Закрыть

Реверсивная схема подключения магнитного пускателя на 220: Схема подключения реверсивного пускателя (видео, фото)

Схема подключения реверсивного пускателя (видео, фото)

Электродвигатели используются в подавляющем большинстве для приводных механизмов и самостоятельных агрегатов. Когда требуется изменение направления вращения его вала, для пуска применяют реверсивный пускатель, схема подключения которого является объектом изучения профессионалов и простых обывателей.

Как устроен и для чего нужен пускатель?

Как можно логически определить из названия, это устройство предназначено для пуска электродвигателей различных приводных механизмов и техники. Это специфическое оборудование, которое необходимо для коммутации силовых целей с большими нагрузками, как на постоянном, так и на переменном токе. Пускатель обладает более широким функционалом, нежели базовый контактор и кроме обеспечения частых пусков и остановок, может выступать в роли защитного барьера при перегрузках. Кроме этого, реверсивный и нереверсивный пускатели, например, серии ПМЛ, нашел свое применение при организации дистанционных схем управления, пуска насосных, вентиляционных, крановых агрегатов, кондиционеров и т. д.

Любой магнитный пускатель состоит из следующих основных частей:

  • Электромагнитная часть. Она состоит из катушки и разъединенных магнитопроводов – неподвижного сердечника и подвижного якоря,
  • Блок главных контактов. Они нужны для замыкания/размыкания силовых мощных нагрузок. С учетом параметров пускателя, он может иметь до 5 пар контактов. Одна их половина расположена на траверсе якоря, а другая – на верхней части корпуса,
  • Блокирующие контакты. Они используются при коммутации управляющих цепей схемы, например, когда включение/остановка происходит пусковыми кнопками. Происходит блокировка основных контактов, а значит, устраняется необходимость удерживания кнопки управления,
  • Возвратный механизм. По сути, это просто пружина, которая при размыкании контактов возвращает якорь в исходное положение, обеспечивая необходимый зазор между парами.

Разница между прямым и реверсивным пускателями

Главное отличие нереверсивного и реверсивного пусковых устройств, состоит в схеме подключения. Также меняется комплектация. Контактор прямого типа является одиночным, тогда как реверсивный – блочным, состоящим из двух прямых, объединенных в одном корпусе. Визуальные отличия этих двух реле можно видеть на сравнении моделей ПМЛ-1100 (слева) и ПМЛ-1500 (справа):

При этом, должно соблюдаться одно крайне важное условие: реверсивное соединение пускателей должно полностью исключать возможность их одновременного срабатывания. Это неизбежно приведет к возникновению явления короткого замыкания.

Схема подключения реверсивного магнитного пускателя электродвигателей делится на два основных вида:

  1. Подключение к сети с напряжением 220 В,
  2. Запуск контактора на 380 В.

Далее рассмотрим подробнее каждый из вариантов, опираясь на уже упомянутые модели контакторов ПМЛ серии 1500.

Вид и функционирование реверсивной схемы на 220 В

На этой монтажной схеме можно видеть следующие основные элементы (обозначены цифрами):

  1. Блокирующие или блок-контакты,
  2. Катушки магнитных пускателей, рассчитанные на напряжение питания 220 В,
  3. Контакты тепловой или токовой защиты (релейные элементы),
  4. Силовые контакты пускателей.

Вид реверсивной схемы на 220 В

Кроме этого, буквенно-числовыми обозначениями выделяются:

  • МП-1, МП-2 – магнитные пускатели. Их границы на схеме выделены штриховыми линиями,
  • Стоп, Пуск – органы управления (сам блок выделен штриховой линией). Отдельно выделена лишь кнопка Стоп. Пусковые кнопки (прямой ход и реверс) обозначены, как две пары контактов, связанных с пускателями МП-1 и МП-2,
  • М – электродвигатель.

Принцип функционирования

Как можно видеть, на силовые контакты пускателей подводятся три разноименные фазы от сети 380 В. На приведенной схеме обозначения нет никакого, но в других случаях можно встретить символы А, В, С или L1, L2, L3. Организовывается блочная связка путем прямой перемычки центральных фаз реле, а также диагональных перемычек боковых фаз (условно 1 фаза МП-1 соединяется с 3 фазой МП-2 и т.д).

После этого провода идут на электродвигатель М. На этом промежутке, в разрыв цепи подключается тепловое реле. Оно осуществляет контроль двух из трех фаз, чтобы при перегрузке отключить питание двигателя.

Блок управления с пусковыми кнопками подключается от одной из центральных фаз в разрыв теплового реле, и нулевого провода (заземления) от катушек пускателей ПМЛ. Защита от одновременного включения пускателей организовывается путем перекрестного соединения контактов кнопок пуска/реверса с блокирующими контактами противоположного контактора.

При включении с блока управления прямого хода, замыкаются контакты на первый пускатель, который запускает двигатель. Одновременно, контакты второго пускателя размыкаются, а на катушку не поступает должное напряжение.

Включение реверса происходит после остановки двигателя кнопкой Стоп с последующим нажатием обратного хода. Таким образом, мы имеем на катушках измененные местами боковые фазы, что приводит к вращению двигателя в обратную сторону. Блокирование первого пускателя происходит по аналогичному принципу.

Вид и функционирование реверсивной схемы на 380 В

Здесь мы имеем, фактически, все те же элементы, что используются для ПМЛ на 220 В, но катушки пускателей рассчитаны на более высокое напряжение (имеют больше витков). Кроме того, отличием от предыдущей схемы является подключение блока управления не через одну, а через две фазы, не используя общий ноль.

Вид реверсивной схемы на 380 В

Где еще используются реверсивные пускатели?

Область применения двойных пусковых реле довольно широка. Она не ограничивается одними только электродвигателями. Необходимость изменения направления вращения или перемещения приводных механизмов может возникнуть также в других случаях.

К примеру, каждый человек имеет дома систему водоснабжения, отопления, где всегда есть место различной запорной арматуре. Для промышленных масштабов, при больших расходах, диаметрах трубопроводов, большой точности контроля расхода, обычными кранами не обойтись. Здесь используются задвижки электрической, а также механической системой управления рабочим органом. Вращение диска или перемещение задвижки происходит в разных направлениях, а значит, применение реверсивных схем пуска обосновано.

Не удаляясь далеко, можно найти реверсивные пускатели типа ПМЛ или другие в подъемной системе лифтов. Движение вверх-вниз происходит за счет изменения направления вращения главного барабана.

Изменение направления вращения двигателя, связанных с ним исполнительных механизмов – довольно востребованная процедура. При этом питание от трехфазной сети происходит через промежуточное коммутирующее реле – реверсивный магнитный пускатель типа ПМЛ 1500 или любой другой.

Реверсивная схема подключения магнитного пускателя

Приветствую вас, уважаемые читатели сайта elektrik-sam.info!

Для того, чтобы запускать электродвигатель в прямом и обратном направлении применяется реверсивная схема управления на магнитном пускателе.

В этой статье подробно рассмотрена пошаговая работа схемы. Схему, в которой двигатель работает только в одном направлении, без реверса, смотрите в статье нереверсивная схема подключения магнитного пускателя.

В заключении этой статьи смотрите видео, демонстрирующее детальную работу схемы реверсного пуска двигателя.

Вначале рассмотрим реверсивную схему подключения с катушкой магнитного пускателя на 220В, а затем работу схемы.

Фазы А,В и С питающего напряжения подводятся к клеммам асинхронного двигателя через:

— 3-х полюсный автоматический выключатель, который защищает всю схему и позволяет отключать питающее напряжение;

— поочередно через три пары силовых контактов магнитных пускателей КМ1 и КМ2;

— тепловое реле Р, которое служит для защиты от перегрузок.

Для того, чтобы изменить направление вращения трехфазного электродвигателя, необходимо поменять местами подключение любых двух фаз!

Для этого в цепь обмотки двигателя включены силовые контакты от двух пускателей, которые подключаются поочередно, меняя чередование фаз. В нашей схеме при вращении вперед последовательность фаз такая — А, В, С. При вращении назад — С, В, А. Т.е. чередование фаз А и С меняется местами.

Катушки магнитных пускателей с одной стороны  подключены к нулевому рабочему проводнику N через нормально-замкнутый контакт теплового реле Р, с другой, через кнопочный пост к фазе С.

Кнопочный пост состоит из 3-х кнопок:

1) нормально-разомкнутой кнопки ВПЕРЕД;

2) нормально-разомкнутой кнопки НАЗАД;

3) нормально-замкнутой кнопки СТОП.

К кнопке ВПЕРЕД параллельно подключен нормально-разомкнутый вспомогательный контакт пускателя КМ1, и соответственно, к кнопке НАЗАД — нормально-разомкнутый вспомогательный контакт пускателя КМ2.

Также в цепь питания обмотки пускателя КМ1 включен нормально-замкнутый контакт пускателя КМ2, а в цепь обмотки пускателя КМ2, включен нормально-замкнутый контакт пускателя КМ1. Это сделано для блокировки, чтобы предотвратить запуск двигателя назад, когда он вращается вперед, и наоборот. Т.е. запустить двигатель в любую из сторон можно только из положения останова.

Работа схемы

Переводим рычаг трехполюсного автоматического выключателя во включенное положение, его контакты замыкаются, схема готова к работе.

Запуск вперед

Нажимаем кнопку ВПЕРЕД.  Цепь питания обмотки магнитного пускателя  КМ1 замыкается, якорь катушки втягивается, замыкает силовые контакты КМ1 и вспомогательный нормально-открытый контакт КМ1, который шунтирует кнопку ВПЕРЕД

Одновременно вспомогательный нормально-замкнутый контакт КМ1 размыкает цепь управления магнитным пускателем КМ2, блокируя тем самым возможность запуска реверса двигателя. 

Три питающих фазы в последовательности А,В,С подаются на обмотки двигателя и он начинает вращаться вперед.

Отпускаем кнопку ВПЕРЕД, она возвращается в исходное нормально-разомкнутое состояние. Теперь  питание на обмотку пускателя КМ1 подается через замкнутый вспомогательный контакт КМ1. Двигатель запущен и вращается вперед.

Останов двигателя из положения ВПЕРЕД

Для остановки двигателя или для запуска в другую сторону, необходимо сначала нажать кнопку СТОП. Питание цепи управления размыкается. Якорь магнитного пускателя КМ1 под действием пружины возвращается в исходное состояние. Силовые контакты размыкаются, отключая питающее напряжение от электродвигателя. Двигатель останавливается.

Одновременно с этим размыкается вспомогательный контакт КМ1 в цепи питания обмотки пускателя КМ1 и замыкается вспомогательный контакт КМ1 в цепи питания пускателя КМ2.

Отпускаем кнопку СТОП.  Она возвращается в исходное, нормально-замкнутое положение. Но  поскольку вспомогательный контакт КМ1 разомкнут, питание на обмотку пускателя КМ1 не подается, двигатель остается выключенным и схема готова к следующему запуску.

Реверс двигателя

Чтобы запустить двигатель в обратном направлении, нажимаем кнопку НАЗАД.

Питание подается на обмотку пускателя КМ2. Он срабатывает, замыкая силовые контакты КМ2 в цепи питания двигателя, и вспомогательный контакт КМ2, который шунтирует кнопку НАЗАД. Одновременно с этим, другой вспомогательный контакт КМ2 разрывает цепь питания пускателя КМ1.

На обмотки двигателя подаются три фазы в порядке С,В,А, он начинает вращаться в другую сторону.

Отпускаем кнопку НАЗАД. Она возвращается в исходное положение, но питание на обмотку пускателя КМ2 продолжает поступать через замкнутый вспомогательный контакт КМ2. Двигатель продолжает вращаться в обратном направлении.

Останов двигателя из положения НАЗАД

Для останова повторно нажимаем кнопку СТОП. Цепь питания обмотки пускателя КМ2 размыкается. Якорь возвращается в исходное положение, размыкая силовые контакты КМ2. Двигатель останавливается. Одновременно с этим, вспомогательные контакты КМ2 возвращаются в исходное состояние.

Отпускаем кнопку СТОП, схема готова к следующему пуску.

Защита от перегрузок

Работу теплового реле Р и назначение предохранителя FU я подробно рассмотрел в статье Нереверсивная схема пускателя, поэтому в этой статье описание опускаю. Для пускателей с обмотками, рассчитанными на 380В,  схема подключения будет следующая.

Обмотки пускателей подключается к любым двум фазам, на схеме к фазам В и С.

Для большей наглядности я записал видео, в котором поэтапно показан весь процесс работы схемы.


Если видео понравилось, не забывайте нажать НРАВИТЬСЯ при просмотре на YouTube. Подписывайтесь на мой канал, узнайте первым о выходе новых интересных видео по электрике!

Рекомендую также прочитать:

Нереверсивная схема подключения магнитного пускателя.

Как выбирать автоматические выключатели, УЗО, дифавтоматы?

Номиналы групповых автоматов превышают номинал вводного?

Менять ли автоматический выключатель, если его «выбивает»?

Почему в жару срабатывает автоматический выключатель?

Как подключить пускатель двигателя

Пускатель двигателя представляет собой комбинацию устройств, используемых для пуска, работы и остановки асинхронного двигателя переменного тока на основе команд оператора или контроллера. В Северной Америке асинхронный двигатель обычно работает при 230 В или 460 В, 3 фазы, 60 Гц и имеет управляющее напряжение 115 В переменного тока или 24 В постоянного тока. Несколько других комбинаций возможны в Северной Америке и других странах, и их легко получить из методов, показанных в этом документе.

Пускатель двигателя должен иметь как минимум два компонента для работы: контактор для открытия или закрытия потока энергии к двигателю и реле перегрузки для защиты двигателя от тепловой перегрузки. Могут потребоваться другие устройства для отключения и защиты от короткого замыкания, как правило, автоматический выключатель или предохранители. Защита от короткого замыкания не будет показана в следующих примерах.

Контактор

Контактор представляет собой 3-полюсный электромеханический переключатель, контакты которого замыкаются при подаче напряжения на его катушку. Когда на катушку подается напряжение, контакты замыкаются и остаются замкнутыми до тех пор, пока катушка не будет обесточена. Контактор специально разработан для управления двигателем, но может использоваться и для других целей, например, для резистивных и осветительных нагрузок. Поскольку двигатель является индуктивной нагрузкой, при определении размера контактора разработчик должен учитывать как номинальную мощность, так и номинальный ток. Это необходимо для того, чтобы контактор правильно переключал нагрузку.

Реле перегрузки

Реле перегрузки представляет собой устройство с тремя датчиками тока, которое защищает двигатель от перегрузки по току. Каждая фаза, идущая от контактора к двигателю, проходит через эти датчики тока. Реле перегрузки имеет выбираемую настройку тока в зависимости от номинального тока полной нагрузки двигателя. Если ток перегрузки превышает уставку реле в течение достаточного времени, группа контактов размыкается для защиты двигателя от повреждения.

В этой статье показано, как подключать различные двигатели с помощью контакторов серии Fuji, продаваемых AutomationDirect. Контакторы других марок могут быть подключены так же или аналогично. Обратитесь к схемам подключения производителя контакторов других марок.

Существует четыре основных комбинации проводки:
a)  Двигатели полного напряжения, нереверсивные, трехфазные.
b) Реверсивные трехфазные двигатели полного напряжения
c) Однофазные двигатели
d) Трехфазные двигатели с разомкнутым переходом «звезда-треугольник»

Вы должны предоставить разъединитель, провод надлежащего сечения, кожухи, клеммные колодки и любые другие устройства, необходимые для замыкания вашей цепи.

ВНИМАНИЕ! Следуйте инструкциям, прилагаемым к каждому конкретному устройству.
Невыполнение этого требования может привести к поражению электрическим током или повреждению.


Будут использоваться следующие компоненты:


Полновольтные нереверсивные трехфазные двигатели

На следующей диаграмме показано управление 3-фазным нереверсивным двигателем с управляющим напряжением 24 В пост. тока и ручным управлением. Мы будем использовать контактор, блок вспомогательных контактов, реле перегрузки, нормально разомкнутую кнопку пуска, нормально замкнутую кнопку останова и источник питания с предохранителем. Цепями пуска и останова также можно управлять с помощью входов и выходов ПЛК.


Реверсивные трехфазные двигатели полного напряжения

Эта схема предназначена для управления трехфазным реверсивным двигателем с управляющим напряжением 24 В постоянного тока. В нем используются два контактора, два вспомогательных контактных блока, реле перегрузки, механическая блокировка, две нормально разомкнутые кнопки пуска, нормально замкнутая кнопка останова и источник питания с предохранителем. Схемы прямого, обратного хода и останова также могут управляться с помощью ПЛК.  Обратите внимание, что могут быть доступны комплекты реверсирования как для контакторов со стороны нагрузки, так и для линии, что может упростить процесс подключения реверсивного контактора.


Однофазные двигатели полного напряжения

Эта схема предназначена для управления однофазными двигателями. В нем используется контактор, реле перегрузки, блок вспомогательных контактов, нормально разомкнутая кнопка пуска, нормально замкнутая кнопка останова и источник питания с предохранителем. Схемы пуска и останова также могут управляться с помощью ПЛК..


Трехфазные двигатели с открытым переходом «звезда-треугольник»

На следующей схеме показана схема управления трехфазным двигателем с подключением по схеме «треугольник-звезда». В нем используются три контактора, реле перегрузки, один блок вспомогательных контактов, нормально разомкнутая кнопка пуска, нормально замкнутая кнопка останова, таймер задержки включения 0–20 секунд и блок питания с предохранителем. Схемы запуска, остановки и синхронизации также могут управляться с помощью ПЛК.


ДАННАЯ ИНФОРМАЦИЯ, ПРЕДОСТАВЛЯЕМАЯ СЛУЖБОЙ ТЕХНИЧЕСКОЙ ПОДДЕРЖКИ AUTOMATIONDIRECT.COM, ПРЕДОСТАВЛЯЕТСЯ «КАК ЕСТЬ» БЕЗ КАКИХ-ЛИБО ГАРАНТИЙ. Мы не гарантируем, что данные подходят для вашего конкретного приложения, и не берем на себя никакой ответственности за них в вашем приложении.

Страница технической поддержки на веб-сайте AutomationDirect содержит ценную информацию и доступна круглосуточно и без выходных. Об этом говорится в разделе «Технические указания и указания по применению».

Реверсивные однофазные асинхронные двигатели

Реверс однофазных асинхронных двигателей

Начиная с моей статьи о двигателях переменного тока, Меня часто спрашивают, как реверсировать асинхронный двигатель переменного тока. Ранее я не рассказывал подробно о том, как запускаются асинхронные двигатели. потому что это обширная тема сама по себе.

Ротор асинхронного двигателя представляет собой проницаемый железный сердечник. с залитой алюминиевой обмоткой короткого замыкания. Ты можешь видеть алюминий на обоих концах ротора. Алюминий тоже проходит. продольные отверстия в роторе, чтобы сделать короткую «беличью клетку» обмотка цепи. Вы можете едва видеть линии под небольшим углом на роторе где проходят обмотки.

Обмотка короткого замыкания заставляет ротор сопротивляться быстрым изменениям магнитного поля. полей, поэтому, если он подвергается воздействию вращающегося магнитного поля, он попытается следовать ему. (подробнее об этом здесь)

В трехфазном двигателе три фазы на трех обмотках естественно создать вращающееся магнитное поле. Но для однофазных двигателей переменного тока магнитное поле только чередуется вперед и назад. Нужна какая-то хитрость для создания вращающегося поля.

Реверс двигателя с расщепленной фазой

В этом двигателе с расщепленной фазой основная обмотка (обозначение «M») подключается напрямую к сети переменного тока 60 Гц, а другая обмотка (обозначение «О») включена последовательно с конденсатор (С). Взаимодействие между индуктивностью двигателя обмотки и емкость конденсатора делают эту обмотку около 90 градусов не совпадают по фазе с основной обмоткой.

С основной обмоткой, создающей переменное по вертикали магнитное поле, а другая обмотка создает магнитное поле, чередующееся по горизонтали но не в фазе, их сумма представляет собой вращающееся магнитное поле. Ротор пытается следовать за ним, заставляя его вращаться.

Для реверсирования двигателя достаточно просто переместить разъем питания. так что другая обмотка находится непосредственно на переменном токе. По существу, перемещение одна сторона силового соединения от (А) до (В), вызывающая обмотку (О) быть основной обмоткой, а обмотка (М) – фазосмещенной.

В двигателях мощностью более 1/4 л.с. две обмотки обычно имеют разные числа витков, поэтому этот метод реверсирования может быть неприменим. Сначала проверьте, чтобы сопротивление обеих обмоток было одинаковым.

Если обмотки не одинакового сопротивления, можно еще поменять местами изменением полярности одной из обмоток при условии, что обмотки не связаны между собой внутри двигателя (например, более трех провода, выходящие из обмоток).

Обмотки стартера на больших двигателях

Теперь, если мы заглянем внутрь более крупного двигателя, такого как этот двигатель мощностью 3/4 лошадиных силы, обмотки выглядят намного сложнее. Обмотки распределены по множеству пазов в статоре двигателя (С). Туда, туда менее резкий переход от одного полюса к другому. Этот делает магнитное поле более гладким, что делает его более тихим и более экономичный мотор.

Этот двигатель имеет толстую основную обмотку (М) и пусковую обмотку. из более тонкой проволоки (S). Основная обмотка создает горизонтальную магнитное поле, а обмотка стартера создает вертикальное.

Эта пусковая обмотка включена последовательно с конденсатором (С) и центробежным переключатель (S). В этом двигателе установлен пусковой конденсатор внутри основного корпуса. Как правило, пусковой конденсатор устанавливается сверху корпуса под металлическим куполом.

Центробежный переключатель (S) установлен на задней панели и активируется диском (P), который упирается в выступ на переключатель (слева от S на фото).

Сняв ротор и посмотрев на диск, можно увидеть два металлических выступа. Когда двигатель вращается, центробежная сила толкает их наружу, что в свою очередь тянет диск обратно. Это освобождает пластиковый язычок на переключателе, что приводит к размыканию переключателя и отключению обмотки стартера. Диск отодвигается достаточно далеко, чтобы больше не соприкасаться с вкладкой, сводя к минимуму трение и износ. Это умный способ активировать переключатель на основе центробежной силы без необходимости переключиться на отжим.

Расположение центробежного переключателя издает отчетливый «щелчок». когда он сбрасывается после выключения двигателя. Щелчок переключателя вовлечение, когда оно начинается, гораздо труднее различить.

Если обмотка стартера помогает пуску двигателя, то обязательно поможет мотор тоже работает. Так почему бы просто не оставить стартер обмотка подключена? Ну, весь фазовый сдвиг не так элегантен. Размер конденсатора вы потребность очень сильно зависит от нагрузки двигателя. Для быстрого запуска двигателя вам нужна большая емкость, чем для эффективного непрерывного операция. Кроме того, конденсатор является электролитическим конденсатором, а не рассчитан на постоянную нагрузку.

А поскольку пусковая обмотка только используется недолго, поэтому он сделан из более тонкой проволоки, чтобы сэкономить деньги, потому что медь дорогая.

В некоторых двигателях для запуска используется большой конденсатор. меньший конденсатор для непрерывной работы. Такие двигатели часто имеют два внешних конденсатора (C), как видно на этом в моей настольной пиле. Эти двигатели называются двигателями с пусковым конденсатором. Двигатели с конденсаторным пуском обычно имеют более одного Лошадиные силы. Это 1,75 лошадиных силы.

Двигатели можно удешевить, заменив конденсатор на резистор. Хотя обычно отдельный резистор не добавляется. Вместо, обмотка стартера сделана из более тонкого (более дешевого) медного провода, поэтому у него больше сопротивление в самой обмотке.

Это приводит к гораздо меньшему фазовый сдвиг, чем с конденсатором, но достаточный для запуска двигателя. Обмотки двигателя по существу образуют индуктор, и когда синусоидальная волна переменного тока (например, мощность переменного тока) подается на индуктор, ток отстает от напряжения на 90 градусов.

И магнитное поле является строго функцией тока.

Для резистора ток совпадает по фазе с напряжением. Если бы у нас было большое сопротивление и малая индуктивность последовательно, падение напряжения и ток во многом определяется резистором. Итак, ток и магнитное поле будет в значительной степени в фазе с приложенным напряжением. С ток в основной обмотке отстает на 90 градусов, мы бы имели Разница между ними составляет 90 градусов, но обмотка стартера было бы крайне неэффективно.

На самом деле компромисс гораздо дешевле фазового сдвига и большей мощности. Этого достаточно, чтобы запустить двигатель. Несмотря на это, стартер на этих двигателях довольно неэффективен, но он не имеет большого значения, когда двигатель работает. Однако дополнительный ток требуется, чтобы стартер мог перегореть автоматический выключатель, поэтому этот метод обычно используется только для двигателей меньшего размера, от 1/4 до 1/2 л.с. В двигателях мощностью 3/4 лошадиных силы и выше обычно используется пусковой конденсатор.


Если вы не знакомы с аналоговой электроникой, приведенное выше объяснение вероятно, недостаточно, и вы можете прочитать больше об индукции двигатели, если вы этого не понимаете.

В асинхронных двигателях изнашиваются только подшипники. выключатель стартера и конденсатор. Без конденсатора есть один меньше вещей, чтобы потерпеть неудачу.

Совсем недавно я случайно заклинил переключатель стартера на Резистивный пусковой двигатель мощностью 1/4 л.с. от сушилки для белья (тот, что на этот вентилятор), и двигатель отключился всего за 15 секунд. его схема тепловой защиты из-за перегрева обмотки стартера.

Реверс конденсаторного пускового двигателя

Итак, как мы реверсируем двигатель с конденсаторным пуском? Как только началось, однофазная индукция двигатель будет счастливо работать в любом направлении. Чтобы обратить его, нам нужно изменить направление вращающегося магнитного поля, создаваемого основным и обмотки стартера. И это может быть достигнуто путем обращения полярность пусковой обмотки. По сути, нам нужно поменять местами соединения на обоих концах обмотки стартера. Иногда это только обмотка, иногда обмотка, переключатель и конденсатор перевернутый. Порядок переключателя и конденсатора не имеет значение, если они подключены последовательно.

Вы также можете реверсировать двигатель, поменяв местами основную обмотку. (тот же эффект).

Если бы вы поменяли местами основную и пусковую обмотки, как это делают с двигателем с расщепленной фазой двигатель также будет работать в обратном направлении. Однако, он не будет работать на полную мощность и, скорее всего, сгорит. пусковая обмотка не пригодна для продолжительной работы.

На этикетке этого двигателя указано: «МОТОР НЕРЕВЕРСИВНЫЙ».

Если вы посмотрите на предыдущие фотографии этого двигателя, вы увидите, что есть из обмоток выходит всего три провода (красный, желтый и синий). Один конец основной и пусковой обмоток соединен вместе прямо на обмотках.

Чтобы поменять местами обмотку стартера, мне пришлось бы разорвать это соединение. внутри обмоток и вывести другой конец стартера обмотка. Но я действительно не могу понять это из-за как внутри мотора. пришлось бы прорезать дырку в корпус, чтобы даже добраться до точки, где они связаны вместе. Его не то, чтобы этот двигатель нельзя было реверсировать, просто для экономии средств меры, они сделали обращение вспять более трудным, чем оно того стоит. беда.

Но на реверсивных двигателях этикетка всегда указывает на то, чтобы поменять местами два провода, чтобы изменить его.

Провода для реверса всегда являются проводами, ведущими к обмотке стартера.

Если у вас двигатель, на котором отсутствует этикетка, обмотка стартера обычно имеет примерно в три раза электрическое сопротивление основного обмотка и всегда включена последовательно с выключателем стартера и конденсатором (если он есть). Если вы можете изолировать оба конца этой обмотки и поменять их местами, можно реверсировать двигатель. Однако, если есть только из обмоток выходят три провода, затем основная и пусковая обмотки имеют один конец, связанный вместе, и двигатель не реверсивный.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *