Закрыть

Подключение прогрева бетона: технология, подготовка, условия, методы и способы

Содержание

Нагревательный провод ПНСВ: схема подключения, расчет, монтаж

Укладка бетонного раствора при минусовой температуре требует специальных мероприятий, предупреждающих замерзание воды. Это приведет к потере прочности, уменьшит надежность возводимого сооружения. Существует много технологий поддержания постоянной температуры компонентов смеси. Эффективным способом, обеспечивающим нормальное затвердевание, является применение специально созданного нагревательного провода ПНСВ. Интересен вопрос бытового применения. Рассмотрены основные параметры, характеристики, практические вопросы.

Параметры, сфера применения

Свойства определены требованиями ТУ 16.К71-013-88, код ОКП 35581304. Применяется для прогрева:

  • Монолита, армированного бетона на строительстве промышленных объектов;
  • Объектов, зданий, сооружений промышленных комплексов различного назначения, строительных механизмов;
  • Может применяться системами обогрева бытовых и производственных строительных конструкций.

Маркировка ПНСВ обозначает конструкцию, область использования, материалы: «П»ровод «Н»агревательный, одинарный «С»тальной проводник, изолирован полихлор«В»инилом.

Базовые, определяющие показатели демонстрируются таблицей:

ПоказательЗначение
Эксплуатационная температура среды, °C-60 ÷ +50
Температура рабочего разогрева, °C, максимально80
Монтаж проводится при температуре выше, °C.-15
Сопротивление изоляции провода длиной 1 км, больше, мОм:1
Толщина изоляции, мм0.8
Удельная мощность (напряжение 220 В, 20°C), Вт/метр20
Срок эксплуатации, лет16

Физические, химические особенности материалов придают параметрам значения, обеспечившие:

  • Отсутствие реакции при взаимодействии с водой, химически активными водными растворами соли, щелочей, концентрация раствора которых достигает 20÷30%;
  • Прочность, позволяющая изгибать на ролике, размер которого равен десяти диаметрам провода, без утраты механических свойств не менее трех циклов;
  • Возможность работать режимами постоянного длительного нагрева или импульсном, кратковременном повторяющемся.

Выполняя работы по укладке нужно учитывать ограничения:

  1. Изгибание производится с радиусом, величина которого меньше пяти диаметров;
  2. Не допускается пересечения под любым углом или касания в прогреваемом объеме;
  3. Запрещается располагать провода не ближе, чем 15 см друг от друга.

Диапазон модельного ряда ПНСВ широк. Конкретные значения величин геометрического размера определяются техническими условиями предприятия – изготовителя соответственно требований соответствующего ГОСТ. Тенденция зависимости параметров от номинального диаметра жилы заложена ТУ 16.К71-013-88, иллюстрируется таблицей:

Зависимость характеристик от диаметра
Номинальные значения параметровНоминальный диаметр проволок, мм
11.11.21.31.4
Конструктивные:
Наружный диаметр (размеры), мм2.62.72.82.93
Расчетная масса длины1 км, кг1818.51919.520
Электрические:
Сопротивление 1 метра токопроводящей жилы, Ом0.220.180.150.130.11
Длина нагревательной секции, (для 220 В, м8095110125140

Схема подключения, оборудование для подогрева

Подогрев залитого бетона,  проводится только мощными подрядчиками на больших объектах. Метод дорого стоит, требует наличия работников высокой квалификации, специального оборудования. Трансформаторная подстанция обогрева обеспечивает питание греющей проводки пониженным напряжением, дает возможность использовать большой ток пониженного напряжения.

Например, популярная подстанция КТПТО с масляным трехфазным трансформатором ТМТО-80 обладает такими основными техническими характеристиками:

ХарактеристикаВеличина
Номинальная мощность, кВА80
Напряжение питание питания, три фазы, В380
Напряжения ступеней переключения стороны нагрузки (СН), В55, 65, 75, 85, 95
Ток на СН режимов 55, 65, А520
Ток на СН режимов 75, 85, 95 А471

Дополнительно может автоматически или вручную регулировать прогрев бетона в интервале 0÷100°C. Остальные функции подстанции, не относящиеся к подогреву, сейчас рассматриваться не будут.

Нагревательные секции могут быть подключены к трансформатору по однофазной или трехфазной схеме звездой или треугольником. Трехфазные нагреватели делают нагрузку сети более равномерной.

Параллельным включением нужного количества секций набирается достаточная для обогрева необходимой площади мощность.

Расчет нагревательной секции

На сегодняшний день существует много вариантов онлайн калькуляторов, удобных, позволяющих мгновенно получить точную мощность, количество, сечение греющего кабеля. Приведенный ниже расчет иллюстрирует логику, приводит методику проведения вычислений самого общего вида.

Под мебелью, коврами, другими атрибутами домашней обстановки, подогрев размещать запрещено. Необходимая для подогрева одного квадратного метра мощность зависит от назначения помещения. Составляет, при использовании дополнительного к основному подогрева:

Название помещенияМощность Вт/м 2
Нежилые110÷120
Жилые110÷130
Сантехнические120÷150
Неотапливаемая лоджия180

Вариант использования как единственного элемента отопительной системы, потребует 160÷200 Вт/м2.

Например: рассчитывается электрический теплый пол, необходимая площадь обогрева 10 м2, имеется ПНСВ 1,2. Характеристики взяты из таблиц параметров:

  1. Мощность подогревателя пола спальни, для необходимости обеспечения 120 Вт/м2, Вт: 10*120=1200;
  2. Длина элемента нагревателя 1200 Вт, удельная мощность 20 ватт на погонный метр, метров: 1200/20=60;
  3. На одном квадратном метре нужно уложить (выполняя требования ТУ), метров провода: 60/10=6;
  4. Омическое сопротивление 60 метров провода, удельное сопротивление одного метра стальной жилы равно 0,15 Ом составит, Ом: 60*0,15=9;
  5. Включенная в сеть 220В секция нагрева с проводом диаметром 1,2 мм. не может быть длиной менее 110 метров (ТУ). Иначе получится: сопротивление укороченного элемента уменьшается, ток возрастает, что вызывает перегрев, увеличивается вероятность разрушения. Активное сопротивление секции нагрева равно, Ом: 110*0,15=16,5. Рекомендованный ТУ ток эффективного нагрева составляет, А: I=U/R=220/16,5=13,33. Округленно 13 ампер.
  6. Расчетные 60 метров провода короче нормированной длины секции, не могут напрямую быть запитаны сетью. Требуется понижающий напряжение трансформатор. Рассчитать его можно так:
  7. Вторичная обмотка: напряжение, В: U=I*R=13*9=117, мощность, Вт: P=U*I=117*13=1521
  8. Полная мощность трансформатора, Вт: 1521*1,25=1901,3

Итого: для устройства теплого пола площадью 10 м, необходимо:

  1. 60 метров провода ПНСВ 1,2;
  2. Понижающий трансформатор мощностью 2 киловатта, напряжение вторичной обмотки 110÷120 вольт.

Подходящим вариантом при подборе трансформатора может оказаться сварочный аппарат.

Применение терморегулятора повысит комфортность пользования теплым полом, позволит экономнее расходовать электрическую энергию.

Основы технологии укладки и монтажа

После приобретения необходимого нагревательного материала, начинается изготовление системы подогрева:

  • Покупная бухта или бобина нарезается на нагревательные секции, длины которых определены ТУ, в необходимом количестве. Допускается изготовление секции из отрезков, обеспечив надежный контакт соединения;
  • Концы зачищаются на 4 см, к ним присоединяются «холодные концы» — отрезки алюминиевого изолированного проводника достаточной, для подключения к трансформатору, длины. Надежное изолированное соединение должно располагаться внутри обогреваемого объема;
  • Нагревательные секции размещаются в опалубке. Принимаются меры для фиксации правильного расположения, отсутствия провисаний, ухода за границы будущего монолита. Если применяется арматура, можно приматываться к ней;
    • Не допускается пересечение, касание участков провода в объеме опалубки. Расстояние между проводами не менее 15 см.
    • Рекомендуется, улучшая равномерность распределения тепла, обмотать провод тонкой фольгой из металла толщиной 0,2÷0,5 мм;
    • Все размеченные «Холодные концы» после укладки должны находиться у одного края;
  • Подавать напряжение на ПНСВ, не укрытое раствором полностью, категорически запрещено;
  • Перед подключением к трансформаторной подстанции мегомметром проверить отсутствие нарушения целостности изоляции после монтажа.

Во время прогрева бетона на строительных площадках, обеспечивая требования электробезопасности, нужно принимать меры по ограждению опасного участка, ограничению пребывания на нем посторонних лиц.

После полного высыхания использование подогрева полов или стен не представляет опасности.

выбор, расчет и применение в работе

Любая стройка не обходиться без бетона. Из него устраивают фундаменты, монолитное перекрытие, стены, полы. В зимний период время застывания бетона значительно больший из-за низких температур. Это не только продлевает срок строительства, но и негативно влияет на прочностные характеристики. Для этого используют провод для прогрева бетона.

Для чего греют бетон

Прогрев бетона в зимнее время осуществляют по следующим причинам:

  • При низких температурах вся вода в растворе превращается в лед. Из-за этого процесс гидратации останавливается. Попросту говоря процесс схватывания прекращается полностью. В этом момент раствор теряет практически все прочностные характеристики.
  • При использовании такого провода смесь набирает свою прочность более быстро, чем в оптимальных условиях. Использовать кабель можно в любое время года.

Какие бывают греющие провода

На рынке предоставлен широкий выбор этой продукции с разными рабочими характеристиками. Кабель для прогрева бетона должен иметь хорошую изоляцию, иначе возможно короткое замыкание или пожар. Это так же позволяет избежать перегиба и перелома. Наиболее подходящий диаметр провода – 1.2 мм, а сопротивление 0.15 Ом/м. Как правило, выпускают провода с одной жилой, но бывают и с двумя.

Разновидности и особенности

На рынке предлагают следующие виды провода для прогрева бетона:

  • Кабель двухжильный для бетона в секциях — КДБС. Этот кабель можно подключать к сети напрямую, из-за чего уже можно отказаться от трансформатора. Его очень просто укладывать и монтировать. Но цена такого вида кабеля «кусается». Кроме того он используется только раз. После затвердевания конструкции достать кабель невозможно.
  • Кабель для прогрева бетона – ВЕТ. Имеет две жилы стали. Для их работы не нужен трансформатор. Главное преимущество – очень экономичен.
  • Кабель ПНСВ. Самый доступный и известный вид. Стоимость нагревательного провода ПНСВ начинается от 1-го рубля за метр. Для работы необходим трансформатор. Есть возможность использовать несколько раз. Чаще всего используют провод прогревочный пнсв сечением 1х1.
  • Провод ПТПЖ. Его технические характеристики схожи с кабелем ПНСВ, в том числе и изоляция под высоким давлением. Различие – количество жил, в данном случае их две.

Технология укладки греющего провода

Перед укладкой кабеля проводят подготовительные работы:

  1. По правилам устанавливают опалубку и арматуру. Важно, чтоб на этих элементах не было наледи.
  2. На верхнем и нижнем поясе арматурного каркаса, с помощью хомутов или скрепок, укладывают кабель.
  3. Шаг между проводами ПНСВ – 80-200 мм. Точное число зависит от температуры воздуха. Уложенные провода не должны соприкасаться и пересекаться.
  4. Не более чем за 25 метров от опалубки устанавливают трансформатор. Возле него раскладывают резиновые коврики.
  5. Участок, где расположена опалубка с тэном и электродами, ограждают.
  6. Устанавливают шинопровода и соединяют с кабелем.
  7. Подключают шинопровод к сети 220 В и тестируют его сначала на холостом ходу.

Какие есть особенности укладки греющего провода?

Прогрев бетона проводом ПНСВ выполняют по схеме треугольник или звезда. В первом случае прогрев обеспечивается за счет разделения кабеля на три равных группы, которые соединяют параллельно. Их объединяют в узлы и подключают к сети. Способ прогрева «звездой» заключается в соединении трех равных проводов в один узел, а свободные концы подключают к зажимам.

Технология прогрева бетона в зимнее время очень проста и не требует особых умений и знаний. Выполнив все рекомендации, греющим проводом можно быстро получить стяжку с необходимыми прочностными характеристиками.

Принципы использовании

Технологическая карта данного процесса должна учитывать следующие нюансы:

  • Жилы кабеля выполнены из стали, которая имеет высокое удельное сопротивление, а, значит, она отдает больше тепла. На воздухе при таких температурах изоляция плавится, поэтому непосредственное подключение кабеля прогрева к сети выполняется с помощью проводника с меньшим удельным сопротивлением.
  • Самое минимальное расстояние между проводами – 15 мм. Иначе вся изоляция расплавится.
  • Кабель укладывают змейкой. Минимальный радиус закругления – 25 мм.
  • Минимальная температура воздуха, при которой можно проводить работы: -15 градусов Цельсия, так как изоляция у большинства проводов выполнена из пластмассы, которая теряет свою гибкость. В результате она может потрескаться.
  • Чтоб нагрев был равномерный, провода накрывают фольгой.
  • Прогрев проводят поэтапно.

Нюансы при расчете необходимой длины

Перед началом проведения работ очень важно правильно рассчитать длину провода ПНСВ для прогрева. При расчете длины учитывают следующие факторы:

  • форму конструкции;
  • температуру воздуха,;
  • марку бетона;
  • теплоизоляцию;
  • ветер.

Учитывают также удельную мощность.
Расход провода для прогрева бетона зависит от типа конструкции – с арматурой и без.
Если трансформатор не используют, то для обогрева бетона используют кабель с минимальной длиной 120 м.

Рассчитать количество провода ПНСВ можно по специальной таблице. Существует несколько вариантов таблиц, в которых учитываются разные нюансы. Специалисты рекомендуют использовать сразу несколько таблиц, чтоб более точно определить количество провода прогревочного ПНСВ 1*1.

Когда можно приступать к обработке бетона после прогрева

Многие специалисты считают, что бетон нельзя обрабатывать после нагрева и до набора бетоном марочной прочности. Такое мнение ошибочно. После прогрева можно выполнять работы, но не все. С ударными нагрузками необходимо повременить. Но можно резать материал. Для этого используют инструмент с алмазными насадками, которые не должны создавать трещины на конструкции.
Прогрев бетона кабелем очень напоминает устройство теплых полов. Поэтому имея опыт – мастер без проблем справиться с прогревом бетона.

Прогрев бетона электродами схема подключения

/

/

Прогрев бетона электродами схема подключения

Прогрев бетона электродами помогает сохранить необходимые параметры твердения раствора при заливке в холодное время. Этот способ подразумевает вживление в бетон или расположение на его поверхности электродов, которые затем подключают к трансформатору. В результате между ними образуется электрическое поле, согревающее бетон. Подбирая и регулируя выходные параметры трансформатора, можно добиться необходимой температуры прогрева бетона.

Важно помнить, что электрическое сопротивление бетона меняется по мере его твердения, причем проиходит это далеко не линейно:

Изменение удельного сопротивления в процессе электропрогрева бетонов различных марок

Завод-изготовитель цементаНачальное удельное электросопротивления,ОмМинимальное удельное электросопротивления,Ом
Белгородский18,812,2
Жигулевский9,67,4
Подольский11,59,7
Ростовский8,57,2
Спасский8,04,9
Теплоозерский9,26,8

Поверхность раствора по окончании бетонирования и установки электродов укрывают утепляющими материалами. Прогревать бетон с не укрытыми поверхностями не допускается.

Электродный прогрев хорошо сочетаем с выдерживанием бетона методом термоса. Электродами прогревают только внешние слои во избежание потери тепла, полученного раствором перед заливкой.

Виды электродов

Существует несколько видов электродов, используемых для подогрева бетонного раствора. Наиболее применяемые из них:

Пластинчатые электроды

Пластичные электроды представляют собой металлические пластины, которые помещают между опалубкой и бетоном с разных сторон конструкции. После подключения к ним электрического потенциала образуется поле, нагревающее раствор.

Полосовые электроды

Этот тип электродов состоит из металлических полос от 20 до 50 мм шириной. Они также располагаются на верхнем слое раствора. Их отличительной способностью является возможность их расположения лишь с одной стороны конструкции. В этом случае электроды подключаются поочередно к разным фазам.

Полосовые электроды применяют при прогреве плит перекрытий и других горизонтальных элементов, а также бетона, соприкасающегося с мерзлым грунтом.

Стержневые электроды

Стержневые электроды по своей сути являются прутьями арматуры до 15 мм в диаметре, которые располагаются непосредственно в теле бетона.

Ими можно осуществить прогрев бетона конструкций сложной формы: балок, колонн, массивных плит, фундаментных башмаков, боковых поверхностей массивных конструкций.

Струнные электроды

Струнные электроды применяются в основном для п

электроды, КТПО, провод ПНСВ, технология и схема обогрева

Схватывание бетона происходит при участии воды. Но в зимнее время вся влага в растворе замерзает, делая гидратацию невозможной. Чтобы и в морозы не приостанавливать строительство, на участке организовывают обогрев бетона. Вариантов прогрева разработано немало, и каждая технология находит свое применение.

Оглавление:

  1. Критерии подбора
  2. Применение электродов
  3. Обзор разных методов

На чем основывается выбор?

Каким способом подогревать зимой бетонные конструкции, зависит от ряда параметров:

1. Погодные условия. При температуре не ниже -15 °С обогрев нагревательными проводами можно заменить методом «теплой» опалубки.

2. Класс бетона – от него зависит необходимый срок теплового воздействия до получения надежных характеристик конструкций, залитых зимой. Бетон вплоть до класса В10 должен успеть набрать половину заявленной прочности, прежде чем можно будет закончить прогрев, классы с В12,5 по В25 – около 40%, крепче В25 – около 30%.

3. Размеры ЖБИ. Для массивных фундаментов рекомендуется электропрогрев бетона электродами или проводами ПНСВ, плюс сохранение набранной температуры «термосом».

4. Толщина заливки. При незначительных габаритах отдельных элементов армированной конструкции возможно применение индукционного нагрева.

Чтобы получить монолит заданного качества и оптимизировать затраты на обогрев бетона, рекомендуется для каждого конкретного случая комбинировать различные технологии.

Метод электродов

Наиболее часто применяемая технология, основанная на свойстве проводников электрического тока разогреваться. Влажный бетонный раствор тоже превращается в своеобразный проводник, если в нем разместить запитанные электроды. Чтобы «цепь» заработала, их необходимо подсоединить к разным фазам источника переменного тока мощностью 60-127 В.

Не используйте метод под напряжением свыше 127 В, если работаете с ЖБИ. Бетон с металлической арматурой включать в цепь можно только после профессиональной разработки проекта.

Технология прогрева бетона электродами требует предварительных расчетов для каждой конструкции. От ее особенностей будет зависеть напряжение подаваемого переменного тока, схема расстановки электродов и даже их вид.

  • Стержневые электроды – металлические пруты небольшого диаметра (от 6 до 12 мм). Используются на удаленных участках особо крупных конструкций, а также для сложных форм (стыков, колонн). При размещении стержневых электродов нужно следить, чтобы они не располагались к опалубке ближе, чем на 3 см.
  • Струнные – длинная стальная проволока диаметром 6-10 мм. Предназначены для участков большой протяженности. Этот способ предпочтителен, если прогрев бетонной смеси электродами выполняется при контакте заливки с уже замерзшим грунтом.
  • Поверхностные – особый тип электродов, роль которых выполняют стальные пластины или полосы шириной в 4-8 см. Проводники крепятся непосредственно к опалубке с оставлением одного свободного конца для подключения к источнику питания. В отличие от погружных электродов поверхностные не контактируют с раствором, так как отделены от него слоем рубероида.

Металлические полосы обеспечивают прогрев бетона не глубже, чем на половину расстояния от одного электрода до другого. Это тепло достает и до внутренних слоев, но там процессы протекают не так интенсивно. А вот разнофазные пластины могут нагревать весь объем, если он не слишком большой.

Основное достоинство метода прогрева электродами – возможность поддержания оптимальной температуры бетона в конструкциях любой толщины и формы.

Особенности различных способов

1. Использование нагревательных проводов.

Тот же электропрогрев бетона, но в отличие от электродного метода, увеличение температуры в монолите обеспечивают уложенные в массу изолированные провода. Они сами нагреваются в процессе работы, а раствору передают только тепловую энергию.

Марки нагревающих элементов:

1. Чаще всего в зимнее время используется электропровод марки ПНСВ от 1,2 до 3 мм в диаметре.

При этом нужно учитывать, что ПНСВ не должен во время работы находиться на воздухе, иначе его изоляция просто оплавится. Отсюда и особенности технологии прогрева – применение так называемых холодных концов, подключенных в местах выхода ПНСВ из бетона. Их роль исполняют короткие установочные провода типа АПВ-2,5 или АПВ-4 с алюминиевой жилой.

Схема прогрева проводом ПНСВ 1,2 при его подключении к трансформатору может быть одно- или трехфазной. Главное, чтобы линии отстояли друг от друга минимум на 15 мм, а сила тока не превышала 15 А. Длина обогреваемых секций подбирается вдвое меньше, чем значение напряжения на трансформаторе.

2. Применение кабелей КДБС или ВЕТ позволяет полностью исключить из технологии трансформатор для прогрева бетона.

К такому методу прибегают, когда нет возможности обеспечить станции питание в 380 В или использовать требуемое количество понижающих трансформаторов на объекте. ВЕТ-кабели могут работать от бытовой электросети, на концах они снабжаются соединительными муфтами, что весьма удобно при укладке. Правда, стоит такой провод дороже, чем ПНСВ.

Подключение производится к понижающему трансформатору, выдающему со второй обмотки 75 или 36 В. Схема укладки провода ВЕТ не отличается от аналогичной для ПНСВ. При этом важно подобрать оборудование, предусматривающее плавную регулировку силы тока. Это позволит поддерживать нормальную температуру в монолитной конструкции.

Как вариант для частного строительства, подойдет обычный сварочный аппарат. К профессиональному оборудованию относятся трансформаторные станции, которые обеспечивают прогрев до 30 кубов: КТПТО-80/86, серия трансформаторов СПБ либо сухая станция ТСДЗ-63.

Прогрев с использованием проводов позволяет сократить время набора 70%-ной прочности до нескольких дней. При такой высокой эффективности метод выгодно отличается экономичностью.

3. Греющая опалубка.

Контактный прогрев бетона предпочтительно использовать на объектах быстрого возведения. Термоактивная опалубка широко применяется для строительства монолитных домов, но раствор должен иметь высокую скорость застывания. Эта технология довольно требовательна к температуре смеси и окружающей среды: промерзший грунт на глубину 30-50 см и сам состав должны быть прогреты до +15 °С.

4. Индукционный метод.

Отлично подходит для изготовления бетонных свай и колонн. Повышение температуры внутри опалубки происходит за счет воздействия электромагнитного поля, создаваемого внешними витками провода. Вся конструкция превращается в своеобразную индукционную катушку, разогревающую металлическую арматуру. А та в свою очередь осуществляет прогрев раствора изнутри. Достоинства метода – равномерный прогрев и возможность производить предварительный разогрев опалубки и армирующих стержней еще до заливки.

5. Тепловые излучатели.

Относительно недорогой и наименее энергозатратный способ – прогрев тепловыми пушками, ИК-излучателями и другими внешними электрообогревателями. Его плюсом и одновременно недостатком является локальное воздействие на заливку. Поэтому сфера применения этой технологии ограничивается ремонтными работами, заделкой стыков и изготовлением малых форм. При этом внешний обогрев не будет достаточно эффективен, если обрабатываемую часть конструкции не оградить от внешних условий временным пологом. Достоинства: минимум аппаратуры и кабельной продукции, дешевизна и относительно невысокие энергозатраты.

6. Пропаривание.

Самый дорогой и энергоемкий прогрев бетона в зимнее время применяется только в промышленном строительстве. Смысл технологии заключается в том, что бетон заливается в сложную двухстенную опалубку, через которую подается горячий пар. Он обволакивает бетонную поверхность, образуя «паровую рубашку». Это обеспечивает и равномерный прогрев конструкции, и подачу влаги, необходимой для гидратации.

Несмотря на всю сложность организации прогрева, этот способ является наиболее эффективным. А для сокращения расходов в сам бетонный раствор вводятся пластифицирующие добавки, ускоряющие процесс твердения.

Существует и пассивный метод, когда вокруг конструкции создается термос из теплоизолирующих матов. Но он сам по себе неэффективен – его уместно использовать только в качестве дополнительной меры вместе с другими способами.

Прогрев бетона сварочным аппаратом: процедурные тонкоссти

Прогрев бетона сварочным аппаратом

При электропрогреве бетона в температурных условиях ниже +5°C используют специальные масляные или воздушные трехфазные трансформаторы для понижения напряжения сети 200 или 380 В.

Но в случае небольших объемов при заливке фундамента на дачном участке своими руками, например, иногда рациональнее использовать сварочный аппарат (двухфазный), который зачастую уже имеется в наличии, а не покупать или арендовать тот же ТСЗП-80. Способ для так называемых «домашних условий».

Такое решение имеет место быть, хотя, и сопряжено с определенными трудностями. Попытаемся разобраться в них для типов греющих элементов ПНСВ провода и электродов.

Прогрев бетона сварочным аппаратом и ПНСВ проводом

Схема работы здесь точно такая же, как и при использовании масляных трансформаторов. Вся тонкость в расчетах. Итак, для обогрева бетона сварочным трансформатором вместе с проводом нам понадобится сварочник 150-250 А, ПНСВ кабель, алюминиевый кабель холодных концов, амперметр (клещи) и изолента, на тканевой основе.

Для примера приведу расчет для прогрева плиты 3,8 м3 размером 4x5x0,19 м при температуре воздуха около -12°C и сварочным аппаратом на 250 А. Итак, ПНСВ провод нарезаем на отрезки длиной по 18 метров.

Длина определялась опытным путем и для вашего случая, возможно, будет другой. Каждый из таких отрезков способен выдержать ток до 25 А. Соответственно, для суммарных 250 ампер возможно использовать 10 отрезков.

Но чтобы не пускаться в крайности и оставить небольшой запас будем ориентироваться на 8 проводов.

К каждому куску ПНСВ с обеих сторон докручиваем алюминиевый провод такой длины, чтобы сама скрутка находилась в бетоне, а холодные концы дотянулись до трансформатора. Саму скрутку изолируем изолентой.

Укладываем отрезки провода, подвязывая их к арматуре пластиковыми креплениями или изолированным проводом, чтобы избежать замыкания. Для плиты провод можно закрепить чуть ниже верхнего армирующего слоя.

Выходы каждого провода надо маркировать, например (+) и (-). Или можно концы развести по разным сторонам конструкции.

Также очень удобно соединить фазы (плюсы отдельно, минусы отдельно) между собой на изолированной поверхности (текстолит) с клеммами.

После заливки бетона сразу же подключаем наши клеммы к прямому и обратному выходам сварочного аппарата, установленного на минимальный ток. Измеряем ток на сварочных проводах (должен быть до 240 А) и на каждом отрезке (должен быть до 20 А). По мере нагревания сила тока будет падать, и ее надо будет увеличивать на аппарате.

В итоге плита данных габаритов приобрела нужную прочность за 40 часов. Также после заливки бетона, его рекомендуется укрыть защитной пленкой для предотвращения иссушения. При особо низких температурах сверху на пленку можно положить слой утеплителя.

Видео по укладке ПНСВ провода можно посмотреть ниже:

При этом способе греющими элементами выступают электроды, вживляемые в бетон. И ток течет непосредственно через раствор.

Из этого вытекает и главный недостаток прогрева сварочным аппаратом вместе с электродами: опасность поражения электрическим током находящимся рядом людей. Безопасным считается напряжение до 36 В.

Если оно выше, то необходимо озаботиться недопущением на обогреваемый объект людей и животных. Также есть мнение, что подобные арматурные электроды быстро изнашивают сварочный трансформатор.

Электроды (пруты арматуры) укладывают в конструкцию, соединяя последовательно таким образом, чтобы получилось два изолированных друг от друга отрезка. К одному из них подключаю прямой провод, к другому – обратный.

Для контроля тока между двумя электродами подключают лампу накаливания (опционально). Очень важно измерять температуру бетона для недопущения его обезвоживания и растрескивания.

Залитую конструкцию не забудьте укрыть пленкой и утеплителем во избежание потерь тепла и влаги.

Источник: http://betonprogrev.ru/statji/progrev-betona-svarochnym-apparatom.html

Как осуществляется прогрев бетона сварочным аппаратом?

Климатические условия на большей территории Российской Федерации диктуют свои условия на все виды строительно-монтажных работ, которые ведутся в холодный период года.

В связи с этим заливка бетонных конструкций в условиях отрицательной температуры окружающего воздуха возможна лишь при наличии на стройплощадке технической возможности прогрева залитой конструкции, в том числе с помощью электричества.

В промышленных масштабах прогрев бетона производится с помощью специальных трансформаторов и нагревательных кабелей. В домашних условиях при небольших объемах бетонных работ допускается прогрев бетона сварочным аппаратом мощностью от 150 до 200 Ампер.

Что необходимо для прогрева бетона сварочным аппаратом?

  • Бытовой сварочный аппарат мощностью 150-200 А. Важно! Не сварочный инвертор, а сварочный (трансформаторный) аппарат;
  • Провод греющий ПНСВ диаметром 1,5 мм;
  • Провод алюминиевый одинарный АВВГ 1х2,5 мм;
  • Хлопчатобумажная изолента;
  • Клещи для бесконтактного определения силы тока.

Подготовительные работы

Провод ПНСВ разрезается на отрезки (греющие петли)17-18 м. Полученные отрезки равномерно подвязываются к арматурному каркасу под заливку бетонной конструкции. При этом следят, чтобы петли располагались выше середины заливаемой плиты, если заливается колонна – слой бетона над греющими петлями должен быть не менее 4 см.

Подвязку ведут изолированным алюминиевым проводом. Идеальный вариант если петли будут располагаться «змееобразно». Расстояния между петлями принимается в зависимости от температуры воздуха – от 10 до 40 см. Здесь действует правило – «чем ниже температура, тем меньше расстояние».

Количество греющих петель зависит от мощности конкретного сварочного аппарата. Так как одна петля потребляет 17-25А, в нашем случае (мощность 250 А) можно использовать не более 7-8 греющих петель длиной 17-18 м.

Петли уложены и подвязаны. Теперь на них необходимо нарастить алюминиевые провода, которые будут подключаться к сварочному аппарату. Длина алюминиевого провода определяется месторасположением сварочного аппарата, но не более 8 метров.

Скрутки греющей петли и наращиваемого провода изолирую ХБ изолентой, и располагаем ее таким образом, чтобы она осталась в толще заливаемой конструкции. В противном случае, скрутка будет перегреваться и сгорит. Маркировку изолентой переносят на концы алюминиевых проводов.

Подключение к сварочному аппарату и особенности прогрева

После заливки бетона, все алюминиевые концы (наращенные) петель подключают к сварочному аппарату. При этом концы с маркировкой изолентой и без таковой подключают на разные полюсы сварочного трансформатора. Включают сварочный аппарат на минимальной нагрузке регулятора мощности.

Клещами проверяют каждую из петель – потребляемый ток должен быть не более 12-14 Ампер. Через 1 час можно добавить половину мощности аппарата, а через 2 часа можно включить аппарат на полную мощность.

Опять проверяем силу тока на каждой петле. Сила тока должна быть не более 25 А. как гласит практический опыт, мощности петли в 20 А, достаточно чтобы качественно прогреть бетон при температуре окружающего воздуха до минус 10 °C.

Особенности прогрева бетона сварочным трансформатором

  • Время прогрева зависит от мощности конструкции и температуры окружающего воздуха. При температуре воздуха до минус 10 °C для гидратации бетона достаточно двух суток;
  • Поверхность бетонной конструкции необходимо утеплить поилками или матами;
  • Не стоит излишне перегревать бетон – конструкция под слоем утеплителя должна быть слегка теплой и не более того.

Источник: http://orioncem.ru/na-zametku/kak-osushhestvlyaetsya-progrev-betona-svarochnym-apparatom.html

Как прогревается бетон при помощи сварочного аппарата?

Бетонная стяжка заливается не только летом, когда стоит теплая погода, но и зимой, когда температура редко повышается выше нуля.

Как известно из школьного курса физики, вода при минусовой температуре воздуха из жидкого состояния преобразуется в твердое состояние, а поэтому зимой понадобится прогрев бетона сварочным аппаратом, поскольку в состав данного материала входит вода.

На сегодня активно применяются такие способы прогрева бетона, как прогрев посредством ПНСВ кабеля, специализирующегося на данной процедуре, прогрев с помощью специализированных термоматов, однако наиболее популярностью продолжает пользоваться именно сварочный аппарат, действие которого мы и рассмотрим.

Коротко о главном

Сварочный аппарат представляет собой автономную установку для осуществления сварочных работ над металлическими деталями, резки материалов посредством электродуговой сварки. Сварочные агрегаты имеют помимо основных элементов для производства сварочных работ еще дополнительные элементы.

Вспомогательные элементы сварочного агрегата:

  • Генератор сварочного тока;
  • Приспособление, служащее для воздушно-плазменной резки металлов;
  • Блок напряжения холостого хода установки;
  • Блок прогрева бетона и других твердых материалов.

к меню ↑

Свойства бетона

Многие полагают, что бетон затвердевает всего за несколько дней, однако подобное распространенное мнение весьма ошибочно, так как рассматриваемый материал выдерживается почти месяц, а именно 28 суток. Однако и за этот срок, как утверждают опытные профессионалы, бетон не затвердевает окончательно, поскольку процесс твердения может продолжаться годами.

Доказан факт, что бетон по истечении 28 суток получает основные качественные характеристики: прочность, морозоустойчивость, водонепроницаемость. Именно поэтому не рекомендуется поддавать на протяжении указанного выше времени бетонную стяжку фундамента или пола всяческим нагрузкам.

к меню ↑

Прогрев посредством сварочного устройства

Для прогрева бетонного основания на строительной площадке строителями нередко используются специальные приспособления, но могут иметь место на пути реализации данной необходимости обыкновенные сварочные аппараты. Первоочередным вопросом в решении поставленной задачи являются дополнительные электроды, с ролью которых отлично могут справиться отрезки арматуры.

Арматура, в свою очередь, монтируется равномерно по всему участку работ, которая засыпается опилками. Опилки служат отличным дополнением термоизоляционного слоя бетонной поверхности. Вдобавок опилки снизят до минимума испарения влаги. Далее арматура соединяется между собой проводом таким образом, чтобы вышли параллельные цепи.

К цепям присоединяются прямой и обратный сварочные провода, при этом стоит обращать внимание на то, чтобы они замыкались друг на друга.

С помощью лампочки накаливания узнаем о наличии напряжения, при этом лампочка должна быть установлена между цепями.

Во время нагрева арматуры необходимо усердно следить за температурой нагрева самого бетона, чтобы не имел место перегрев. Контроль температуры выполняется путем использования любого термометра.

Указанный выше способ прогрева бетонной поверхности способствует отличному прогреванию материала, при этом не требуя на протяжении процедуры применения какого-либо дополнительного сложного оборудования. Несмотря ни на что сварочный аппарат предпочтительнее использовать при незначительных рабочих поверхностях бетона.

Замыкать сварочную цепь на бетонную арматуру настоятельно не рекомендуется, поскольку данный способ не принесет ожидаемого результата, а счет за потребление электроэнергии будет весьма не привлекательным. Способов прогрева существует несколько.

Другие способы прогрева бетона:

  1. Прогрев электродами;
  2. Прогрев путем применения инфракрасных волн.

Прогревание бетонной поверхности электродами

Методика прогрева бетонной поверхности посредством электродов основывается на прохождении электрического тока. В свою очередь существует несколько видов электродов, которые могут понести отличную службу во время прогревания бетонной поверхности.

Виды электродов:

  • Полосовые;
  • Пластинчатые;
  • Струнные;
  • Стержневые.

Прогрев бетона должен производиться с учетом площади рабочей поверхности, правил техники безопасности и безопасного обращения конкретно со сварочным аппаратом.

Перед применением сварочного приспособления в прогревании рабочей поверхности, будь то бетонная стяжка пола, фундамент или что-либо другое, необходимо проконсультироваться с грамотными и опытными профессионалами.

Источник: http://GoodSvarka.ru/oborudovanie-i-materiali/progrev-betona/

Прогрев бетона в зимнее время

Строительные работы по возведению объектов ведутся круглогодично. Часто строители производят бетонирование для формирования цельных конструкций в зимнее время. При этом важно обеспечить прочность монолита и предотвратить кристаллизацию воды.

Осуществляя прогрев бетона важно поддерживать требуемую температуру смеси и создать благоприятные условия для гидратации цемента. Остановимся на технологии разогрева, основанной на применении инфракрасных лучей и электроэнергии.

Рассмотрим достоинства и недостатки каждого метода.

Какими методами производится прогрев бетона в зимнее время

Сталкиваясь с необходимостью выполнять бетонирование в сложных климатических условиях, строители осуществляют мероприятия по поддержанию температуры смеси, соответствующей требованиям технологии.

Бетон, содержащий воду, твердеет в стандартных условиях в течение четырех недель.

Как правильно поступить? Ведь влага при отрицательной температуре кристаллизуется, увеличиваясь в объеме, и может вызвать образование трещин.

Для обеспечения благоприятной температуры применяются следующие методы:

  • электроразогрев, для обеспечения которого используется ПНСВ провод. Кабель укладывается внутри конструкции и бетонируется;
  • электрический обогрев с использованием трансформатора для сварки. На провод для прогрева бетона подается напряжение через стальные стержни;
  • опалубочный нагрев бетонного массива. Щитовые элементы сборной опалубки содержат электрические нагреватели;

Заливка бетона в зимнее время при температуре ниже нуля требует обеспечения определенных температурных условий, при которых раствор сможет нормально твердеть

  • нагрев инфракрасными лучами. Направленное на бетонный массив излучение в инфракрасном спектре повышает его температуру;
  • предварительное повышение температуры раствора. Он разогревается до бетонирования, сохраняя при заливке и застывании требуемую температуру;
  • сооружение специальных конструкций шатрового типа. Они перекрываются полиэтиленом или брезентом и нагреваются с помощью тепловой пушки.

Подключаем провод для прогрева бетона ПНСВ

Применяя кабель прогревочный для бетона можно добиться положительной температуры смеси в зимние месяцы. Методика выполнения работ несложная. Следует уложить в конструкцию, подлежащую бетонированию, кабель с маркировкой ПНСВ и подать на него напряжение питания от источника электрической энергии.

Указанному способу обогрева часто отдают предпочтение благодаря серьезным достоинствам:

  • повышенной эффективности. Правильно уложенный обогревающий кабель, который выбран расчетным путем, может поддерживать температуру, необходимую для застывания значительного объема бетона;

Как правило, электропитание ПНСВ кабелей осуществляют через подстанции, обладающие несколькими ступенями пониженного напряжения

  • экономичности. Расход электрической энергии приемлемый. Это позволяет вложиться в смету строительных мероприятий и не допустить перерасхода денежных средств;
  • сохранению бетонной структуры. При подключении провода к источнику электрической энергии исключено растрескивание бетонного массива и образование в нем воздушных пор;
  • универсальности. Технология электрического разогрева может применяться для цельных строительных конструкций, которые изготавливаются из обычного или армированного бетона.

Наряду с неоспоримыми преимуществами, технология имеет и слабые места:

  • нуждается в выполнении подготовительных работ, в процессе которых производится укладка провода. Гибкий кабель для прогрева бетона требует соблюдения аккуратности при размещении в армированной конструкции и укладывается согласно чертежу;
  • требует применения понижающего трансформатора. Технические характеристики оборудования для уменьшения питающего напряжения должны позволять произвести плавную регулировку нагрева бетонной смеси в требуемом диапазоне.

Применяется провод специальной конструкции, который состоит из следующих элементов:

  • токопроводящей жилы;
  • защитной изоляции.

Подбор кабеля осуществляется после выполнения расчетов с учетом следующих параметров:

  • напряжения на выходе трансформатора;
  • сечения токопроводящей части;
  • суммарной длины уложенного кабеля.

Температура конструкции не должна опускаться ниже технологически обусловленного минимума

При выполнении работ соблюдайте следующие рекомендации:

  • производите укладку провода на очищенной поверхности, избегая его повреждений;
  • равномерно формируйте петли кабеля, не допуская перегибов.

Покупая ПНСВ провод, проверьте соответствие продукции сертификату. Репутация изготовителя кабеля играет немаловажную роль. Технология применения провода для разогрева бетонной смеси имеет много общего с методом формирования обогреваемого пола.

Как производится прогрев бетона сварочным аппаратом

Оборудование применяется при изготовлении зимой следующих конструктивных элементов зданий:

  • опорных колонн;
  • капитальных стен;
  • различных ограждений.

Питающее напряжение подается на следующие токопроводящие элементы:

  • арматурные стержни;
  • проволоку сечением 0,6–0,8 см;
  • стальные пластины.

Пожалуй, самым распространенным методом прогрева является пропускание через бетон электрического тока при помощи электродов

Технология выполнения работ:

  1. Воткните электроды в жидкую смесь.
  2. Подайте напряжение и отрегулируйте силу тока.

Для обеспечения эффективности прогрева соблюдайте следующие рекомендации:

  • погрузите электроды с интервалом 0,8–1 м;
  • плавно регулируйте ток, обеспечивая требуемую температуру.

Преимущества технологии:

  • легкость осуществления;
  • возможность применения на различных объектах;
  • быстрый монтаж и подключение.

К недостаткам относится:

  • увеличенное потребление электрической энергии;
  • расходы, связанные с невозможностью вторичного применения электродов.

При выполнении работ важно соблюдать требования техники безопасности.

При помощи таких электродов можно прогревать конструкции любых форм, даже самых сложных

Электропрогрев бетона с помощью специальной опалубки

Для обеспечения положительной температуры твердеющей бетонной смеси строители также используют сборную опалубку щитовой конструкции. Ее особенность – оснащение унифицированных щитов быстросъемными электронагревателями.

Достоинства применения:

  • ускоренный демонтаж электрообогревателей. Конструкция обеспечивает легкий доступ для замены и обслуживания;
  • универсальность. Опалубка собрана из отдельных элементов со стандартными размерами и может применяться многократно;
  • эффективность. Опалубка позволяет разогревать увеличенный объем бетона при температуре до -20 градусов;
  • повышенный КПД использования. Увеличенная рентабельность и небольшой уровень затрат характерны для этого метода;
  • быстрая сборка конструкции. Ускоренная сборка элементов опалубки позволяет сократить продолжительность монтажа.

Одновременно с преимуществами, имеются слабые стороны:

  • увеличенная цена опалубки;
  • невозможность использования при криволинейной форме объекта.

 Щиты с обогревателями применяются при возведении крупных объектов.

Установка обогревающей системы осуществляется непосредственно перед заливкой раствора в опалубку

Инфракрасный прогрев бетона

Инфракрасные лучи позволяют выполнить направленный разогрев бетонного массива до заданной температуры. Сила излучения и глубина нагрева изменяются в зависимости от расстояния между инфракрасным обогревателем и поверхностью бетонного массива.

Методика разогрева с помощью термоматов:

  1. В бетонную смесь добавляются присадки для ускоренного застывания.
  2. Специальные инфракрасные маты укладываются на поверхность массива.
  3. Подключается питающий кабель и подается электрическое напряжение.

Достоинства этого способа:

  • небольшое энергопотребление;
  • легкость реализации;
  • контроль интенсивности нагрева;
  • возможность разогрева бетона через щиты опалубки.

Слабые стороны:

  • ускоренное испарение влаги из бетонной смеси, которая нуждается в дополнительной защите от высыхания;
  • повышенный объем расходов, связанный покупкой термоматов для разогрева увеличенного пространства.

Несмотря на имеющиеся недостатки, инфракрасный метод востребован в строительной отрасли.

Особенно часто применяют данный метод при выполнении стяжки в зимнее время

Использование предварительно разогретого раствора

Метод разогрева бетонной смеси до выполнения работ по бетонированию – наиболее простой. Технологический алгоритм предусматривает следующие операции:

  • нагрев бетонного раствора на стадии смешивания компонентов;
  • заливку нагретой смеси непосредственно на участке работ.

При этом учитывают:

  • количество заливаемого бетона;
  • время на транспортировку и заливку;
  • температуру окружающей среды.

При отклонениях в расчетах осуществляют дополнительный нагрев любым из известных методов.

Заключение

Принятие решения по выбору оптимального способа разогрева требует профессионального подхода. Важно изучить технологические особенности каждого способа и определить экономическую целесообразность его применения. Рекомендации профессионалов помогут разобраться в достоинствах и недостатках применяемых технологий нагрева.

Источник: https://pobetony.expert/stroitelstvo/progrev-betona

Как осуществляется прогрев бетона сварочным аппаратом

В общих чертах схема прогрева бетона сварочным аппаратом остаётся точно такой же, как и понижающим трансформатором — разница заключается в том, что в данном случае мощность агрегата будет меньше.

Такой метод приемлем для небольших объектов и в домашних условиях чуть ли не идеален, учитывая то, что вам не придётся искать дополнительные мощности.

Для примера мы используем аппарат на 250А при заливке небольшой плиты 4×5м, а в качестве дополнительного материала мы вам покажем видео в этой статье по данной теме.

Сварочный трансформатор BRIMA TIG 250

Прогрев бетона

Примечание. Согласно СНиП 13.03.01-87по несущим конструкциям, если среднесуточная температура на улице опускается ниже 5⁰ C , следует производить электрический прогрев бетона. Это  применяется для того, чтобы в свежем растворе вокруг арматуры не образовывалась ледяная плёнка.

В домашних условиях можно производить прогрев бетона сварочным трансформатором.

Использование греющей петли

Принципиальная схема — как прогреть бетон сварочным аппаратом

Примечание. Помимо петель обогрев свежих бетонных конструкций может осуществляться электродным способом, в обогревающей опалубке, жидкостными установками, методом индукции и инфракрасным излучением.

Если застывание раствора происходит со сбоями в температурном режиме (смесь перемерзает), то прочность резко понижается и поверхность получается осыпающейся — это сразу видно, когда производиться резка железобетона алмазными кругами или алмазное бурение отверстий в бетоне.

Обогрев ЖБ конструкций греющими петлями по принципу подачи предельного тока на кабель нужен в основном для площадок (плитных фундаментов) перекрытий и реже для стен, когда не отапливается само помещение.

Такие схемы, как правило, запитываются через понижающие трансформаторы, на которых есть регулировка напряжения — это позволяет поддерживать необходимую тепловую мощность в зависимости от изменения температуры воздуха на улице. Данный метод является более экономным, нежели электродный (см.

также статью «Штроборез для газобетона: конструкционные особенности и применение»).

Что нам понадобится

ПНСВ (Провод Нагревательный Стального типа Виниловая оболочка)

  • Итак, как мы уже говорили, нам нужен трансформатор, значит, в домашних условиях для этих целей мы будем использовать мощности сварочного аппарата — в нашем случае до 250А, хотя можно и больше, но мы специально рассмотрим минимум, чтобы научится по максимуму извлекать пользу. Кроме того, как требует того инструкция, нам понадобится провод ПНСВ — в данной ситуации нарежем куски по 18м.
  • Также нам нужен алюминиевый одинарный провод сечением 2,5-4 мм2 (подойдёт АПВ), хлопчатобумажная изоляционная лента и пассатижи, токовые клещи. Ну и, конечно, такие работы можно производить лишь на тех участках, где есть источник питания на 220В — это может быть ЛЭП, но также (такое бывает в начале строительства) можно использовать карбюраторный или дизельный (более экономный) генератор.
Диаметр жилы в мм1,22,03,0
Ом/метр0,150,050,02

Сопротивление ПНСВ в зависимости от толщины кабеля

Приступаем к работе

Примерно так будет выглядеть укладка

Сварочный аппарат на 250А у нас имеется, теперь нам понадобится ПНСВ, количество которого рассчитаем, опираясь на формулу R=U/I, и если нам известно, что U=220В, I=250А, тогда R=U/I=220/250=0,88ом.

Что же из этого следует — если мы имеем на выходе максимально 250А, то для того чтобы не перегружать аппарат сделаем своими руками 8 петель по 25А каждая — этого будет вполне достаточно. Для этого возьмём кусок ПНСВ длиной 18м и диаметром 3,0 мм (0,05 см/метр) — для плиты 4×5м этого будет достаточно.

Зачищаете концы ПНСВ по 40-50 мм и к каждому из них подсоединяете алюминиевый провод (можно, конечно, использовать и медь, но цена алюминия гораздо ниже) — позаботьтесь о том, чтобы скрутка получилась плотной — от этого будет зависеть корректность работы нашей конструкции.

Длина алюминиевого провода будет зависеть от того, на каком расстоянии вы сможете установить сварочный аппарат — целесообразнее будет поднести его как можно ближе. Если эти концы получились короткими — не расстраивайтесь — их можно нарастить в любой момент на необходимую длину, только скрутку изолируйте тщательно (см.

также статью «Пигменты для бетона: основные характеристики, сфера применения и методы самостоятельного приготовления»).

Укладка петель на металлическом арматурном каркасе. Фото

Теперь нам нужно уложить ПНСВ, распределив его равномерно по всей площади так, чтобы скрутки с алюминием оказались внутри заливаемой плиты, но ни в коем случае не касались металлического каркаса! Лучше всего, если у вас получится продеть ПНСВ между двумя обрешётками — внутри каркаса — так кабель окажется внутри как раз посредине плиты, как масло в бутерброде между двумя кусками хлеба одинаковой толщины.

При заливке раствора вы легко можете сместить провод, поэтому его следует подвязать к арматуре кусками изолированного алюминия, но будьте осторожны, чтобы не повредить изоляцию на ПНСВ — так подогрев бетона сварочным аппаратом будет эффективным и безопасным.

Можно также разрезать ПНСВ на куски по одной петле и от каждой вывести алюминиевые концы так будет гораздо легче продеть провод между прутьями арматуры в каркасе, только здесь нужно быть внимательным, чтобы не перепутать концы. Лучше всего их пометить маркером по изоляции (поставьте значки + и -).

Для подключения сварочного аппарата можете использовать кабели — землю и тот, который идёт на держатель, либо прикрутить алюминиевый провод непосредственно к клеммам. Постарайтесь как можно быстрее подключить цепь после заливки и включите регулятор напряжения на минимум, включите рубильник и проверьте напряжение.

Вначале возможен скачок до 240-250А, но по мере прогрева и застывания массы оно будет падать, и вы сможете его постепенно повышать по мере необходимости.

Заключение

Так как греть бетон сварочным аппаратом нужно постепенно, то проверяйте напряжение каждые 2 часа, постепенно его увеличивая (читайте также статью «Подбетонка: что это такое и как она делается правильно»).

Примерно за 8 часов вы дойдёте до максимума и в течение 3-ёх суток плита должна высохнуть (но это не степень эксплуатации).

Источник: http://rusbetonplus.ru/gidroizolyatsiya-uteplenie-dobavki/kak-osyshestvliaetsia-progrev-betona-svarochnym-apparatom/

Прогрев бетона сварочным аппаратом

При работе с бетоном в условиях низких температур неизменно возникает необходимость прогрева этого строительного материала.

В том случае, если объем таких работ не слишком высок, для прогрева бетона можно использовать маломощные двухфазные сварочные аппараты.

Причём качественно прогреть бетонную смесь можно даже маломощными моделями сварочных аппаратов, которые используются обычными домовладельцами. Расскажем вам о том как выполняется такой прогрев бетона сварочным аппаратом.

Зачем нужно прогревать бетон

Большинство распространенных в настоящее время разновидностей этого строительного материала подразумевают работу при температурах выше 5 градусов по Цельсию.

Только при таких плюсовых температурах обеспечивается качественное затвердевание материала, который быстро набирает прочность, в нём отсутствуют трещины и другие дефекты.

Если же приводить такие работы при минусовых температурах бетон застывает неравномерно, появляются трещины, материал начинает крошиться, что приводит в последующем к необходимости дорогостоящих ремонтных работ.

Использование специального оборудования для прогрева бетона позволяет обеспечить правильное затвердевание и застывание этого материала, при этом все такие строительные работы могут вестись даже при минусовой температуре. Если при больших объемах работ используются специальные масляные и электрические подогреватели, то при небольшом объеме бетонирования куда проще и удобнее использовать для прогрева компактные переносные сварочные аппараты.

Маломощные любительские модели лучше подходят для данной работы, нежели чем мощная профессиональная техника.

Такие сварочные инверторы отличается мобильностью, они экономичнее и позволяют плавно регулировать сварочный ток.

Такой сварочный аппарат с легкостью найдется в хозяйстве каждого домовладельца, а при необходимости его можно арендовать и выполнить правильную заливку бетона с прогревом используемого строительного материала.

 Прогрев  бетона сварочным аппаратом: схема работы

Для выполнения прогрева бетона с помощью ПНСВ провода вам потребуется следующее:

  • Сварочный аппарат с мощностью 150-250 ампер.
  • Алюминиевый кабель.
  • Изолента с тканевой основой.
  • Амперметр.
  • Кабели ПНСВ.

Используемый ПНСВ кабель необходимо нарезать на ленты длиной около 15-20 метров. Каждый такой отрезок должен выдержать сварочный ток мощностью в 25 Ампер. Если вы используете максимальную мощность сварочного аппарата, то потребуется использовать около 10 отрезков ПНСВ.

С обеих сторон каждого такого ПНСВ провода необходимо прикрутить алюминиевые кабели аналогичной длины. Скрутка должна находиться в прогреваемом бетоне, а другой конец проволоки соединяется в последующем со сварочным инвертором.

Скрутку в бетоне следует заизолировать изолентой.

Обрезки проводов следует подвязать к арматуре при помощи пластиковых креплений и заизолировать такое соединение качественным проводом. Это позволит избежать короткого замыкания. Не забывайте маркировать провода плюсом и минусом.

Заливаем бетоном арматуру с подвязанными ПНСВ проводами, после чего подключаем клеммы кабеля к выходам сварочного аппарата. Устанавливаем минимальный ток, после чего на основном и проводящем отрезке измеряем показатель сварочного тока. В нашем конкретном случае на основном проводе показатель сварочного тока должен составлять 250 Ампер, а на каждом отрезке 20 Ампер.

Помните о том, что по мере прогревания бетона сила тока падает, поэтому на аппарате вручную ток нужно будет ступенчато увеличивать. При этом старайтесь не допускать резкого увеличения напряжения на кабелях, а сам застывающий материал лучше всего укрыть утеплителем и полиэтиленовой пленкой.

Это исключает потери тепла, а материал будет сохнуть равномерно, что позволит исключить появление трещин на его поверхности.

Прогрев бетона рекомендуется выполнять до приобретения залитой плиты должной прочности. Обычно на затвердевание и набор прочности бетона требуется около 30-40 часов. Всё это время следует прогревать цемент, не допуская его резкого охлаждения.

Прогрев бетона сварочным аппаратом: схема подключения

Популярность также получила технология прогрева сварочным аппаратом с использованием в качестве греющих элементов электродов, вживленных непосредственно в бетон.

При этом ток течет через застывающий раствор, разогревая электроды и подогревая строительный материал.

Недостатком данной технологии прогрева бетона является опасность поражения электрическим током людей и домашних животных, которые находятся в непосредственной близости от заливаемой бетонной смеси. Именно поэтому необходимо ограничивать напряжение на уровне 36 В.

В качестве электродов можно использовать прутья арматуры, которые укладываются в конструкцию и соединяются последовательно, что позволяет получить изолированные отрезки. Такими изолированными отрезками подключают прямой и обратный провод. Контролировать мощность тока можно подключённой лампой накаливания между двумя электродами.

Выполняя прогрев при помощи электродов необходимо постоянно контролировать температуру бетона, не допуская его растрескивания и обезвоживания. Залитую конструкцию рекомендуется накрыть утеплителем или пленкой, что позволит избежать потери тепла и влаги.

Заключение

Маломощные сварочные аппараты отлично подходят для прогрева стройматериала.

Наибольшую популярность в настоящее время получили две технологии прогрева бетона с помощью сварочных аппаратов с использованием специальных нагревающих кабелей или же арматурных электродов.

Вне зависимости от того какой способ прогрева материала вами выбран, необходимо качественно и внимательно выполнять соединение проводов и арматуры, что и станет залогом безопасности выполнения такого прогрева материала.

Источник: http://svarkagid.com/progrev-betona-svarochnym-apparatom/

Прогрев бетона в зимнее время

Главная|Строительство|Прогрев бетона в зимнее время

Дата: 14 ноября 2017

Просмотров: 1744

Коментариев: 0

Строительные мероприятия, связанные с бетонированием монолитных конструкций, осуществляются на протяжении года.

Зимой строителям приходится решать ряд задач по обеспечению прочности бетона и предотвращению замерзания входящей в раствор воды.

С целью поддержания положительной температуры раствора и обеспечения оптимальных условий схватывания осуществляется прогрев бетона. Рассмотрим детально методы нагрева с использованием электрической энергии и инфракрасных лучей.

Как осуществляется прогрев бетона в зимнее время

С наступлением зимних холодов строителям приходится сталкиваться с серьезными проблемами, связанными с особенностями бетонного раствора. Он содержит гравий, портландцемент и песок с добавлением воды. Раствор при обычных условиях приобретает эксплуатационные характеристики на протяжении месяца. Однако вода при замерзании увеличивается, что может разрушить монолит.

В процессе осуществления строительных и ремонтных работ в условиях низких температур для ускорения отвердения бетонного раствора следует использовать прогрев бетона

Для поддержания температуры используются следующие технические приемы:

  • электрический прогрев специальным кабелем. Для повышения температуры применяется ПНСВ провод, который заранее прокладывается по подлежащей заливке конструкции;
  • электронагрев с помощью сварочного трансформатора. К источнику электроэнергии подключается кабель для прогрева бетона с помощью введенных в массив электродов;
  • нагрев с помощью специальной опалубки. В стандартных элементах щитовой конструкции опалубки вмонтированы быстросъемные электронагревательные элементы;
  • инфракрасный разогрев. Он основан на использовании направленного инфракрасного излучения, благодаря которому повышается температура бетона;
  • предварительный разогрев смеси. Раствор нагревается до заливки таким образом, чтобы при твердении он сохранял положительную температуру;
  • обустройство специальных шатров. Сооружается каркасная конструкция с брезентовым или полиэтиленовым перекрытием, внутри которой работает тепловая пушка.

Электропрогрев бетона с помощью кабеля ПНСВ

Используя провод для прогрева бетона ПНСВ несложно обеспечить оптимальную для застывания раствора температуру. Этот метод достаточно простой и предусматривает прокладку специального провода ПНСВ, который греется при подаче низкого напряжения от понижающего трансформатора.

Такой способ работает по достаточно простому принципу. Прежде чем выполнить заливку, закладывается провод для прогрева бетона

Технология электрического обогрева специальным проводом имеет ряд преимуществ:

  • обеспечивает высокую эффективность. Правильно подобранный и профессионально уложенный нагревательный провод способен обогреть бетонный массив увеличенного объема;
  • гарантирует экономичность. Незначительное потребление электрической энергии позволяет избежать существенных финансовых расходов и заметно сокращает сметную стоимость работ;
  • сохраняет структуру монолита. При подаче питающего напряжения не образуются трещины в зонах прокладки кабеля, а также пузырьки воздуха в разогреваемом проводом бетонном массиве;
  • является универсальной. Электрический обогрев может использоваться для монолитных конструкций, изготовленных из обычного бетона, а также усиленных стальной арматурой.

Несмотря на серьезные преимущества, метод имеет определенные недостатки:

  • требует проведения подготовительных мероприятий, при выполнении которых укладывается кабель прогревочный для бетона. Важно соблюдать аккуратность при укладке петель провода и придерживаться рабочей схемы;
  • нуждается в использовании специального трансформатора. Мощность понижающего оборудования должна обеспечивать возможность повышения температуры бетонного массива до необходимого уровня.

Используется специальный кабель, состоящий из токопроводящего сердечника и изоляционного покрытия. Провод подбирается на основании расчетов, учитывающих ряд факторов:

  • питающее напряжение трансформатора;
  • диаметр токопроводящей жилы;
  • длину провода.

Нужно принять во внимание, что закладка прогревочных петель осуществляется обычно при малоприятной погоде

При прокладке кабеля важно соблюдать следующие требования:

  • обеспечить чистоту поверхности и исключить возможность повреждения кабеля;
  • избегать перегибов жил и равномерно укладывать провод по всей площади.

Важно обеспечить требуемую интенсивность нагрева:

  • на протяжении первых двух часов нагрева, скорость не должна повышаться более чем на 10 градусов в час;
  • рабочая температура должна быть стабильной в течение всего периода прогрева;
  • скорость остывания разогретого массива не должна превышать 5 градусов Цельсия в час.

Прогрев бетона сварочным аппаратом

Прогреть раствор можно, используя сварочное оборудование и проволочные электроды. Метод положительно зарекомендовал себя при заливке в зимнее время вертикальных конструкций:

Производить электропрогрев бетона можно с использованием электродов, заменяющих собой провода ПНСВ

В качестве токопроводящих элементов может использоваться:

  • стальная арматура;
  • проволока диаметром 8–10 мм;
  • металлические пластины.

Практическая реализация этого способа несложная:

  • после бетонирования вертикальных конструкций необходимо воткнуть в бетонный массив электроды;
  • затем следует с помощью кабеля подать питающее напряжение от понижающего трансформатора.

При выполнении работ важно соблюдать следующие требования:

  • подобрать расстояние между стержнями, которое должно составлять не менее 60 см в зависимости от климатических условий;
  • регулировать питающее напряжение для достижения необходимой температуры прогрева бетонного массива.

Достоинства метода:

  • простота практической реализации;
  • возможность использования на крупных объектах;
  • ускоренный монтаж элементов.

Электродный прогрев прост в использовании и монтаже, но на его проведение требуются значительные затраты электроэнергии

Слабые места:

  • повышенный расход электроэнергии;
  • невозможность повторного использования электродов.

Роль проводника электрической энергии в данном варианте играет вода.

Использование нагревающей опалубки

Преимущества этого метода:

  • возможность быстрой замены электрических нагревателей, доступ к которым осуществляется с внешней стороны конструкции;
  • универсальность опалубки, которая многократно может использоваться на различных объектах;
  • повышенная эффективность, позволяющая выполнять строительные мероприятия при снижении температуры до минус 25 градусов Цельсия;
  • увеличенный коэффициент полезного действия, благодаря которому снижаются энергозатраты, и повышается рентабельность;
  • ускоренный монтаж опалубки, конструкция которой позволяет за ограниченное время соединить щиты и подключить электроэнергию.

Для обогрева бетона таким методом в опалубку монтируются нагревательные элементы, замена которых производится по мере необходимости

Несмотря на комплекс достоинства, имеется ряд недостатков:

  • повышенная стоимость конструкции;
  • проблематичность применения на сложных конфигурациях.

Метод греющей опалубки положительно зарекомендовал себя на крупных строительных объектах.

Инфракрасный метод разогрева

Технология нагрева термоматами довольно проста:

  • в раствор вводятся добавки, ускоряющие твердение;
  • на поверхность кладутся специальные маты;
  • осуществляется подача питающего напряжения.

Этот способ используется для обогрева бетонных поверхностей, расположенных в горизонтальной плоскости.

Преимущества технологии:

  • пониженный уровень энергозатрат;
  • простота осуществления;
  • регулировка интенсивности излучения;
  • возможность нагрева через опалубку.

Обогрев таким способом осуществляется за счет воздействия инфракрасного излучения

Недостатки:

  • интенсивное испарение воды из бетона, который следует защитить от преждевременного высыхания;
  • повышенные затраты на приобретение матов для прогрева увеличенной площади.

Предварительный разогрев бетонной смеси

Способ предварительного нагрева бетона является одним из самых простых. Он предусматривает следующие работы:

  • повышение температуры смеси на этапе приготовления;
  • последующую заливку разогретого состава.

Существенным недостатком этого метода является необходимость выполнения сложных расчетов, учитывающих:

  • климатические факторы;
  • объем бетона;
  • продолжительность заливки.

При недостаточной температуре бетона возникает необходимость в его дополнительном разогреве любым из доступных способов.

Подводим итоги

Выбор оптимального метода – сложная задача. Важно оценить эффективность метода и правильно рассчитать суммарный объем затрат. Необходимо тщательно проанализировать достоинства и недостатки и не допустить ошибки, принимая решение.

Источник: https://pobetony.ru/stroitelstvo/progrev-betona/

электроды, КТПО, провод ПНСВ, технология

Содержание статьи

Схватывание бетона происходит при участии воды. Но в зимнее время вся влага в растворе замерзает, делая гидратацию невозможной. Чтобы и в морозы не приостанавливать строительство, на участке организовывают обогрев бетона. Вариантов прогрева разработано немало, и каждая технология находит свое применение.

На чем основывается выбор?

Каким способом подогревать зимой бетонные конструкции, зависит от ряда параметров:

1. Погодные условия. При температуре не ниже -15 °С обогрев нагревательными проводами можно заменить методом «теплой» опалубки.

2. Класс бетона – от него зависит необходимый срок теплового воздействия до получения надежных характеристик конструкций, залитых зимой. Бетон вплоть до класса В10 должен успеть набрать половину заявленной прочности, прежде чем можно будет закончить прогрев, классы с В12,5 по В25 – около 40%, крепче В25 – около 30%.

3. Размеры ЖБИ. Для массивных фундаментов рекомендуется электропрогрев бетона электродами или проводами ПНСВ, плюс сохранение набранной температуры «термосом».

4. Толщина заливки. При незначительных габаритах отдельных элементов армированной конструкции возможно применение индукционного нагрева.

Чтобы получить монолит заданного качества и оптимизировать затраты на обогрев бетона, рекомендуется для каждого конкретного случая комбинировать различные технологии.

Метод электродов

Наиболее часто применяемая технология, основанная на свойстве проводников электрического тока разогреваться. Влажный бетонный раствор тоже превращается в своеобразный проводник, если в нем разместить запитанные электроды. Чтобы «цепь» заработала, их необходимо подсоединить к разным фазам источника переменного тока мощностью 60-127 В.

Не используйте метод под напряжением свыше 127 В, если работаете с ЖБИ. Бетон с металлической арматурой включать в цепь можно только после профессиональной разработки проекта.

Технология прогрева бетона электродами требует предварительных расчетов для каждой конструкции. От ее особенностей будет зависеть напряжение подаваемого переменного тока, схема расстановки электродов и даже их вид.

  • Стержневые электроды – металлические пруты небольшого диаметра (от 6 до 12 мм). Используются на удаленных участках особо крупных конструкций, а также для сложных форм (стыков, колонн). При размещении стержневых электродов нужно следить, чтобы они не располагались к опалубке ближе, чем на 3 см.
  • Струнные – длинная стальная проволока диаметром 6-10 мм. Предназначены для участков большой протяженности. Этот способ предпочтителен, если прогрев бетонной смеси электродами выполняется при контакте заливки с уже замерзшим грунтом.
  • Поверхностные – особый тип электродов, роль которых выполняют стальные пластины или полосы шириной в 4-8 см. Проводники крепятся непосредственно к опалубке с оставлением одного свободного конца для подключения к источнику питания. В отличие от погружных электродов поверхностные не контактируют с раствором, так как отделены от него слоем рубероида.

Металлические полосы обеспечивают прогрев бетона не глубже, чем на половину расстояния от одного электрода до другого. Это тепло достает и до внутренних слоев, но там процессы протекают не так интенсивно. А вот разнофазные пластины могут нагревать весь объем, если он не слишком большой.

Основное достоинство метода прогрева электродами – возможность поддержания оптимальной температуры бетона в конструкциях любой толщины и формы.

Особенности различных способов

1. Использование нагревательных проводов.

Тот же электропрогрев бетона, но в отличие от электродного метода, увеличение температуры в монолите обеспечивают уложенные в массу изолированные провода. Они сами нагреваются в процессе работы, а раствору передают только тепловую энергию.

Марки нагревающих элементов:

1. Чаще всего в зимнее время используется электропровод марки ПНСВ от 1,2 до 3 мм в диаметре.

При этом нужно учитывать, что ПНСВ не должен во время работы находиться на воздухе, иначе его изоляция просто оплавится. Отсюда и особенности технологии прогрева – применение так называемых холодных концов, подключенных в местах выхода ПНСВ из бетона. Их роль исполняют короткие установочные провода типа АПВ-2,5 или АПВ-4 с алюминиевой жилой.

Схема прогрева проводом ПНСВ 1,2 при его подключении к трансформатору может быть одно- или трехфазной. Главное, чтобы линии отстояли друг от друга минимум на 15 мм, а сила тока не превышала 15 А. Длина обогреваемых секций подбирается вдвое меньше, чем значение напряжения на трансформаторе.

 

2. Применение кабелей КДБС или ВЕТ позволяет полностью исключить из технологии трансформатор для прогрева бетона.

К такому методу прибегают, когда нет возможности обеспечить станции питание в 380 В или использовать требуемое количество понижающих трансформаторов на объекте. ВЕТ-кабели могут работать от бытовой электросети, на концах они снабжаются соединительными муфтами, что весьма удобно при укладке. Правда, стоит такой провод дороже, чем ПНСВ.

Подключение производится к понижающему трансформатору, выдающему со второй обмотки 75 или 36 В. Схема укладки провода ВЕТ не отличается от аналогичной для ПНСВ. При этом важно подобрать оборудование, предусматривающее плавную регулировку силы тока. Это позволит поддерживать нормальную температуру в монолитной конструкции.

Как вариант для частного строительства, подойдет обычный сварочный аппарат. К профессиональному оборудованию относятся трансформаторные станции, которые обеспечивают прогрев до 30 кубов: КТПТО-80/86, серия трансформаторов СПБ либо сухая станция ТСДЗ-63.

Прогрев с использованием проводов позволяет сократить время набора 70%-ной прочности до нескольких дней. При такой высокой эффективности метод выгодно отличается экономичностью.

3. Греющая опалубка.

Контактный прогрев бетона предпочтительно использовать на объектах быстрого возведения. Термоактивная опалубка широко применяется для строительства монолитных домов, но раствор должен иметь высокую скорость застывания. Эта технология довольно требовательна к температуре смеси и окружающей среды: промерзший грунт на глубину 30-50 см и сам состав должны быть прогреты до +15 °С.

4. Индукционный метод.

Отлично подходит для изготовления бетонных свай и колонн. Повышение температуры внутри опалубки происходит за счет воздействия электромагнитного поля, создаваемого внешними витками провода. Вся конструкция превращается в своеобразную индукционную катушку, разогревающую металлическую арматуру. А та в свою очередь осуществляет прогрев раствора изнутри. Достоинства метода – равномерный прогрев и возможность производить предварительный разогрев опалубки и армирующих стержней еще до заливки.

5. Тепловые излучатели.

Относительно недорогой и наименее энергозатратный способ – прогрев тепловыми пушками, ИК-излучателями и другими внешними электрообогревателями. Его плюсом и одновременно недостатком является локальное воздействие на заливку. Поэтому сфера применения этой технологии ограничивается ремонтными работами, заделкой стыков и изготовлением малых форм. При этом внешний обогрев не будет достаточно эффективен, если обрабатываемую часть конструкции не оградить от внешних условий временным пологом. Достоинства: минимум аппаратуры и кабельной продукции, дешевизна и относительно невысокие энергозатраты.

6. Пропаривание.

Самый дорогой и энергоемкий прогрев бетона в зимнее время применяется только в промышленном строительстве. Смысл технологии заключается в том, что бетон заливается в сложную двухстенную опалубку, через которую подается горячий пар. Он обволакивает бетонную поверхность, образуя «паровую рубашку». Это обеспечивает и равномерный прогрев конструкции, и подачу влаги, необходимой для гидратации.

Несмотря на всю сложность организации прогрева, этот способ является наиболее эффективным. А для сокращения расходов в сам бетонный раствор вводятся пластифицирующие добавки, ускоряющие процесс твердения.

Существует и пассивный метод, когда вокруг конструкции создается термос из теплоизолирующих матов. Но он сам по себе неэффективен – его уместно использовать только в качестве дополнительной меры вместе с другими способами.

Жаростойкий бетон или огнеупорный бетон — установка, применение

Жаростойкий бетон или огнеупорный бетон обладают свойствами выдерживать экстремальные температуры. Установка и применение теплостойкого огнеупорного бетона обсуждаются.

Размещение отверждения и применение теплостойкости и огнеупорного бетона будут рассмотрены в следующих разделах.

Рис.1: Жаростойкий бетон или огнеупорный бетон

Жаростойкий бетон или огнеупорный бетон — установка и применение

Этих подробности о теплостойком огнеупорном бетоне обсуждаются:

  • Термостойкий бетон или огнеупорный бетон размещение и уплотнение
  • Отверждение жаростойкого бетона
  • Сушка и обжиг из термостойкого огнеупорного бетона
  • Армирования в жаропрочном бетоне или огнеупорный бетон
  • Усадка и тепловое расширение жаропрочного бетона
  • Прочность после выстрела
  • Применения жаропрочного огнеупорного бетона

Размещения и Компактизация жаростойкого бетон или огнеупорный бетон

Размещение и уплотнение жаропрочного бетона и огнеупорного бетон, по существу, значительные.Как и обычный бетон, жаропрочный и огнеупорный бетон укладывается и отверждается, и для этого не требуется специального инструмента или специальных навыков.

Что касается опалубки, используются стандартные материалы, а при использовании сборных элементов следует тщательно учитывать размеры. Если доступ к месту затруднен и его невозможно отлить в обычном режиме, тогда рассматривается применение торкретирования, и оно проводится специально квалифицированными подрядчиками.

Отверждения жаропрочных бетон или огнеупорный бетон

Основная цель отверждения бетона — сохранить влажность бетона и продолжить реакцию гидратации, чтобы бетон приобрел достаточную прочность.Неадекватное отверждение приведет не только к образованию пыльной и рыхлой поверхности бетона, но и к разрушению бетона при эксплуатационных нагрузках. Таким образом, отверждение бетона на основе кальциево-алюминиевого цемента (САЦ) имеет решающее значение.

Отверждения жаропрочного бетона и огнеупорного бетон аналогично обычный бетон, но алюминий кальция бетон отверждение цемента должно начаться в течение 3-4 ч после размещения из-за быстрое упрочнение и большого выделение тепла.

Сушка и обжиг Жаростойкий бетон или огнеупорный бетон

По окончании отверждения бетона в бетоне останется значительное количество свободной воды.Если эта свободная вода не будет удалена, невозможно избежать растрескивания бетона, когда бетон подвергается воздействию огня.

Перед тем, как бетон подвергнется возгоранию, рекомендуется удалить как можно больше свободной воды путем принудительной сушки при 100 o C или естественной сушки, а если степень нагрева превышает 100 o C до 350 o C, то гидратная цементная вода удаляется.

Очень важно применять нагрев осторожно, и плоскость подачи тепла зависит от ряда факторов, таких как толщина, тип бетона и цель, для которой построен проект.

Типичная плоскость нагрева бетона включает нагрев бетона в течение шести часов при минимальной температуре от 50 o C до 500 o C, затем она будет увеличена для достижения рабочей температуры.

Бывают случаи, когда сушка бетона непроста и не может быть проведена должным образом, например, когда толщина бетона превышает 500 мм. Поэтому рекомендуется создать правильный проход для выхода водяного пара. Это может быть достигнуто за счет увеличения пористости бетона за счет добавления органических волокон или пористого заполнителя.

Не разрешается применять обогрев, если бетон не может быть полностью увлажнен в особых случаях, например, при хранении на открытом воздухе в зимний период.

Армирование в жаропрочном бетоне

Если стальные стержни заделаны в жаропрочный огнеупорный бетон, который подвергается сильному нагреву, то необходимо уделить особое внимание армированию.

Высокая температура не только приводит к снижению сцепления стали с бетоном и, возможно, к плавлению при высоких температурах, но также может вызывать растрескивание бетона и влиять на свойства стали.

Отмечено, что связь между бетоном и сталью ухудшается при температуре 300 o C, и если она увеличивается, бетон начинает раскалываться и образовывать трещины. При более высокой температуре стальная арматура может потерять свою функцию, и присутствие стали в бетоне больше не будет благоприятным.

Рекомендация по указанной проблеме включает размещение стали вдали от нагретой поверхности бетона, при этом стальная арматура не должна нагреваться выше 300 o C.

Можно использовать специальную арматуру, например низкоуглеродистую сталь и стальную фибру, в ряде случаев, например, в промышленных зонах. Последние обладают способностью выдерживать большую температуру по сравнению с первыми.

Усадки и тепловое расширение термостойкого огнеупорного бетона

Трещины обычно возникают, когда жаропрочный огнеупорный бетон подвергается воздействию огня из-за усадки, вызванной потерей воды.

Эти трещины не только могут закрываться в течение срока службы, но они также не могут создавать проблем, если отходы не могут попасть в трещины, иначе ширина трещин увеличится при повторном нагревании бетона.

Прочность теплостойкого огнеупорного бетона после обжига

Перед обжигом обычные бетоны, содержащие около 15-25% цемента по весу, начинают затвердевать через 3–4 часа укладки бетона и достигают большей части своей прочности через сутки.

Когда бетон подвергается нагреванию, развитие его прочности связано с объединенной и свободной водой, а при дальнейшем повышении температуры изменения прочности будут связаны с реакцией между кальциево-алюминиевым цементом и заполнителем.

Когда бетон нагревается до температуры около 500 ° C, гидравлическое сцепление уменьшается, что приводит к снижению прочности бетона. Когда степень нагрева превышает 500 o C, на этой стадии образуется керамическая связка на основе цемента и заполнителя между заполнителем и цементом. Бетон показал повышенную прочность при испытании на охлаждение, но показал снижение прочности при испытании перед охлаждением.

Литейный бетон с низким содержанием цемента демонстрирует повышенную прочность как в горячем, так и в холодном состоянии.Цемент этого типа хорошо работает при высоких температурах.

Применение Жаростойкий бетон или огнеупорный бетон

Применение термостойкого бетона или огнеупорного бетона включает в себя огонь учебные области, которые могут включать в себя широкий плоские участки поверхности, натурные комнаты или двухэтажные здания, огонь, лестничных маршей, используемые во время огневой подготовки, литейных полов, внутренних дымоходов, каминов и дымоходов.

Что касается огневой подготовки, то, помимо воздействия на бетон огнем, очень возможно образование химического вещества в результате горения материалов, которые используются для разжигания огня, и этот материал разрушает бетон в этой области.

Fig.2: Огнетушитель Training Area Использование жаропрочных огнеупорного бетона

Что касается литейных полов, то это тип конструкции, которая может подвергаться постоянному нагреву и термическим ударам в дополнение к истиранию и ударам. Поэтому необходимо использовать бетон, который может выдерживать не только высокую температуру, но также удары и истирание. Например, цементно-кальциевый цементный бетон сочетается с синтетическим заполнителем из алюмината кальция.

Рис.3: Литейное Полы с использованием жаропрочных огнеупорного бетона

Дымоходы обычно подвергаются нагреву и возможной химической агрессии из-за попадания кислоты в дымоходы.

Рис.4: Дымоход в зданиях с использованием жаропрочных огнеупорного бетона

Подробнее: Показатели огнестойкости бетонных и каменных строительных элементов

Термическое растрескивание бетона и профилактика

Термическое растрескивание бетона и профилактика

Разница температур внутри бетонной конструкции может быть вызвана частями конструкции, теряющими тепло гидратации с разной скоростью, или погодными условиями, которые охлаждают или нагревают одну часть конструкции в разной степени или с другой скоростью, чем другая часть конструкции. .

Эти разницы температур приводят к разному изменению объема, что приводит к трещинам. Обычно это связано с массивным бетоном, включая большие и более толстые секции (³ 500 мм) колонн, опор, балок, фундаментов и плит.

Разница температур из-за изменений температуры окружающей среды может повлиять на любую конструкцию.

Температурный градиент может быть вызван либо тем, что центр бетона нагревается больше, чем снаружи из-за выделения тепла во время гидратации цемента, либо более быстрым охлаждением снаружи по сравнению с внутренним.

Оба случая приводят к растягивающим напряжениям снаружи, и если предел прочности будет превышен, произойдет растрескивание. Напряжения при растяжении пропорциональны разности температур, коэффициенту теплового расширения, эффективному модулю упругости (который уменьшается из-за ползучести) и степени ограничения.

Чем массивнее конструкция, тем больше потенциал для перепада температур и ограничения. Затвердевший бетон имеет коэффициент теплового расширения от 4 до 9 × 10-6 на градус.F. Когда одна часть конструкции подвергается температурному изменению объема, существует возможность термического растрескивания.

Особое внимание следует уделять проектированию конструкций, в которых некоторые части подвергаются температурным изменениям, а другие части конструкции частично или полностью защищены.

Падение температуры может привести к растрескиванию открытого элемента, тогда как повышение температуры может вызвать растрескивание в защищенной части конструкции.

Меры профилактики:

  • Снижение максимальной внутренней температуры.
  • Задержка начала охлаждения.
  • Контроль скорости охлаждения бетона за счет изоляции открытой бетонной поверхности в течение первых 5 дней. Это может быть сделано с помощью листов термоколяски толщиной 50 мм, покрытых полиэтиленовым листом, уложенных на бетонные поверхности, уже покрытые гессианской тканью, и разбрызгиванием воды, сохраняющим гессиан влажным. Температурный градиент между слоем бетона и поверхностями не должен превышать 15 0 C.
  • Повышение прочности бетона на разрыв.
  • Снижение температуры бетона при укладке, скажем, до 32 0 C.
  • Использование цемента с низкой теплотой гидратации или замена части цемента летучей золой.
  • Сохранение тепла стальной опалубки за счет воздушного отопления зимой.
  • Использование теплоизоляционного материала в качестве опалубки.
  • Сохранение изоляционной опалубки на длительный срок.
  • Цемент низкий, лучше всего марка OPC 33.
  • Цемент с высоким содержанием C2S.

Ремонт: Герметизация и заполнение трещин в бетоне.

Подробнее:

Требуемые свойства ремонтных бетонных материалов

Бетон, армированный волокном — типы, свойства и преимущества бетона, армированного волокном

Почему выбирают железобетон в качестве строительного материала для конструкции?

Виды повреждений гибких покрытий, их причины и способы ремонта

Все, что вам нужно знать о стяжке пола и теплых полах

Полы с подогревом никогда не были так популярны, они стали роскошным дополнением к комнатам, для которых обычно требуется кафельный пол, например, к ванным комнатам и кухням.Более того, он хорошо совместим с системами конденсационных котлов, обеспечивая большую энергоэффективность при надлежащей теплоизоляции.

Однако люди не принимают во внимание стяжку, которую нужно положить на теплый пол, и то, как они взаимодействуют. Стяжка — это слово, используемое для описания тонкого верхнего слоя смеси песка и цемента, налитого поверх конструкционного бетона или изоляции.

Стяжка и нагревательные элементы часто укладываются отдельно и могут вызвать проблемы в дальнейшем.Чтобы помочь вам спланировать проект теплого пола и ускорить его освоение, мы составили краткое руководство по основным моментам, которые вам следует знать о стяжке пола и теплых полах.

Слои теплого пола

Нельзя просто укладывать отопление и засыпать его бетоном. Сначала нужно подумать о слоях. Обычно в процессе есть четыре ключевых слоя, которые помогут сделать ваш обогрев эффективным и долговечным.

Черный пол Черный пол — это секция в самом низу, обычно представляющая собой простую бетонную или плиточную основу.

Изоляция Чтобы обеспечить максимальное тепло в вашей комнате, на черный пол кладется изоляционная плита, которая помогает отводить тепло вверх в комнату, а не отводить его через основание.

Трубопровод отопления Трубопровод отопления является следующим слоем, он может быть установлен на направляющей или просто закреплен.

Стяжка Это слой, который будет проходить поверх ваших нагревательных элементов, создавая гладкую ровную поверхность, на которую можно укладывать напольный материал по вашему выбору.

Отопление и охлаждение: освободите место для расширения

Всякий раз, когда вы имеете дело с обогревом или охлаждением, обязательно должно быть некоторое расширение или сжатие. По этой причине важно, чтобы на вашей стяжке были компенсационные швы и периметры, соответствующие размеру и форме помещения.

Деформационные швы имеются между стяжкой в ​​местах, позволяющих стяжке немного двигаться при нагревании. Пена по периметру должна располагаться на уровне нагревательного элемента, чтобы не повредить периметр помещения.

Отделка и нагрузка теплых полов

Большинство людей будут думать об отделке пола, ожидая установки теплого пола, и хотя отделка должна быть ровной, гладкой и ровной, существует более серьезная проблема, которую следует учитывать: нагрузка.

Основная функция пола — удерживать ожидаемую нагрузку. Независимо от того, означает ли это возможность просто выдержать вес наполненной ванны в доме или вес оборудования в коммерческих условиях, следует должным образом учитывать характеристики стяжки и толщину, чтобы избежать повреждений под принуждением.

Почему стоит рассмотреть оба варианта?

Существует соблазн просто рассматривать пол с подогревом или стяжку, думая о каждом как о отдельном компоненте, но правда в том, что если вы торопитесь с планами и процессом, вы рискуете внести изменения и снова завершить работу в дальнейшем. линия. Трещины в стяжке и отказ отопления часто объясняются слоями стяжки, но проблемы возникают из-за неосторожного планирования и отсутствия предвидения, когда дело доходит до сочетания того и другого.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *