Закрыть

Схема подключения диодной ленты через выключатель: схема подключения к блоку питания и выключателю, инструкция как крепить с видео

Содержание

Как подключить светодиодную ленту - ledart.ru

                  


 

Данные схемы помогут Вам правильно подключить низковольтную светодиодную ленту к сети.

 

Схема подключения одноцветной ленты

нажмите чтобы увеличить и распечатать

Рекомендуем в линию 220 Вольт поставить Выключатель. Он отключит блок питания.

 

Если при этом требуется регулировка яркости свечения светодиодной ленты, то в линию 12 или 24 Вольт (в зависимости от типа ленты и блока питания) подключаем Диммер. Он плавно регулирует яркость и также, как выключатель, может включить или выключить ленту, не отключая блок питания - смотрите следующую схему. 

 

 

Схема подключения одноцветной ленты с диммером 

нажмите чтобы увеличить и распечатать

 

 

Схема подключения одноцветной ленты с Диммером и Повторителем


(если не хватает мощности диммера)

При декоративной подсветке потолков возникает проблема нехватки мощности одного блока питания или диммера.

Поскольку подключить два блока питания к одному диммеру нельзя, в этом случае в схему включают Повторитель с отдельным блоком питания. Из названия должно быть понятно, что служит этот прибор для повторения сигнала диммера при его недостаточной мощности.

нажмите чтобы увеличить и распечатать

 


 

Схема подключения RGB светодиодной ленты

нажмите чтобы увеличить и распечатать

Для подключения светодиодной ленты RGB потребуются те же компоненты, что и для одноцветной, только вместо диммера применяется Контроллер. Он не только отрегулирует яркость, но и поменяет цвет ленты так, как Вам захочется или даст программу автосмены цветов.

 

Схема подключения RGB светодиодной ленты с Повторителем


(если не хватает мощности RGB контроллера)

нажмите чтобы увеличить и распечатать

 

Правила подключения светодиодной ленты.

 

При подключении светодиодной ленты нужно следовать определенным правилам:

  • Обязательно соблюдайте полярность.
    Питание ленты осуществляется от источника постоянного тока в 12 или 24 Вольт.
     
  • Не подвергайте гибкую светодиодную ленту большим продольным искривлениям. Радиус изгиба должен составлять не более 2 см. Поперечные искривления недопустимы. При необходимости, следует разрезать ленту в соответствующем месте, пройти поворот и соединить пайкой или специальным коннектором место разреза (этот метод подходит и для второго пункта).
     
  • Если Ваш выбор пал на мощную ленту, то монтировать мощную светодиодную ленту нужно в профиль.
     
  • Паять светодиодную ленту нужно с особой осторожностью, не испортив при этом токопроводящие дорожки, паяльником мощностью до 40 Ватт. Места пайки необходимо изолировать и сделать это лучше всего отрезком термоусадочной трубки. А лучше всего купите специальные коннекторы для светодиодной ленты.
     
  • Не используйте последовательное подключение светодиодных лент если общая длина составляет более 5 метров. Такое подключение существенно повысит ток на токопроводящие дорожки ленты, что может привести к их перегоранию.
    В таком случае, участки ленты следует включить параллельно друг другу. Все схемы найдете ниже.
     
  • Помните, что блок питания нужно брать с запасом по мощности 10-20%.
     
  • Если мощности вашего контроллера недостаточно, используйте усилитель.
     
  • Обеспечьте достойную вентиляцию блоку питания и приборам управления светодиодной лентой.


По материалам сайта ledtema.ru

 

Бесконтактные и сенсорные выключатели для светодиодной ленты — правила и ошибки подключения.

Одним из самых неудобных моментов монтажа подсветки светодиодной лентой, является необходимость установки отдельного выключателя под нее.

Мало кто закладывает его изначально, вследствие чего, потом и приходится ломать голову, где же его лучше расположить, как вывести и подключить провода, дабы все это не выбивалось из общего дизайна комнаты.

Особенно этот момент актуален для подсветки рабочей зоны на кухне. Если на самом первом этапе проектирования вы не заложили электрику под это дело, то впоследствии столкнетесь с рядом проблем.

Для решения всех этих задач сегодня существуют миниатюрные, сенсорные или инфракрасные (бесконтактные) выключатели, которые имеют ширину самой ленты и идеально подходят под алюминиевый профиль.

Подробнее

Вы их спокойно размещаете в самое начало светодиодной ленты и закрываете рассеивателем, так что их даже не будет видно.

Давайте рассмотрим несколько моделей подобных девайсов, чем они отличаются, как подключаются, их сильные и слабые стороны.

Сенсорный диммер с пружинкой

Для начала обратим внимание на сенсорные модели. Как уже говорилось выше, шириной они со светодиодную ленту, а длиной не более спичечного коробка.

На своей плате имеют пружинку, при нажатии на которую, происходит включение и отключение освещения. Рассчитаны они на низкое напряжение 12-24 вольта.

Подключать их напрямую в сеть 220в нельзя!

То есть, устанавливаются они после блока питания светодиодной ленты.

Как правило, в самом ее начале.

Такие модели играют роль не просто выключателей, но и способны регулировать яркость Led освещения. Фактически, выступая в качестве полноценных диммеров.

Со всеми их плюсами и недостатками.

Для диммирования вам нужно просто подольше подержать нажатой пружинку.

Главный недостаток всех подобных устройств – малая мощность.

Обычно к ним можно подключить нагрузку от 20 до 48Вт, не более. А это всего около 2-х метров достаточно яркой светодиодной ленты.

Для увеличения мощности, например до 100Вт, потребуется напряжение 24 вольта. При этом сама лента + блок питания у вас должны быть аналогичными.

Подключение и монтаж

Как они подключаются? Давайте рассмотрим на примере уже почти готовой подсветки. Допустим, у вас есть алюминиевый профиль, с проложенной Led лентой внутри.

Для начала отщелкиваете заглушку и рассеиватель.

Чтобы добраться до проводов, срезаете термоусадку. Готовые комплекты Led подсветки, как раз таки идут уже с припаянными проводами и выведенным коннектором.

Так как модуль выключателя занимает определенное место, один сегмент ленты придется отрезать.

Далее переходим к паяльным работам.

Выбираете паяльник малой мощности (до 40Вт) и выпаиваете провода.

Теперь нужно правильно расположить модуль. Какие провода, куда должны подключаться?

На задней стороне ищите соответствующие подсказки и надписи. Например:

  • GND (-) и VCC (+) – это основное питание с блока
  • Led (-) и led (+) – выход на нагрузку

Если никаких надписей нет или они стерлись, то ориентируйтесь следующим образом. На дальние контакты от кнопки подается питание 12-24В, а ближние идут на саму ленту.

При таком расположении модуля (фото вверху), нижние контакты будут минусовыми, а верхние – плюсовыми.

Сначала припаиваете провода от блока питания.

После этого обязательно изолируйте соединения термоусадкой, чтобы исключить случайное замыкание внутри алюминиевого профиля на его корпус.

Далее жилками сечением 0,5-0,75мм2 соединяете лед ленту. Только не перепутайте плюс с минусом.

Зачастую приходится делать подключение крест-накрест, дабы соблюсти полярность.

Эти провода также в обязательном порядке изолируются. Сам модуль выключателя приклеивается к поверхности короба на двухсторонний скотч.

Почему диммер иногда не работает

На место ставится заглушка и рассеиватель. При этом никаких отверстий под пружинку вырезать не нужно!

Если подключить такой модуль без прижатия пружины рассеивателем и просто нажимать ее рукой, то возможны сбои и не корректная работа устройства. Поэтому и рекомендуется его ставить в профиль с крышечкой.

Кроме того, это защищает выключатель от пыли и влаги.

Первые модели подобных диммеров-выключателей вообще могли идти с неприпаянной пружинкой. Ее просто прижимали крышкой к контактной площадке в нужном месте.

Также обратите внимание, что защитная придавливающая крышечка не должна быть толстой. Экран от рассеивателя толщиной в 1мм идеально подходит, а вот если поместить такой выключатель за более толстый материал ( оргстекло более 2-3мм), то реакции на тактильное нажатие уже не дождетесь.

В режиме ожидания, место куда нужно нажимать пальцем, должно подсвечиваться светодиодом.

Нажмете чуть левее или правее – выключатель реагировать не будет.

Кстати, в режиме ожидания девайс потребляет всего 10мА. Так что в огромные киловатты на счетчике в конце месяца, такая подсветка вам не выльется.

Чтобы включить свет, нужно слегка нажать или прикоснуться к рассеивателю в месте установки пружинки. При нажатии с длительным удержанием, яркость начнет изменяться, достигая своего максимума.

Чтобы ее уменьшить, отпускаете руку и нажимаете вновь, опять же удерживая пружинку определенное время. Яркость плавно падает.

Для отключения подсветки достаточно кратковременного касания.

Бесконтактный инфракрасный выключатель

Тем, кому не нравится прикасаться к пружинке, есть такие же миниатюрные бесконтактные выключатели, работающие на инфракрасном излучении от взмаха руки.

Именно их стараются монтировать для подсветки рабочей зоны на кухне или в медицинских кабинетах, где врачам нужно максимально избегать контакта рук с посторонними предметами.

При выборе таких моделей будьте внимательны. Есть варианты, где микросхемы размещаются снизу, а сам силовой ключ, коммутирующий нагрузку в 2-3А, сверху.

Это значит, что вы уже не сможете безопасно приклеить их на нижнюю поверхность профиля. Он у вас будет болтаться внутри, не говоря уже о вопросе изоляции всех контактов.

Такие модели предназначены в первую очередь для установки в пластиковый корпус светильников, а не для монтажа в алюминиевые профиля.

Да и размер у них на несколько миллиметров шире самой ленты, поэтому не во всякий профиль они могут влезть.

Вам нужно выбирать те выключатели, у которых ровное и гладкое нижнее основание. Все элементы у них расположены сверху.

Один из инфракрасных элементов является излучателем, а другой приемником. Таким образом, при появлении в пределах 2-7см от поверхности бесконтактного выключателя какого-то предмета (ваша рука, хвост кошки или севшая муха), сигнал отражается и выключатель реагирует.

Для подобного рода девайсов, в рассеивателях необходимо вырезать окошко. Иначе выключатель срабатывать не будет.

Перед покупкой обратите внимание, что происходит с таким датчиком при внезапном исчезновении напряжения и его появлении через какое-то время. Например, у вас в доме или во всем районе, сетевая компания “отключила свет”. Через 2-3 часа он появился.

Так вот, в дешевых моделях таких датчиков, по умолчанию заложен режим автоматического включения подсветки при внезапном исчезновении питания и его возобновлении.

Уехали вы в отпуск на пару недель, а освещение без вашего участия само включится и накрутит лишние киловатты.

Так что спрашивайте у продавцов все характеристики товара.

Миниатюрный датчик движения

Существуют подобного рода и датчики движения. То есть, не те здоровые коробки, которые вешаются на стенах или под потолком, а такие же самые миниатюрные выключатели, собранные на узкой плате.

Их также встраивают в профиль или непосредственно в мебель. Главное их отличие – радиус действия. Здесь уже речь идет не о нескольких сантиметрах, а о расстоянии в 2-3 метра.

Такие датчики можно подключать для организации подсветки на потолке или на полу в коридоре. Очень удобно их вставлять в плинтуса.

При наличии такого датчика движения, достаточно войти в помещение и свет загорится автоматически. При бездействии порядка 30 секунд, свет отключается.

Угол охвата девайса около 100 градусов. Исходя из этого и рассчитывайте его размещение.

Реагирующий на движение элемент, также необходимо выводить из корпуса. Просверливаете в профиле или в светильнике отверстие нужного диаметра и выставляете колпачок наружу.

Все остальное вместе с проводами остается спрятанным внутри.

Подводя итог обзора китайских моделей, можно кратко перечислить ошибки, которых вам стоит избегать при выборе и подключении сенсорных и бесконтактных выключателей для светодиодной ленты:

1Не поджатая пружинка для тактильного управления. Либо слишком толстая крышка сверху нее. 2Отсутствие изоляции на проводах и контактах выключателя, расположенных внутри алюминиевого профиля. 3Подключение слишком мощной светодиодной ленты большой протяженности. Все эти модели рассчитаны на 20-30Вт. 4Монтаж выключателя, у которого элементы расположены с обоих сторон платы, в тонкий алюминиевый профиль, хотя он изначально предназначен для установки в корпус светильника. 5Отсутствие отверстия в крышке профиля под инфракрасный "глазок" датчика.

Если вы не доверяете надежности китайской продукции, можете обратить внимание на аналоги таких бесконтактных диммируемых выключателей от наших производителей.

Умный диммер Fulogy

Например, нечто подобное и даже лучше, есть у компании Fulogy. Называется это устройство Smart Dimmer.

Собран данный светорегулятор на основе инфракрасного сенсора. Напряжение питания – 12-24 вольта.

Максимальный ток нагрузки – до 10А! Мощность подключаемой ленты:

Не слабо так, правда. Особенно после хиленьких китайских экземпляров.

Высота его всего 2,7мм. Он спокойно поместится в любой самый тонкий профиль.

Пружинок в нем никаких нет. Отверстия под инфракрасные датчики в крышке профиля вырезать не нужно.

Чувствительность – от 0 до 10см. Причем расстояние настраивается вручную. Отсюда и отсутствие необходимости дырявить крышку рассеивателей.

По умолчанию настройка идет на максимальное расстояние.

Работает выключатель даже на морозе при температуре до -20С. Так что с его помощью можно легко управлять уличным освещением или фонарем на входе в дом.

Имеется встроенная защита от переполюсовки. Перепутали плюс с минусом при подключении? Не беда. У вас ничего не сгорит, просто освещение не включится.

Поменяйте провода местами и все заработает.

Кстати, функция диммирования в отличие от большинства подобных устройств, у этого выключателя не сопровождается пульсацией.

Объясняется это частотой работы девайса. Здесь пульсации происходят на частоте 10 000Гц. А как известно, все что больше 300Гц - безопасно для человека и никак на него не влияет.

Минусом можно назвать ступенчатое изменение яркости. Она падает или увеличивается не плавно, а процентно в соотношении 25-50-100% Но это предустановленные настройки.

Если они вас не устраивают, можете их изменить. Вместо 25% оставить 5% и использовать подсветку в этом режиме как ночник.

На сайте компании есть подробная инструкция как это перепрограммируется.

Помимо регулировки яркости, в девайсе заложено несколько иных интересных режимов работы. Например, “вежливая подсветка”.

Это когда вы в спальне при входе просто взмахнули рукой, удобно устроились в кровати, и только спустя заданное время, свет сам собой погас.

Еще на плате есть дополнительные контактные площадки, куда можно подключать внешние датчики. К примеру, выносной датчик движения, или физическую кнопку включения-отключения.

Можно запараллелить несколько таких кнопок и синхронизировать их работу.

Не любите паять? Выбирайте модели с быстрозажимными клеммниками.

Стоимость сенсора конечно дороже, чем у китайцев, но качество и заложенный функционал не идут ни в какое сравнение. Плюс присутствует 3-х годичная гарантия.

Подключение своими руками светодиодной ленты.

Сегодня большой популярностью стали пользоваться новые виды светодиодных светильников в виде тонких гибких лент длиной 5 метров, которые возможно наращивать и легко разрезать на отдельные  отрезки любой длины, да же в несколько сантиметров.

Светодиодной ленте легко придать любую геометрическую форму. Она широко применяется для подсветки фасадов, рекламы и др. Многие начали активно ее использовать и в домашних условиях для освещения аквариума, подсветки в кухне, подвесного потолка и т. п.

Подробно узнайте из отдельной нашей статьи о всевозможных самых распространенных методах установки  светодиодных лент. А Я далее остановлюсь на вопросах по их подключению.

Светодиодные ленты работают на пониженном напряжении 12 Вольт (реже 24 В ) от источников постоянного тока: аккумуляторной батареи  или блока питания. Поэтому важно, при их подключении соблюдать полярность. Если неправильно подключите ничего страшного не случится- просто она не будет работать. Поменяйте полярность и у Вас все заработает!

Благодаря тому что светодиодные ленты работают от постоянного тока с величиной напряжения 12 Вольт- ее можно напрямую подключить к бортовой сети электропитания вашего автомобиля.

Общая принципиальная схема подключения светодиодной ленты к домашней электросети 220 Вольт.

Внимание! Светодиодные светильники в отличии от аналогичных с другими типами ламп— нельзя напрямую подключать в электрическую розетку на 220 Вольт. Подключение стоит проводить только через специальный блок питания, который трансформирует напряжение до необходимого более низкого значения= 12 (реже 24) Вольт, а кроме этого преобразует переменный ток в постоянный.  Величина напряжения наносится  по всей ее длине ленты.

Пример самого простого варианта подключения на картинке снизу.

На два провода «Вход»и ли «Input» подключаются фаза и ноль от розетки 220 Вольт или распределительной коробки домашней электропроводки.

На «Выходе» (Output): красный- это +, а черный или синий- это минус. Подключать к светодиодной ленте необходимо правильно с соблюдением полярности, а иначе светодиоды не будут светиться.

Как правило, перед блоком питания на фазе делается разрыв при помощи выключателя, что позволяет включать и выключать блок питания и соответственно  светодиодную ленту.

При покупке блока питания необходимо обратить внимание не только на необходимую величину выдаваемого им напряжения, например 12 Вольт, но и на его мощность, которая должна быть достаточной для работы одной или нескольких светодиодных лент. Рекомендую брать с 20 процентным запасом.

Как рассчитать требуемую мощность блока питания (БП). Сразу смотрим на характеристики светодиодной ленты. Например, потребляемая мощность ее равна 9 Вт/м. Значит при длине 5 метров общая мощность составит 9 умножаем на длину и получаем 45 Ватт. Для подключения одной ленты понадобится БП мощностью 45 Ватт + 20% или 54 Ватт. Выбираем и покупаем близкий по требуемой мощности блок питания. Если будем подключать 2 одинаковые ленты к одному блоку 54 умножаем на 2 и получаем 108 Ватт.

Помните, что не рекомендуется подключать к концу одной светодиодной ленты начало другой, потому что вторая лента будет светить тусклее, а последние светодиоды вообще будут еле светится. При малой мощности светодиодов, несмотря на то что у них всех яркость станется одинаковой- будут перегреваться дорожки электропитания из-за прохождения тока выше номинальных значений. А перегрев, как хорошо известно,  довольно значительно сокращает время службы светодиодов. В практике распространены два проверенных и правильных способа подключения светодиодных лент, изображенных на картинке снизу.

На первом изображении- схема подключения с 2 блоками питания, каждый из которых питает отдельно ленту. Общим у них будет только электропитание 220 Вольт. Но если, необходимо подключить 2 светодиодные ленты рядом, лучше купить по-мощнее блок питания и оба начала лент подключить с соблюдением полярности к 12 Вольтовому выходу из БП, как показано на втором изображении.

Схема подключения с диммером.

Диммер или светорегулятор позволяет плавно регулировать яркость и включить или выключить светодиодную ленту без отключения блока питания. Подключить его очень просто.


Устанавливается светорегулятор перед светодиодными лентами на выходе из блока питания с соблюдением полярности, указанной на его корпусе.

Схема подключения светодиодной ленты типа RGB.

RGB лента обладает возможностью менять цвет своего свечения. Ее часто называют многоцветными или разноцветными.  Для управления работой RGB ленты необходима установка специального RGB контролера, который управляет цветностью и яркостью свечения светодиодов. Управление самим контролером осуществляется при помощи пульта дистанционного управления.
Схема подключения довольна проста.


С блока питания плюс и минус соответственно подключается ко входу контролера, а выходить уже будет один общий + черного цвета и три провода для управления каждым каналом:  R- красным, G- зеленным и B- голубой.

Обращайте на класс защиты при покупке самый высокий IP: IP65 означает водонепроницаемость, что позволяет работать светодиодной ленте в воде.

Я постарался рассказать о самых главных деталях и способах подключения, если есть вопросы задавайте ниже в комментариях.

Подключение светодиодной ленты 220 В своими руками: схема, монтаж

Коммерческие компании, производящие осветительные приборы на основе светодиодов, предлагают потребителям много вариантов светодиодных лент. Продукция широко используется в оформлении рекламных конструкций, декоративном украшении зданий, сооружений, отдельных помещений. В некоторых случаях светодиодные ленты обеспечивают обычную подсветку выбранных объектов, отличаются широким выбором различных схем подключения.

Разнообразие светодиодных лент

Виды светодиодных лент

Все ленты изготавливаются на основе гибкой пластиковой полосы, на которой размещены соединенные проводниками светодиоды и резисторы.

Разделяют их по следующим признакам:

  • Методам крепления: простые и самоклеящиеся, последние легко клеятся на поверхность стен, потолков, в шкафах;
  • По степени защиты от влаги: одностороннее покрытие прозрачным силиконом или двухстороннее – полностью герметичные ленты с питанием на 220В в прозрачной гибкой трубке, залитой силиконом.
  • По типу используемых светодиодов: одноцветные или многоцветные RBG ленты. В одноцветных лентах чаще всего применяются светодиоды SMD 3028 или SMD 5050. SMD обозначает поверхностный способ монтажа полупроводников на ленте, а цифры указывают на размеры 3 Х 2,8 мм, 5 Х 5 мм.

Одноцветные и многоцветные ленты

  • По плотности размещения светодиодов в схеме. Стандартные варианты для SMD 3028 – (60;120; 240) шт./м; для SMD 5050 – (30;60;120) шт./м. От количества марки диодов зависит потребляемая мощность и создаваемая лентой освещенность.

Плотность размещения светодиодов в схеме

  • По мощности светодиодные ленты рассчитывают в ваттах исходя из потребления электроэнергии на 1 метр; эти данные указываются в паспортах на изделие.

От этих показателей зависит, какой мощности источник питания потребуется для схемы подключения выбранной светодиодной ленты.

Светодиоды являются полупроводниками с двумя полярностями «+» и «–», поэтому ленты производителями рассчитаны на питание от источников постоянного тока 12, 24 вольта, реже 36 вольт. Так как самым распространенным и доступным источником в промышленных, бытовых условиях является розетка на 220В, в схемах подключения предусмотрены преобразователи.

Варианты подключений

Есть ленты, которые непосредственно подключаются к розеткам 220В, но это не значит, что у них нет преобразователя. В таких вариантах предусмотрен малогабаритный адаптер, встроенный на конце светодиодного устройства. Основой схемы такого адаптера является диодный мост, преобразующий переменный ток в постоянный с напряжением 220 вольт.

Схема подключения к сети 220В

Для светодиодных лент с низковольтными источниками предусмотрены блоки питания 220В/12В, 220В/24В; их схемы не только преобразуют переменный ток в постоянный, но и понижают напряжение до 12;24 или 36 вольт. Блоки питания могут быть различной мощности. Выбор надо делать исходя из потребляемой мощности ленты: это зависит от длины, типа диодов и плотности их размещения.

Ленты с питанием 220В производятся длиной до 100м и обязательно с гидроизоляцией, кратность деления не менее 1м в отмеченных местах, где нет диодов. При обрезке остаются два провода, от которых можно питать оставшуюся часть. Низковольтные ленты производители делают длинной не более 5 метров; они могут быть без гидроизоляции с кратностью деления до 5см, а самый маленький участок содержит 3 светодиода.

В местах деления ленты на пластинах предусмотрены клеммы для более удобного и надежного контактного соединения к выходу блока питания. Самый простой вариант – это подключение к блоку питания ленты одного цвета.

Провода красного цвета это «+», синий или черный «–». Обязательно соблюдайте полярности. Перед подключением проверьте соответствие напряжения в вольтах ленты и блока питания.

При подключении нескольких лент с одинаковым напряжением 12 или 24 вольта можно использовать один блок питания, если его мощности будет достаточно. В этом случае обратите внимание на правильность подключения: две ленты должны подключаться по параллельной схеме. Последовательное подключение посадит блок питания: последние светодиоды в цепи будут светить тускло или совсем погаснут, а ближние к источнику питания разогреются, это приведет к постепенному разрушению структуры диода.

Схема параллельного подключения

Если мощности одного блока питания недостаточно или он на пределе, лучше использовать для каждой ленты отдельный источник. Более сложные варианты подключения RBG ленты рассмотрим отдельно.

RBG лента

Буквы английского алфавита RBG обозначают цвета:

R – красный;
B – голубой;
G – зеленый.

Название говорит само за себя. Это лента цветная, изменения ее цвета можно осуществлять с пульта дистанционного управления.

Виды и конструктивные особенности RBG ленты

Ленты RBG разделяются по виду, конструкции и размерам светодиодов:

  • Диоды SMD 3528 или SMD 5050 впаиваются в схему тройками последовательно (R – красный; B – голубой; G – зеленый) и чередуются в такой последовательности до конца ленты. Изменение цвета осуществляется понижением интенсивности свечения группой диодов одного цвета и повышением другой.

Схема включения диодов в ленте

  • В лентах LED – RBG – SMD 3528 или 5050 применяются диоды принципиально другой структуры. В корпусе одного диода встроены три элемента: красный, голубой и зеленый. Благодаря такой конструкции достигается более эффективная градация цвета светового потока. Как недостаток можно отметить меньшую интенсивность излучения по причине малого размера излучающих элементов.

Подключение к сети 220В

Пытаться подключить ленту к простому блоку питания не надо, она не будет функционировать в полном объеме.

Не надо изобретать велосипед: для полноценного функционирования RBG лент продаются блоки питания с выходными напряжениями от 12 до 24 вольт. В комплекте прилагается контроллер и пульт дистанционного управления (ПДУ). Котроллер по заданному алгоритму с пульта дистанционного управления изменяет напряжение в цветовых каналах. Таким образом, изменяется цвет и интенсивность светового потока.

Общим проводом у этих лент является плюс, контролер запитывается отдельно от блока питания INPUT (+ -) 12-24 вольта. Исходя из того, что каждый цветовой канал потребляет ток не менее 5А, блок питания должен быть рассчитан на 15А, лучше больше. Провода ленты подключаются к обозначенным на контролере клеммам OUTPUT: черный провод к плюсу, далее по цветам R;B;G.

К контролеру можно подключить три одноцветных ленты, объединить плюсовые провода и подключить на клемму V+, остальные три распределить по цветам R; B; G. Управление цветом и яркостью будет осуществляться так же эффективно, как с RBG лентой при условии, что будут учтены параметры напряжения и мощности.

Схема подключения одноцветных лент

Блок питания

Для того чтобы правильно выбрать блок питания, надо рассчитать, сколько ватт будут потреблять используемые светодиодные ленты.

Есть несколько способов как это быстро сделать. Самый простой – воспользоваться расчетной таблицей, они есть в Интернете, прилагаются в продаваемых комплектах к лентам: расторопные продавцы имеют все данные при себе и помогут определиться с выбором.

Потребляемая мощность светодиодных лент

Тип светодиодаКоличество светодиодов на один метрПотребляемая мощность одного метра ленты, Вт
SMD 3528604,8
SMD 35281209,6
SMD 352824019,2
SMD 5050307,2
SMD 50506015
SMD 505012025
  • Зная тип ленты, количество диодов и потребляемую мощность на одном метре, легко рассчитать общую мощность.

Например: SMD 3528 – 120 диодов = 9,6 Вт/м Х 10м = 96 Вт.
Но блок питания надо всегда выбирать с 15-20% запасом, поэтому 96+20% = 115 Вт. Если таких величин в стандартном ряду производимых промышленностью блоков питания нет, покупайте большей мощности 150 Вт. Этот запас не помешает, обеспечит надежную работу и возможность подключения дополнительных элементов.

  • В отдельных случаях, когда не известен тип ленты, стоит исходить из того, что во всех лентах применяются светодиоды SMD 3528; SMD 3028 или SMD 5050. Цифры обозначают размеры прямоугольных элементов 3,5 мм Х 2,8 мм; 5 мм Х 5 мм. Измерьте габариты, определите тип диода, посчитайте количество на одном метре, далее по уже рассмотренной методике.

Соединение

На всех низковольтных лентах и с питанием 220В промаркированы места, где можно обрезать и делать соединения. Нельзя пытаться соединения делать пайкой. Самый правильный способ использовать для этих целей коннектор – пластиковую коробочку, куда вкладывается зачищенная лента с контактами. Благодаря нему обеспечивается надежный электрический контакт, прочное и изолированное соединение.

Использование коннектора для соединений

Под все стандарты лент выпускаются коннекторы соответствующего размера, например, z10/2 обеспечивает соединение лент шириной 10 мм. Число 2 обозначает двухстороннюю группу контактов, фиксирующих соединение участков цепи с двух сторон без болтового соединения или пайки.

Перед тем, как концы ленты вставить в коннектор, контактные дорожки надо зачистить от лакированного покрытия. Для этих целей удобно использовать мелкий надфиль, мелко-абразивную наждачную бумагу или простой монтажный ножик.

Вставляя ленту, убедитесь, что полярности совпадают, на коннекторе «+» красный, дорожки ленты имеют знак «–», плюсовая дорожка определяется по обозначению «12». Лента вставляется под специальные пазы, после чего крышку можно защелкивать.

Второй отрезок ленты вставляется точно так же, но с другой стороны. Подключите ленту к блоку питания напряжением 220/12В или 220/24В и проверьте работоспособность. Соединение можно осуществлять с помощью одностороннего коннектора: на одной стороне вставляется лента, с другой стороны – провода к источнику питания. Это очень удобная технология.

Подключение. Видео

Варианты простого подключения светодиодной ленты представлены в этом видео. Все гениальное – просто.

Хочется думать, что изложенная в статье информация поможет сделать правильный выбор способа подключения светодиодной ленты к сети 220В и соединить все элементы схемы без посторонней помощи.

Оцените статью:

Подключение светодиодной ленты к сети 220 В схема

Устройство подсветки деталей интерьера очень часто выполняется с помощью светодиодных лент. Они отличаются высокой экономичностью, могут быть одноцветными или многоцветными. Каждый тип этих источников освещения имеет свои особенности, в том числе и схема подключения светодиодной ленты к сети 220 В которая используется в жилых помещениях. Основной отличительной чертой таких лент является возможность их разреза только через 1 метр, а в определенных условиях – и через 0,5 метра. При подключении нужно обращать внимание на соблюдение полярности в процессе соединения проводников между собой.

Работа LED лент от сети 220 вольт

Большинство изделий данного типа рассчитаны на подключение к сетям постоянного тока с напряжением 12 вольт. Таким образом, питание светодиодных лент осуществляется, преимущественно, с помощью специального блока питания. Однако существуют схемы, позволяющие выполнять подключение данных источников света к сети с напряжением 220 вольт. Для того чтобы эта операция завершилась успехом, необходимо произвести определенную доработку.

С этой целью пятиметровая светодиодная лента 12 вольт, разрезается на 20 равных частей. Разрезы выполняются в специально отмеченных местах, в противном случае, несколько светодиодов выпадут из общей схемы и не будут работать. Для выпрямления напряжения в 220 вольт применяется диодный мост.

Части ленты соединяются между собой таким образом, чтобы плюсовое значение одного отрезка соединялось с минусовым выходом следующего отрезка. Если в процессе эксплуатации светодиоды немного мерцают, в схему обязательно включается конденсатор. Величина тока, протекающего по дорожкам ленты, нужно обязательно контролировать. Если это значение превышает норму, в схему включаются дополнительные резисторы или части изделия.

Как подключить светодиодную ленту к блоку питания 12 вольт

Номинальное напряжение светодиодных лент составляет 12 или 24 вольта. Поэтому их эксплуатация возможна только с применением импульсного блока питания. Он осуществляет понижение напряжения, а на выходе образуется постоянный ток. Подключение светодиодной ленты к блоку питания выполняется через соответствующие полюса, обозначенные маркировкой «плюс» и «минус».

Мощность каждой ленты может быть различной, в зависимости от количества светодиодов. В соответствии с этим параметром выбирается наиболее подходящий блок питания. Если мощность ленты и технические характеристики блока не совпадают, это может привести к тусклому свечению светодиодов или выходу из строя самого прибора в результате перегрузки. Чтобы рассчитать характеристики блока питания, к значению мощности нужно добавить от 20 до 30%, компенсирующих потери, возникающие за счет длины проводников. Таким образом, при мощности ленты 24 ватта, понадобится выпрямитель, мощность которого составляет 32 Вт.

Наиболее простым вариантом является подключение одноцветной светодиодной ленты к выбранному блоку питания. Стандартную пятиметровую полосу нужно просто подключить к соответствующим выходам выпрямителя с обозначенной маркировкой полярности тока. Соединение проводов с контактами ленты осуществляется методом пайки. С этой целью используется паяльник с малой мощностью, чтобы избежать повреждения изделия. В случае необходимости соединительный проводник можно удлинить жилами сечением 1,5 мм2. В большинстве схем красный цвет провода означает плюс, а черный или синий – минус.


Подключение одноцветных лент имеет специфические особенности. Например, нельзя подключать последовательно два изделия. Это приведет к отсутствию нормального свечения на второй ленте. Кроме того, токоведущие дорожки первой полоски могут перегреться, что приведет к выходу из строя светодиодов. Наиболее корректное подключение осуществляется путем параллельного соединения светодиодных лент. В этом случае соединение второй полосы выполняется с помощью отдельных проводов, подключенных напрямую к блоку питания через удлиняющий проводник.

Как подключить светодиодную ленту к 220 без блока питания

Светодиодные полосы освещения, изготовленные в заводских условиях, рассчитаны на совместную эксплуатацию с блоком питания. Данное устройство преобразует переменный ток домашней сети в постоянный. При этом, напряжение понижается с 220 до 12 вольт. Однако, в определенных условиях, возможно подключение таких приборов освещения непосредственно в сеть, напряжением 220 вольт.

Для правильного выполнения такого подключения 12-тивольтовую полосу, длиной 5 метров, нужно разрезать на 20 частей. В дальнейшем, переменный ток 220 вольт выпрямляется с помощью диодного моста, включенного в общую схему. Далее все части ленты последовательно соединяются между собой разноименными полюсами. То есть плюс соединяется с минусом и, наоборот. В некоторых случаях может появиться мерцание, частота которого составляет 25 Гц. Оно убирается с помощью конденсатора на 5-10 мф, на 300 В, смонтированного в общую систему.

Подключение с контроллером

Многоцветные светодиодные ленты могут использоваться не только для освещения, но и в качестве дополнительного украшения интерьера помещения. Они разделены на группы и управляются с помощью пульта и специального контроллера. Таким образом, в схему добавляются дополнительные элементы.

Цветовая гамма передается тремя цветами. Это красный (Red), зеленый (Green) и синий (Blue). Поэтому разноцветные светодиодные ленты относятся к типу RGB. В каждой полосе имеются три группы светодиодов, которые светятся этими тремя цветами. У светодиодов одинакового цвета отсутствуют схематические связи между собой. У каждой группы имеется свой собственный выход, поэтому любая лента оборудована четырьмя контактами, три из которых соответствуют группам цветов, а один служит для подачи питания.

При подключении всех трех управляемых контактов к общему сигнальному выходу получится белый цвет. Если включить их по одному, они будут давать только красный, синий или зеленый цвет. Для получения различных оттенков и управления ими, светодиодная лента должна подключаться через контроллер. Контроллер обеспечивает одновременное включение всех трех линий. Однако интенсивность сигнала в каждом канале будет различной.


По типу управления эти устройства могут быть механическими или электронными. В первом случае коммутация осуществляется вручную, например, с помощью обычного трехклавишного выключателя. Главным недостатком этого способа считается существенное ограничение спектра цветовых эффектов. Электронные контроллеры обеспечивают управление не только количеством имеющихся светодиодов. Они регулируют интенсивность их свечения. Эти приборы могут быть оборудованы одним или несколькими каналами, в зависимости от количества лент, подлежащих управлению. У каждого контроллера имеется отдельный выход в виде провода с чувствительным элементом на конце. Он необходим для регулировки света пультом управления.

Как подключить светодиодную ленту через выключатель

Наиболее простой схемой считается подключение от выключателя к блоку питания, а затем к светодиодной ленте. Таким образом, включение и выключение подсветки происходит с помощью обычного выключателя.

Подключение выполняется очень просто. К обычному выключателю, находящемуся в домашней сети 220 вольт, подключается блок питания. При этом фазный провод подключается к входному коричневому проводнику L, а нулевой провод соединяется с проводником N синего цвета. Затем блок питания соединяется со светодиодной лентой. В этом случае необходимо строгое соблюдение полярности, чтобы плюс соединялся с плюсом, а минус – с минусом.

Размещение блока питания рекомендуется выполнять максимально близко к ленте. Длина прокладываемого кабеля не должна превышать 7 метров, в противном случае яркость свечения может значительно уменьшиться. Если все же возникла необходимость в прокладке слишком длинной линии, необходимо использовать проводник с увеличенным сечением жил.

Использование совместно с диммером

После того как осветительные приборы подключены, необходимо отрегулировать яркость их свечения. Простейшими способами являются переменные резисторы в виде потенциометра или реостата. Однако даже при незначительной потере мощности, такие устройства становятся неэффективными. Поэтому в настоящее время регулировка светового потока осуществляется с помощью специальных активных диммерных схем на полупроводниках.

Питания диммеров происходит от сети с напряжением 12 или 24 вольта. Сам прибор включается в схему в промежутке между светодиодной лентой и блоком питания. Выход блока соединяется со входом диммера, а затем выход диммера соединяется с лентой. Во время подключения необходимо строго соблюдать полярность. Мощность регулировочного устройства должна соответствовать определенному количеству ленты. Если же мощности диммера недостаточно, необходимо воспользоваться специальным усилителем.

Подключение нескольких светодиодных лент

Когда выполняется подключение не более двух лент, в этом случае возможно их последовательное соединение, при условии, что вторая полоса имеет незначительную длину. В местах соединения выполняется проверка на возможное падение напряжения.

Чаще всего одноцветные ленты подключаются параллельно. С этой целью используется блок питания повышенной мощности, соответствующей подключаемым приборам освещения. То же самое касается и многоцветных лент. Единственным отличием будет использование в схеме усилителя. Он соединяется с концом первой ленты и началом второй. В некоторых схемах применяется сразу несколько блоков питания.

Различные методы позволяют выполнять не только подключение светодиодной ленты к сети 220 В, схема которой получила наибольшее распространение. Разнообразие коммутирующих и регулировочных устройств позволяют использовать светодиоды в самых различных помещениях, практически с любыми интерьерами.

Схема подключения диодной ленты через выключатель

Кажущееся, на первый взгляд, простым подключение светодиодной ленты на 12 вольт к блоку питания (БП), на самом деле таковым не является. Чтобы собранная осветительная система была надёжной и долговечной, необходимо заранее учесть все нюансы, определить подходящий для себя способ монтажа и подключения и только после этого приступать к выполнению работ.

Подключение светодиодной ленты напрямую к сети 220 В без блока питания

Подавляющая часть имеющихся в продаже светодиодных лент рассчитана на подключение к блоку питания постоянного тока напряжением 12 В. Реже встречаются светодиодные ленты с питанием 5 вольт либо 24 вольт и выше. Включать такие осветительные приборы напрямую в сеть переменного тока 220 В нельзя – не пройдёт и секунды, как все SMD светоизлучающие диоды и резисторы попросту перегорят.

Тем не менее существует один рабочий способ, позволяющий запитать низковольтную светодиодную ленту от сети 220 В. Для его реализации ленту на 12 В любого типа и цвета свечения разрезают на 24 равных отрезка. Затем их необходимо соединить между собой последовательно. Для этого с помощью короткого провода соединяют минусовой контакт первого отрезка с плюсовым контактом второго отрезка. Далее припаивают провод к минусу второго и плюсу третьего отрезка и так далее. В результате, вместо параллельного соединения, получится цепочка из последовательно включённых отрезков светодиодной ленты, способная выдержать напряжение 288 вольт. Для подключения получившейся конструкции к сети 220 В придётся выпрямить и сгладить напряжение с помощью диодного моста VD1 (Uобр=600 В, Iпр=10 А) и полярного конденсатора C1 на 10 мкФ – 400 В, на выходе которого получится примерно 280 В.

Несмотря на то что данная схема вполне работоспособна, у неё есть ряд недостатков:

  • на каждом из отрезков в местах пайки присутствует опасное для жизни высокое напряжение;
  • конструкция имеет низкую надёжность из-за огромного количества соединений;
  • низкая эргономичность готового изделия.

Чтобы не заниматься самостоятельной переделкой светодиодной ленты с 12 на 220 вольт, можно купить готовую ленту промышленного производства, рассчитанную на прямое подключение к однофазной бытовой сети переменного тока. Её конструктивное отличие состоит в том, что SMD светодиоды соединены последовательно в группы не по 3 шт., а по 60 шт., а диодный мост входит в комплект поставки. Подробную информацию о таких LED-лентах, линейках и модулях можно найти в отдельной статье о светодиодных лентах на 220 вольт.

Использование бестрансформаторной схемы

Желание сэкономить на покупке качественного источника питания для светодиодной ленты подталкивает некоторых радиолюбителей к использованию бестрансформаторного блока питания (БТБП). Простая схемотехника, недорогие компоненты и возможность быстрого изготовления своими руками – вот основные преимущества БТБП. Действительно их можно встретить фактически во всей электронной китайской продукции, работающей от сети 220 В (настенные часы, люстры с ПДУ, реле напряжения и т.д.) Но на самом деле схемы питания, в которых нет трансформатора, имеют два существенных недостатка:

  1. Отсутствие гальванической развязки, в результате чего потенциал высокого напряжения присутствует на всех участках электрической цепи. Другими словами, прикосновение к оголённым проводникам опасно для жизни и может вызвать сильный удар током.
  2. Низкая надёжность. Со временем конденсатор теряет ёмкость, напряжение на выходе снижается, и устройство перестаёт работать. Если же случится пробой конденсатора, то подключенная светодиодная лента полностью перегорит.

Простейший классический вариант бестрансформаторного блока питания показан на рисунке выше. Его главный элемент – гасящий конденсатор (С1), который снижает сетевое напряжение до нужного значения. Затем оно проходит через выпрямитель – диодный мост (VD1), стабилитрон (VD2) и сглаживающий фильтр (С2). Расчёт ёмкости гасящего конденсатора производят, исходя из заданного напряжения и тока в нагрузке. Ввиду перечисленных выше недостатков подключать светодиодную ленту через такой блок питания не рекомендуется.

Активное применение БТБП в китайской электронике обусловлено исключительно экономией средств.

Схема подключения светодиодной ленты через блок питания

Чтобы 12 вольтовая светодиодная лента стабильно работала на протяжении долгих лет, её необходимо подключать от импульсного блока питания с напряжением на выходе 12 В. Это самый правильный вариант — импульсные источник питания имеют малый вес и компактные размеры, высокий КПД и коэффициент стабилизации, а также безопасны в эксплуатации. К недостаткам можно причислить генерацию импульсных помех, отдаваемых обратно в сеть и сложность схемы, для ремонта которой нужны специальные навыки.

Принять правильное решение в пользу того или иного источника питания поможет статья о выборе блока питания для светодиодной ленты.

До 5 метров

Очень часто рядовых пользователей интересует вопрос о том, как подключить светодиодную ленту длиной до 5 метров? Тут все очень просто. Достаточно воспользоваться приведенной ниже схемой. Процедуру подключения выполняют в следующей последовательности:

  • с помощью коннектора или путём пайки к одному из концов ленты подключают 2 питающих провода сечением 1-1,5 мм 2 ;
  • свободные концы этих проводов зажимают в соответствующих клеммах блока питания (+V, -V), соблюдая полярность;
  • к клеммам L и N (220V AC) подключают сетевой провод.

Аналогичным образом выполняют параллельное подключение нескольких отрезков к одному блоку питания. Главное, чтобы мощность БП была больше суммарной мощности подключаемой светодиодной ленты минимум на 30%.

Чтобы яркость светодиодов была равномерной по всей длине LED-ленты, к отрезкам длиною больше 4 метров рекомендуется подводить провода с обоих концов. Это связано с падением напряжения на токоведущих печатных проводниках (дорожках), в результате чего к самым дальним светодиодам поступает напряжение меньше 12 В и их яркость падает. Плюс этого способа – равномерное свечение, а минус – затраты на дополнительные провода.

Свыше 5 метров

То, что длина светодиодной ленты в бобине ограничена 5 метрами – это не случайность, а вынужденная технологическая мера. Дело в том, что токопроводящие дорожки, приклеенные вдоль ленты, очень тонкие, узкие, и рассчитаны на подключение определённого количества светодиодов. Именно по этой причине нельзя подключать последовательно 2 отрезка общей длиной более 5 метров. Чтобы избежать токовых перегрузок, подключение светодиодных лент длиною 10, 15 и даже 20 метров следует выполнять по одной из приведенных схем ниже. Первый вариант предполагает использование одного блока питания большой мощности, способного обеспечить в нагрузке ток до 20 А. Для равномерного свечения светодиодов напряжение питания на каждый из 5 метровых отрезков подаётся с обеих сторон. Во втором варианте каждый отрезок запитан от отдельного источника 12В. Реализовать данную схему немного сложнее, так как потребуется еще один блок питания и больше соединительных проводов. На третьей схеме кроме двух источников постоянного напряжения на 12 В в цепь добавлены диммер и одноканальный усилитель сигнала. Диммер служит для регулировки яркости светового потока. Задача усилителя сигнала – в точности продублировать сигнал с диммера для тех светодиодных лент, которые запитаны от второго БП.

Рассмотренные способы включений LED-лент являются типовыми, но их вариации могут использоваться для разработки более сложных схем с целью реализации определенных задач или удовлетворения требований заказчика.

Подключение RGB или RGBW LED-лент

Правила и особенности подключения, о которых было сказано выше, необходимо соблюдать и при монтаже мультицветных аналогов. Однако функциональные схемы с RGB и RGBW лентами будут выглядеть немного сложнее из-за появления контроллера и дополнительных проводов. RGB/RGBW контроллер значительно расширяет возможности осветительной системы за счёт диммирования отдельных цветов, создания световых эффектов и управления с пульта дистанционного управления (ПДУ). RGB/RGBW контроллер предназначен для подключения мультицветных лент с отдельно расположенными белыми светодиодами, что позволяет использовать такую систему не только, как дополнительный, но и как основной источник света в помещении.

Для удобства читателей все основные схемы, правила монтажа, примеры и нюансы включения мультицветных лент собраны в отдельной статье о схемах подключения светодиодных RGB и RGBW-лент.

Подключение через выключатель

Разумеется, любой осветительный прибор должен подсоединяться к электросети через выключатель. Причём светодиодные ленты, управляемые с пульта, не должны быть исключением. Но на каком участке схемы должен находиться выключатель, чтобы эксплуатация всей осветительной системы была безопасной? В этом вопросе только один правильный ответ: в самом начале схемы, разрывая фазу в цепи переменного тока. Если выключатель установить в цепи постоянного тока, то блок питания будет всегда оставаться под напряжением. Это плохо по двум причинам. Во-первых, радиодетали имеют рабочий ресурс, который будет исчерпан значительно раньше. Во-вторых, блоку питания придётся круглосуточно противостоять импульсным сетевым помехам и скачкам напряжения, которые только ускорят его износ.

Несколько важных моментов

Руководствуясь описанными рекомендациями, несложно будет разработать схему для реализации подсветки или полноценного освещения, рассчитать длину проводов и определить оптимальное место размещения каждого функционального блока. Но прежде чем приступить к выполнению работ следует помнить о правилах техники безопасности:

  • работы по подключению и монтажу выполнять только на отключенном оборудовании;
  • перед первым включением дополнительно проверить надёжность всех контактов и правильность собранной схемы.

Также рекомендуется заранее приобрести некоторые расходные материалы:

  • термоусадочную трубку для изоляции спаянных участков проводов;
  • наконечники для проводов;
  • коннекторы для последовательного соединения двух участков лент;
  • алюминиевый профиль, чтобы не допустить перегрев светоизлучающих диодов.

В статье были определены все основные моменты, касающиеся подключения светодиодных лент на 12 В как с блоком, там и без блока питания. К сожалению, рассмотреть все схемы невозможно, ввиду многообразия их вариаций. К тому же постоянное совершенствование светодиодной продукции способствует появлению новых схемных решений, которые могут вызывать у рядовых пользователей вопросы с подключением и проведением расчётов.

Если у Вас возникли сложности с подключением – задайте вопрос в комментариях ниже, наши технические специалисты обязательно помогут.

Одноцветная

Подключение одноцветной светодиодной ленты не представляет ничего сложного. Все, что нужно – приобрести составляющие элементы подсветки, отрезать нужную длину LED ленты, припаять ее к блоку питания и заизолировать оголенные контакты. Сейчас мы подробно рассмотрим каждый из этапов подключения.

Выбираем схему подключения

Чтобы самостоятельно подключить светодиодную ленту к сети 220 вольт, нужно в первую очередь выбрать схему подсоединения всех элементов. Если Вы решили сделать подсветку, используя при этом не более 5 метров изделия, тогда достаточно соединить ленту с блоком питания 220 на 12 в, а БП подключить к домашней сети через шнур с вилкой.

Однако часто бывает, что нужно подключить более 5 метров светодиодной ленты – 10, 15 либо даже 20 метров. В этом случае соединять все отрезки последовательно запрещается, т.к. произойдет перегрев первого 5-метрового отрезка и в то же время напряжение на последующих участках значительно упадет. Такое подсоединение сократит срок службы LED подсветки. Все самые популярные схемы подключения светодиодной ленты мы подробно рассмотрели в соответствующей статье. Для примера предоставим их еще раз.

Последовательно (допускается, если нужно добавить небольшой отрезок):

С двумя блоками питания (если лента большой длины):

Обращаем Ваше внимание на то, что можно подключить светодиодную ленту через выключатель либо диммер, что очень удобно при создании дополнительной подсветки в кухне либо другой комнате. В этом случае выключатель света подключается перед блоком питания в разрыв фазы, как показано на схеме ниже:

Диммер нужно подключать после блока питания, так, как показано на этом примере:

Со схемами подключения светодиодов к сети 220v разобрались, теперь переходим к самому процессу соединения элементов цепи.

Соединяем комплектующие

В самом простом примере мы имеем блок питания 220/12v и 5 метров одноцветной LED ленты. Чтобы подключить все элементы к 220 вольтам, нужно выполнить следующие действия:

  1. Отрезать подходящую длину изделия. О том, как правильно резать светодиодную ленту, мы уже рассказывали. Разрезать проводник нужно в строго отведенных местах, обозначенных пунктирной линией либо значком ножниц, как показано на фото ниже:
  2. Подготовить провода для подключения. Если длина не более 5 метров, можно смело выбирать провод, сечением 1,5 мм 2 . При большой длине ленты рекомендуем рассчитать сечение провода по мощности и току, чтобы выбрать подходящее значение.
  3. Подготовить паяльник, канифоль и припой.
  4. Обезжирить контактные площадки светодиодного проводника, используя ватку и спирт.
  5. Зачистить провода для подключения изделия на 2-3 мм для пайки.
  6. Выполнить лужение проводов и контактных площадок для пайки.
  7. Припаять проводки к светодиодной ленте. Лучше всего для пайки использовать оловяно-свинцовый припой. Важно не перепутать жилы по цветам, иначе светодиоды не загорятся. Черный либо синий провод нужно подсоединить к клемме «-», а красный к «+».
  8. Заизолировать место пайки, используя термоусадочную трубку. Кстати, вместо термоусадки также можно использовать клеевой пистолет, который надежно защитит оголенные контакты.
  9. Подключить провода от ленты к блоку питания, также руководствуясь цветовой маркировкой.
  10. К клеммам L, N и PE подсоединить кабель от сети 220 вольт. Не забудьте перед этим отключить электричество в доме либо квартире.

Вот и вся пошаговая инструкция для чайников по подключению светодиодной ленты к блоку питания и сети своими руками. Следует отметить, что подключить изделие можно даже без пайки, используя специальные коннекторы, как на фото ниже.

Недостаток таких переходников в том, что со временем контакт будет ухудшаться, чего нельзя сказать о более надежной пайке проводов. Увидеть, как подключить светодиодную ленту с помощью коннекторов и пайки Вы можете на видео ниже:

Многоцветная

Если Вы хотите подключить цветную RGB ленту в домашних условиях, технология соединения не слишком изменится. В схему с многоцветным устройством добавится контроллер, без которого схема работать не сможет, а также на выходе будет 4 контакта вместо двух. Схемы подключения RGB ленты мы также рассматривали, предоставляем их еще раз к Вашему вниманию.

Два блока питания:

В остальном инструкция по соединению аналогична предыдущей – провода паяют, оголенные контакты изолируются, после чего проверяется правильность подключения всех элементов цепи! Наглядно увидеть, как подсоединить разноцветную RGB ленту к сети своими руками, Вы можете на видео ниже:

Вот и все, что мы хотели рассказать Вам о том, как подключить светодиодную ленту к 220 вольт своими руками. Как Вы видите, инструкция по подключению многоцветной и одноцветной модели не сильно отличаются, главное – правильно подсоединить провода по цветам. Если вдруг у Вас возникли вопросы, можете задать их, используя форму Вопрос электрику!

Главный нюанс при подключении светодиодной ленты в различии напряжений. Светодиодная лента рассчитана на постоянное напряжение 12В, в то время как в розетке(или щитке) 220В переменного напряжения. Для преобразования напряжения сети до 12В постоянного тока, необходимо использовать блок питания 220В-12В.

Светодиодная лента представляет из себя цепочки из трех последовательно соединенных светодиодов. Данная конструкция позволяет отрезать необходимое количество ленты и каждый отрезок может работать независимо друг от друга.

Для подключения ленты к блоку питания можно использовать провод сечением порядка 1,5 мм 2 , этого будет вполне достаточно, так как светодиодные ленты потребляют относительно небольшую мощность.

Концы проводов одной стороной припаивают к ленте (там, где это отмечено на схеме), а другой стороной соответственно полярности подключают к выводу блока питания.

Блок питания подключается к сети 220В тремя проводами (часто двумя). Коричневый провод это фазный, а синий нулевой. Желтый провод заземления. Конечно, можно обойтись и без него, но крайне желательно использовать его для собственной безопасности. Красный (+) и черный (-) провода питают саму ленту.

Также на блоке питания обычно имеется регулировочный винт, вращая который можно изменять постоянное напряжение на выходе, то есть на ленте. С помощью мультиметра, определяем величину выходного напряжения и вращением винта стараемся добиться значения около 12В. Если напряжение будет выше, то срок работы ленты может сократится из за повышенного тока.

Важно! Соблюдайте меры предосторожности при работе с электрическими установками. Если у вас не имеется опыта в электромонтажных работах, доверьте это дело специалисту.

Схема подключения светодиодной ленты к блоку питания

Для подключения небольшого количества ленты, подойдет схема представленная ниже. Два или более отрезка ленты подключаются параллельно друг другу.

При подключении мощных светодиодных лент по данной схеме, возникает падение напряжение, вследствие чего, на концах ленты снижается яркость свечения, а у RGB лент может изменяться цвет свечения. Чтобы этого избежать лента подключается к блоку питания с обоих концов, как показано на схеме ниже.

Светодиодная лента в бухте имеет длину не более 5м. Это связано с тем, что производитель ленты изначально рассчитывают ту максимальную длину, при которой токопроводящие дорожки ленты смогут работать исправно. Отсюда вытекает одна распространенная ошибка при подключении светодиодных лент.

На схеме показаны правильный и неправильный варианты подключения ленты. Правильный уже рассматривался выше, а неправильный способ как раз и может привезти к выходу из строя токопроводящих дорожек, так как при последовательном соединении длина ленты может быть больше 5м, поэтому так подключать ленту не рекомендуется.

Подключение светодиодной ленты на реальном примере

Допустим, что имеется блок питания мощностью 60 Вт и два отрезка светодиодной ленты с диодами 5050. Мощность ленты 4,8 Вт/м, а длина отрезков по 0,5м. Следовательно, потребляемая мощность ленты будет приблизительно равна 4,8 Вт.

В данном случае мощности блока питания хватает с большим излишком. При необходимости мы могли бы подключить к нему 60/4,8=12,5 м такой ленты. Но важным условием долгой работы блока питания является выбор мощности блока на 30% больше, чем потребляет лента. То есть, наш блок питания будет долго работать с 8,75 м такой ленты.

Помните, что еще одним обязательным условием долгой работы ленты является хороший теплоотвод. Для этого ленту прикрепляют к алюминиевому профилю, который выполняет роль своеобразного радиатора и отводит тепло, не давая светодиодам перегреться. Это особенно касается лент, имеющих силиконовую оболочку. В данном случае это не требуется, так как лента маломощная (4,8 Вт/м).

Самостоятельное подключение светодиодной ленты на 220В (схема, видео)

Использование полупроводников для освещения дома или квартиры имеет массу преимуществ, но есть у нее и недостатки. Взять к примеру такое изделие, как светодиодная лента 220В, подключение которой к стандартному сетевому напряжению напрямую невозможно. Сам осветитель собран на плате, рассчитанной на 12В, поэтому необходимо использовать понижающее устройство – трансформатор или блок питания.

Как устроен светодиод?

Прежде чем хвататься за провода и вилки, пытаясь своими руками соорудить схему освещения, включить в нее датчик движения для дома и прочие элементы, нужно понять, что собой представляют ее ключевые элементы. Какой их принцип действия и как правильно подключить светодиодную ленту. Любой светодиод – это полупроводниковый прибор (несмотря на малые размеры), который активно используется в электронике, как один из элементов микросхем различных устройств.

Если через него пропустить электрический ток в прямом направлении (положительный потенциал сохраняется на стороне анода), то будет наблюдаться оптическое излучение. Если напряжение подать из обратной стороны (потенциал на катод), то в связи со свойствами полупроводников сопротивление будет значительно выше тока, то есть можно условно принять его равным нулю. Именно поэтому любая инструкция подключения светодиодной ленты настаивает соблюдать полярность (иначе никакого света не будет).

Читайте также:

Как подобрать качественную светодиодную ленту?

Выше уже оговаривалось, что светодиоды широко используются в микросхемах. Следовательно, для того, чтобы организовать на их базе осветительный прибор, нужно включить их в состав определенной электрической цепи, например, с датчиком движения. Именно для этого используют ленту. Она только визуально имеет вид белой ламинированной полосы, на которой установлены лампочки (диоды). На самом деле, под защитным поверхностным слоем скрывается полноценная плата, на которой организованы точки подключения диодов, соединенные между собой токопроводящими дорожками.

Особенностью светодиодной ленты является то, что она фактически не имеет привычных проводов для подключения к сети 220 Вольт. Если внимательно присмотреться, то можно обнаружить повторение одинаковых групп элементов с постоянным шагом. В состав каждой группы входит 3 светодиода и резисторы (один или несколько). Между группами можно увидеть линию разделения, обозначенную дополнительно символом ножниц. По обе стороны линии находятся контакты, то есть, отрезав отдельный участок, его можно своими руками подключить к 220В через них. Таким образом происходит коррекция необходимой длины ленты (укорачивание или наращивание). Резать эту плату (стандартная длина составляет 5 м) в любом другом месте кроме обозначенного не допускается, так как произойдет разрыв цепи.

Количество контактов на стандартной 12В ленте может составлять 2 или 4. Первая комбинация характерна для традиционной одноцветной ленты, вторая – для RGB-ленты, которая может менять цвет свечения за счет комбинации красного, зеленого и синего диодов. Для нее выделяется по контакту на каждый цветовой канал и дополнительно на общую цепь питания.

Читайте также:

Спаять светодиодную ленту самостоятельно: подробная инструкция!

Варианты подключения через трансформатор к 220 В

Главной причиной того, почему нельзя напрямую организовать подключение светодиодной ленты к общей сети 220V является высокий ток, который при этом проходит через них. Как результат, можно получить местный перегрев и выход из строя полупроводниковых элементов.

Классическим способом подсоединения 12-вольтовой ленты к 220В является использование вводного трансформатора или блока питания. Его главная задача – понижение сетевого напряжения 220 В до рабочего 12/24 В. Но прежде чем подключить к нему ленту, нужно подобрать его тип и мощность. Тип блока зависит от условий эксплуатации ленты и может быть простым, либо герметичным (при повышенной влажности в зоне действия). Мощность нужно подбирать учетом удельной (погонной) мощности ленты, которая является одной из ключевых ее характеристик. Если, к примеру, погонный метр ленты потребляет 14 Вт мощности, то отрезок длиной 4 м будет нуждаться в 56 Вт. Кроме это следует учесть запас примерно 25…30%, после которого минимальная требуемая мощность трансформатора составит 70…72,8 Вт. Из каталогов подбирается блок с ближайшим большим значением мощности, учитывая рабочее напряжение светодиодов (12 или 24 Вольт).

Подробнее о расчетах мощности светодиодных лент можно прочитать здесь.

Для дома схема подключения светодиодной ленты выбирается исходя из типа осветителя и его длины. Простая монохромная лента менее 5 метров соединяется с блоком питания, а он – с сетью 220 Вольт. Со стороны осветителя необходимо соблюдать полярность: «+» к «+», а «–» к «–». Для соединения используется двухжильный провод, который в блоке зажимается на клеммах, а к ленте припаивается на соответствующих контактах. На примере с RGB осветителем между блоком и лентой придется своими руками включить 12-вольтовый контроллер, позволяющий настраивать цветовую гамму свечения. Здесь также придется соблюдать полярность, а также соответствие контактов цветовых дорожек.

Схемы, приведенные выше, являются базовыми и применимы для лент стандартных пятиметровых лент (или короче) дома, при включении в цепь датчика движения или без него. При необходимости включить в сеть 220 Вольт более 5 м осветителя переходят к параллельному соединению. Последовательное не используется по причине чрезмерного падения напряжения по длине. Здесь возможны два варианта:

  1. Питание параллельных участков осветителя от одного блока. Разветвление цепи происходит между трансформатором и лентами. Мощность его должна быть выше, с учетом общей длины осветителя,
  2. Питание от двух отдельных блоков 12/24 В. Здесь нужно использовать компактные трансформаторы, объединение/разветвление цепей которых перед блоками со стороны сети 220V.

Для подключения светодиодной ленты RGB придется включить в цепь контроллер, а при двухблочной схеме – дополнительный усилитель, на который подключается параллельная лента.

Вариант подключения напрямую к 220В

Кроме каноничных вариантов включения в сеть 220V существует способ подключения светодиодной ленты без использования блоков питания. Базируется он на принципе перекрестной сборки светодиодных групп, при которой влияние сетевого тока напряжением 220 Вольт не сказывается на работоспособности пары.

Для этого нужно разделить цельную ленту на отдельные минимальные отрезки. Принимая во внимание, что один такой отрезок потребляет 12 Вольт, достигнуть значения 220В можно за счет включения как минимум 20 элементов (12 В х 20 шт = 240 Вольт). Каждый участок соединяется с соседним по принципу обратной полярности: «+» к «–».

Главными недостатками такой схемы являются возможность пробоя контактов, а также видимое мерцание диодов с частотой 50 Гц. Чтобы исключить скачки напряжения, нужно организовать включение в цепь питания диодного моста (выпрямителя) и конденсатора (устраняет мерцание). Сюда же можно включить датчик движения, который питается от стандартного сетевого напряжения.

Использование светодиодов с датчиком движения

Подобный элемент является неотъемлемым в концепции системы умного дома. Датчик движения реагирует чувствует присутствие в помещении человека или другого живого существа. Как только это происходит, контакты замыкаются и включается освещение без необходимости нажимать кнопки выключателя. Аналогично происходит отключение, только в этом случае контакты датчика размыкаются после того, как в зоне его действия не наблюдается движение в течении 10 секунд. Это прекрасный экономичный вариант для тех объектов, где не требуется постоянная подсветка.

Практическое руководство

: диоды: 6 ступеней (с изображениями)

Если вы в прошлом занимались электронными проектами, есть большая вероятность, что вы уже сталкивались с этим распространенным компонентом и без раздумий встраивали его в свою схему. Диоды имеют большое значение в электронике и служат множеству целей, которые будут рассмотрены в следующих шагах.

Во-первых, что такое диод?

Диод - это полупроводниковое устройство, которое позволяет току течь в одном направлении, но не в другом.

Полупроводник - это разновидность материала, в данном случае кремния или германия, электрические свойства которого находятся между проводниками (металлами) и изоляторами (стекло, резина). Рассмотрим проводимость: это мера относительной легкости, с которой электроны движутся через материал. Например, электроны легко проходят через кусок металлической проволоки. Вы можете изменить поведение чистого материала, такого как кремний, и превратить его в полупроводник, добавив к . При легировании вы добавляете небольшое количество примеси в чистую кристаллическую структуру.

Типы примесей, добавляемые к чистому кремнию, можно разделить на N-тип и P-тип.

  • N-тип: при легировании N-типа фосфор или мышьяк добавляются к кремнию в долях на миллиард в небольших количествах. И фосфор, и мышьяк имеют по пять внешних электронов, поэтому они смещаются, когда попадают в решетку кремния. Пятому электрону не с чем связываться, поэтому он может свободно перемещаться. Требуется лишь очень небольшое количество примеси, чтобы создать достаточно свободных электронов, чтобы электрический ток мог протекать через кремний.Электроны имеют отрицательный заряд, отсюда и название N-типа.
  • P-тип - При легировании P-типа к чистому кремнию добавляют бор или галлий. Каждый из этих элементов имеет по три внешних электрона. При смешивании с кремниевой структурой они образуют «дыры» в решетке, где электрону кремния не с чем связываться. Отсутствие электрона создает эффект положительного заряда, отсюда и название P-типа. Отверстия могут проводить ток. Дыра с радостью принимает электрон от соседа, перемещая дыру в пространстве.

Диоды состоят из двух слоев полупроводникового материала с различным легированием, которые образуют PN-переход . Материал P-типа имеет избыток положительных носителей заряда (дырок), а материал N-типа - избыток электронов. Между этими слоями, где встречаются материалы P-типа и N-типа, дырки и электроны объединяются, причем сверхэлектроны объединяются с избыточными дырками, чтобы компенсировать друг друга, поэтому создается тонкий слой, в котором нет ни положительных, ни отрицательных носителей заряда.Это называется истощенным слоем .

В этом обедненном слое нет носителей заряда, и через него не может протекать ток. Но когда на переход подается напряжение, так что анод P-типа становится положительным, а катод N-типа - отрицательным, положительные дырки притягиваются через обедненный слой к отрицательному катоду, также отрицательные электроны притягиваются к отрицательному катоду. положительный анод и ток.

Думайте о диоде как об улице с односторонним движением электричества.Когда диод находится в прямом смещении, диод позволяет трафику или току течь от анода к катодной ножке. В обратном смещении ток блокируется, поэтому электрический ток через цепь не протекает. Когда через диод протекает ток, напряжение на положительном плече выше, чем на отрицательном, это называется прямым падением напряжения на диоде . Сила падения напряжения зависит от полупроводникового материала, из которого изготовлен диод. Когда напряжение на диоде положительное, может течь большой ток, когда напряжение становится достаточно большим.Когда напряжение на диоде отрицательное, ток практически не течет.

mosfet - выключатель питания светодиодной ленты

Хотя один поставщик рекомендует конденсатор> 100 мкФ, а другие, возможно, предлагают 1000 мкФ, никто не предлагал переключить этот конденсатор с того же мкФ.

Колпачок должен быть перед переключателем рядом с полосками, чтобы уменьшить вероятность переходных ошибок в логике.

Пересмотрено ..

Универсальные конденсаторы имеют ЭПС 1 ~ 2 Ом при 100 мкФ, а конденсаторы с низким ЭПС будут составлять 1/10 этого или меньше.Таким образом, ваша шина 5 В будет иметь низкий всплеск от импульсного тока I = V + / ESR при переключении конденсатора.

Но вам нужен колпачок рядом с полосками, чтобы разъединить драйверы MOSFET на каждой микросхеме, поэтому ваш добавленный MOSFET "master ON" ДОЛЖЕН ТАКЖЕ быть рядом с разъемом питания, но после колпачка.

К настоящему времени вы должны понять закон Ома, и быстрое переключение большой емкости приведет к выбросу тока, определяемому V / ESR. Это означает, что плате uC потребуется 10 таких же конденсаторов в эквиваленте C и 1/10 ESR, чтобы просто уменьшить переходное падение до 0.5В или 10%.

меры предосторожности, включенные с веб-сайта POLOLU:

Предупреждение: WS2812B кажется более чувствительным, чем TM1804 на наших оригинальных светодиодных лентах. Мы рекомендуем принять несколько мер для его защиты:

Подключите конденсатор емкостью не менее 100 мкФ между землей и линиями питания на входе питания. Избегайте выполнения или изменения подключений, когда цепь находится под напряжением. Сведите к минимуму длину проводов, соединяющих микроконтроллер со светодиодной лентой. Соблюдайте общие передовые инженерные практики, такие как меры предосторожности против электростатического разряда (ESD).Подумайте о добавлении резистора от 100 Ом до 500 Ом между выходом данных микроконтроллера и светодиодной лентой, чтобы уменьшить шум на этой линии. Если полоса действительно повреждается, часто выходит из строя только первый светодиод; в таких случаях отрезание этого первого сегмента и припаивание соединителя ко второму сегменту возвращает полоску к жизни.

Считайте, что ворота имеют TVS для защиты от электростатического разряда, если вы хотите иметь незакрепленные разъемы.

Описание серии

и параллельных цепей

Надеюсь, те, кто ищет практическую информацию об электрических схемах и подключении светодиодных компонентов, первыми нашли это руководство.Однако вполне вероятно, что вы уже читали здесь страницу Википедии о последовательных и параллельных схемах, возможно, несколько других результатов поиска Google по этому вопросу, но все еще неясны или вам нужна более конкретная информация, касающаяся светодиодов. За годы обучения, обучения и разъяснения клиентам концепции электронных схем мы собрали и подготовили всю критически важную информацию, которая поможет вам понять концепцию электрических цепей и их связь со светодиодами.

Перво-наперво, не позволяйте, чтобы электрические схемы и компоненты проводки светодиодов казались устрашающими или сбивающими с толку - правильное подключение светодиодов может быть простым и понятным, если вы следите за этим постом. Давайте начнем с самого основного вопроса…

Какой тип цепи мне следует использовать?
Один лучше другого… Последовательный, Параллельный или Последовательный / Параллельный?

Требования к освещению часто диктуют, какой тип схемы можно использовать, но если есть выбор, то наиболее эффективным способом использования светодиодов высокой мощности является использование последовательной схемы с драйвером светодиодов постоянного тока.Последовательная схема помогает обеспечить одинаковое количество тока для каждого светодиода. Это означает, что каждый светодиод в цепи будет иметь одинаковую яркость и не позволит одному светодиоду потреблять больше тока, чем другому. Когда каждый светодиод получает одинаковый ток, это помогает устранить такие проблемы, как тепловой выход из строя.

Не волнуйтесь, параллельная схема по-прежнему является жизнеспособным вариантом и часто используется; позже мы обрисуем этот тип схемы.

Но сначала давайте рассмотрим схему серии :

Часто называемый «гирляндным» или «замкнутым» током в последовательной цепи следует один путь от начала до конца, при этом анод (положительный) второго светодиода соединен с катодом (отрицательным) первого.На изображении справа показан пример: для подключения последовательной цепи, подобной показанной, положительный выход драйвера подключается к положительному выводу первого светодиода, а от этого светодиода выполняется соединение от отрицательного к положительному полюсу второго. Светодиод и так далее, до последнего светодиода в цепи. Наконец, последнее подключение светодиода идет от отрицательного полюса светодиода к отрицательному выходу драйвера постоянного тока, создавая непрерывную петлю или гирляндную цепь.

Вот несколько пунктов для справки о последовательной цепи:

  1. Одинаковый ток течет через каждый светодиод
  2. Полное напряжение цепи - это сумма напряжений на каждом светодиоде
  3. При выходе из строя одного светодиода вся схема не работает.
  4. Цепи серии
  5. проще подключать и устранять неисправности
  6. Различное напряжение на каждом светодиодах - это нормально

Питание последовательной цепи:

Концепция петли к настоящему времени не проблема, и вы определенно можете понять, как ее подключить, но как насчет питания последовательной цепи.

Второй маркер выше гласит: «Общее напряжение цепи - это сумма напряжений на каждом светодиоде». Это означает, что вы должны подать как минимум сумму прямых напряжений каждого светодиода. Давайте посмотрим на это, снова используя приведенную выше схему в качестве примера, и предположим, что светодиод представляет собой Cree XP-L, работающий от 1050 мА с прямым напряжением 2,95 В. Сумма трех из этих прямых напряжений светодиодов равна 8,85 В постоянного тока . Таким образом, теоретически 8,85 В - это минимальное необходимое входное напряжение для управления этой схемой.

В начале мы упоминали об использовании драйвера светодиода с постоянным током, потому что эти силовые модули могут изменять свое выходное напряжение в соответствии с последовательной схемой. Поскольку светодиоды нагреваются, их прямое напряжение изменяется, поэтому важно использовать драйвер, который может изменять свое выходное напряжение, но сохранять тот же выходной ток. Чтобы получить более полное представление о драйверах светодиодов, загляните сюда. Но в целом важно убедиться, что ваше входное напряжение в драйвере может обеспечивать выходное напряжение, равное или превышающее 8.85V мы рассчитали выше. Некоторым драйверам требуется вводить немного больше, чтобы учесть питание внутренней схемы драйвера (драйвер BuckBlock требует накладных расходов 2 В), в то время как другие имеют функции повышения (FlexBlock), которые позволяют вводить меньше.

Надеюсь, вы сможете найти драйвер, который сможет дополнить вашу светодиодную схему последовательно включенными диодами, однако существуют обстоятельства, которые могут сделать это невозможным. Иногда входного напряжения может быть недостаточно для питания нескольких светодиодов последовательно, или, может быть, слишком много светодиодов для подключения последовательно, или вы просто хотите ограничить стоимость драйверов светодиодов.Какой бы ни была причина, вот как понять и настроить параллельную схему светодиодов.

Параллельная цепь:

Если последовательная схема получает одинаковый ток к каждому светодиоду, параллельная схема получает одинаковое напряжение на каждый светодиод, а общий ток на каждый светодиод представляет собой общий выходной ток драйвера, деленный на количество параллельных светодиодов.

Опять же, не волнуйтесь, здесь мы увидим, как подключить параллельную светодиодную схему, и это должно помочь связать идеи воедино.

В параллельной схеме все положительные соединения связаны вместе и обратно к положительному выходу драйвера светодиода, а все отрицательные соединения связаны вместе и обратно к отрицательному выходу драйвера.Давайте посмотрим на это на изображении справа.

В примере, показанном с выходным драйвером 1000 мА, каждый светодиод будет получать 333 мА; общий выход драйвера (1000 мА), деленный на количество параллельных цепочек (3).

Вот несколько пунктов для справки о параллельной цепи:

  1. Напряжение на каждом светодиоде одинаковое
  2. Полный ток - это сумма токов, протекающих через каждый светодиод.
  3. Общий выходной ток распределяется через каждую параллельную цепочку
  4. Требуется точное напряжение в каждой параллельной цепочке, чтобы избежать перегрузки по току

Теперь давайте немного повеселимся, объединим их вместе и наметим серию / параллельную цепь :

Как следует из названия, последовательная / параллельная цепь объединяет элементы каждой цепи.Начнем с последовательной части схемы. Допустим, мы хотим запустить в общей сложности 9 светодиодов Cree XP-L на 700 мА каждый с напряжением 12 В постоянного тока ; прямое напряжение каждого светодиода при 700 мА составляет 2,98 В постоянного тока . Правило номер 2 из маркированного списка последовательной цепи доказывает, что 12 В постоянного тока недостаточно для последовательной работы всех 9 светодиодов (9 x 2,98 = 26,82 В, постоянного тока, ). Тем не менее, 12 В постоянного тока достаточно для работы трех последовательно (3 x 2,98 = 8,94 В постоянного тока ). И из правила № 3 параллельной схемы мы знаем, что общий выходной ток делится на количество параллельных цепочек.Итак, если бы мы использовали BuckBlock на 2100 мА и три параллельных ряда по 3 последовательно соединенных светодиода, то 2100 мА было бы разделено на три, и каждая серия получила бы 700 мА. На изображении в качестве примера показана эта установка.

Если вы пытаетесь настроить светодиодную матрицу, этот инструмент планирования светодиодных схем поможет вам решить, какую схему использовать. На самом деле он дает вам несколько разных вариантов различных последовательных и последовательных / параллельных цепей, которые будут работать. Все, что вам нужно знать, это ваше входное напряжение, прямое напряжение светодиодов и количество светодиодов, которые вы хотите использовать.

Падение нескольких светодиодных гирлянд:

При работе с параллельными и последовательными / параллельными цепями следует помнить, что если цепочка или светодиод перегорят, светодиод / цепочка будет отключена из цепи, так что дополнительная токовая нагрузка, которая шла на этот светодиод, будет раздать остальным. Это не большая проблема для массивов большего размера, поскольку ток будет рассеиваться в меньших количествах, но как насчет схемы с двумя светодиодами на цепочку? Затем ток будет удвоен для оставшегося светодиода / цепочки, что может быть более высокой нагрузкой, чем светодиод может выдержать, что приведет к перегоранию и разрушению вашего светодиода! Обязательно помните об этом и постарайтесь создать такую ​​настройку, которая не испортит все ваши светодиоды, если один из них перегорит.

Другая потенциальная проблема заключается в том, что даже когда светодиоды поступают из одной производственной партии (одного бункера), прямое напряжение все еще может иметь допуск 20%. Варьирование напряжений в отдельных цепочках приводит к тому, что ток не делится поровну. Когда одна струна потребляет больше тока, чем другая, перегруженные светодиоды нагреваются, и их прямое напряжение изменяется сильнее, что приводит к более неравномерному распределению тока; это называется тепловым разгоном. Мы видели, как многие схемы, настроенные таким образом, работают хорошо, но требуется осторожность.Для получения дополнительной информации об этой концепции и способах ее избежать (текущее зеркало) есть отличная статья на сайте LEDmagazine.com.

Как работает диод и светодиод? | ОРЕЛ

С возвращением, капитаны компонентов! Сегодня пришло время повысить уровень своих знаний и перейти от простых пассивных компонентов к области полупроводниковых компонентов. Эти детали оживают, когда соединяются в цепь, и могут управлять электричеством разными способами! Вам предстоит работать с двумя полупроводниковыми компонентами: диодом и транзистором.Сегодня мы поговорим о диоде, пресловутом уродливом устройстве управления, которое позволяет электричеству течь только в одном направлении! Если вы видели светодиод в действии, значит, вы уже далеко впереди, давайте приступим.

Управляйте потоком

Диод хорошо известен своей способностью управлять прохождением электрического тока в цепи. В отличие от пассивных компонентов, которые бездействуют, сопротивляясь или накапливая, диоды активно задействуют приливы и отливы тока, протекающего по нашим устройствам.Есть два способа описать, как ток будет или не течь через диод, и они включают:

  • С опережением. Если вы правильно вставите батарею в цепь, ток будет проходить через диод; это называется состоянием с прямым смещением.
  • Обратно-смещенный. Когда вам удается вставить батарею в цепь в обратном направлении, ваш диод блокирует прохождение любого тока, и это называется состоянием с обратным смещением.

Простой способ визуализировать разницу между состояниями прямого и обратного смещения диода в простой схеме

Хотя эти два термина могут показаться слишком сложными, представьте диод как переключатель.Он либо закрыт (включен) и пропускает ток, либо открыт (выключен), и ток не может течь через него.

Полярность диодов и символы

Диоды - это поляризованные компоненты, что означает, что они имеют очень специфическую ориентацию, поэтому для правильной работы их необходимо подключить в цепь. На физическом диоде вы заметите две клеммы, выходящие из формы жестяной банки посередине. Одна сторона - это положительный вывод, который называется анодом . Другой вывод - это отрицательный вывод, называемый катодом . Возвращаясь к нашему потоку электричества, ток может течь только в диоде от анода к катоду, а не наоборот.

Вы можете определить катодную сторону физического диода, посмотрев на серебряную полоску рядом с одним из выводов. (Источник изображения)

Вы можете легко обнаружить диод на схеме, просто найдите большую стрелку с линией, проходящей через нее, как показано ниже. У некоторых диодов и анод, и катод помечены как положительный и отрицательный, но простой способ запомнить, в каком направлении течет ток в диоде, - это следить за направлением стрелки.

Стрелка на символе диода указывает направление протекания тока.

В наши дни большинство диодов изготовлено из двух самых популярных полупроводниковых материалов в электронике - кремния или германия. Но если вы знаете что-нибудь о полупроводниках, то знаете, что в своем естественном состоянии ни один из этих элементов не проводит электричество. Так как же заставить электричество проходить через кремний или германий? С помощью небольшого волшебного трюка под названием допинг.

Легирование полупроводников

Странные полупроводниковые элементы.Возьмем, к примеру, кремний. Днем это изолятор, но если вы добавите в него примеси с помощью процесса, называемого допингом, вы придадите ему магическую силу проводить электричество ночью.

Благодаря своим двойным свойствам как изолятор, так и проводник, полупроводники нашли свою идеальную нишу в компонентах, которые должны контролировать поток электрического тока в виде диодов и транзисторов. Вот как работает процесс легирования в типичном куске кремния.

  • Вырасти.Во-первых, кремний выращивают в строго контролируемой лабораторной среде. Это называется чистой комнатой, то есть в ней нет пыли и других загрязнений.
  • Допинг это отрицательно. Теперь, когда кремний вырос, пришло время легировать его. Этот процесс может идти двумя путями. Первый - это легирование кремния сурьмой, которая дает ему несколько дополнительных электронов и позволяет кремнию проводить электричество. Этот кремний называется кремнием n-типа или отрицательного типа, потому что в нем больше отрицательных электронов, чем обычно.
  • Допинг положительно. Можно также добавить кремний в обратную сторону. Добавляя бор к кремнию, он удаляет электроны из атома кремния, оставляя группу пустых дырок там, где должны быть электроны. Это называется кремнием p-типа или положительного типа.
  • Объедините . Теперь, когда ваши кусочки кремния легированы как положительно, так и отрицательно, вы можете соединить их вместе. Соединяя кремний n-типа и p-типа вместе, вы создаете так называемое соединение.

Именно на этом перекрестке, который можно представить как некую нейтральную зону, происходит вся магия диода.Допустим, вы соединяете кремний n-типа и p-типа, а затем подключаете батарею, создавая цепь. Что случится?

В этом случае отрицательная клемма подключена к кремнию n-типа, а положительная клемма подключена к кремнию p-типа. А между двумя кусками кремния - нейтральная зона? Что ж, он начинает сжиматься, и начинает течь электрический ток! Это состояние диода с прямым смещением, о котором мы говорили в начале.

Правильное подключение батареи к кремнию n-типа и p-типа позволяет току течь через переход.(Источник изображения)

Теперь предположим, что вы подключаете батарею наоборот: отрицательная клемма подключена к кремнию p-типа, а положительная клемма - к кремнию n-типа. Здесь происходит то, что нейтральная зона между двумя кусками кремния становится шире, и ток вообще не течет. Это состояние с обратным смещением, которое может принять диод.

Подсоедините батарею в непреднамеренном направлении, и ваш диод остановит протекание тока между n-типом и p-типом.(Источник изображения)

Прямое напряжение и пробои

Когда вы работаете с диодами, вы узнаете, что для того, чтобы один пропускал ток, требуется очень определенное количество положительного напряжения. Напряжение, необходимое для включения диода, называется прямым напряжением (VF). Вы также можете увидеть, что это называется напряжением включения или напряжением включения.

Что определяет это прямое напряжение? Полупроводник , материал и типа . Вот как он распадается:

  • Кремниевые диоды.Для использования кремниевого диода потребуется прямое напряжение от 0,6 до 1 В.
  • Германиевые диоды. Для использования диода на основе германия потребуется более низкое прямое напряжение около 0,3 В.
  • Другие диоды. Специализированные диоды, такие как светодиоды, потребуют более высокого прямого напряжения, тогда как диоды Шоттки (см. Ниже) потребуют более низкого прямого напряжения. Лучше всего свериться с таблицей данных для вашего конкретного диода, чтобы определить его номинальное прямое напряжение.

Я знаю, что все это время мы говорили о диодах, позволяющих току течь только в одном направлении, но это правило можно нарушить.Если вы приложите огромное отрицательное напряжение к диоду, вы действительно сможете изменить направление его тока! Определенная величина напряжения, которая вызывает этот обратный поток, называется напряжением пробоя . Для обычных диодов напряжение пробоя находится в диапазоне от -50 до -100 В. Некоторые специализированные диоды даже предназначены для работы при этом отрицательном напряжении пробоя, о котором мы поговорим позже.

Семейство диодов - наконец вместе

Существует множество диодов, каждый из которых имеет свои собственные особенности.И хотя у каждого из них есть общая основа ограничения потока тока, вы можете использовать эту общую основу для создания множества различных применений. Давайте посмотрим на каждого члена семейства диодов!

Стандартные диоды

Ваш средний диод. Стандартные диоды имеют умеренные требования к напряжению и низкий максимальный ток.

Стандартный диод для повседневного использования, доступный в компании Digi-Key, обратите внимание на серебряную полоску, которая отмечает катодный конец. (Источник изображения)

Выпрямительные диоды

Это более мощные аналоги стандартных диодов и имеют более высокий максимальный ток и прямое напряжение.В основном они используются в источниках питания.

Более мощные братья и сестры стандартного диода, разница состоит в большем номинальном токе и прямом напряжении.

Диоды Шоттки

Это необычный родственник семейства диодов. Диод Шоттки пригодится, когда вам нужно ограничить величину потери напряжения в вашей цепи. Вы можете идентифицировать диод Шоттки на схеме, ища свой типичный символ диода с добавлением двух новых изгибов (S-образной формы) на катодном выводе.

Найдите изгибы на катодном конце диода, чтобы быстро определить, что это изгибы Шоттки.

Стабилитроны

Стабилитроны - это черная овца в семействе диодов. Эти парни используются для того, чтобы посылать электрический ток в обратном направлении! Они делают это, используя напряжение пробоя, которое мы обсуждали выше, также называемое пробоем Зенера. Воспользовавшись этой пробивной способностью, стабилитроны отлично подходят для создания стабильного опорного напряжения в определенной точке цепи.

Стабилитрон разительно отличается от остальных диодов семейства и может передавать ток от катода к аноду. (Источник изображения)

Фотодиоды

Фотодиоды - это непокорные подростки из семейства диодных. Вместо того, чтобы просто пропускать ток через цепь, фотодиоды улавливают энергию источника света и превращают ее в электрический ток. Вы найдете их для использования в солнечных панелях, а также в оптических коммуникациях.

Фотодиоды поглощают все это, улавливая энергию света и превращая ее в электрический ток.(Источник изображения)

Светодиоды (LED)

Яркие звезды семейства диодов. Как и стандартные диоды, светодиоды позволяют току течь только в одном направлении, но с изгибом! Когда подается правильное прямое напряжение, эти светодиоды загораются яркими цветами. Но вот загвоздка: светодиоды определенного цвета требуют разного прямого напряжения. Например, для синего светодиода требуется прямое напряжение 3,3 В, а для красного светодиода требуется только 2,2 В.

Что делает эти светодиоды настолько популярными?

  • КПД .Светодиоды излучают свет с помощью электроники, не выделяя тонны тепла, как традиционные лампы накаливания. Это позволяет им сэкономить массу энергии.
  • Контроль. Светодиодами также очень легко управлять в электронной схеме. Пока перед ними установлен резистор, они обязательно будут работать!
  • Недорого. Светодиоды также очень недороги и рассчитаны на длительный срок службы. Вот почему они так часто используются в светофорах, дисплеях и инфракрасных сигналах.

Светодиоды бывают разных форм и цветов, для каждого из которых требуется разное прямое напряжение! (Источник изображения)

Наиболее распространенное применение диодов

Поскольку диоды бывают разных форм, размеров и конфигураций, их использование в наших электронных схемах столь же разнообразно! Вот лишь несколько примеров использования диодов:

Преобразование переменного тока в постоянный

Процесс преобразования переменного тока (AC) в постоянный ток (DC) может выполняться только диодами! Этот процесс выпрямления (преобразования) тока - это то, что позволяет вам подключить всю вашу повседневную электронику постоянного тока к розетке переменного тока в вашем доме.Есть два типа приложений преобразования, в которых играет свою роль диод:

  • Полуволновое выпрямление. Для этого преобразования требуется только один диод. Если вы отправляете сигнал переменного тока в цепь, то ваш единственный диод отсекает отрицательную часть сигнала, оставляя только положительный вход в виде волны постоянного тока.

    Одиночный диод в цепи однополупериодного выпрямителя, ограничивающий отрицательный полюс сигнала переменного тока. (Источник изображения)

  • Полноволновое мостовое выпрямление .В этом процессе преобразования используются четыре диода. И вместо того, чтобы просто отсекать отрицательную часть сигнала переменного тока, такую ​​как полуволновой выпрямитель, этот процесс фактически преобразует все отрицательные волны в сигнале переменного тока в положительные волны для сигнала готовности постоянного тока.

    Двухполупериодный мостовой выпрямитель делает еще один шаг вперед, преобразуя весь положительный и отрицательный сигнал переменного тока в постоянный. (Источник изображения)

Пики напряжения управления

Вы также найдете диоды, которые используются в приложениях, где могут произойти неожиданные скачки напряжения.Диоды в этих приложениях могут ограничить любое повреждение, которое может произойти с устройством, поглощая любое избыточное напряжение, которое попадает в диапазон напряжения пробоя диода.

Защита вашего тока

Наконец, вы также найдете диоды, которые используются для защиты чувствительных цепей. Если вы хоть раз разбили батарею неправильно и ничего не взорвалось, то можете поблагодарить за это свой дружелюбный диод. Размещение диода последовательно с положительной стороной источника питания гарантирует, что ток течет только в правильном направлении.

Пора освободиться

Вот и все, контрольный диод и все его сумасшедшие члены семьи! У диодов есть масса применений, от питания этих ярких светодиодных ламп до преобразования переменного тока в постоянный. Но почему, несмотря на все эти удивительные применения, диод не получил такой же огласки, как транзистор или интегральная схема? Мы думаем, что дело в том, что на кухне слишком много поваров. Первый диод был открыт почти 150 лет назад, и с тех пор сотни инженеров и ученых приложили свои усилия, чтобы улучшить это открытие.Несмотря на долгую историю существования многих людей, диод до сих пор считается четвертым по значимости изобретением после колеса.

Знаете ли вы, что Autodesk EAGLE включает в себя массу бесплатных библиотек диодов, которые вы можете начать использовать уже сегодня? Пропустите рутинную работу по созданию деталей, попробуйте Autodesk EAGLE бесплатно сегодня!

Paper Circuit Переключатель зажима для бумаги

В этом уроке мы покажем вам, как сделать переключатель из бумажной скрепки. Этот переключатель очень прост в изготовлении и отлично подходит для управления проектами с несколькими светодиодами.

Чтобы помочь вам начать работу, мы включили (4) БЕСПЛАТНЫХ бумажных шаблонов схем, в которых используется этот тип переключателя скрепок.

Изучив основы, вы можете очень легко создать свою собственную схему. Проявите творческий подход и получайте удовольствие!

Время проекта: 15 минут

Воспользуйтесь приведенными ниже ссылками, чтобы загрузить шаблоны проектов для этого руководства.

Необходимые материалы

Для выполнения этого проекта вам потребуются следующие материалы для изготовления:

  • Медная лента с проводящим клеем
  • CR2032 Аккумуляторная батарея
  • Светодиод - любой размер и цвет
  • Скрепка для бумаг - большой размер
  • Латунная застежка - 1 дюйм

Нужны материалы для этого проекта? У нас есть стартовый комплект бумажной схемы и электронная книга.В комплект входит медная лента, светодиоды и батарейки CR2032. Также в комплект входит электронная книга по проектам с 45 шаблонами проектов.

Шаг 1. Распечатайте шаблоны

Загрузите указанный ниже шаблон проекта, который вы хотите использовать. Как только вы это сделаете, вы можете распечатать его в цвете или черно-белом.

Шаг 2 - Нанесите медную ленту

Приклейте медную ленту ко всем коричневым линиям на шаблоне проекта. Мы настоятельно рекомендуем использовать медную ленту с токопроводящим клеем.Это обеспечит правильное освещение вашего светодиода. Мы продаем эту медную ленту в наших стартовых наборах для бумажных цепей с электронной книгой.

Начните с приклеивания медной ленты прямо к углу.

Согните медную ленту вверх в направлении, противоположном движению.

Затем согните медь прямо вниз и разгладьте ее пальцем. Проделайте то же самое с остальными линиями схемы.

Шаг 3 - Установите светодиоды

Теперь пришло время установить светодиод в вашу схему.Прежде чем мы продолжим, нам нужно определить, какая нога положительна. У каждого светодиода длинная и короткая ножки. Длинная нога будет положительной (+), а короткая - отрицательной.

Согните обе ножки светодиода под углом 90 градусов. Обязательно запомните, какая нога положительна (длинная нога). Прикрепите светодиод к цепи из медной ленты, используя небольшие полоски медной ленты. Убедитесь, что положительный полюс находится на (+) стороне цепи (правая сторона шаблона).

Установите все (3) светодиода таким же образом.Когда вы закончите, потрите всю медную ленту пальцем, чтобы убедиться, что все плотно прилегает к ней.

Шаг 4 - Установите аккумулятор

Отрежьте небольшую полоску медной ленты и скатайте ее липкой стороной наружу. Приклейте этот шарик к медной ленте внутри серого кружка батареи.

Установите батарею CR2032 на липкий медный шар. Убедитесь, что отрицательная (-) сторона батареи обращена ВНИЗ.

Согните угол шаблона, используя черную линию в качестве ориентира.Прикрепите уголок к батарее с помощью канцелярской скрепки.

Шаг 5 - Переключатель скрепки

Используя бритву или ножницы, прорежьте небольшой разрез в середине медной ленты, как показано на рисунке ниже. Обязательно разрезайте медную ленту в том же направлении, что и слева направо.

Вставьте ножки латунной застежки через один конец скрепки. Затем протолкните ножки через прорезь, которую вы прорезали в меди и бумаге.

Переверните шаблон и отделите ножки латунной застежки, чтобы закрепить его.

Шаг 6. Проверьте бумажную цепь

Пришло время проверить свой бумажный светофор. Поверните скрепку так, чтобы она касалась каждой части цепи.

Шаг 7 - Покажите нам свой проект

Следите за нами в Твиттере на @Makerspaces_com и пишите нам в Твиттере, если вы сделали тот или иной проект. Нам нравится видеть ваши творческие пространства и творения, которые вы создаете.

Нужно больше проектов?

Если вам нужны другие проекты бумажных схем, ознакомьтесь с нашей электронной книгой, в которой есть 45 шаблонов проектов вместе с нашим стартовым комплектом бумажных схем.

Заказы на поставку

Makerspaces.com с радостью принимает заказы на покупку от школ, библиотек и государственных учреждений США. Сообщите нам, если вам нужно предложение или форма W9.

Осветите это - Maker Camp

Осветите - Maker Camp

Добро пожаловать в мир DIY Illumination!


Создавайте множество различных бумажных проектов, которые освещаются крутыми и удивительными способами, когда вы изучаете основы схемотехники, создавая светодиоды, медную ленту и батарейки типа «таблетка».Основываясь на проекте бумажных схем для начинающих, поэкспериментируйте с более продвинутыми методами, такими как создание выключателя своими руками или создание параллельной схемы с несколькими лампами. Изучите больше идей, материалов и проектов, таких как светящиеся вертушки, светящиеся вертолеты и всплывающие открытки. Развлекайтесь и проявляйте творческий подход, чтобы осветить свой мир, как хотите!

НАЧНИТЕ РАБОТАТЬ С БУМАЖНЫМИ КОНТУРАМИ

Для нашего начального проекта бумажных схем, давайте разработаем светящуюся поздравительную открытку.

ЧТО ВАМ НУЖНО?