами элементы иллюстрируются в виде специальных обозначений. Смотрите рисунок ниже. Здесь же представляю пример функциональной схемы электропроводки квартиры с заземлением и двумя УЗО(устройства защитного отключения)

Электромонтажная (Полная принципиальная) схема электропроводки квартиры

Это наиболее полный тип схемы электропроводки. На этой схеме обозначаются все электрические элементы (розетки, светильники и т.п.) и бытовые устройства (плита, джакузи, теплый пол, кондиционеры). Точно отображаются линии прокладки всех кабелей электропроводки. Расположение распаячных коробок, шин соединения на входах и выходах электрических цепей. Пример принципиальной схемы электропроводки смотрите ниже.

Однолинейная расчетная схема электропроводки квартиры

Очень важная схема электропроводки квартиры. Делаются расчетные схемы для электрических квартирных щитков. На ней указываются все вводные автоматы защиты, автоматы защиты для отдельных групп электропроводки. Изображаются они специальными условными обозначениями. Также на расчетной схеме обозначаются все потребители и кабели электропроводок.

Все элементы схемы нанесены с расчетными номинальными характеристиками. Для автоматов защиты указываются ток срабатывания в Амперах. Для кабелей указывается количество жил, их сечение и марка. Например: кабель ВВГнг 3х2.5,обозначает кабель с тремя медными жилами в виниловой изоляции с сечением жил 2,5 квадратных миллиметра, причем изоляция нг-негорючая. Об электрических кабелях и их маркировках читайте отдельную статью на сайте.

На основе именно расчетной схемы покупаются материалы для выполнения работ по электрике. Также по расчетной схеме электропроводка квартиры разбивается на группы.

По расчетной схеме любой электрик может собрать электрический квартирный щит и поэтому в электропроекты квартир обычно не включают следующий тип электрической схемы. Это монтажная схема или схема соединений.

Монтажная схема (схема соединений) электропроводки в квартире

Монтажная схема иллюстрирует все электрические соединения в квартире.

Делается она в виде подробной таблицы с указанием, от какого устройства и куда идет кабель, к какой клемме он подсоединяется и какие характеристики имеет. Для электропроектов квартир монтажные схемы делаются редко, В основном схемы соединений делаются для промышленных предприятий с большими распределительными щитами, а также для главного распределительного щита (ГРЩ) жилых домов.

Схемы по электрике. Виды и типы. Некоторые обозначения

Во время работ по электротехнике человек может столкнуться с обозначениями элементов, которые условно обозначены на электромонтажных схемах. Разнообразия схемы по электрике очень широки. Они имеют разные функции и классификацию. Но все графические обозначения в условном виде приводятся к одним формам, и для всех схем элементы соответствуют друг другу.

Электромонтажная схема – это документ, в котором обозначены связи составных элементов разных устройств, потребляющих электроэнергию, между собой по определенным стандартным правилам. Такое изображение в виде чертежа призвано научить специалистов по электрическому монтажу, чтобы они поняли из схемы принцип действия устройства, и из каких составных частей и элементов она собрана.

Главное предназначение электромонтажной схемы – оказать помощь в монтаже электроустройств и приборов, простом и легком обнаружении неисправности в электрической цепи. Далее разберемся в видах и типах электромонтажных схем, выясним их свойства и характеристики каждого типа.

Схемы по электрике: классификация

Все электрические схемы, как документы, разделяются на виды и типы. По соответствующим стандартам можно найти разделение этих документов по видам схем и типам. Разберем их подробную классификацию.

Виды электромонтажных схем следующие:
  • Электрические.
  • Газовые.
  • Гидравлические.
  • Энергетические.
  • Деления.
  • Пневматические.
  • Кинематические.
  • Комбинированные.
  • Вакуумные.
  • Оптические.
Основные типы:
  • Структурные.
  • Монтажные.
  • Объединенные.
  • Расположения.
  • Общие.
  • Функциональные.
  • Принципиальные.
  • Подключения.

Рассматривая схемы по электрике, перечисленные обозначения, по названию электросхемы определяют тип и вид.

Обозначения в электросхемах

В современный период в электромонтажных работах используются как отечественные, так и импортные элементы. Зарубежные детали можно представить широким ассортиментом. На схемах и чертежах они также обозначаются условно. Описывается не только размер параметров, но и список элементов, входящих в устройство, их взаимосвязь.

Теперь следует разобраться, для чего предназначена каждая конкретная электросхема, и из чего она состоит.

Принципиальная схема

Такой тип используется в распределительных сетях. Он обеспечивает полное раскрытие работы электрооборудования. На чертеже обязательно обозначают функциональные узлы, их связь. Схема имеет два вида: однолинейная, полная. На однолинейной схеме изображены первичные сети (силовые). Вот ее пример:

Полный вариант схемы по электрике изображается в элементном или развернутом виде. Если устройство простое, и на чертеже входят все пояснения, то хватит развернутого плана. При сложном устройстве с цепью управления, измерения и т. д., оптимальным решением будет изобразить все узлы на отдельных листах, во избежание путаницы.

Бывает также принципиальная электросхема, на которой изображена выкопировка плана с обозначением отдельного узла, его состав и работа.

Монтажная схема

Такие схемы по электрике применяются для разъяснения монтажа какой-либо проводки. На них можно изобразить точное положение элементов, их соединение, характеристики установок. На схеме проводки квартиры будет видно размещение розеток, светильников и т.д.

Эта схема руководит электромонтажными работами, дает понимание всех подключений. Для монтажа бытовых устройств такая схема лучше подходит для работы.

Объединенная схема

Этот тип схемы включает в себя разные виды и типы документов. Ее применяют для того, чтобы не загромождать чертеж, обозначить важные цепи, особенности. Чаще объединенные схемы применяют на предприятиях промышленности. Для домашнего применения она вряд ли имеет смысл.

Изучив условные обозначения, подготовив необходимую документацию, не трудно разобраться в работе любой электроустановке.

Порядок сборки по электрической схеме
Самым сложным делом для электрика является понимание взаимодействия элементов в схеме. Нужно знать, как читать и собирать схему. Сборка предполагает определенные правила:
  • Во время сборки необходимо руководствоваться одним направлением, например, по часовой стрелке.
  • Лучше для начала разделить схему на части, если много элементов и схема сложная.
  • Начинают сборку от фазы.
  • При каждом выполненном шаге по сборке нужно предположить, что будет происходить, если в данный момент подать напряжение.

После окончания сборки обязательно должна образоваться замкнутая цепь. Для примера разберем подключение в домашних условиях люстры, состоящей из 3-х плафонов, с применением двойного выключателя.

Сначала определим порядок работы люстры. При включении 1-й клавиши должна загораться одна лампочка, если включить 2-ю клавишу, то другие две. По схеме на выключатель и люстру идут по 3 провода. От сети идут два провода, фаза и ноль.

Индикатором определяем и находим фазу, соединяем ее с выключателем, не прерывая ноль. Провод присоединяем к общей клемме выключателя. От него пойдут 2 провода на 2 цепи. Один из проводов соединим с патроном лампы. От патрона выводим второй проводник, соединяем с нулем. Одна цепь готова. Для проверки щелкаем первой клавишей выключателя, лампа горит.

2-й провод от выключателя подключаем к патрону другой лампы. От патрона провод соединяем с нулем. Если по очереди щелкать клавишами выключателя, то будут светиться разные лампы.

Теперь подключим третью лампу. Соединяем ее параллельно к любой лампе. В люстре один провод стал общим. Его делают отличительным по цвету. Если у вас провода все одинаковые по цвету, то во избежание путаницы необходимо при монтаже пользоваться индикатором. Для подключения люстры обычно не требуется особого труда, так как эта схема не особо сложная.

МИСТЕР ЭЛЕКТРИК СЕРГИЕВ ПОСАД

Каталог статей

Современное электрическое оборудование в своей работе использует многочисленные технологические процессы, протекающие по различным алгоритмам. Работнику, занимающемуся его эксплуатацией, обслуживанием, монтажом, наладкой и ремонтом, необходимо иметь достоверную информацию обо всех их особенностях.

Предоставление происходящих событий в графическом виде с обозначением каждого элемента определённым, стандартным способом, значительно облегчает этот процесс, позволяет передавать замыслы разработчиков другим специалистам в понятной форме.

Назначение

Электрические схемы создаются для электриков всех специальностей, имеют различные особенности оформления. Среди способов их классификации используется деление на:

Оба типа схем взаимосвязаны. Они дополняют информацию друг у друга, выполняются по единым стандартам, понятным всем пользователям, имеют отличия по назначению:

принципиальные электрические схемы создаются для показа принципов работы и взаимодействия составляющих элементов в порядке очередности их срабатывания. Они демонстрируют логику, заложенную в технологию применяемой системы;

монтажные схемы изготавливаются как чертежи или эскизы частей электрооборудования, по которым выполняется сборка, монтаж электроустановки. Они учитывают расположение, компоновку составных частей и отображают все электрические связи между ними.

Монтажные схемы создаются на основе принципиальных и содержат всю необходимую информацию по производству монтажа электроустановки, включая выполнение электрических соединений. Без их использования создать качественно, надежно и понятно для всех специалистов электрические подключения современного оборудования невозможно.

Показанная на фотографии панель защит соединяется многочисленными кабелями с измерительными трансформаторами тока и напряжения, силовым исполнительным оборудованием, логическими устройствами, удалёнными на сотни метров между собой. Правильно собрать ее можно только по хорошо подготовленной монтажной схеме.

Как создаются монтажные электрические схемы

Вначале разработчик создает принципиальную схему, на которой показывает все применяемые им элементы и способы их подключения проводами.

Пример простого подключения двигателя постоянного тока к силовой цепи с помощью контактора К, и двух кнопок Кн1 и Кн2 демонстрирует этот способ.

Мощные силовые нормально разомкнутые контакты контактора 1-2 и 3-4 позволяют управлять работой электродвигателя М, а 5-6 применяется для создания цепи самоудержания обмотки А-Б под напряжением после нажатия и отпускания кнопки Кн1 «Пуск» с замыкающим контактом 1-3.

Кнопка Кн2 «Стоп» своим размыкающим контактом снимает питание с обмотки контактора К.

На электродвигатель подается положительный потенциал напряжения «+» по проводу, промаркированному цифрой «1» и «—» — «2». Остальные провода обозначены цифрами «5» и «6». Способ их маркировки может быть и другим, например, с добавлением букв и символов.

Таким способом на принципиальной схеме показываются все контакты обмоток, коммутационных аппаратов и соединительные провода. Также могут обозначаться другие необходимые для работы сведения.

После того, как принципиальная электрическая схема создана под нее разрабатывается монтажная. На ней изображаются те элементы, которые задействованы в работе. Причем могут показываться как все существующие контакты коммутационных аппаратов, кнопок (пример Кн1 и Кн2), контакторов и реле, так и только используемые в рассматриваемом случае (пример контактора К) для упрощения восприятия.

Все монтажные единицы нумеруются с присвоением индивидуального номера каждой позиции. Например, на нашей схеме обозначены:

01 — клеммник подключения силовых цепей;

02 — контакты электродвигателя;

04 — кнопка «Пуск»;

05 — кнопка «Стоп».

Контакты кнопок, реле, пускателей и всех электрических элементов схемы нумеруются на корпусе каждого прибора или указываются определенным положением в технической документации.

Изображения проводов выполняются линиями прямого направления и маркируются тем же способом, как и на принципиальной схеме. В рассматриваемом варианте им присвоены номера 1, 2, 5, 6.

Как читать и собирать монтажные электрические схемы

Во время сборки сложных цепей удобно работать сразу с монтажной и принципиальной схемами. Они дополняют общую информацию, которую бывает сложно удержать в памяти.

При этом следует понимать, что изображенные на бумаге задумки должны быть воплощены на реальном оборудовании и так же хорошо, наглядно читаться, быть информативными. С этой целью любой элемент подписывается, обозначается, маркируется.

Обозначения приборов и аппаратов

С лицевой стороны панелей, шкафов управления делаются надписи, поясняющие оперативному персоналу назначение каждого электрического устройства, а у коммутационных аппаратов — положение переключающего органа, соответствующее каждому режиму.

Ключи и кнопки подписываются по совершаемому действию, например, «Пуск», «Стоп», «Тест». На сигнальных лампочках указывается характер воздействующего сигнала, например, «Блинкер не поднят».

С обратной стороны панели против каждого элемента размещается наклейка (обычно круглой формы) с указанием дробью монтажной позиции согласно схемы вверху и краткого обозначения по схеме монтажа внизу, например, 019/HL3 — для лампы сигнализации.

Обозначения проводов

При монтаже оборудования на каждое окончание провода надевают кембрики подписанные устойчивыми к выгоранию на свету и несмываемыми чернилами, обозначающими принятую маркировку. Их подключаются к указанным клеммам. Когда в обозначении встречаются только цифры «0», «9». «6», то после них ставят точку, исключающую неправильное прочтение информации при рассмотрении надписи с обратной стороны.

Для простого оборудования этого приема бывает достаточно.

На сложных и разветвленных системах добавляют обратный адрес конца. Он состоит из двух частей:

1. вначале идет нумерация позиционного обозначения элемента, подключаемого на обратной стороне;

2. далее — номер клеммы.

Например, на клемме 2 кнопки Кн2 должен быть подключен провод с надетым кембриком, подписанным 5—04—3. Эта надпись расшифровывается:

5 — маркировка провода по монтажной и принципиальной схеме;

04 — номер монтажной единицы кнопки «Пуск»;

Последовательность чередования, как и применение скобок или других разделителей обозначений может меняться, но, важно ее делать однообразно на всех участках электроустановки. Маркировка должна быть выполнена в строгом соответствии с рабочими чертежами и монтажной схемой.

Она позволяет специалистам читать смонтированную схему с натуры так же удобно, как и с бумажного листа, что требуется делать быстро при поиске неисправностей или профилактических обслуживаниях.

Для информации: раньше маркировка концов проводов выполнялась:

надеванием фарфоровых наконечников с нанесением обозначений масляными красками;

подвешиванием алюминиевых жетонов с отчеканенной информацией;

закреплением картонных бирок с надписями тушью или карандашами;

другими доступными способами.

Монтажную схему может дополнять или заменять таблица соединений проводов. Она указывает:

маркировку каждого провода;

начало его подключения;

марку, тип металла, площадь поперечного сечения;

Маркировка проводаОткуда выходитКуда приходитМарка, тип, площадь
А12SA-4QF-3ПВГ (2,5 мм кв)
В14SA-2SA-7ПВГ (1,5 мм кв)

Обозначения кабелей

Обязательным элементом каждой электроустановки является кабельный журнал, создаваемый для каждого индивидуального присоединения на сложных участках или один общий для нескольких простых. В нем содержится полная информация о каждом подключении кабеля.

Например, на открытом распределительном устройстве подстанции 110 кВ с силовыми секционированными шинами и выключателями, управляющими работой 25 воздушных ЛЭП создается монтажное присоединение для каждой ВЛ. Ему присваивается индивидуальный номер, который указывается в документации и на оборудовании.

Линии №19 из этого ОРУ дается оперативное диспетчерское название по основному населенному пункту питания и монтажное обозначение, например, 19-СЛ, которое проставляется на всем оборудовании, включая вторичные кабельные сети этой ВЛ на подстанции.

Кроме принадлежности кабеля к линии в кабельном журнале и на оборудовании указывается его атрибут по назначению, например:

измерительным цепям тока или напряжения;

схеме автоматики или управления;

другим вторичным устройствам.

При монтаже электрических схем могут использоваться кабельные линии различной протяженности. На входе в панель или шкаф их количество может быть довольно большим. Все они маркируются по обоим концам, а также при переходах через стены здания и другие строительные конструкции.

На кабель вывешивается бирка с информацией, указывающей его принадлежность, назначение, марку, состав жил. При его разделке каждый провод маркируется. На кончики, подключаемые к электрической схеме, наносится информация о принадлежности к кабелю, номере коммутируемой клеммы на клеммнике и обозначение цепочки.

Свободные жилы кабеля, находящиеся в резерве, как и рабочие должны вызваниваться и маркироваться. Но, на практике это требование осуществляют довольно редко.

Особенности обозначения отдельных элементов на монтажных схемах

По местным условиям иногда отходят от общепринятых правил, облегчают вычерчивание схем и монтаж электрических цепей не в ущерб их чтению с натуры.

Чаще всего это проявляется при:

навесном монтаже деталей прямо на контактные выводы реле и приборов;

установке коротких, хорошо различимых перемычек.

Навесной монтаж

Пример установки диодов VD4 и VD5 параллельно выводам обмоток А-В у реле К3 и К4 показан на фрагменте монтажной схемы.

В этой ситуации они монтируются напрямую, без маркировки и подписей.

Перемычки

На этом же фрагменте показано установка перемычки между одноименными выводами А обмоток тех же реле.

Монтаж электрического оборудования выполняется по принципиальной и монтажной схемам, созданным по единым правилам. Он должен отвечать требованиям наглядности, доступности, информативности чтобы ремонт и эксплуатационные работы проводились быстро и качественно.

Как читать электрические схемы — простой фото и видео курс для начинающих

Автор Aluarius На чтение 4 мин. Просмотров 2.5k. Опубликовано

Новички, которые пытаются самостоятельно собрать какие-то электронные схемы и приборы, сталкиваются с самым первым в своей новой деятельности вопросе, как читать электрические схемы?

Что такое электрическая схема

Это графическое изображение, где указаны все электронные элементы, связанные между собой проводниками. Поэтому знание электрических цепочек – это залог правильно собранного электронного прибора. А, значит, основная задача сборщика – это знать, как на схеме обозначаются электронные компоненты, какими графическими значками и дополнительными буквенными или цифровыми значениями.

Все принципиальные электрические схемы состоят из электронных элементов, которые имеют условное графическое обозначение, короче УЗО. Для примера дадим несколько самых простых элементов, которые в графическом исполнении очень похожи на оригинал. Вот так обозначается резистор:

Резистор

Как видите, очень похоже на оригинал. А вот так обозначается динамик:

Динамик

То же большое сходство. То есть, существуют некоторые позиции, которые сразу же можно опознать. И это очень удобно. Но есть и совершенно непохожие позиции, которые или надо запомнить, или надо знать их конструкции, чтобы легко определять на принципиальной схеме. К примеру, конденсатор на рисунке снизу.

Конденсатор

Тот, кто давно разбирается в электротехнике, то знает, что конденсатор – это две пластинки, между которыми размещен диэлектрик. Поэтому в графическом изображении был и выбран этот значок, он в точности повторяет конструкцию самого элемента.

Самые сложные значки у полупроводниковых элементов. Давайте рассмотрим транзистор. Необходимо отметить, что у этого прибора три выхода: эмиттер, база и коллектор. Но и это еще не все. У биполярных транзисторов встречаются две структуры: «n – p – n» и «p – n – p». Поэтому и на схеме они обозначаются по-разному:

Транзистор

Как видите, транзистор по своему изображению на него-то и не похож. Хотя, если знать структуру самого элемента, то можно сообразить, что это именно он и есть.

Простые схемы для начинающих, зная несколько значков, можно читать без проблем. Но практика показывает, что простыми электросхемами в современных электронных приборах практически не обходятся. Так что придется учить все, что касается принципиальных схем. А, значит, необходимо разобраться не только со значками, но и с буквенными и цифровыми обозначениями.

Что обозначают буквы и цифры

Все цифры и буквы на схемах являются дополнительной информацией, это опять-таки к вопросу, как правильно читать электросхемы? Начнем с букв. Рядом с каждым УЗО всегда проставляется латинская буква. По сути, это буквенное обозначение элемента.

Это сделано специально, чтобы при описании схемы или устройства электронного прибора, можно было бы обозначать его детали. То есть, не писать, что это резистор или конденсатор, а ставить условное обозначение. Это и проще, и удобнее.

Теперь цифровое обозначение. Понятно, что в любой электронной схеме всегда найдутся элементы одного значения, то есть, однотипных. Поэтому каждую такую деталь пронумеровывают. И вся эта цифровая нумерация идет от верхнего левого угла схемы, затем вниз, далее вверх и опять вниз.

Внимание! Специалисты называют такую нумерацию правилом «И». Если обратите внимание, то движение по схеме так и происходит.

И последнее. Все электронные элементы имеют определенные свои параметры. Их обычно также прописывают рядом со значком или выносят в отдельную таблицу. К примеру, рядом с конденсатором может быть указана его номинальная емкость в микро- или пикофарадах, а также номинальное его напряжение (если такая необходимость возникает).

Вообще, все, что связано с полупроводниковыми деталями должно обязательно дополняться информацией. Это не только упрощает чтение схемы, но и позволяет не ошибиться при выборе самого элемента в процессе сборки.

Иногда цифровые обозначения на электросхемах отсутствуют. Что это значит? К примеру, взять резистор. Это говорит о том, что в данной электрической схеме показатель его мощности не имеет значения. То есть, можно установить даже самый маломощный вариант, который выдержит нагрузки схемы, потому что в ней течет ток малой силы.

И еще несколько обозначений. Проводники графически обозначаются прямой непрерывной линией, места пайки точкой. Но учтите, что точка ставиться только в том месте, где соединяются три или более проводников.

Заключение по теме

Итак, вопрос, как научится читать схемы электрические, не самый простой. Вам потребуется не только знание УЗО, но и знание, касающиеся параметров каждого элемента, его структуры и конструкции, а также принципа работы, и для чего он необходим. То есть, придется учить все азы радио- и электротехники. Сложно? Не без этого. Но если вы поймете, как все работает, то для вас откроются горизонты, о которых вы и не мечтали.

Автоматизированное получение монтажных схем — решение на основе E3.series

Данил Калинцев

Необходимость применения монтажной схемы

Создание монтажной схемы в E3.series

Повышение эффективности производства

Настоящая публикация посвящена уникальным функциональным возможностям САПР E3.series, используемым при формировании монтажных схем в производстве электротехнического оборудования. На основе этого функционала компания ПОИНТ предлагает полностью готовое решение для производителей шкафов, панелей и ячеек, обеспечивающее повышение качества работы проектировщика, уменьшение времени на производственный цикл и техническую проверку за счет автоматизированного выпуска технологических и конструкторских отчетов.

Необходимость применения монтажной схемы

Мало кто знает, что скрывается за термином «производство электротехнического оборудования» (в частности, релейных панелей, шкафов и ячеек) в России: какая документация и какие технологии используются сегодня при проектировании, конструировании и сборке дорогостоящего энергетического оборудования. Несмотря на то, что потребность в подобном оборудовании, диктуемая рынком, требует от фирм­производителей творческого подхода к производству, указанный фактор, к сожалению, не очень влияет на качество выпускаемой продукции. Фактически соотношение качества электрооборудования известных брендов
отечественного и иностранного производства остается примерно таким же, как и у продукции отечественного и зарубежного автопрома.

В первую очередь рассматриваемая проблема качества вызвана длительным снижением потенциала (затрат, внимания отраслевых министерств и ведомств) в сфере разработки, освоения и внедрения новых технологий, которое и привело производство к технологическому застою. Оборудование, применяемое в отечественной электротехнической промышленности, либо было актуально еще в 80­90­е годы прошлого столетия (к примеру, столы­линейки для резки проводов, текстолитовые шаблоны для вязки жгутов и др.), либо закуплено за рубежом после его пятилетнего и даже более длительного «пробега».

Таким образом, даже сконструировав нечто новое с помощью современных и мощных электротехнических САПР (или хотя бы с применением систем графического конструирования), мы затем наступаем на те же грабли, а именно — на старые технологии сборки оборудования. Всё сказанное нами применимо и к сборкам релейных панелей, шкафов и ячеек.

Что тут можно сказать? Известно, насколько консервативна отрасль энергетики сама по себе. Установка в шкаф оборудования, резка проводов и их обжим наконечниками, посадка на провода «трубочек» с адресами (иногда даже просто написанными ручкой или маркером), вязка жгутов, подключение аппаратуры, укладка проводников в короба — всё это, как правило, ручные операции. Для данных операций создается конструкторская и технологическая документация в соответствии с принятыми на предприятиях стандартами. Технологическая и конструкторская документация, используемая при реализации проекта, до сих пор, как правило, создается вручную — например чертится тушью, гелевой ручкой или карандашом.

Еще одна, не менее важная составляющая производственного цикла электротехнического оборудования — квалификация работников. Очень часто сварка, сборка конструкций (тех же ячеек, шкафов и панелей) выполняется чуть ли не на глаз, а шероховатости подобного производства дорабатываются по месту каким­нибудь мастером на все руки. Не перевелись, слава Богу, еще Левши на Руси.

Подключение оборудования в шкафах проводят работники, которые порой даже не знакомы с простейшими законами электротехники. При трассировке проводов по шкафу каждый работник предпочитает пользоваться собственным опытом и привычными для него методами. Иными словами, каждый шкаф или панель, собираемая в нашей стране, фактически представляет собой уникальное и неповторимое изделие, даже если оно выполнялось по одной и той же конструкторской и технологической документации.

В связи с проблемами дефицита квалифицированных кадров и применением устаревших технологий производства наиболее простым в освоении, привычным и удобным в обращении является такой конструкторский документ, как монтажная схема. Монтажку в России используют все без исключения специалисты, имеющие непосредственное отношение к сборке, проверке, наладке и эксплуатации электротехнического оборудования. Точно так же на основе монтажной схемы создаются технологические документы для формирования жгутов, раскладки проводников в релейных панелях, шкафах и ячейках.

Поэтому монтажная схема остается самым распространенным и необходимым инструментом отечественного производителя шкафного электротехнического оборудования.

Создание монтажной схемы в E3.series

Чтобы оценить важность документа «монтажная схема», приведем для начала строгое определение, взятое из официальных документов. Монтажная схема в ГОСТ 2.701­2008 называется «Схема электрическая соединений» — с кодом схемы Э4. В упомянутом ГОСТе написано следующее: «…Схема электрическая соединений (монтажная) — документ, показывающий соединения основных частей изделия (установки) и определяющий провода, жгуты, кабели или трубопроводы, по которым осуществляются эти соединения, а также места их присоединений и ввода (разъемы, платы, зажимы и т.п.)».

А вот как в соответствии с ГОСТ 2.702­75 указаны правила выполнения схемы: «На схеме соединений должны быть изображены все устройства и элементы, входящие в состав изделия, их входные и выходные элементы (соединители, платы, зажимы и т.п.), а также соединения между этими устройствами и элементами». Иллюстрация выполнения такой схемы представлена на рис. 1.

Рис. 1. Порядок выполнения схемы Э4 в соответствии с ГОСТом

Вне изображенного прямоугольника допускается размещать таблицы, содержащие адреса внешних соединений. При необходимости допускается вводить в данные таблицы дополнительные графы (рис. 2).

Рис. 2. Порядок создания таблицы на схеме Э4

И вот тут становится понятным некоторое заблуждение производителей шкафного оборудования. По определению, схема электрическая соединений — это монтажная схема по ГОСТ 2.701­2008, однако фактически данная схема должна отображать лишь общие связи к изделиям — в табличной форме. Таким образом, то, что в просторечии привыкли называть монтажкой, правильно именовать так: «Схема электрическая подключений» с кодом Э5 по ГОСТ 2.701­2008. В данном ГОСТе указано, что эта схема — «документ, показывающий внешние подключения изделия».

В то же время в ГОСТ 2.702­75 детализируются правила выполнения схемы: «На схеме подключения должны быть изображены изделие, его входные и выходные элементы (соединители, зажимы и т. п.) и подводимые к ним концы проводов и кабелей (многожильных проводов, электрических шнуров) внешнего монтажа, около которых помещают данные о подключении изделия [характеристики внешних цепей и (или) адреса]». Вариант символа такой схемы Э5 показан на рис. 3.

Рис. 3. Примеры выполнения схемы Э5 из ГОСТа

В отечественном производстве, как правило, применяется некий гибрид этих двух типов схем.

Теперь следует сказать несколько слов о плюсах использования такого вида схем.

Основная ценность схемы — ее наглядность: ведь работник, осуществляющий монтаж, подключает провода к выводам, напротив которых указаны адрес и другая информация, касающаяся провода. При этом работник ориентируется в выполняемом монтаже чисто визуально.

Следующий плюс состоит в том, что схема задает приблизительное расположение аппаратов на монтажной поверхности, то есть она частично выполняет функции чертежа компоновки. Поэтому, пользуясь монтажкой, можно полностью выполнить установку оборудования в шкафах. Информация, содержащаяся в надписи рядом с выводом, необходима для подключения проводников, а также служит для разработки технологической документации, таблиц подключения и др.

К положительным моментам можно отнести и легкость проверки правильности подключения (например, работниками службы технического контроля), то есть так называемого прозвона схемы. Поскольку изделия на этой схеме могут быть отрисованы с добавлением части УГО (условного графического изображения принципиальной схемы), ошибки выявить проще. Таким образом, один документ способен заменить сразу несколько отчетов: таблицу подключения изделий, таблицу прозвона цепей, таблицу карты раскладки проводников — и отчасти — чертежи компоновки и чертежи жгута.

Основными минусами подобной схемы являются большой формат листов чертежа (как правило, А3 и выше) и возможность излишней свободы действий работника при выполнении трассировки подключаемых проводников. При работе в некоторых САПР специалисты­проектировщики сталкиваются с проблемами вида (формата) выходных документов. Некоторые из систем проектирования либо вовсе не приспособлены для работы по российским стандартам, либо характеризуются серьезными ограничениями возможности генерации специализированной проектной и технологической документации.

Что касается современных САПР — к ним, в частности, относится E3.series, то при работе в них рассматриваемые вопросы решаются достаточно просто.

«Е­куб» — это мощная система сквозного проектирования электротехники, гидравлики и пневматики для отраслей энергетики, авиастроения, кораблестроения, машиностроения, приборостроения и перерабатывающей промышленности. Она включает функционал, обеспечивающий формирование любых отчетов по российским стандартам и даже в соответствии с внутренними стандартами предприятия, будь то конструкторский, технологический, бухгалтерский или иной документ.

Многие производители электротехнического оборудования при покупке САПР делают акцент преимущественно на возможности получения монтажной схемы. Поэтому и опытные пользователи E3.series, и наши потенциальные клиенты всегда интересуются технологией получения данного типа документа. Проработав их пожелания, мы «научили» E3.series делать монтажные схемы в полном соответствии с ГОСТом.

В настоящее время ЗАО «Компания ПОИНТ» включает в комплект поставки системы также базы данных с набором символов для монтажной схемы. В соответствии с ГОСТ 2.702­75 эти символы содержат информацию о подключенных проводах: обратный адрес, сечение, цвет и др. Сам по себе монтажный символ изображается в виде прямоугольника — с зажимами и условными графическими изображениями внутри него. Указанный символ изделия имеет свою текстовую часть: коды устройства и места, позиционное обозначение, тип, функциональное назначение, позицию на монтажной поверхности и многое другое.

Пример подобного символа приведен на рис. 4.

Рис. 4. Типичный символ монтажной схемы

Процесс автотрассировки фактически запускается нажатием одной кнопки — после чего раскладка проводников по шкафу выполняется в автоматическом режиме (рис. 5 и 6).

Рис. 5. Фрагмент шкафа до выполнения автотрассировки

Рис. 6. Фрагмент шкафа после выполнения автотрассировки

Для работы с функционалом монтажной схемы в автоматизированном режиме необходимы модули E3.cable и Е3.panel+. Модуль E3.cable нужен для выполнения всех схем и отчетов — принципиальной, монтажной, а также перечня элементов, ведомости покупных и пр. Модуль Е3.panel+ содержит обширный набор функций для создания чертежей компоновки и выполнения автотрассировки — с последующим получением адресов на монтажной схеме (рис. 7). Иными словами, он является своего рода расширением функционала E3.cable.

Рис. 7. Фрагмент монтажной схемы

Для создания монтажной схемы достаточно добавить в базу данных E3.series монтажные символы изделий. После этого в любом проекте, включающем монтажную схему, появляются следующие возможности:

  • для всех однозначных соединений адреса выводов монтажных символов и рядов клемм автоматически размещаются на монтажной схеме еще до трассировки;
  • в случае неоднозначных соединений присваивание адресов выводам монтажных символов и рядов клемм выполняется только после трассировки соответствующих проводов и кабелей на чертеже компоновки;
  • автоматическое формирование клеммных рядов монтажной схемы;
  • все изменяемые надписи монтажных символов на листе схемы соединений активно связаны с соответствующими изделиями. Указанные надписи являются идентичными в различных разделах проекта и могут редактироваться как на монтажной схеме, так и на других листах проекта. При изменении какой­либо надписи на монтажной схеме происходит автоматическое изменение соответствующих надписей во всех остальных разделах проекта. И наоборот: изменение надписи где­либо в проекте (например, на листах с кодом Э3 или Э6) приводит к немедленному изменению на монтажной схеме, чем обеспечивается сквозное проектирование;
  • размещение монтажных символов на схеме соединений с кодом Э4 не зависит от размещения моделей соответствующих изделий на чертеже компоновки.

Повышение эффективности производства

При работе в широко применяемых графических пакетах проектировщик вынужден выполнять схемы подобно черчению на кульмане — только инструментом отрисовки становится электронный карандаш. Сами элементы, будь то линии, тексты или блоки, совершенно не связаны друг с другом.

Во­первых, получаемые документы — абсолютно «мертвые». В них можно применять только простейшие функции редактирования, тогда как текстовая информация, содержащаяся в создаваемых документах, не может быть использована при выполнении последующих автоматизированных операций для других отчетов. Во­вторых, очень велика вероятность появления ошибок из­за ручного редактирования. В­третьих, при внесении какого­либо изменения в один из документов от проектировщика потребуется вручную выполнить соответствующие изменения во всех других связанных с ним документах.

Каждый отчет несет в себе информацию, необходимую для выполнения определенной операции: будь то оформление заказа и закупка комплектующих, сборка шкафов и ячеек, подключение проводов и кабелей, прозвонка изделий и устройств и пр. Каждый из этих документов система E3.series может генерировать автоматически. Таким образом, пользуясь этой САПР, можно обеспечить автоматизацию всего производственного цикла — от разработки проекта и закупки необходимого оборудования и материалов до выполнения пусконаладочных работ.

При использовании Е3.series качество работы проектировщика определяется только правильностью созданных им схем (в смысле логики их функционирования в конкретном изделии), то есть уровнем его знаний и квалификации.

Работа в САПР Е3.series обеспечивает полную онлайновую связь между всеми документами проекта (схемами Э3, Э4, Э6 и пр.). Поэтому изменение в любом из них немедленно приводит к автоматическим изменениям во всех остальных документах. Поскольку подсчет длины проводов и кабелей в системе также осуществляется автоматически, удельный расход проводников в расчете на одно изделие снижается до 30%. При использовании функционала автотрассировки происходит не только автоматическое распределение по коробам проводов с минимизацией их длины, но и уменьшение степени заполнения коробов до 25%.

Таким образом, реализованная технология выполнения монтажной схемы делает Е3.series еще более мощным инструментом проектирования, а приобретение системы становится особенно привлекательным для предприятий, производящих шкафы, панели и ячейки. Как показывает опыт внедрения Е3.series, резко сокращаются сроки технологической подготовки проектной документации для сборочного производства. При этом не требуется ломать существующий на предприятии процесс проектирования, так как решение, предлагаемое в рамках Е3.series, полностью согласуется с общепринятой технологией производства.


Данил Калинцев

Ведущий специалист по внедрению САПР компании ПОИНТ. В 2008 году с отличием окончил электротехнический факультет Самарского государственного технического университета по специальности «Автоматизированные электроэнергетические системы».

САПР и графика 9`2010

Схемы электрических соединений для систем кондиционирования воздуха — Часть вторая ~ Электрические ноу-хау

  • Введение в типы систем кондиционирования воздуха,
  • Введение в типы двигателей / компрессоров, используемых в системах кондиционирования воздуха.

И в статье « Схемы электрических соединений для систем кондиционирования — часть первая » я объяснил следующие моменты:
  • Важность электропроводки для систем кондиционирования воздуха,
  • Как получить электропроводку для систем кондиционирования ?,
  • Типы схем электропроводки для систем кондиционирования воздуха,
  • Как читать электрические схемы?

Сегодня я объясню Электропроводка для различных типов систем кондиционирования и оборудования .


Третий: электрические схемы для системы кондиционирования — продолжение
Электрика электрические схемы для типового оборудования для кондиционирования воздуха Основные виды и оборудования в общих системах кондиционирования воздуха были:
  • Оконный кондиционер ед. ,
  • Сплит-кондиционер ед.,
  • Мульти-сплит воздух блоки кондиционирования,

1-оконные кондиционеры
1.1 Окно Воздух Установки кондиционирования Строительство В корпусе оконного кондиционера находятся следующие компоненты: (см. рис.1 )
Рис.1: Окно Кондиционеры Строительство
  1. Конденсатор (наружный змеевик),
  2. Вентилятор конденсатора,
  3. Герметичный компрессор,
  4. Испаритель (внутренний змеевик кондиционирования),
  5. Вентилятор испарителя (нагнетатель),
  6. Controls: Элементы управления для оконный блок прост и встроен, в его состав входят: (см. рис.2)
Рис.2: Окно Органы управления кондиционерами

  • А вращающийся селектор / переключатель режима отмечен шкалой горячего-холодного из пяти позиций (выкл., высокий охлаждение, низкое охлаждение, высокий вентилятор, слабый вентилятор) без настроек температуры.
  • А вращающийся Переключатель термостата работает как переключатель включения / выключения для компрессор, его состояние зависит от того, на какую температуру / степень охлаждения вы его установили. (обычно есть 8 позиций для степень охлаждения).
  • Жалюзи переключатель поворота: это переключатель включения / выключения, который управляет двигателем поворота, ответственным для управления движением и углом направления, в котором подается воздух от жалюзи в комнату.

1. 2 Поток мощности в ответвленной цепи типичного оконного воздуха кондиционер
  • Оконный кондиционер блоки питаются от однофазного источника питания (см. рис.3 ), поэтому его ответвленная цепь и ее основной шнур питания, состоящий из 3-х проводов (Заземление провод, провод под напряжением и нейтральный провод).
Рис.3: Окно Цепь питания кондиционера
  • Филиал цепь будет происходить от одного из однополюсных устройств защиты от перегрузки по току. устройство OCPD включено в электрическую панель.
  • Затем пройдите система кабельных каналов (кабелепроводы, каналы,…) к средствам отключения какого-либо типа подходит для применения.
  • Наконец, основной шнур питания оконного кондиционера соединенный с этим разъединяющим средством с одной стороны, другая сторона входит кожух агрегата, подключаемый к клеммной коробке агрегата.

1.3 Электрические соединения внутри окна воздух кондиционеры Здесь нас интересуют как основной шнур питания подключен внутри устройства, и это может быть объясняется следующим образом (см. рис.4 ):
Рис.4: Окно Кондиционер Внутренняя электрическая проводка
A- Внутри устройства основной шнур питания разделить на:
  1. Заземляющий провод (либо зеленый или оголенный провод) прикручивается к металлическому корпусу блока.
  2. Горячий провод
  3. Нейтральный провод.

B- Горячий провод идет к переключателю на оконном блоке для подачи питания на жизненно важные части, компрессор и двигатель вентилятора:
  • Горячий провод к селекторному переключателю к переключателю термостата к компрессору
  • Горячий провод к селекторному переключателю к двигателю вентилятора.

C- нейтральный провод будет подключен к двигателю вентилятора и компрессору без каких-либо переключатель. Эти соединения выполняются на разъеме проводов на задней панели селекторный переключатель так, все нейтральные провода являются общими друг для друга, потому что они подключены к одной точке.

Некоторые примеры полных схем электропроводки оконного кондиционера приведены на рис. 5 .
Рис.5: Window Схемы электрических соединений кондиционера
Кроме того, на Рис. 6 вы можете найти примеры полных электрических схем оконного кондиционера, которые устанавливаются на корпусе агрегата.
Рис.6: Окно Схемы электрических соединений блока кондиционирования воздуха — заводская установка

Кроме того, вы можете найти примеры полных схем подключения оконного кондиционера, сенсорного и дистанционного управления в Рис.7 .

Рис.7: Электрические схемы оконного кондиционера — сенсорное и дистанционное управление, тип

1.4 Поток мощности внутри типового оконного кондиционера в режиме охлаждения

  • Когда вы переводите селекторный переключатель в режим охлаждения, мощность, которая поступает от шнура, подключенного к переключателю через горячий провод, поступает на вентилятор, чтобы вентилятор работал.
  • Селекторный переключатель также отправляет питание на компрессор по горячей проволоке, но компрессор не будет работать, пока термостат не перейдет в положение включения, затем компрессор сработает и начнется цикл охлаждения.

2- Блоки воздушного охлаждения с раздельным охлаждением
2.1 Конструкция агрегатов с разделенным воздушным охлаждением Сплит-системы — это индивидуальные системы в котором два теплообменника разделены (один снаружи, один внутри) (см. Рис.8 ). Есть две основные части сплит-кондиционера:
Рис.8: Конструкция агрегатов с разделенным воздушным охлаждением
  1. Наружный блок,
  2. Внутренний блок.

Этот агрегат устанавливается вне помещения или офисное помещение, которое необходимо охлаждать и в котором находятся важные компоненты кондиционер нравится:
  • Компрессор,
  • Вентилятор охлаждения конденсатора,
  • Расширительный клапан.

Самый распространенный тип внутреннего блока — это настенный тип, хотя другие типы, такие как потолочный и напольный навесные также используются. Внутренний блок производит охлаждающий эффект внутри комната или офис и вмещает следующие компоненты:
  • Змеевик испарителя или змеевик охлаждения,
  • Вентилятор охлаждения или нагнетатель,
  • Труба сливная,
  • Жалюзи или ребра,
  • Воздушный фильтр,
  • Органы управления.

2.2 Поток мощности в параллельной цепи типичного раздельного воздуха кондиционер Сплит-кондиционер блоки питаются либо от:
  • Однофазный источник питания (см. Рис.9 и Рис.11 ), поэтому его ответвленная цепь и основной шнур питания, состоящий из 3-х проводов (заземляющий провод, горячий провод и нейтральный провод).

  • Трехфазный источник питания (см. рис. 12 ), поэтому его ответвленная цепь и основной шнур питания, состоящий из 5 проводов (заземляющий провод, 3 горячих провода и нейтральный провод).

Рис.9: Агрегаты с разделенным воздушным охлаждением — однофазные — Внутренние подача Наружные
Рис.10: Устройства с разделенным воздушным охлаждением — Однофазные — Схема электрических соединений
Рис.11: Агрегаты с разделенным воздушным охлаждением — Однофазные — Наружная подача Внутренний
Рис.12: Блоки воздушного охлаждения с разделением на две фазы — трехфазные
Рис.13: Блоки воздушного охлаждения с разделением на три фазы — Схема электрических соединений
  • Филиал цепь будет происходить от однополюсной / трехполюсной перегрузки по току защитное устройство OCPD, включенное в электрическую панель.
  • Затем пройдите система кабельных каналов (кабелепроводы, каналы,…) к средствам отключения какого-либо типа подходит для применения.
  • После этого сетевой шнур сплит-кондиционера соединен с этим разъединяющим средством с одной стороны, другая сторона подключается к клеммной коробке во внутреннем блоке (см. Рис. 9 ) или в наружном блоке (см. Рис. 10 ) в соответствии с рекомендациями производителя и электрическими схемами.

Примечание:

если подключение к источнику питания выполнено во внутреннем блоке, внутренний используются средства отключения, и если подключение к источнику питания выполняется вне помещения блок, наружное средство отключения (см. рис. 14 ) с подходящей защитой (IP) (ознакомьтесь с рекомендациями производителя и схемами подключения).
Рис.14: Средства отключения вне помещения
  • Наконец, мощность передается через 3-проводной или 5-проводный кабель от клеммной коробки в внутренний блок к клеммной коробке в наружном блоке или наоборот, как показано на вышеупомянутый пункт.

Есть сигнал кабель, также соединяющий регулятор внутреннего блока с регулятором в Наружный блок.

2.3 Электрические соединения внутри The Split air кондиционеры


Электропроводка внутри внутреннего и внешнего блоков сложнее, чем у оконных блоков кондиционирования воздуха. Это всегда заводская проводка, и с нашей точки зрения как инженеров-электриков, это никак не повлияет на нашу работу.Тем не менее, мы приводим несколько примеров схем электропроводки, включая управляющую проводку, для справки, как показано ниже: Рис. 15 .

Рис.15: Сплит-кондиционеры — внутренние Схема электрических соединений

3- Мульти-сплит-кондиционеры
3.1 Силовая разводка кондиционеров мульти-сплит
  • В наши дни, Мульти-сплит воздух также широко используются кондиционеры (см. Рис. 16 ). В агрегатах на один наружный агрегат есть два внутренних блока, которые можно разместить в двух разных комнатах или два разных места внутри большой комнаты.
Рис.16: Кондиционеры с несколькими сплит-системами
  • Силовая разводка для кондиционеры с несколькими сплит-системами будут такими, как на рис. .17 ниже.

Рис.17: Многофункциональные кондиционеры Электропроводка

в Рис.18 вы можете найти примеры полных электрических схем для кондиционеров Multi-split.

Рис.18: Кондиционеры Multi-split Схема электрических соединений
4.1 Силовая проводка Мини-тепловые насосы

Электропроводка мини-тепловых насосов будет выглядеть так же, как и в системе Split air. Охлаждающие устройства на дальние расстояния (см. Рис.19).


Рис.19: Мини-тепловые насосы

Тем не менее, вы можете найти ниже несколько примеров схемы подключения мини- Тепловые насосы (см. Рис. 20), и вы можете сравнить их с тепловыми насосами Split air. Блоки охлаждения, особенно в силовой (высоковольтной) проводке.

Рис.20: Схема электрических соединений мини-теплового насоса

5.1 Раздельные блоки Строительство А сплит-система описывает систему кондиционирования воздуха или теплового насоса, которая разделена на две части (см. Рис.21 ), которые:
  1. Наружная секция,
  2. Внутренняя часть.

Рис.21: Строительство раздельно-упакованных единиц

В наружный блок расположен снаружи, обычно на земле, но иногда и на крыша. В нем находятся следующие компоненты:
  • Компрессор (ы),
  • Змеевик (и) конденсатора,
  • Вентилятор (ы) конденсатора,
  • Двигатель (и) вентилятора конденсатора,
  • Решетка вентилятора,
  • Запорная арматура,
  • Реверсивный клапан,
  • Дополнительные аксессуары (если Любые).

В Внутренняя секция обычно располагается во внутреннем шкафу или гараже.Здесь находится следующие компоненты:
  • Воздуходувка (и),
  • Змеевик испарителя,
  • Терморегулирующий вентиль (ы) и дистрибьютор (и),
  • Подшипники и вал,
  • Дополнительные аксессуары.

5.2 Электропроводка в раздельных сборках Электропроводка в Блоки Split Packaged состоят из 3 основных частей:
  1. Высоковольтная часть (силовая часть),
  2. Контроль высокого напряжения и моторная часть,
  3. Блок управления низкого напряжения.

1- Высоковольтная часть (силовая часть) 🙁 см. рис.22)
Рис.22: Электропроводка Split Packaged unit — Высоковольтная часть

Филиал цепь будет происходить от одного из трехполюсных устройств защиты от перегрузки по току. устройство OCPD включено в электрическую панель.

Тогда пройдите система кабельных каналов (кабелепроводы, каналы,…) к:
  • Разъединитель средства внутреннего блока (Воздухообрабатывающий агрегат),
  • Средства отключения наружного блока (конденсатор / испаритель).

2- Контроль высокого напряжения и часть двигателя: (см. рис.23)
Рис.23: Электропроводка Split Packaged unit — Высоковольтный блок управления и двигателя
  • Включая высокий проводка напряжения внутри блока обработки воздуха и внутри конденсатора / испарителя Блок.
  • Внутри воздухоподготовителя блока, высоковольтная проводка питает внутренний вентилятор, обогреватель и обеспечивает мощность для трансформатора.
  • Внутри блока конденсатора / испарителя проводка высокого напряжения приводит в действие внешний вентилятор и компрессор.

3- Контроль низкого напряжения часть: Эта часть имеет (2) режим для операции, которые:
  1. Режим кондиционера,
  2. Тепловой режим.

A- В режиме A / C: (см. Рис. 24)
Рис. 24: Электропроводка Раздельный агрегат — Блок управления низкого напряжения — Режим кондиционирования
Термостат отправить сигнал в (2) направлениях следующим образом:
  • Через Y-провод к включить внешний вентилятор и компрессор,
  • Через провод G к включите комнатный вентилятор.

B- В жару Режим: (см. Рис.25)
Рис.25: Электропроводка Split Packaged unit — Блок управления низкого напряжения — тепловой режим
Так же термостат в этом режиме посылает сигнал в (2) направлениях следующим образом:
  • Через провод G к включить внутренний вентилятор,
  • Через провод W к включить обогреватель.

Итак, полный Схема подключения будет такая же, как на Рис. 26 ниже:
Рис. 26: Электропроводка Раздельный агрегат — полная схема

Примечание:

Термостат обычно имеют (5) положений: «Выкл.» — «Холодно» — «Авто» — «Нагрев» — вкл. Ниже вы можете найти несколько примеров для электрические схемы для раздельно блочных агрегатов с разными способами пуска в Рис.27 .

Рис. 27: Электропроводка Раздельное сборное устройство с различными методами запуска
6- Унитарные блоки
6,1 Мощность схема для Унитарная КУ
  • Унитарно упакованные системы (см. рис.28 ) являются наиболее часто используемым оборудованием для кондиционирования воздуха в коммерческие здания. Компактный кондиционер — это автономный кондиционер. Он обеспечивает охлаждение, нагрев и движение воздуха. Все компоненты, необходимые для охлаждения, нагрева и движения воздуха, собран в стальном корпусе. Наиболее В агрегатах в корпусе используются полугерметичные компрессоры, что означает, что двигатель и компрессорные агрегаты смонтированы в одном корпусе.
Рис.28: Крыша комплектных единиц Строительство
  • Единично-упакованные единицы — это упакованные единицы, которые поставляются как одно целое. единый пакет, готовый к установке на крыше или на первом этаже для некоторых типов.
  • Комбинированные установки на крыше могут быть классифицированы по типу поставляемого тепла. Есть агрегаты на крыше с электрическим или газовым отоплением. В отопление также может обеспечиваться тепловым насосом.Однако электрическое тепло и В основном используются газовые печи.
  • Доступное охлаждение мощность обычных блочных крышных агрегатов составляет от 10 кВт (3 тонны) до 850 кВт (241 тонна). Расход воздуха находится в диапазоне от 400 л / с (850 фут3 / мин) до 37 800 л / с (80 000 фут3 / мин).

Схема питания для Rooftop упакованные единицы показаны на Рис.29.
Рис.29: Схема питания агрегатов на крыше

В следующей статье я объясню схемы электрических соединений для другого оборудования систем кондиционирования .Итак, продолжайте следить.


Toyota Полные модели 2006-2019 Схема электрических соединений CD1_Online | Форум по ремонту автомобилей — Форумы по тяжелому оборудованию

Toyota Full Models 2006-2019 Электрическая схема CD1_Online
Фомат: html
Язык: английский
Торговая марка: Toyota
Тип машины: Легковой, Внедорожник, …
Тип документа: Схема электрических соединений
Список моделей:
Схема электрических соединений TOYOTA 2006 4Runner (EM00T0U)
Схема электрических соединений TOYOTA 2006 Avalon (EM00A0U)
Схема электрических соединений Toyota Corolla 2006 (EM00H0U)
Схема электрических соединений TOYOTA 2006 Highlander (EM0120U)
TOYOTA 2006 Highlander HV Схема электрических соединений (EWD600U)
Схема электрических соединений TOYOTA 2006 Land Cruiser (EM0010U)
Схема электрических соединений TOYOTA 2006 Prius (EM01R0U)
Схема электрических соединений TOYOTA 2006 RAV4 (EM01M0U)
Схема электрических соединений TOYOTA 2006 Solara (EWD628U)
Схема электрических соединений TOYOTA 2006 Tacoma (EM01D0U)
Схема электрических соединений TOYOTA 2006 Tundra (EM00Q0U)
Схема электрических соединений TOYOTA 2006 Yaris (EM00R0U)
Схема электрических соединений Toyota Hiace 2006-2014 (EM04Z0E)
Схема электрических соединений Toyota Hiace 2006-2019 (EM26T0E)
Схема электрических соединений Toyota Camry 2006 (EM0100U)
Матричная электрическая схема TOYOTA 2006 (EM00F0U)
Схема электрических соединений TOYOTA 2006 Sequoia (EM00Z0U)
Схема электрических соединений TOYOTA 2006 Sienna (EM01C0U)
Схема электрических соединений TOYOTA 2007 4Runner (EM03M0U)
Схема электрических соединений TOYOTA 2007 Avalon (EM03S0U)
Схема электрических соединений Toyota Camry 2007 (EM0250U)
TOYOTA 2007 Camry HV Электросхема (EM02H0U)
Схема электрических соединений Toyota Corolla 2007 (EM0340U)
Схема электрических соединений TOYOTA 2007 FJ Cruiser (EM0240U)
Схема электрических соединений TOYOTA 2007 Highlander (EM03J0U)
Схема электрических соединений TOYOTA 2007 Highlander HV (EM03L0U)
Схема электрических соединений Toyota Land Cruiser 2007 (EM03R0U)
TOYOTA 2007 Matrix Схема электрических соединений (EM0350U)
Схема электрических соединений TOYOTA 2007 Prius (EM03Q0U)
Схема электрических соединений TOYOTA 2007 RAV4 (EM03T0U)
Схема электрических соединений TOYOTA 2007 Sequoia (EM03P0U)
Схема электрических соединений TOYOTA 2007 Sienna (EM0530U)
Схема электрических соединений TOYOTA 2007 Solara (EM0310U)
Схема электрических соединений TOYOTA 2007 Tacoma (EM03N0U)
Схема электрических соединений TOYOTA 2007 Tundra (EM04E0U)
Схема электрических соединений TOYOTA 2007-2011 Avanza (EM02Y0E)
Схема электрических соединений TOYOTA 2007 Yaris (EM01V0U)
Схема электрических соединений TOYOTA 2008 4Runner (EM07E0U)
Схема электрических соединений TOYOTA 2008 Avalon (EM07F0U)
Схема электрических соединений TOYOTA 2008 Camry (EM07A0U)
TOYOTA 2008 Camry HV Схема электрических соединений (EM06G0U)
Схема электрических соединений TOYOTA 2008 Corolla (EM06U0U)
Схема электрических соединений TOYOTA 2008 FJ Cruiser (EM07C0U)
Схема электрических соединений TOYOTA 2008 Highlander (EM06J0U)
Схема электрических соединений TOYOTA 2008 Highlander HV (EM07V0U)
Схема электрических соединений TOYOTA 2008 Land Cruiser (EM0800U)
TOYOTA 2008 Matrix Схема электрических соединений (EM06V0U)
Схема электрических соединений TOYOTA 2008 Prius (EM07X0U)
Схема электрических соединений TOYOTA 2008 RAV4 (EM07Y0U)
Схема электрических соединений Toyota Sequoia 2008 (EM08L0U)
Схема электрических соединений Toyota Sienna 2008 (EM07W0U)
Схема электрических соединений TOYOTA 2008 Solara (EM07B0U)
Схема электрических соединений TOYOTA 2008 Tacoma (EM07Z0U)
Схема электрических соединений TOYOTA 2008 Tundra (EM08H0U)
Схема электрических соединений TOYOTA 2008 Yaris (EM07Q0U)
TOYOTA 2008-2014 Corolla BR-Prod Схема электрических соединений (EM0840E)
Схема электрических соединений TOYOTA 2009 4Runner (EM10X0U)
Схема электрических соединений TOYOTA 2009 Avalon (EM10W0U)
Схема электрических соединений TOYOTA 2009 Camry (EM09D0U)
TOYOTA 2009 Camry HV Электросхема (EM09E0U)
Схема электрических соединений TOYOTA 2009 Corolla (EM08M0U)
Схема электрических соединений TOYOTA 2009 FJ Cruiser (EM10Y0U)
Схема электрических соединений TOYOTA 2009 Highlander (EM10U0U)
Схема электрических соединений TOYOTA 2009 Highlander HV (EM10T0U)
Схема электрических соединений TOYOTA 2009 Land Cruiser (EM10V0U)
Матричная электрическая схема TOYOTA 2009 (EM08R0U)
Схема электрических соединений TOYOTA 2009 Prius (EM10Q0U)
Схема электрических соединений TOYOTA 2009 RAV4 (EM10S0U)
Схема электрических соединений TOYOTA 2009 Sequoia (EM10Z0U)
Схема электрических соединений TOYOTA 2009 Sienna (EM10H0U)
Схема электрических соединений TOYOTA 2009 Tacoma (EM10F0U)
Схема электрических соединений TOYOTA 2009 Tundra (EM11A0U)
Схема электрических соединений TOYOTA 2009 Venza (EM11P0U)
Схема электрических соединений TOYOTA 2009 Yaris (EM10R0U)
Схема электрических соединений TOYOTA 2010 4Runner (EM1430U)
Схема электрических соединений TOYOTA 2010 Avalon (EM13Z0U)
Схема электрических соединений TOYOTA 2010 Camry (EM1200U)
Схема электрических соединений TOYOTA 2010 Camry HV (EM1210U)
Схема электрических соединений TOYOTA 2010 Corolla (EM12R0U)
Схема электрических соединений TOYOTA 2010 FJ Cruiser (EM1470U)
Схема электрических соединений TOYOTA 2010 Highlander (EM1410U)
Схема электрических соединений TOYOTA 2010 Highlander HV (EM1420U)
Схема электрических соединений Toyota Land Cruiser 2010 (EM13N0U)
Матричная электрическая схема TOYOTA 2010 (EM12S0U)
Схема электрических соединений TOYOTA 2010 Prius (EM1290U)
Схема электрических соединений TOYOTA 2010 Prius PHV (EM14C0U)
Схема электрических соединений TOYOTA 2010 RAV4 (EM13W0U)
Схема электрических соединений TOYOTA 2010 Sequoia (EM12C0U)
Схема электрических соединений TOYOTA 2010 Sienna (EM13L0U)
Схема электрических соединений TOYOTA 2010 Tacoma (EM13Y0U)
Схема электрических соединений TOYOTA 2010 Tundra (EM12D0U)
Схема электрических соединений TOYOTA 2010 Venza (EM13X0U)
Схема электрических соединений TOYOTA 2010 Yaris (EM1400U)
Схема электрических соединений TOYOTA 2011 4Runner (EM16E0U)
Схема электрических соединений TOYOTA 2011 Avalon (EM1510U)
Схема электрических соединений TOYOTA 2011 Camry (EM15K0U)
TOYOTA 2011 Camry HV Схема электрических соединений (EM15L0U)
Схема электрических соединений Toyota Corolla 2011 (EM1740U)
Схема электрических соединений TOYOTA 2011 FJ Cruiser (EM16X0U)
Схема электрических соединений TOYOTA 2011 Highlander (EM1500U)
Схема электрических соединений TOYOTA 2011 Highlander HV (EM16K0U)
Схема электрических соединений TOYOTA 2011 Land Cruiser (EM16F0U)
Матричная электрическая схема TOYOTA 2011 (EM1750U)
Схема электрических соединений TOYOTA 2011 Prius (EM16P0U)
Схема электрических соединений TOYOTA 2011 RAV4 (EM16B0U)
Схема электрических соединений TOYOTA 2011 Sequoia (EM16D0U)
Схема электрических соединений TOYOTA 2011 Sienna (EM14R0U)
Схема электрических соединений TOYOTA 2011 Tacoma (EM15M0U)
Схема электрических соединений TOYOTA 2011 Tundra (EM16G0U)
Схема электрических соединений TOYOTA 2011 Venza (EM16T0U)
Схема электрических соединений TOYOTA 2011 Yaris (EM1610U)
Схема электрических соединений TOYOTA 2012 4Runner (EM18V0U)
Схема электрических соединений TOYOTA 2012 Avalon (EM17C0U)
Схема электрических соединений TOYOTA 2012 Camry (EM18L0U)
TOYOTA 2012 Camry HV Схема электрических соединений (EM1930U)
Схема электрических соединений TOYOTA 2012 Corolla (EM19A0U)
Схема электрических соединений TOYOTA 2012 FJ Cruiser (EM18W0U)
Схема электрических соединений TOYOTA 2012 Highlander (EM2150U)
Схема электрических соединений TOYOTA 2012 Highlander HV (EM2160U)
TOYOTA 2012 Матричная электрическая схема (EM19B0U)
Схема электрических соединений TOYOTA 2012 Prius C (EM19C0U)
Схема электрических соединений TOYOTA 2012 Prius (EM1990U)
Схема электрических соединений TOYOTA 2012 Prius PHV (EM19G0U)
Схема электрических соединений TOYOTA 2012 Prius V (EM18M0U)
Схема электрических соединений TOYOTA 2012 RAV4 EV (EM19Q0U)
Схема электрических соединений TOYOTA 2012 RAV4 (EM19D0U)
Схема электрических соединений TOYOTA 2012 Sequoia (EM18P0U)
Схема электрических соединений TOYOTA 2012 Sienna (EM1950U)
Схема электрических соединений TOYOTA 2012 Tacoma (EM18R0U)
Схема электрических соединений TOYOTA 2012 Tundra (EM18N0U)
Схема электрических соединений TOYOTA 2012 Venza (EM1980U)
Схема электрических соединений TOYOTA 2012 Yaris (EM18K0U)
Схема электрических соединений Toyota Avanza 2012-2019 (EM19Y0E)
Схема электрических соединений TOYOTA 2013 Avalon (EM2370U)
TOYOTA 2013 Avalon HV Схема электрических соединений (EM2390U)
Схема электрических соединений TOYOTA 2013 FJ Cruiser (EM2300U)
Схема электрических соединений TOYOTA 2013 Highlander (EM22U0U)
Схема электрических соединений TOYOTA 2013 Highlander HV (EM22V0U)
Схема электрических соединений TOYOTA 2013 Land Cruiser (EM18X0U)
TOYOTA 2013 Matrix Схема электрических соединений (EM22T0U)
Схема электрических соединений TOYOTA 2013 Prius C (EM2490U)
Схема электрических соединений TOYOTA 2013 Prius (EM23E0U)
Схема электрических соединений TOYOTA 2013 Prius PHV (EM24B0U)
Схема электрических соединений TOYOTA 2013 Prius V (EM23C0U)
Схема электрических соединений TOYOTA 2013 RAV4 EV (EM2510U)
Схема электрических соединений TOYOTA 2013 Sequoia (EM22X0U)
Схема электрических соединений TOYOTA 2013 Sienna (EM23D0U)
Схема электрических соединений TOYOTA 2013 Tundra (EM22Z0U)
Схема электрических соединений TOYOTA 2013 Venza (EM22D0U)
Схема электрических соединений TOYOTA 2013 Yaris (EM2360U)
Схема электрических соединений TOYOTA 2013-2018 RAV4 (EM30B0U)
Схема электрических соединений TOYOTA 2013 4Runner (EM22R0U)
Схема электрических соединений TOYOTA 2013 Camry (EM2350U)
TOYOTA 2013 Camry HV Схема электрических соединений (EM23F0U)
Схема электрических соединений TOYOTA 2013 Corolla (EM22S0U)
Схема электрических соединений TOYOTA 2013 Tacoma (EM22Y0U)
Схема электрических соединений TOYOTA 2014 4Runner (EM23V0U)
Схема электрических соединений TOYOTA 2014 Avalon (EM2550U)
TOYOTA 2014 Avalon HV Схема электрических соединений (EM2560U)
Схема электрических соединений TOYOTA 2014 Camry (EM2570U)
Схема электрических соединений TOYOTA 2014 Camry HV (EM2580U)
Схема электрических соединений TOYOTA 2014 FJ Cruiser (EM24C0U)
Схема электрических соединений TOYOTA 2014 Land Cruiser (EM23T0U)
TOYOTA 2014 Matrix Схема электрических соединений (EM2500U)
TOYOTA 2014 Prius C Схема электрических соединений (EM24Y0U)
Схема электрических соединений TOYOTA 2014 Prius (EM25A0U)
Схема электрических соединений TOYOTA 2014 Prius PHV (EM25B0U)
Схема электрических соединений TOYOTA 2014 Prius V (EM24D0U)
Схема электрических соединений TOYOTA 2014 RAV4 EV (EM25J0U)
Схема электрических соединений TOYOTA 2014 Sequoia (EM24U0U)
Схема электрических соединений TOYOTA 2014 Sienna (EM24V0U)
Схема электрических соединений TOYOTA 2014 Tacoma (EM24E0U)
Схема электрических соединений TOYOTA 2014 Tundra (EM24W0U)
Схема электрических соединений TOYOTA 2014 Venza (EM24X0U)
Схема электрических соединений TOYOTA 2014 Yaris (EM24T0U)
Схема электрических соединений Toyota Corolla 2014-2019 (EM30N0U)
Схема электрических соединений Toyota Highlander 2014-2019 (EM3150U)
Схема электрических соединений TOYOTA 2014-2019 Highlander HV (EM3170U)
Схема электрических соединений TOYOTA 2015 4Runner (EM2640U)
Схема электрических соединений TOYOTA 2015 Camry (EM26C0U)
TOYOTA 2015 Camry HV Схема электрических соединений (EM26D0U)
Схема электрических соединений TOYOTA 2015 Land Cruiser (EM2650U)
Схема электрических соединений TOYOTA 2015 Prius C (EM26K0U)
Схема электрических соединений TOYOTA 2015 Prius (EM25M0U)
Схема электрических соединений TOYOTA 2015 Prius PHV (EM25N0U)
TOYOTA 2015 Prius V Схема электрических соединений (EM26J0U)
Схема электрических соединений TOYOTA 2015 Sequoia (EM25W0U)
Схема электрических соединений TOYOTA 2015 Sienna (EM25R0U)
Схема электрических соединений TOYOTA 2015 Tacoma (EM25Y0U)
Схема электрических соединений TOYOTA 2015 Tundra (EM26B0U)
Схема электрических соединений TOYOTA 2015 Venza (EM2680U)
Схема электрических соединений TOYOTA 2015 Yaris (EM24Z0U)
Схема электрических соединений TOYOTA 2015-2018 Avalon (EM26G0U)
TOYOTA 2015-2018 Avalon HV Схема электрических соединений (EM26H0U)
Схема электрических соединений TOYOTA 2016 Camry (EM27X0U)
TOYOTA 2016 Camry HV Схема электрических соединений (EM27Y0U)
Схема электрических соединений TOYOTA 2016 Venza (EM27N0U)
Схема электрических соединений TOYOTA 2016-2018 Mirai (EM32B0U)
Схема электрических соединений TOYOTA Prius 2016-2018 (EM3200U)
Схема электрических соединений TOYOTA Prius V 2016-2018 (EM27Q0U)
Схема электрических соединений TOYOTA 2016-2018 RAV4 HV (EM3340U)
Схема электрических соединений TOYOTA 2016-2018 Yaris (EM26M0U)
Схема электрических соединений TOYOTA 2016-2019 4Runner (EM27F0U)
TOYOTA 2016-2019 Hilux Схема электрических соединений (EM3240U)
Схема электрических соединений Toyota Land Cruiser 2016-2019 (EM27J0U)
Схема электрических соединений TOYOTA Prius C 2016-2019 (EM27P0U)
Схема электрических соединений Toyota Sequoia 2016-2019 (EM27L0U)
TOYOTA 2016-2019 Sienna Схема электрических соединений (EM2810U)
Схема электрических соединений TOYOTA 2016-2019 Tacoma (EM26L0U)
TOYOTA 2016-2019 Схема электрических соединений Tundra (EM27M0U)
TOYOTA 2016-2019 Yaris R Схема электрических соединений (EM3490U)
TOYOTA 2016-2019 Yaris R Yaris SD MEX-Prod Схема электрических соединений (EM33Y0U)
Схема электрических соединений TOYOTA 2017 Camry (EM2830U)
Схема электрических соединений TOYOTA 2017 Camry HV (EM2840U)
Схема электрических соединений TOYOTA 2017-2018 C-HR (EM32N0U)
Схема электрических соединений TOYOTA Prius Prime 2017-2018 (EM32D0U)
Схема электрических соединений TOYOTA 2017-2018 iA (EM34X0U)
Схема электрических соединений iM TOYOTA 2017-2018 (EM34R0U)
TOYOTA 2017-2019 86 Схема электрических соединений (EM2760U)
TOYOTA 2017-2019 Yaris THAI-Prod Схема электрических соединений (EM3450U)
Схема электрических соединений TOYOTA C-HR (EM35T0U)
Схема электрических соединений TOYOTA Camry (EM3390U)
TOYOTA Camry HV Схема электрических соединений (EM33B0U)
Схема электрических соединений TOYOTA 2019 Avalon Avalon HV (EM34N0U)
Схема электрических соединений TOYOTA 2019 Corolla Hatchback (EM3560U)

Электрические системы

Электрические системы верхний Меню
  • Основная функция электрической системы самолета — генерировать, регулировать и распределять электроэнергию по всему самолету.На самолетах есть несколько различных источников энергии для питания электрических систем самолета. К этим источникам питания относятся: генераторы переменного тока с приводом от двигателя, вспомогательные силовые установки (ВСУ) и внешнее питание. Система электропитания самолета используется для управления полетными приборами, основными системами, такими как противообледенительная система, и службами обслуживания пассажиров, такими как освещение кабины
  • .
  • Электроэнергия производится двух видов в зависимости от их использования:
    • Постоянный ток (DC): аккумулятор, генератор, трансформатор-выпрямитель
    • Переменный ток (AC): генератор, инвертор
  • Большинство самолетов оборудовано электрической системой постоянного тока на 14 или 28 В
  • Электрическая система состоит из множества компонентов, которые приводят в действие различные системы самолета
  • Генератор / генератор
  • Аккумулятор
  • Главный выключатель / аккумулятор
  • Переключатель генератора / генератора
  • Шина, предохранители и автоматические выключатели
  • Регулятор напряжения
  • Амперметр / измеритель нагрузки
  • Статические фитили
  • Электропроводка сопутствующая
  • Справочник пилота по аэронавигационным знаниям, электрическая схема
    • Генераторы переменного тока и / или генераторы приводятся в действие двигателем в качестве дополнительного оборудования, которое подает электрический ток в электрическую систему для работы в полете, поддерживая при этом достаточный электрический заряд на батарее
      • Генераторы вращают магнитное поле внутри неподвижных катушек проводов
      • Генераторы переменного тока вырабатывают ток, достаточный для работы всей электрической системы, даже при более низких оборотах двигателя, путем выработки переменного тока, который преобразуется в постоянный ток
      • Электрическая мощность генератора переменного тока более постоянна в широком диапазоне частот вращения двигателя
      • У некоторых самолетов есть розетки, к которым может быть подключен внешний наземный блок питания (GPU) для подачи электроэнергии для запуска, что может быть очень полезно, особенно при запуске в холодную погоду
      • В генераторе проводники представляют собой медные провода, намотанные на якорь, прикрепленный болтами к ведущему шкиву
      • При вращении якоря медные провода проходят через магнитное поле, создаваемое постоянными магнитами, которые вырабатывают электроэнергию.
      • Генераторы не вырабатывают номинальную мощность до тех пор, пока частота вращения двигателя не достигнет среднего рабочего диапазона — обычно выше 1400 об / мин
      • Пилоты, которые испытали быстрое затемнение посадочного света при снижении оборотов двигателя на коротком финале, поймут один из недостатков генераторной системы
      • Недостатки:
        • Тяжелая
        • Нижняя электрическая мощность
        • Электрический шум и статическое электричество, излучаемые другим бортовым электронным оборудованием
        • Требуют большего обслуживания, чем генераторы
      • Преимущества:
        • Не чувствителен к ошибочным всплескам электрического тока или обратной полярности
        • производит электроэнергию, даже если батарея разряжена
    • Узнайте больше о техобслуживании генератора, прочтите статьи AOPA по уходу за генератором и 500-часовым осмотрам
    • Электрическая энергия, запасенная в батарее, обеспечивает источник электроэнергии для запуска двигателя и ограниченный запас электроэнергии для использования в случае выхода из строя генератора или генератора
    • Большинство генераторов постоянного тока не вырабатывают достаточного количества электрического тока при низких оборотах двигателя для работы всей электрической системы
    • Во время работы на низких оборотах двигателя электрическая энергия должна поступать от аккумуляторной батареи, которая может быстро разрядиться.
    • Справочник пилота по авиационным знаниям,
      Главный выключатель
    • Электрическая система включается или выключается главным выключателем
      • Это было бы эквивалентом поворота ключа от машины для запуска электрических компонентов без фактического запуска автомобиля
    • При переводе главного переключателя в положение ВКЛ подается электроэнергия на все цепи электрического оборудования, кроме системы зажигания
    • Многие летательные аппараты оборудованы переключателем аккумуляторной батареи, который регулирует подачу электроэнергии на самолет аналогично главному переключателю
    • .
    • Кроме того, установлен выключатель генератора, который позволяет пилоту отключать генератор от электрической системы в случае отказа генератора
    • Когда половина переключателя генератора находится в положении ВЫКЛ, вся электрическая нагрузка переключается на аккумулятор
    • Все второстепенное электрическое оборудование должно быть отключено для экономии заряда батареи
    • Шина используется в качестве терминала в электрической системе самолета для подключения основной электрической системы к оборудованию, использующему электричество в качестве источника энергии
    • Это упрощает систему проводки и обеспечивает общую точку, из которой напряжение может распределяться по всей системе
    • Предохранители или автоматические выключатели используются в электрической системе для защиты цепей и оборудования от электрической перегрузки
    • Запасные предохранители с надлежащим пределом силы тока должны иметься в самолете для замены неисправных или перегоревших предохранителей
    • Автоматические выключатели выполняют ту же функцию, что и предохранители, но могут быть сброшены вручную, а не заменены, если в электрической системе возникает состояние перегрузки.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *