Закрыть

Схема подключения электродвигателя через магнитный пускатель: Страница не найдена – Совет Инженера

Содержание

устройство и принцип работы + схема подключения на 220в и 380в

Реверсивная схема

Для того чтобы создать реверсивную схему включения электродвигателя, потребуется использование двух магнитных контакторов и трех кнопок управления. Оба пускателя устанавливаются в непосредственной близости для удобства соединений и подключений в том числе и с механической блокировкой.

Клеммы для подключения питания соединяются между собой на обоих устройствах. Контакты, подключаемые к электродвигателю, соединяются перекрестным способом. Провод питания электродвигателя может соединяться с любыми питающими клеммами одного из пускателей.

Следует помнить, что перекрестная схема подключения, категорически запрещает одновременное включение двух пускателей, поскольку это обязательно вызовет короткое замыкание. В связи с этим, проводники блокирующих цепей в каждом из приборов вначале соединяются с замкнутым контактом управления другого устройства, а потом – с разомкнутым контактом собственного. При включении второго контактора первый будет отключаться и наоборот.

Вторая клемма кнопки СТОП, находящейся в замкнутом положении, соединяется не с двумя, как обычно, а с тремя проводами. Два из них являются блокирующими, а через третий – подается питание на пусковые кнопки, соединенные параллельно между собой. Подобная схема позволяет отключить кнопкой остановки любой включенный пускатель и остановить вращение электродвигателя.

Устройство пускателя и принцип его работы

Перед тем, как подключить магнитный пускатель в цепь коммутации нагрузки, следует разобраться с его внутренним устройством, а также ознакомиться с принципом работы.

Основа конструкции этого прибора – катушка индуктивности, размещаемая на специальном магнитном каркасе, который, в свою очередь, состоит из двух частей: подвижной и неподвижной.

Обратите внимание! Две половинки магнитопровода по своей форме напоминают букву «Ш», каждая из которых обращена вершинами друг к другу. Неподвижная или нижняя его часть закреплена на корпусе прибора, а верхняя – подпружинена и может свободно перемещаться

В прорезях закреплённой нижней части монтируются управляющие катушки магнитного пускателя, которые могут быть рассчитаны на дискретный ряд напряжений (12, 24, 110, 220 и 380 Вольт)

Неподвижная или нижняя его часть закреплена на корпусе прибора, а верхняя – подпружинена и может свободно перемещаться. В прорезях закреплённой нижней части монтируются управляющие катушки магнитного пускателя, которые могут быть рассчитаны на дискретный ряд напряжений (12, 24, 110, 220 и 380 Вольт).

В верхней части на корпусе располагаются две группы рабочих контактов, одни из которых закреплены неподвижно, а вторые – связаны с подвижным магнитным сердечником (смотрите рисунок ниже).

Устройство магнитного пускателя

Порядок подключения контактора к линии устанавливается требованиями ПУЭ и предполагает подведение фазных напряжений в верхней группе, а их отведение к нагрузке – от нижних. Общая картина их коммутации выглядит следующим образом:

  • При отсутствии на катушке управляющего напряжения подпружиненная часть магнитопровода смещена вверх, а связанная с ней контактная группа разомкнута. После подачи на неё питающего напряжения (кнопка пуск замкнута) вокруг катушки образуется э/м поле, притягивающее верхнюю половину сердечника вместе с контактами;
  • При этом они подключаются, образуя замкнутую цепь питания нагрузки;

Дополнительная информация. Схема подключения пускателя построена таким образом, чтобы при однократном нажатии кнопки управления система запускалась в работу.

  • Но при втором её запуске никаких изменений в схеме пускателя не происходит, поскольку кнопочное соединение блокируется параллельно подключённым контактом;
  • Далее после нажатия кнопки «Стоп» управляющая цепь разрывается, а напряжение на катушке пропадает;
  • Это приводит к смещению подвижной части магнитопровода в нижнее положение и размыканию рабочих контактов пускателя.

По завершении всего цикла переключений пусковая станция снова готова к работе.

Ко всему сказанному нужно добавить, что для управления кнопками пуск и стоп может применяться любой тип напряжений: переменное или постоянное. Главное – проследить за тем, чтобы его параметры соответствовали заявленным в паспорте значениям.

Схемы подключения

Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.

Существует две схемы подключения:

Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет. Но тут есть один нюанс, который касается токовой нагрузке. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. Высокая сила тока в медном проводе повышает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробивке изоляции и выходу из строя самого электродвигателя.

Хотелось бы обратить ваше внимание на тот факт, что большое количество европейского оборудования, завезенного на просторы России, укомплектовано европейскими электрическими двигателями, которые работают под напряжением 400/690 вольт. Кстати, снизу фото шильдика такого мотора

Так вот эти трехфазные электродвигатели надо подключать к отечественной сети 380В только по схеме треугольник. Если подключить европейский мотор звездой, то под нагрузкой он сразу же сгорит. Отечественные же трехфазные электродвигатели к трехфазной сети подключаются по схеме звезда. Иногда подключение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.

Производители сегодня предлагают трехфазные электродвигатели, в коробке подключения которых сделаны выводы концов обмоток в количестве трех или шести штук. Если концов три, то это значит, что на заводе внутри мотора уже сделана схема подключения звезда. Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети и звездой, и треугольником. При использовании схемы звезда необходимо три конца начала обмоток соединить в одной скрутке. Три остальных (противоположных) подключить к фазам питающей трехфазной сети 380 вольт. При использовании схемы треугольник нужно все концы соединить между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения концов обмоток между собой. Внизу фото, где показаны два вида подключения трехфазного двигателя.

Схема звезда-треугольник

Такая схема подключения к трехфазной сети используется достаточно редко. Но она существует, поэтому есть смысл сказать о ней несколько слов. Для чего она используется? Весь смысл такого соединения основан на позиции, что при пуске электродвигателя используется схема звезда, то есть плавный пуск, а для основной работы используется треугольник, то есть выжимается максимум мощности агрегата.

Правда, такая схема достаточно сложная. При этом обязательно устанавливаются в соединение обмоток три магнитных пускателя. Первый соединяется с питающей сетью с одной стороны, а с другой стороны к нему подсоединяются концы обмоток. Ко второму и третьему подключаются противоположные концы обмоток. Ко второму пускателю производится подсоединение треугольником, к третьему звездой.

Внимание! Одновременно включать второй и третий пускатели нельзя. Произойдет короткое замыкание между подключенными к ним фазами, что приведет к сбрасыванию автомата

Поэтому между ними устанавливается блокировка. По сути, все будет происходить так – при включении одного, размыкаются контакты у другого.

Принцип работы таков: при включении первого пускателя временное реле включает и пускатель номер три, то есть, подключенного по схеме звезда. Происходит плавный пуск электродвигателя. Реле времени задет определенный промежуток, в течение которого мотор перейдет в обычный режим работы. После чего пускатель номер три отключается, а включается второй элемент, переводя на схему треугольник.

Классификация контакторных устройств

Существуют различные типы контакторов, отличающихся друг от друга по различным показателям. Среди них можно выделить следующие параметры.

В первую очередь, они классифицируются по назначению. Сюда входят следующие виды и категории:

  1. Приборы для дистанционной коммутации. Большинство из них работает под ручным управлением оператора, используя кнопки или выключатели. В нужное время подается сигнал, и устройство приводится в действие. В другом способе несколько контакторов соединяются в общую автоматизированную систему питания, в которой для подачи команд используется электронная схема. На случай аварийной ситуации предусмотрена система защиты, размыкающая контакты.
  2. Включение мощного электрооборудования при помощи слаботочных линий. Возникает вопрос, для чего нужен контактор в таких случаях? Не лучше ли воспользоваться традиционной кнопкой? Это, конечно, можно сделать, но тогда понадобится очень массивная и громоздкая аппаратура, а сам процесс включения потребует значительных усилий. То же самое касается и выключения. Поэтому для этих целей используются компактные слаботочные устройства, позволяющие с высокой частотой выполнять циклы включения-выключения. Таким образом, слабый ток подается на катушку, а уже потом осуществляется запуск мощного электродвигателя.

Каждый контактор модульный разделяется по типу привода его в действие. В этом случае также можно отметить различные варианты:

  • Электромагнитный привод считается основным, именно он заложен в принципе действия большинства устройств. При подаче напряжения происходит включение, а при отсутствии напряжения прибор отключается. После полного отключения, включение нужно выполнять повторно, что обеспечивает дополнительную безопасность при работе с электроустановками.
  • Контактная группа может быть приведена в движение с помощью пневматических устройств. Такая система, предназначенная для коммутации, не требует электромагнитного привода. Управляющая команда подается импульсом высокого давления. Подобные системы применяются для локомотивов железных дорог, и других установках с пневматикой.

Любой контактор модульный КМ в зависимости от модификации, может быть смонтирован разными способами:

  • Специализированные устройства, в том числе и без корпусов, не имеют каких-либо дизайнерских ограничений и устанавливаются исключительно с позиций нормальной функциональности и безопасной эксплуатации.
  • Существуют конструкции, создаваемые в индивидуальном порядке под конкретную электроустановку. Они не подходят для бытовых условий, поскольку размещаются в специально отведенных местах.
  • При стандартном монтаже модульный контактор и его подключение осуществляются на ДИН-рейку в щитке, вместе с другими устройствами.

Существуют различия и в соответствии с номинальным напряжением основной цепи. В этом случае контактор КМ может входить в группу устройств, работающих с напряжением 220 и 440 вольт или в группу с напряжением 380 и 660 В. Прибор, бывает однополюсный, а также двухполюсный и с большим количеством полюсов – до 5 единиц.

Схема подключения

Изначально, как уже и упоминалось, необходимо определить номинал катушки (от этого будет зависеть и сама схема подключения магнитного пускателя), а также количество контактных пластин. Далее нужно понять, какое подключение требуется. Дело в том, что если подключается реверсивный двигатель, который будет работать в обе стороны, то будет необходимо 2 магнитных пускателя и минимум 3 кнопки управления, в одном или разных корпусах — значения не имеет, т.к. это личное дело каждого и зависит от ситуации, пожеланий и мест размещения управления.

Вообще, преимущество подобных устройств в том, что не имеет значения, сколько точек управления будет у двигателя, схема подключения от этого не изменится. Максимум у количества подключенных кнопок «пуск» и «стоп» отсутствует.

Для примера имеет смысл рассмотреть вариант подключения магнитного пускателя с катушкой 220 В на простой двигатель.

Пускатель электромагнитный 220В


Схема подключения пускателя 220 В

Схема подключения пускателя подобного типа является наиболее простой, т.к. номинал катушки — 220 В, а значит, питание на нее подается следующим образом: «ноль» на одну сторону, а «фаза» — на вторую. Причем нулевой провод должен идти как раз через кнопку «стоп», разрываясь при ее нажатии, но не напрямую, а через нулевые контакты пускателя.

Но здесь также важна разводка непосредственно в корпусе пульта управления. Нулевой провод, выходящий с кнопки «стоп», после разрыва идет не напрямую на пускатель 220 В, а к разрывающей клемме «пуск» и только оттуда — на контакт. Выходящий с замыкающей клеммы кнопки «пуск» идет непосредственно на нулевой контакт катушки, куда приходит и провод с другой стороны нулевого контакта самого пускателя. Таким образом, питание на кнопках отсутствует.

Далее фазный провод. Он идет на вторую сторону катушки с одной из питающих фаз на контактах пускателя. Таким образом, получается схема, при которой при нажатии кнопки «пуск» замыкается цепь и срабатывает электромагнит, притягивающий контакты пускателя, посредством чего подается питание на электромотор. Ноль при этом подается уже вне зависимости от кнопки «пуск» — она размыкает контакт, но значения это уже не имеет, т.к. второй нулевой провод при замкнутых контактах пускателя уже приходит на катушку постоянно.

Ну а при нажатии кнопки «стоп», которая разрывает окончательно ноль с катушкой, магнит перестает работать и пружина откидывает группу, размыкая контакты. Подробнее можно посмотреть на схематическом рисунке выше.

Катушка на 380 В


Нереверсивная схема подключения на 380 В

Как подключить магнитный пускатель подобного типа? Не намного сложнее предыдущего. Одна из сторон катушки запитана напрямую с подаваемой фазы (к примеру, С). Через пульт управления проходит фазный провод (к примеру, фаза А), далее подключение аналогично предыдущему.

Дело в том, что если номинал катушки магнита — 380 В, то эксплуатация становится не такой безопасной, как при 220 В, по той причине, что когда через пульт управления проходит напряжение, возможно поражение линейным током в случае сырости. Именно поэтому в помещениях с агрессивными средами используется в основном первый вариант катушек.

Сами магнитные пускатели имеют несколько видов, классификаций и вариантов исполнения. Попробуем разобраться, какие из них находят применение в той или иной области.

Схема подключения теплового реле

Подключение теплового реле к магнитному пускателю также не отличается особой сложностью. Устанавливается ТРН обычно рядом с пускателем на DIN-рейку, но также может подключаться непосредственно к пускателю, если имеет собственные жесткие выводы. Тепловое реле (его также называют термореле) включается в цепь между магнитным пускателем и электродвигателем. Обычно непосредственно на нем прорисована и схема его подключения.

Магнитный пускатель с тепловым реле намного надежней в эксплуатации, чем обычный. Подобное дополнительное оборудование спасет от перегрузок и нагрева, обесточив электромагнит. После, когда пластины самого реле остынут, пускатель снова будет готов к включению.


Подключение через тепловое реле

Схема подключения трехфазного двигателя в сеть через автоматический выключатель

Поэтому более подробно общий случай будет выглядеть так:

3. Подключение двигателя через автоматический выключатель. ПРАКТИЧЕСКАЯ СХЕМА

На схеме 3 показан защитный автомат, который защищает двигатель от перегрузки по току (“прямоугольный” изгиб питающих линий) и от короткого замыкания (“круглые” изгибы). Под защитным автоматом я подразумеваю обычный трехполюсный автомат с тепловой характеристикой нагрузки С или D.

Защитный автомат для включения электродвигателя. Ток 10А, через такой можно включать двигатель мощностью 4 кВт. Не больше и не меньше.

Схема 3 имеет право на жизнь (по бедности или незнанию местных электриков).

Если уж использовать такую схему, надо тщательно подобрать ток автомата, чтобы он был на 10-20% больше рабочего тока двигателя. И характеристику теплового расцепителя выбирать D, чтобы при тяжелом пуске автомат не срабатывал.

Например, движок 1,5 кВт. Прикидываем максимальный рабочий ток – 3А (реальный рабочий может быть меньше, надо измерять).  Значит, трехполюсный автомат надо ставить на 3 или 4А, в зависимости от пускового тока.

Плюс этой схемы подключения двигателя – цена и простота исполнения и обслуживания. Например, там, где один двигатель, и его включают вручную на всю смену. Минусы такой схемы с включением через автомат –

  1. Невозможность регулировать тепловой ток срабатывания автомата. Для того, чтобы надежно защитить двигатель, ток отключения защитного автомата должен быть на 10-20% больше номинального рабочего тока двигателя. Ток двигателя надо периодически измерять клещами и при необходимости подстраивать ток срабатывания тепловой защиты. А возможности подстройки у обычного автомата нет(.
  2. Невозможность дистанционного и автоматического включения/выключения двигателя.

Эти недостатки можно устранить, в схемах ниже будет показано как.

Реверсивная схема коммутации магнитных пускателей

Схема подключения реверсивного магнитного пускателя применяется тогда, когда требуется обеспечение вращение электродвигателя в обоих направлениях. К примеру, реверсивный пускатель устанавливается на лифт, грузоподъемный кран, сверлильный станок и прочие приборы требующие прямой и обратный ход.

Реверсивный пускатель состоит из двух обыкновенных пускателей собранных по специальной схеме. Выглядит он так:

Схема подключения реверсивного магнитного пускателя отличается от других схем тем, что имеет два совершенно одинаковых пускателя, которые работают попеременно. При подключении первого пускателя двигатель вращается в одну сторону, при подключении второго пускателя, двигатель вращается в противоположную сторону. Если вы внимательно посмотрите на схему, то заметите, что при переменном подключении пускателей, две фазы меняются местами. Это и заставляет трехфазный двигатель вращаться в разные стороны.

К имеющемуся в предыдущих схемах пускателю добавлены второй пускатель «КМ2» и дополнительные цепи управления вторым пускателем. Цепи управления состоят из кнопки «SB3», магнитного пускателя «КМ2», а также изменённой силовой частью подачи питания к электродвигателю. Кнопки при подключении реверсивного магнитного пускателя имеют названия «Вправо» «Влево», но могут иметь и другие названия, такие, как «Вверх», «Вниз». Чтобы защитить силовые цепи от короткого замыкания, до катушек добавлены два нормально замкнутых контакта «КМ1.2» и «КМ2.2», что взяты от дополнительных контактов на магнитных пускателях КМ1 и КМ2. Они не дают возможности включиться обоим пускателям одновременно. На выше приведенной схеме цепи управления и силовые цепи одного пускателя имеют один цвет, а другого пускателя — другой цвет, что облегчает понимание, как работает схема. Когда включается автоматический выключатель «QF1», фазы «A», «B», «C» идут к верхним силовым контактам пускателей «КМ1» и «КМ2», после чего ожидают там включения. Фаза «А» питает управляющие цепи от защитного автомата, проходит через «SF1» — контакты тепловой защиты и кнопку «Стоп» «SB1», переходит на контакты кнопок «SB2» и «SB3» и остается в ожидании нажатия на одну из этих кнопок. После нажатия пусковой кнопки ток движется через вспомогательный пусковой контакт «КМ1.2» или «КМ2.2» на катушку пускателей «КМ1» или «КМ2». После этого один из реверсивных пускателей сработает. Двигатель начинает вращаться. Что бы запустить двигатель в обратную сторону, надо нажать кнопку стоп (пускатель разомкнет силовые контакты), двигатель обесточится, дождаться остановки двигателя и после этого нажать другую пусковую кнопку. На схеме показано, что подключен пускатель «КМ2». При этом его дополнительные контакты «КМ2.2» разомкнули цепь питания катушки «КМ1», что не даст случайного подключения пускателя «КМ1».

{SOURCE}

Сходство и различие контакторов и пускателей

Оба устройства служат, чтобы замыкать и размыкать цепь по мере надобности. В основу их конструкции заложен электромагнит, работают они и от переменного, и от постоянного тока. Оснащены силовыми, или основными, а также сигнальными, или вспомогательными, контактами.

Разница заключается в степенях защиты устройств. Контакторы оснащаются камерой для гашения дуги. Благодаря этой особенности они применяются в цепях с большей мощностью, чем пускатели. Кроме того, само устройство более массивное за счет дугогасящих камер. Максимально допустимая сила тока для пускателей составляет до 10 ампер.

Пускатели изготавливают в пластмассовом корпусе и оснащены восемью контактами – шесть для питания трехфазного двигателя, и два для его обеспечения электропитанием после прекращения нажатия кнопки «пуск». Применяют их как для питания электродвигателей, так и приборов, для которых подходит данная схема.

Тонкости подключения устройства на 220 В

Для подсоединения однофазного магнитного пускателя и предотвращения его вибраций применяется дин-рейка. Прибор нельзя ставить рядом с реостатами или в нагреваемой части бокса. Залуженный конец проводника, подсоединяемого к устройству, загибается в виде кольца или буквы П. На алюминиевые кабели наносится слой смазки (технический вазелин, Циатим). Включение прибора осуществляется по нескольким схемам.

Классическая

Подойдет, если источники нагрузки – моторы или ТЭНы. Схема состоит из нескольких частей:

  • Силовая. Сюда входят контакты на три фазы, автоматический включатель (ставится между входом и источником питания).
  • Нагрузка. Требуется мощный потребитель.
  • Цепь. Состоит из кнопки старта и остановки, катушки, дополнительных контактов, подкидывается на фазу и ноль.

Контакты пускателя замыкаются, и напряжение поступает на нагрузку после нажатия кнопки «Пуск». По нажатию на клавишу остановки происходит размыкание контактов и напряжение больше не подается.

Специфика силовой цепи

Запитка однофазного пускателя производится через контакты А-1 и А-2. На них подается напряжение 220 В, если на него рассчитана катушка. Фаза подводится на А-2, источник питания – на элементы внизу корпуса. Напряжение можно подавать с ветрового генератора, аккумулятора, дизель-генератора. Для его снятия задействуются клеммы – Т-1, Т-2, Т-3. Минус схемы – необходимость использования вилки для включения или выключения автомата.

Как изменить цепь управления

Силовую систему прибора при модернизации не затрагивают. Работают по следующему принципу:

  • клавиши кнопочного поста (в одном кожухе) имеют нормально разомкнутые клеммы при пуске и нормально замкнутые – при установке;
  • кнопки выставляют перед магнитным пускателем в последовательном положении – Старт и Остановка;
  • манипуляции с контактами производятся при помощи импульса управления;
  • пусковая кнопка подает напряжение к катушке и генерирует импульс;
  • поддержка клавиши осуществляется с помощью контактов самоблокировки, снабжающих катушку напряжением;
  • самоблокирующиеся контакты размыкаются, происходит самподпитка катушки.

Магнитный пускатель останавливается после разрыва последней цепи.

Подключение к трехфазной сети

В трехфазную сеть пускатель подключается посредством катушки, которая работает от сети 220 В. Сигнальная цепь не дорабатывается. Фаза и ноль подкидываются на соответствующие контакты. Фазный провод протягивается между кнопками старта и выключения. Перемычка устанавливается на нормально замкнутые и разомкнутые элементы.

Силовую цепь незначительно модернизируется. Фазы подаются на входы L1, L2, L3, нагрузка подводится на T1, T2, T3.

Данная схема подходит для асинхронного мотора.

Схема подключения магнитного пускателя на 220 В

Благодаря этому на катушку поступает фазное напряжение L3. Когда питания нет, то пружинка удерживает контакты разомкнутыми.

Главной особенность контактора, отличающего его от автомата, является отсутствие всякой защиты.

А также нельзя включать этот аппарат со снятыми дугогасительными камерами, это приведут к короткому замыканию. В новых магнитных пускателях имеется три силовых контакта и один нормально-разомкнутый блок-контакт. Для более равномерного усилия, возникающего при протекании через катушку переменного тока, в ней делается короткозамкнутый виток.

Лучше подобрать пару, оснащенную нормально замкнутыми контактами. При этом контакты меняют свое положение на фото картинка справа

Обратите пристальное внимание на треугольник между силовыми контактами КМ1 и КМ2

Это и заставляет трехфазный двигатель вращаться в разные стороны. Схемы подключения магнитного пускателя Стандартная схема. А ещё вам понадобится полезный прибор — пробник электрика , который легко можно сделать самому. Отличительной особенностью конструкции электромагнита, работающего с переменным током, является наличие короткозамкнутого витка, который препятствует гудению его железа во время работы.

Магнитный контактор имеет немного другой внешний вид: Габариты контакторов зависят от его мощности. Может коммутировать как цепи постоянного, так и переменного тока. При этом положении на нагрузку питание не подается. Можно провода перекинуть.

Эта схема даже более предпочтительна, так как вся схема с пускателем на В может быть собрана вообще без нуля. Организация данного принципа достигается через установку на каждом МП перемычки на нормально разомкнутых контактах. Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Что же делать, если в руки попал пускатель не на В, а на В?

Для большей наглядности условно отметим их питающие клеммы цифрами 1—3—5, а те, к которым подключен двигатель как 2—4—6. Рекомендуем прочитать:. В прорези нижней части магнитопровода устанавливается катушка.
Реверсивные магнитные пускатели в однофазной сети. Реверсивная схема подключения электродвигателя.

Схемы подключения магнитного пускателя с катушкой на 220 В

Перед тем, как перейдем к схемам, разберемся с чем и как можно подключать эти устройства. Чаще всего, требуются две кнопки — «пуск» и «стоп». Они могут быть выполнены в отдельных корпусах, а может быть единый корпус. Это так называемый кнопочный пост.

Кнопки могут быть в одном корпусе или в разных

С отдельными кнопками все понятно — у них есть по два контакта. На один подается питание, со второго оно уходит. В посте есть две группы контактов — по два на каждую кнопку: два на пуск, два на стоп, каждая группа со своей стороны. Также обычно имеется клемма для подключения заземления. Тоже ничего сложного.

Подключение пускателя с катушкой 220 В к сети

Собственно, вариантов подключения контакторов много, опишем несколько. Схема подключения магнитного пускателя к однофазной сети более простая, потому начнем с нее — будет проще разобраться дальше.

Питание, в данном случае 220 В, полается на выводы катушки, которые обозначены А1 и А2. Оба эти контакта находятся в верхней части корпуса (смотрите фото).

Сюда можно подать питание для катушки

Если к этим контактам подключить шнур с вилкой (как на фото), устройство будет находится в работе после того, как вилку вставите в розетку. К силовым контактам L1, L2, L3 можно при этом подавать любое напряжение, а снимать его можно будет при срабатывании пускателя с контактов T1, T2 и T3 соответственно. Например, на входы L1 и L2 можно подать постоянное напряжение от аккумулятора, которое будет питать какое-то устройство, которое подключить надо будет к выходам T1 и T2.

Подключение контактора с катушкой на 220 В

При подключении однофазного питания к катушке неважно на какой вывод подавать ноль, а на какой — фазу. Можно провода перекинуть

Даже чаще всего на А2 подают фазу, так как для удобства этот контакт выведен еще на нижней стороне корпуса. И в некоторых случаях удобнее задействовать его, а «ноль» подключить к А1.

Но, как вы понимаете, такая схема подключения магнитного пускателя не особо удобна — можно и напрямую проводники от источника питания подать, встроив обычный рубильник. Но есть гораздо более интересные варианты. Например, подавать питание на катушку можно через реле времени или датчик освещенности, а к контактам подключить линию питания уличного освещения. В этом случае фаза заводится на контакт L1, а ноль можно взять, подключившись к соответствующему разъему выхода катушки (на фото выше это A2).

Схема с кнопками «пуск» и «стоп»

Магнитные пускатели чаще всего ставят для включения электродвигателя. Работать в таком режиме удобнее при наличии кнопок «пуск» и «стоп». Их последовательно включают в цепь подачи фазы на выход магнитной катушки. В этом случае схема выглядит как на рисунке ниже

Обратите внимание, что

Схема включения магнитного пускателя с кнопками

Но при таком способе включения пускатель будет в работе только то время, пока будет удерживаться кнопка «пуск», а это не то, что требуется для длительной работы двигателя. Потому в схему добавляют так называемую цепь самоподхвата. Ее реализуют при помощи вспомогательных контактов на пускателе NO 13 и NO 14, которые подключаются параллельно с пусковой кнопкой.

Схема подключения магнитного пускателя с катушкой на 220 В и цепью самоподхвата

В этом случае после возвращения кнопки ПУСК в исходное состояние, питание продолжает поступать через эти замкнутые контакты, так как магнит уже притянут. И питание поступает до тех пор, пока цепь не будет разорвана нажатием клавиши «стоп» или срабатыванием теплового реле, если такое есть в схеме.

Питание для двигателя или любой другой нагрузки (фаза от 220 В) подается на любой из контактов, обозначенных буквой L, а снимается с расположенного под ним контакта с маркировкой T.

Подробно показано в какой последовательности лучше подключать провода в следующем видео. Вся разница в том, что использованы не две отдельные кнопки, а кнопочный пост или кнопочная станция. Вместо вольтметра можно будет подключить двигатель, насос, освещение, любой прибор, который работает от сети 220 В.

Обычная нереверсивная схема включения

Простейшим вариантом включения считается нереверсивная схема, обеспечивающая вращение вала электродвигателя только в одну сторону. В качестве примера можно взять обычный пускатель с управляющей катушкой на 220 В.

Подключение схемы начинается в трехфазном автомате, подходит к силовым клеммам пускового устройства, и далее соединяется с тепловым реле. Управляющая катушка с одной из сторон соединяется с нулевым проводником, а с противоположной – с фазой путем использования в этой цепи функциональных кнопок.

В состав кнопочного поста входят две кнопки: ПУСК – с контактами нормально-разомкнутого типа и СТОП – с нормально-замкнутыми контактами. Одновременно с кнопкой запуска выполняется подключение нормально-замкнутого контакта управляющего катушечного элемента. За счет теплового реле, включенного в промежуток фазной линии, обеспечивается защита двигателя от чрезмерных перегрузок. Его нормально-замкнутый контакт оказывается соединенным с элементами управления.

Когда трехфазный автомат оказывается включенным, начинается течение тока в сторону силовых контактов пусковой аппаратуры и к управляющей цепи. После этого схема приходит в работоспособное состояние. С целью запуска электродвигателя вполне достаточно воздействия на пусковую кнопку. Далее, в управляющие компоненты подается питание. Цепь оказывается замкнутой, после чего якорь начинает втягиваться и в то же время замыкать контакт прибора управления. К силовой контактной группе двигателя подается ток, и вал начинает вращение. После возврата в исходное состояние пусковой кнопки, питание к обмотке контактора будет поступать, проходя по вспомогательному контакту, благодаря чему работа двигателя продолжится без перерыва.

Прекратить работу нереверсивного агрегата возможно имеющейся кнопкой СТОП. Это вызовет разрыв цепи, и питающее напряжение перестает подходить к блоку управления. Начинается размыкание шунтирующего контакта и возврат якоря в исходное состояние с одномоментным размыканием основных контактов. По окончании этого процесса, наступает остановка электродвигателя. Когда кнопка СТОП окажется отпущенной, контакт управляющего элемента будет пребывать в разомкнутом положении до следующего запуска схемы.

Чтобы защитить электродвигатель во время нереверсивного пуска, применяется тепловое реле на основе биметаллических контактных пластин. Под влиянием возрастающего тока они начинают выгибаться. Поскольку эпластины соединяются с расцепителем, контакт в управляющей обмотке прерывает поступление питающего напряжения. Контакты прибора разъединяются и переходят в первоначальное состояние.

Реверсивный контактор

Реверсивный контактор, представляющий собой одну из разновидностей электромагнитных пускателей. Он обеспечивает вращение вала в обоих направлениях, поддерживает устойчивую работу двигателей, своевременно отключает питание, защищает оборудование в аварийных ситуациях.

С точки зрения устройства, такие контакторы являются улучшенным образцом электромагнитного пускового аппарата и предназначаются для прямой работы с двигателями. Некоторые модели оборудованы дополнительными устройствами, выполняющими аварийное отключение при обрывах фаз и коротких замыканиях.

Схема подключения магнитного пускателя и теплового реле

Магнитный пускатель— это электротехнический препарат, предназначенный для дистанционного запуска, поддержания работы, остановки и защиты асинхронного электрического двигателя. Нередко пускатели применяются и для автоматического (с помощью датчиков света, таймеров и т. п.) или удаленного включения мощных линий освещения, электрообогревателей и т. п.

Для того, что бы разобраться в том, как подключить магнитный пускатель, необходимо вначале узнать как он работает и на какие характеристики стоит обратить внимание при покупке. Повторяться не буду, потому что об этом подробно рассказано в предыдущей статье.

Подключить пускатель своими руками несложно, как это сделать Мы расскажем дальше, но можно поступить проще и купить один пускатель или реверсивный сразу в сборе в металлическом, но лучше в пластиковом корпусе. В нем уже полностью собрана схема и подключены кнопки управления на крышке. Вам только остается подключить кабели электропитания сверху и отходящий кабель к нагрузке.

Подготовительные работы

Перед тем как приступить к сборке схемы подключения необходимо:

  1. Обесточить участок работы и проверить отсутствие напряжения индикаторной отверткой.
  2. Определить величину рабочего напряжения катушки, которая указывается всегда не на корпусе пускателя, а на самой катушке. Тут 2 варианта- 220 или 380 Вольт. Если 220 В, тогда на контакты катушки подается фаза и ноль. Если 380- 2 разноименные фазы. Это важно, а иначе при неправильном подключении катушка может перегореть или будет не включать силовые контакты до конца.
  3. Вам понадобится одна кнопка «Стоп» красного цвета с постоянно замкнутыми контактами и одна кнопка «Пуск» черного или зеленного цвета с постоянно разомкнутыми контактами.
  4. Запомните, что силовые контакты включают или выключают только фазы, а приходящие и отходящие нули и заземляющие проводники всегда соединяются между собой на клеммнике в обход пускателя. Они не коммутируются, для подключения катушки на 220 Вольт дополнительно с клеммника берется ноль в схему управления пускателем.

 

Схема подключения магнитного пускателя

Основная схема состоит из 2-ух частей:

  1. Силовых 3 пар контактов, которые подают электропитание на электрооборудование.
  2. Схемы управления, которая состоит из катушки, кнопок и дополнительных контактов, которые участвуют в поддержании работы катушки или блокируют ошибочные включения.

Самая распространенная схема подключения с одним пускателем. Она самая простая с ней самостоятельно справится любой человек. Для ее сборки нам понадобится 3 жильный кабель до кнопок и одна пара нормально разомкнутых контактов в отключенном положении пускателя.

Рассмотрим схему с подключением катушки на 220 вольт, если у Вас на 380 Вольт тогда вместо синего ноля необходимо подключить другую разноименную фазу. В нашем случае черного или красного цвета. В качестве блок контакта будет использоваться четвертая свободная пара, которая включается вместе с тремя парами силовых. Они все расположены сверху, но могут дополнительные находится и сбоку.

На силовые контакты пускателя с автомата приходят  три фазы A, B и C. Для того, что бы при нажатии кнопки «Пуск» они включились, необходимо подать 220 Вольт напряжения на катушку, которая при этом потянет якорь и подвижные контакты сомкнуться с не подвижными. Цепь замкнется, а для того что бы ее разомкнуть понадобится отключить катушку.

Для того чтобы собрать цепь управления необходимо одну фазу, в нашем случае зеленную, подключить сразу напрямую к контакту катушки, а со второго №5- подключаем проводом к контакту №4 пусковой кнопки. Так же со второго контакта катушки пускаем еще один провод (на схеме желтого цвета) через блок контакты на другой парный разомкнутый контакт кнопки «Пуск». С него же делается перемычка (синего цвета) на замкнутый контакт кнопки «Стоп», на второй контакт которой подключается ноль от электропитания.

Принцип работы прост. При нажатии кнопки «Пуск» замыкаются ее контакты и на катушку подается 220 Вольт- она включает основные и дополнительные контакты. Отпускаем кнопку- размыкаем  контакты пусковой кнопки, но пускатель остается включенным, потому что ноль подается на катушку через замкнутые блок контакты.

Для отключения необходимо разорвать ноль- это делается при помощи размыкания контактов кнопки «Стоп». Обратно пускатель не включится, потому что ноль будет разорван на блок контактах. Для включения понадобится снова нажать кнопку «Пуск».

Главное отличие магнитного пускателя от рубильника или автомата: при пропадании электричества пускатель всегда отключится и для повторного включения необходимо опять нажать на кнопку «Пуск».

Для реверсивной схемы подключения асинхронного двигателя необходимо собрать схему из одной кнопки «Стоп», 2 пускателей и кнопок «Пуск». Об этом Вы узнаете из этой нашей статьи.

Как подключить тепловое реле

Между магнитным пускателем и асинхронным электродвигателем подключается последовательно тепловое реле, которое подбирается под рабочий ток каждого конкретного двигателя. Тепловое реле защищает мотор от поломки и работы в аварийном режиме, например пропадании одной из трех фаз.

Тепловое реле подключается к выходу с магнитного пускателя на электродвигатель,  ток в нем проходит последовательно через нагреватели термореле, и далее-  к электромотору.

На тепловом реле сверху есть дополнительные контакты, которые последовательно соединяются с катушкой пускателя.

Принцип работы. Нагреватели теплореле рассчитаны на определенную максимальную величину, проходящего через них тока. В опасных ситуациях для электродвигателя, когда электрический ток в одной или нескольких фазах вырастает выше безопасных пределов- нагреватели воздействует на биметаллические контакты, которые разрывают цепь управления катушкой, тем самым отключая пускатель. Для повторного включения необходимо будет включить кнопкой биметаллические контакты.

Учитывайте, что сверху на тепловом реле есть  регулятор тока срабатывания в небольших пределах. Если его часто выбивает после установки, рекомендую увеличить регулятором значение тока.

Схемы подключения трёхфазного электродвигателя — Ремонт220

Статьи

Автор Фома Бахтин На чтение 2 мин. Просмотров 3.6k. Опубликовано Обновлено

Типовая схема подключения трёхфазного электродвигателя состоит из самого электродвигателя, магнитного пускателя и защиты от сверхтоков (автоматический выключатель – автомат).

Схемы подключения могут быть разными, в зависимости от магнитного пускателя, точнее от рабочего напряжения   его катушки К – 220 в или 380 в, от наличия теплового реле,  которое подключается последовательно с катушкой пускателя. Превышения тока, потребляемого электродвигателем вызывает   размыкание контактов теплового реле, что приводит к обесточиванию катушки и отключению электродвигателя.

Схема подключения трёхфазного электродвигателя

Обозначения: 1 – выключатель автоматический (3х-полюсный автомат), 2 – тепловое реле с размыкающими контактами, 3 – группа контактов магнитного пускателя, 4 – катушка магнитного пускателя (в данном случае рабочее напряжение катушки – 220 в), 5 – блок-контакт нормально разомкнутый, 6 – кнопка “Пуск”, 7 – кнопка “Стоп”.

Отличие этих схем подключения электродвигателей состоит в использовании разных магнитных пускателей в этих схемах. В первом случае используется магнитный пускатель с рабочим напряжением катушки 4 – 220 в; для её питания используется фаза С (можно любую другую) и ноль – N.

Во втором случае электродвигатель подключается через магнитный пускатель с катушкой 4 на 380 в. Для её питания используются фазы B и С.

Как быстро и просто подключить трехфазный двигатель в однофазную сеть DuMA8819


Подключение к трехфазной сети. Часть 2: соединение звезда-треугольник


Пускатель электромагнитный (магнитный пускатель)

Пускатель электромагнитный (магнитный пускатель) — это низковольтное электромагнитное (электромеханическое) комбинированное устройство распределения и управления, предназначенное для пуска и разгона электродвигателя до номинальной скорости, обеспечения его непрерывной работы, отключения питания и защиты электродвигателя и подключенных цепей от рабочих перегрузок. Пускатель представляет собой контактор, комплектованный дополнительным оборудованием: тепловым реле, дополнительной контактной группой или автоматом для пуска электродвигателя, плавкими предохранителями.

Категории применения пускателей

a) Контакторы переменного тока

  • АС-1 – активная или малоиндуктивная нагрузка;
  • АС-2 – пуск электродвигателей с фазным ротором, торможение противовключением;
  • АС-3 – пуск электродвигателей с короткозамкнутым ротором. Отключение вращающихся двигателей при номинальной нагрузке;
  • АС-4 – пуск электродвигателей с короткозамкнутым ротором. Отключение неподвижных или медленно вращающихся электродвигателей. Торможение противовключением.

б) Контакторы постоянного тока

  • ДС-1 – активная или малоиндуктивная нагрузка;
  • ДС-2 – пуск электродвигателей постоянного тока с параллельным возбуждением и их отключение при номинальной частоте вращения;
  • ДС-3 – пуск электродвигателей с параллельным возбуждением и их отключение при неподвижном состоянии или медленном вращении ротора;
  • ДС-4 – пуск электродвигателей с последовательным возбуждением и их отключение при номинальной частоте вращения;
  • ДС-5 — пуск электродвигателей с последовательным возбуждением, отключение неподвижных или медленно вращающихся двигателей, торможение противотоком.

Схема подключения нереверсивного магнитного пускателя

На рис. 1 показана электрическая принципиальная схема включения нереверсивного магнитного пускателя для управления асинхронным электродвигателем с короткозамкнутым ротором.

Рис 1. Схема включения нереверсивного магнитного пускателя
электрическая принципиальная

Принцип действия схемы включения нереверсивного магнитного пускателя

Для включения электродвигателя М необходимо кратковременно нажать кнопку SB2 «Пуск». Это приведет к замыканию главных контактов в цепи питания электродвигателя. Одновременно замкнется вспомогательный контакт, что создаст параллельную цепь питания катушки магнитного пускателя. Такую схему называют схемой самоблокировки. Она обеспечивает так называемую нулевую защиту электродвигателя. Если в процессе работы электродвигателя напряжение в сети исчезнет или значительно снизится (обычно более чем на 40% от номинального значения), то магнитный пускатель отключается и его вспомогательный контакт размыкается.

Аппараты ручного управления (рубильники, конечные выключатели) нулевой защитой не обладают, поэтому в системах управления станочным приводом обычно применяют управление с использованием магнитных пускателей.

Для отключения электродвигателя достаточно нажать кнопку SB1 «Стоп». Это приводит к размыканию цепи самопитания и отключению катушки магнитного пускателя.

Схема подключения реверсивного магнитного пускателя

В том случае, когда необходимо использовать два направления вращения электродвигателя, применяют реверсивный магнитный пускатель, принципиальная схема которого изображена на рис.2.

Рис. 2. Схемы включения реверсивного магнитного пускателя

Принцип действия схем включения реверсивного магнитного пускателя

Для изменения направления вращения асинхронного электродвигателя необходимо изменить порядок чередования фаз статорной обмотки.

В реверсивном магнитном пускателе используют два контактора: КМ1 и КМ2. Из схемы видно, что при случайном одновременном включении обоих контакторов в цепи главного тока произойдет короткое замыкание. Для исключения этого схема снабжена блокировкой.

Если после нажатия кнопки SB3 «Вперед» к включения контактора КМ1 нажать кнопку SB2 «Назад», то размыкающий контакт этой кнопки отключит катушку контактора КМ1, а замыкающий контакт подаст питание в катушку контактора КМ2. Произойдет реверсирование электродвигателя.

Полезные ссылки

Подключение магнитного пускателя: схема и назначение элементов

Магнитные пускатели применяют для подключения достаточно мощных потребителей: электромоторов, тэнов к сети промышленного тока. В последнее время их начинают использовать в быту, по причине того, что у потребителей появляется более совершенная и мощная техника для обслуживания жилья. Подключение теплового реле к магнитному пускателю дополнительно защищает такую нагрузку, как электродвигатели. Они хорошо выдерживают повышенный пусковой ток и в то же время достаточно чувствительны к превышению номинального тока. Средняя сила тока – это величина, которая часто «плавает» у моторов, в зависимости от степени их нагруженности. Поэтому классический магнитный пускатель является нужным и полезным и в век электроники.

Подключение обычного пускателя

У неспециалиста схема подключения устройства вызывает наибольшие трудности из-за непривычки работать с электрическими схемами. В действительности это не так сложно. Пускатель, как правило, всегда трехфазный, состоит их трех пар силовых контактов, хотя обычно, из-за контактов-мостиков, которые исключают гнущиеся проводники, силовых контактов шесть. Они приводятся в действие электромагнитом переменного тока.

В системе контактов аппарата есть пары небольших контактов. Их используют для автоматизации работы пускателя и блокировки. В этом и состоит суть различных схем пускателей, работающих от кнопок. Ниже показано, как подключить магнитный пускатель:

Пускатель собран для нереверсивного пуска двигателя через кнопочный пост. Схема изображена для устройства на 380 В и описывает подключение трехфазного двигателя. От пускателя на 220 она отличается тем, что цепь управления подключена между двумя фазами, а не между фазой и землей или нейтралью. От перегрузки по току мотор защищает тепловое реле. (Реверсивный пускатель будет рассмотрен в далее.)

Работа схемы заключается в следующем. Для подключения двигателя использован электромагнитный пускатель. K1.1-3 – это три фазных силовых контакта. Это простой классический вид схемы подключения двигателя через пускатель. Цепь из разомкнутых и замкнутых контактов, которые приводятся в действие от разных источников, имеет простую логику.

Разрыв цепи катушки производится через кнопку, кнопкой же эта катушка включается. Кнопка «Стоп» – нормально замкнутая. Кнопка «Пуск» – нормально разомкнутая. Когда нажимается кнопка «Пуск» срабатывает катушка и замыкает свои контакты К1.4 которые продолжают удерживать себя «сами» при помощи электромагнита. При нажатии «Стоп» электрическая цепь разрывается и все приходит в исходное состояние. Кроме того, срабатывание теплового реле тоже разрывает цепь контактами P1.1.

Подключение реверсивного пускателя

Схема подключения реверсивного магнитного пускателя отличается от предыдущей наличием второго аналогичного прибора, в котором изменена последовательность двух фаз, то есть, имеется их перестановка. Такая схема подключения пускателей должна исключать их одновременную работу, иначе получится короткое замыкание между фазами и большой дорогостоящий фейерверк. Во избежание этого, в схеме должна быть предусмотрена блокировка, с тем, что никакое нажатие кнопок не вызвало срабатывание двух пускателей одновременно.

Реверсивная схема подключения магнитного пускателя изображена ниже и объясняет, как правильно подключаться через два прибора к сети «перекидывая» фазы.

Если проследить за чередованием фаз при поочередной работе обеих пускателей, то можно видеть, что устройство исключает невозможность короткого замыкания между фазами. Чтобы включаться «строго по одному» схема магнитного пускателя содержит дополнительную логику на контактах К1.5 и К2.5. Если, предположим, включен пускатель К1, то контакты К1.5 разрывают другую цепь и блокируют срабатывание К2.

Приведенная схема включения пускателя часто используется в кран-балках и тельферах для гаражей, поэтому кнопки подписаны соответственно. Конечно, направление вращения двигателя определяется практически и целиком зависит от порядка его намотки. Схема подключения теплового реле ничем не отличается от предыдущего варианта. Термореле срабатывает при любом перегреве двигателя, независимо от того, в какую сторону он вращается.

Какой бы величины ни был магнитный пускатель, схема подключения его относится либо к первому, либо ко второму из приводимых здесь вариантов, если он управляется от кнопок, или, как говорят, «кнопочных постов».

Подключение реверсивного пускателя отличается только добавочными блокировками. По этой причине, пускатели всегда снабжают как минимум двумя парами вспомогательных контактов: одна нормально разомкнутая, другая нормально замкнутая. Эти контакты отрегулированы так, что сначала всегда размыкается нз‑контакт, и только затем замыкается нр‑контакт.

Таким образом, электромеханические пускатели еще рано причислять к устаревшему оборудованию. Как минимум по одной простой причине: они полностью разрывают цепь. Полупроводниковые ключи имеют значительную остаточную проводимость. Конечно, они полностью обесточивают оборудование, работающее при единицах и десятках Ампер, но для персонала, который представляет с точки зрения электротехники всего лишь сопротивление в 1–5 кОм, и может работать с отключенной нагрузкой, они создают недопустимый риск, и поэтому дублируются пускателями.

Подключение трёхфазного двигателя на 220 В: пошаговая инструкция

Иногда наши читатели освещают довольно нестандартные подходы к той или иной работе. Сегодня вашему вниманию предлагается один из таких обзоров. Эту статью прислал наш постоянный читатель Перминов Андрей Алексеевич из города Бирск, который находится в республике Башкортостан.

Здравствуйте. Недавно озаботился вопросом установки в гараже заточного станка. Лишние деньги тратить не хотелось. Посему, начал разбирать то, что было в наличии. Двигатель был найден очень быстро, причём практически новый и не один. Дело в том, что гараж приобретался вместе с участком, и от прежнего владельца осталось много нужных вещей. Проблема заключалась только в том, что электродвигатель оказался трёхфазным. К участку же подведено лишь напряжение 220 В. Собрав в сети и различных учебниках по электротехнике необходимую информацию, я понял, что подключение возможно и принялся за дело.

По причине того, что изначально я не был уверен в положительном результате, поэтапные фото не делались. Позже я отдельно собрал подобную схему специально, чтобы объяснить суть.

Именно на примере этой работы я и расскажу, как всё происходило

Содержание статьи

Что необходимо для подключения трёхфазного двигателя на 220 В

Интересно, что при наличии множества различных магнитных пускателей, найденных мною в гараже, обнаружилась неожиданная проблема. Она заключалась в отсутствии нормальных пусковых кнопок – под рукой оказались лишь довольно старые образцы. Но, обо всём по порядку.

Для работы потребуется:

  1. Непосредственно сам электромотор.
  2. Два конденсатора (пусковой и рабочий).
  3. Магнитный пускатель соответствующего номинала.
  4. Второй пускатель для подачи питания на один из конденсаторов (при наличии кнопочного поста более нового образца с двумя постоянно разомкнутыми контактами он был бы не нужен).
  5. Провода соответствующего сечения.
  6. Кнопочный пост на 2 точки управления.
  7. Плоскогубцы, отвёртки, ключи.

Подготовив всё необходимое, приступаем к работе.

Двигатель, особенности размещения перемычек катушек, первые шаги подключения

Первое, на что нужно обратить внимание – это шильдик двигателя. На нём прописана возможность однофазного подключения, мощность агрегата и другая необходимая для работы информация.

Шильдик электродвигателя – на нём указаны все параметры

Было решено начинать сборку схемы подключения с контактной группы двигателя. На ней находится 6 контактов – по паре на обмотку. Изначально, перемычки на них были установлены в ряд по одной стороне, соединяя в одной точке все 3 обмотки – в «звезду». Подобная коммутация подходит лишь для трёхфазного подключения, поэтому они были переустановлены для подключения в «треугольник», который нам необходим для напряжения 220 В. Это расположение можно увидеть на фото.

Перемычки установлены в контактной группе для подключения «треугольником»

Несколько слов о магнитном пускателе

Это устройство, выдерживающее высокие пусковые токи, позволяет подавать питание на электродвигатели и прочее оборудование. К примеру, обычный выключатель, хотя и способен работать в подобной цепи, однако не сможет выдержать именно момент включения. Внешне пускатели могут быть довольно разнообразны, иметь различный номинал рабочей мощности. В нашем случае были выбраны два совершенно разных по виду и по мощности устройства.

Электромагнитный пускатель ПМЕ-211 – выбран в качестве рабочегоЭлектромагнитный пускатель ПМЕ-111 – для подачи напряжения на пусковой конденсатор

Подключение электродвигателя: с чего следует начать

Этот этап не составит никаких сложностей. К клеммам «С1» и «С2» при помощи провода (в моём случае использовались жилы, сечением 4 мм²) подключаются первые два контакта электромотора. Однако, если первый контакт двигателя затягивается сразу плотно, то вторую гайку пока накручивать не следует.

Начало подключения – первые два провода на месте

Из-за того, что для работы данного электродвигателя требуется напряжение 380 В, нам нужно обеспечить сдвиг фаз. Это достигается путём подключения рабочего конденсатора. В моём случае, его ёмкость составляет 20 мкФ, чего вполне достаточно. Он подключается на второй и третий контакт электродвигателя. Таким образом, напряжение на третью обмотку будет проходить через конденсатор, который и создаст необходимый сдвиг фаз. Также, к третьему контакту (фаза С) подключается один из проводов пускового конденсатора.

Контакты обмоток двигателя фаз В и С. Больше здесь подключений производиться не будет

Второй провод от пускового конденсатора, ёмкость которого составляет 50 мкФ, пока не подключаем – его коммутация будет производиться через другой магнитный пускатель меньшей мощности.

Меры предосторожности при работе с конденсаторами

При выполнении подобных работ следует быть внимательным. Дело в том, что конденсаторы могут быть заряжены. Это приведёт к пусть неопасному, но весьма неприятному удару током. В нашем случае используются элементы с напряжением 400 В – именно такой кратковременный разряд можно получить. Во избежание подобных неприятностей нужно соединить между собой контакты конденсаторов. Если в них осталось напряжение, проскочит искра, раздастся щелчок, после чего с элементом можно работать, не опасаясь удара тока.

Дальнейшая коммутация: работаем с рабочим магнитным пускателем

Здесь же производим подключение питающих проводов – они идут от вводного автомата. При этом фазный провод подключается на контакт «L1» рабочего пускателя, а нулевой (нейтраль) на «L2». «L3» задействоваться не будет по причине отсутствия трёхфазной системы.

Подключение питающих проводов к магнитному пускателю

Сразу подключим одну из сторон катушки электромагнита, без которой невозможна работа пускателя. При выборе оборудования, следует обратить особое внимание на её рабочее напряжение. Оно может составлять 220 или 380 В. В последнем случае пускатель срабатывать не будет. Здесь подключение производится путём установки перемычки с контакта нулевого провода на клемму катушки.

Установка перемычки с клеммы подачи на катушку

Приступаем к коммутации второго магнитного пускателя

Здесь стоит объяснить, для чего он нужен. Дело в том, что более мощный конденсатор ёмкостью 50 мкФ необходим только в момент запуска электродвигателя, после чего он должен отключиться. Если же оба конденсатора будут работать постоянно, это приведёт к неизбежному нагреву двигателя и его быстрому выходу из строя. Однако он нужен лишь при условии, что сам электромотор достаточно мощный – более 1 кВт. Именно такой и был установлен у меня в гараже (1,5 кВт). Здесь же мощность 0,25 кВт. Подобный двигатель можно запустить без второго конденсатора. Однако, моей целью было показать подключение электромотора большой мощности, а значит, схему коммутации пускового конденсатора показать необходимо.

Пусковой конденсатор ёмкостью 50 мкФ был найден в гараже совершенно новым, как и рабочий – на 20 мкФ

Этапы подключения пускателя для второго конденсатора

Для начала были произвольно выбраны 2 контакта, которые были соединены между собой перемычкой. Здесь клеммы можно протягивать сразу – больше никаких дополнительных проводов к ним коммутироваться не будет.

Устанавливаем перемычку между контактами второго пускателя

Здесь дело вот в чём. Конечно, монтаж второго магнитного пускателя – это дополнительные проблемы, однако, в моём случае, была поставлена цель вообще ничего не приобретать в магазине. Как уже говорилось, кнопочные посты, оказавшиеся в наличии, были старого образца – на пусковой кнопке присутствовал лишь один постоянно разомкнутый контакт. Если же их два, то необходимость в монтаже второго пускателя сразу отпадает, что значительно облегчает работу. В описываемом мною варианте работы больше, зато она учитывает все возможные нюансы, которые могут возникнуть в процессе коммутации.

От перемкнутых контактов второго пускателя отводим провод – он нужен для подачи питания и присоединяется к клемме подачи фазы на первое устройство, а именно на «L1».

Подключение провода для подачи питания на второй пускатель

Катушка второго магнитного пускателя

Понятно, что второй магнитный пускатель не сможет обойтись без стабильной подачи напряжения на катушку. Для обеспечения стабильности, соединяем контакт «L2» первого устройства с её клеммой при помощи отдельного провода. В моём случае, для наглядности, выбрана тёмно-коричневая жила.

Подключение коричневого провода на контакт «L2» рабочего пускателяКоммутация другого конца жилы с одной из клемм катушки второго пускателя

У некоторых может возникнуть вопрос, почему вся коммутация производится на клеммах магнитного пускателя? Ведь, если большую её часть перенести на вводной автомат, обслуживание и ремонт впоследствии будет проводить значительно проще. Изначально и я так подумал, однако столкнулся с проблемой малого размера контактора – несколько проводов в него просто не помещались. Что же касается клеммы пускателя, то она значительно больше, что упрощает сам процесс коммутации. После её окончания, для удобства, можно объединить несколько жил, подходящих к одной клемме, при помощи небольшого хомутика или просто смотать их изолентой.

Подключаем пусковой конденсатор: второй провод

Здесь всё достаточно просто. Оставшийся свободным провод от конденсатора (50 мкФ) нужно подключить к любому из нижних контактов второго пускателя, который окажется под напряжением в момент включения. Из фото ниже легко понять, как это сделать.

Подключение свободного провода пускового конденсатора

Продвигаемся к кнопочному посту

На кнопочном посту, в моём случае, две кнопки – «СТОП» (её контакты постоянно замкнуты) и «ПУСК» (контакт постоянно разомкнут, и замыкается только в момент нажатия). Первое, что необходимо сделать – это соединить перемычкой фазную клемму рабочего пускателя и контакт кнопки «СТОП», подав на неё питание.

Присоединяем один конец перемычки к фазной клемме («L1») и протягиваем контактВторой конец идёт на клемму кнопки «СТОП»

Также следует отметить, что если кнопочный пост уже был ранее где-либо установлен, то перемычка  между контактами «ПУСК» и «СТОП» может отсутствовать. В этом случае её нужно установить. Сделать это очень просто – из фото ниже чётко видно, как выполнить подобную работу.

Перемычка между пусковой и стоповой кнопкой необходима

Продолжаем подключение кнопочного поста

Далее необходимо собрать схему таким образом, чтобы пусковая кнопка взаимодействовала с катушками обоих пускателей. Для этого монтируется перемычка между ней и одним из постоянно разомкнутых контактов катушки рабочего магнитного пускателя. В нашем случае, я выбрал зелёный провод. Один его конец фиксируем на контакте кнопки «ПУСК», к которому подходит перемычка от стоповой.

Соединение на пусковой кнопке — работа с постом практически завершена

Второй конец соединяем с катушкой рабочего пускателя и тоже сразу затягиваем – здесь больше соединений не будет.

Коммутация с постоянно разомкнутым контактом катушки рабочего пускателя

Осталось завершить подключение кнопочного поста. Монтируем перемычку со свободного контакта пусковой кнопки на питание катушки дополнительного пускателя. Таким образом, получится, что при нажатии на кнопку «ПУСК» питание будет подаваться на конденсатор 50 мкФ, но только в то время, пока она удерживается. Если кнопку отпустить (двигатель запущен), цепь разрывается, подача питания на катушку прекращается, и контакты дополнительного пускателя размыкаются.

Присоединяем один конец перемычки к свободному контакту кнопки «ПУСК»Второй конец этого провода коммутируется с клеммой катушки дополнительного пускателя

Окончательные этапы сборки схемы подключения электродвигателя

Теперь остаётся дело за малым. Стоит снова вернуться к рабочему электромагнитному пускателю. Сбоку, в его нижней части, есть блокировочные контакты. При помощи перемычки соединяем их между собой. Это делается для того, чтобы после того, как кнопка «ПУСК» отпущена и цепь разомкнулась, питание на катушку продолжало подаваться. В противном случае двигатель будет работать только при нажатой кнопке.

Перемычка блокировочного контакта позволяет цепи оставаться замкнутой после того, как отпущена кнопка «ПУСК»

Теперь остаётся лишь соединить отдельной перемычкой оставшийся свободным основной контакт дополнительного пускателя и блокировочный контакт рабочего. Выглядит это так.

Один конец перемычки подключается к основному контакту второстепенного пускателяВторой – к блокировочному контакту рабочего электромагнитного пускателя

Остаётся тщательно протянуть все клеммы, для удобства и аккуратности скомпоновать и объединить в жгуты провода, после чего можно подать питание и проверить работоспособность собранной схемы.

Почему всё так сложно

Этот вопрос и мне изначально не давал покоя, однако всё сложно лишь на первый взгляд. Если выполнять всю работу пошагово, в соответствии с инструкциями, он отпадёт сам собой. Как уже упоминалось, основные сложности были созданы, можно сказать, намеренно. Ведь стоило лишь приобрести в любом магазине электротехники более совершенный кнопочный пост, и большая часть работы просто потеряла свою актуальность. Но в том, что я пошёл столь проблематичным путём есть и свои плюсы – были рассмотрены все варианты при нулевых затратах. Всё, что мне было необходимо, нашлось в гараже. Зато сейчас я имею возможность пользоваться низкобюджетным заточным станком. Из затрат – лишь покупка наждачного заточного круга и оплата счетов за электроэнергию, которые нельзя назвать крупными.

Подведём итог проделанной работе

При наличии необходимых составляющих для сборки подобной схемы, такой вариант подключения достоин внимания. Это касается даже тех, кто будет использовать станок лишь для заточки или правки ножей 2-3 раза в год. Ведь затрат он не требует, а иногда может оказаться просто необходим. Я очень надеюсь, что рассказанное мною сегодня, пригодится кому-либо из читателей этого ресурса.

А сейчас хочу обратиться к читателям. Если вы в чём-то не согласны в моей работе, напишите об этом в комментариях. Быть может, я приму Ваше мнение на вооружение, а возможно и смогу доказать свою правоту. В любом случае, мне будет очень интересен Ваш отзыв. Спасибо за внимание.

Редакция Homius приглашает домашних мастеров и умельцев стать соавторами рубрики «Истории». Полезные истории от первого лица будут опубликованы на страницах нашего онлайн-журнала.

Предыдущая

ИСТОРИИКак изготовить необыкновенное зеркало с подсветкой: опыт читателя Homius

Следующая

ИСТОРИИБуржуйка из газовых баллонов своими руками без лишних вложений: опыт читателя Homius

Понравилась статья? Сохраните, чтобы не потерять!

ТОЖЕ ИНТЕРЕСНО:

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

Схема включения пускателя на 220в. Как подключить магнитный пускатель и тепловое реле.

Магнитный пускатель (контактор) — это устройство, предназначенное для коммутации силовых электрических цепей. Чаще всего применяется для запуска/останова электродвигателей, но так же может использоваться для управления освещением и другими силовыми нагрузками.

Чем отличается контактор от магнитного пускателя?

Многих читателей могло покоробить от данного нами определения, в котором мы (сознательно) смешали понятия «магнитный пускатель» и «контактор», потому что в данной статье мы постараемся сделать упор на практику, нежели на строгую теорию. А на практике эти два понятия обычно сливаются в одно. Немногие инженеры смогут дать вразумительный ответ, чем же они действительно отличаются. Ответы различных специалистов могут в чём-то сходиться, а в чём-то противоречить друг другу. Представляем Вашему вниманию нашу версию ответа на этот вопрос.

Контактор — это законченное устройство, не предполагающее установки дополнительных модулей. Магнитный пускатель может быть оборудован дополнительными устройствами, например тепловым реле и дополнительными контактными группами. Магнитный пускателем может называться бокс с двумя кнопками «Пуск» и «Стоп». Внутри может находится один или два связанных между собой контактора (или пускателя), реализующими взаимную блокировку и реверс.

Магнитный пускатель предназначен для управления трёхфазным двигателем, поэтому всегда имеет три контакта для коммутации силовых линий. Контактор же в общем случае может иметь другое количество силовых контактов.

Устройства на этих рисунках правильнее называть магнитными пускателями. Устройство под цифрой один предполагает возможность установку дополнительных модулей, например теплового реле (рисунок 2). На третьем рисунке блок «пуск-стоп» для управления двигателем с защитой от перегрева и схемой автоподхвата. Это блочное устройство — тоже называют магнитным пускателем.

А вот устройства на следующих рисунках правильнее называть контакторами:


Они не предполагают установку на них дополнительных модулей. Устройство под цифрой 1 имеет 4 силовых контакта, второе устройство имеет два силовых контакта, а третье -три.

В заключение скажем: обо всех названных выше отличиях контактора и магнитного пускателя полезно знать для общего развития и помнить на всякий случай, однако придётся привыкнуть к тому, что на практике эти устройства никто обычно не разделяет.

Устройство и принцип работы магнитного пускателя

Устройство контактора чем-то похоже на — оно так же имеет катушку и группу контактов. Однако контакты магнитного пускателя — разные. Силовые контакты предназначены для коммутации той нагрузки, которой управляет этот контактор, они всегда нормально открытые. Существуют еще дополнительные контакты, предназначенные для реализации управления пускателем (об этом речь пойдёт ниже). Дополнительные контакты могут быть нормально открытыми (NO) и нормально закрытыми (NC).

В общем случае устройство магнитного пускателя выглядит так:

Когда на катушку пускателя подаётся управляющее напряжение (обычно контакты катушки обозначаются А1 и А2), подвижная часть якоря притягивается к неподвижной и это приводит к замыканию силовых контактов. Дополнительные контакты (при наличии) механически связаны с силовыми, поэтому в момент срабатывания контактора они также меняют своё состояние: нормально открытые — замыкаются, а нормально закрытые, наоборот, размыкаются.

Схема подключения магнитного пускателя


Так выглядит простейшая схема подключения двигателя через пускатель. Силовые контакты магнитного пускателя KM1 подключены к клеммам электродвигателя. Перед контактором установлен автоматический выключатель QF1 для защиты от перегрузки. Катушка реле (А1-А2) запитана через нормально разомкнутую кнопку «Пуск» и нормально замкнутую кнопку «Стоп». При нажатии кнопки «Пуск» на катушку приходит напряжение, контактор срабатывает, запуская электродвигатель. Для остановки двигателя нужно нажать «Стоп» — цепь катушки разорвётся и контактор «расцепит» силовые линии.

Эта схема будет работать только если кнопки «пуск» и «стоп» — с фиксацией.

Вместо кнопок может быть контакт другого реле или дискретный выход контроллера:


Контактор можно включить и выключить с помощью ПЛК. Один дискретный выход контроллера заменит кнопки «пуск» и «стоп» — они будут реализованы логикой контроллера.

Схема «самоподхвата» магнитного пускателя

Как уже было сказано, предыдущая схема с двумя кнопками работает только если кнопки с фиксацией. В реальной жизни её не используют из-за её неудобства и небезопасности. Вместо неё используют схему с автоподхватом (самоподхватом).


На этой схеме используется дополнительный нормально открытый контакт пускателя. При нажатии на кнопку «пуск» и сработки магнитного пускателя дополнительный контакт КМ1.1 замыкается одновременно с силовыми контактами. Теперь кнопку «пуск» можно отпустить — её «подхватит» контакт КМ1.1.

Нажатие кнопки «стоп» разорвёт цепь катушки и вместе с этим разомкнётся доп. контакт КМ1.1.

Подключение двигателя через пускатель с тепловым реле


На рисунке изображён магнитный пускатель с установленным на него тепловым реле. При нагревании электродвигатель начинает потреблять больший ток — его и фиксирует тепловое реле. На корпусе теплового реле можно задать значение тока, превышение которого вызовет сработку реле и замыкание его контактов.


Нормально закрытый контакт теплового реле использует в цепи питания катушки пускателя и рвёт её при сработке теплового реле, обеспечивая аварийное отключение двигателя. Нормально открытый контакт теплового реле может быть использован в сигнальной цепи, например для того, чтобы зажечь лампу «авария» при отключении электродвигателя по перегреву.

Реверсивный магнитный пускатель — устройство, с помощью которого можно запускать вращение двигателя в прямом и обратном направлениях. Это достигается за счёт смены чередования фаз на клеммах электродвигателя. Устройство состоит из двух взаимоблокирующихся контакторов. Один из контакторов коммутирует фазы в порядке А-В-С, а другой, например, А-С-В.

Взаимная блокировка нужна, чтобы нельзя было случайно одновременно включить оба контактора и устроить межфазное замыкание.

Схема реверсивного магнитного пускателя выглядит так:


Реверсивный пускатель может изменить чередование фаз на двигателе, коммутируя питающее двигатель напряжение через контактор КМ1 или КМ2. Обратите внимание, что порядок следования фаз на этих контакторов различается.

При нажатии Кнопки «Прямой пуск» двигатель запускается через контактор КМ1. При этом размыкается дополнительный контакт этого пускателя КМ1.2. Он блокирует запуск второго контактора КМ2, поэтому нажатие кнопки «Реверсивный пуск» ни к чему не приведёт. Для того чтобы запустить двигатель в обратном (реверсивном) направлении, нужно сначала остановить его кнопкой «Стоп».

При нажатии кнопки «Реверсивный пуск» срабатывает контактор КМ2, а его дополнительный контакт КМ2.2 блокирует контактор КМ1.

Автоподхват контакторов КМ1 и КМ2 осуществляется с помощью нормально открытых контактов КМ1.1 и КМ2.1 соответственно (см. раздел «Схема самоподхвата магнитного пускателя»).

Для тех, кто нормально относился к изучению школьного курса физики, не составит особого труда разобраться в схемах подключения различного электрооборудования, включая трехфазные электродвигатели. Они подключаются через контакторы или магнитные пускатели. Зарубежная классификация не делает разницы между этими аппаратами, поскольку пускатель является тем же контактором, но укомплектованным дополнительными устройствами для безопасной работы потребителя тока.

Другими словами, пускатель – это своего рода электротехнический шкаф в миниатюре, в котором помимо контактора установлена тепловая защита и от короткого замыкания. Пускатели имеют 8 величин от «0» до «7», каждая из которых рассчитана на электродвигатели с определенным диапазоном мощности (номинального тока). Благодаря закрытому исполнению (в корпусе), пускатели могут устанавливаться в любом месте. При подключении электромоторов через контактор защитные устройства подбираются отдельно.

Система контактов на контакторе

Вне зависимости от типоразмера и производителя электротехники любой трехфазный контактор имеет стандартную схему контактов и их подключения. Для удобства монтажа все контакты имеют маркировку, указывающую на их предназначение. Маркировка наносится на корпус аппарата и выглядит следующим образом:

  • А1 (ноль) и А2 (фаза) – контакты для управления включением и отключением контактора;
  • Нечетные цифры 1, 3, 5 и маркировка L1, L2, L3 указывают на места ввода трехфазного питания;
  • Четные цифры 2, 4, 6 и маркировка T1, T2, T3 указывают на места подключения проводов, идущих к потребителю тока;
  • 13NO и 14NO это пара блок-контакта для обеспечения функции самоподхвата.

Контакт А2 продублирован в верхней и нижней части корпуса аппарата для удобства коммутации. С этой же целью верхнюю и нижнюю (нечетную и четную) группу силовых контактов также можно использовать для ввода или вывода питания. При монтаже контактора надо быть внимательным, иначе схема не будет работать.

Нельзя допускать неправильное подключение фаз. Если их перепутать при монтаже контактора, вы получите обратное вращение двигателя. Для этого предусмотрены два способа маркировки на изоляции жил кабеля – цифрами и цветом. Числам 1, 2 и 3 соответствуют цвета – желтый, зеленый и красный. Нулевой проводник имеет белый цвет или маркировку цифрой «0». Подключение силовых контактов не представляет никакой сложности. Главное – это правильное подключение управляющего напряжения через кнопочный пост.

Подключение кнопочного поста

Рассмотрим 2 схемы подключения контактора к сети 380 В: для катушки с напряжением питания 380 В и 220 В.

Кнопочный пост имеет две кнопки. «Пуск» с нормально-открытыми и «Стоп» с нормально-закрытыми контактами. Питание к нему (фаза) подается через контакт №4 кнопки «Стоп». Между клеммами №3 «Стоп» и №2 «Пуск» устанавливаем перемычку, продлевая тем самым линию «фаза». Клемма А1 (фаза) контактора соединяется с контактом №1 «Пуск». Нулевая жила управляющего провода подключается на клемму А2. Между дублем контакта А1 и клеммой 14NO устанавливается перемычка. Клемма 13NO соединяется с контактом №2 «Пуск».


В случае, если схему управления необходимо запитать от одной фазы (фаза-ноль), при номинале катушки пускателя 220 В, схема подключения будет выглядеть следующим образом.


При нажатии кнопки «Пуск» происходит срабатывание силовых контактов и подается напряжение на блок-контакт, который обеспечивает рабочее (закрытое) положение силовых контактов, после того, как кнопка будет отпущена. Нажатием кнопки «Стоп» цепь на блок-контакте разрывается, и силовые контакты переходят в нормально-открытое положение. Более подробные описания подключения контакторов с иллюстрациями и видеороликами можно найти в интернете. Сделав эту работу несколько раз, в последующем вы будете выполнять ее автоматически.

Схема подключения магнитного пускателя на первый взгляд кажется сложной, однако справиться с таким устройством не составит труда, если придерживаться правил и рекомендаций по установке.
По своей сути, магнитный пускатель (кнопочный или бесконтактный) – это аппарат, который можно отнести к типу электромагнитных контактов, позволяющий справляться с нагрузками тока.

Он работает во время постоянных включений и выключений цепей.

С подключением магнитного пускателя становится реальным дистанционно управлять пуском, остановкой и общей работой трехфазного электродвигателя.

Однако подобное реле настолько неприхотливое, что позволяет управлять и другими механизмами: освещением, компрессорами, насосами, кранами, тепловым обогревателем или печью, кондиционерами.

Покупая подобный механизм, обращайте внимание: ведь кнопочный магнитный пускатель мало чем отличается от современного контактора.

Функции у них практически одинаковые, так что особых трудностей при подключении возникнуть не должно.

Принцип работы схемы довольно прост. Напряжение подается на катушку пускателя, после чего в ней возникает магнитное поле.

Именно за счет него внутрь катушки как бы втягивается сердечник из металла.

К сердечнику мы прикрепляет силовые контакты, при активации замыкающиеся, что позволяет току свободно протекать через провода.

Схема магнитного пускателя содержит пост, где установлены кнопки, активирующие пусковые и остановочные механизмы.

Как устроен механизм пускателя?

Прежде чем заниматься подключением магнитного пускателя, нужно понимать его схему комплектации: в нее входит сам прибор и пост (блок) с важнейшими контактами.

Хотя он не входит в основную часть схемы реле, при работе в схеме с дополнительными проводными элементами, например, с реверсом электродвигателя, нужно обеспечить разветвление проводов.

Здесь и необходим блок, который еще называют приставкой контактного типа к схеме.

Внутри такой приставки подключена контактная схема, которая плотно соединена с обычной контактной системой магнитного пускателя.

Такой механизм для трехфазного двигателя, например, состоит из двух пар замкнутых и двух пар разомкнутых контактов.

Чтобы снять блокирующую составляющую (при ремонте или подключении) достаточно отодвинуть специальные полозья, удерживающие крышку.

Схема состоит из двух частей: верхней и нижней. Кнопочный механизм для трехфазного двигателя легко различать по цвету. Например, кнопка «Стоп» имеет красный цвет.

В ней подключен размыкающий контакт, через который пройдет напряжение в схему. Кнопку, которая будет отвечать за запускание, окрашивают в зеленый.

В ней применяется замыкающий контакт, который при подключении проводит через схему электрический ток.

Схема подключения реверсивного магнитного пускателя имеет обычно защиту от случайных нажатий.

Для этого устанавливают дополнительные боковые контакты, где при срабатывании одного — второй будет блокироваться.

Монтажная схема выполняется в пару действий, зато на практике получается удобный кнопочный механизм.

Схема подключения устройства

Перед тем, как схема магнитного пускателя будет подключена, необходимо:

  • Обеспечить обесточивание на всем фронте нашей работы (обесточивание двигателя, части проводки). Проверить отсутствие напряжения можно специальными индикаторными инструментами, самое простое из них – отвертка, продается в любом строительном магазине;
  • Выяснить рабочее напряжение, особенно это актуально для элемента катушки. Оно пишется не на самой упаковке пускателя, а непосредственно на устройстве. Варианта тут только два: 380в или 220 вольт. Когда выбираем 220 вольт,а не 380в, то при подключении фотореле на катушку подаются фаза и ноль. Если речь идет о 380в, а не о 229, то используем две разноименные фазы. Если не разобраться между 220 и 380 вольтовыми реле, то схема просто может перегореть от разности напряжений;
  • Подбираем подходящие кнопки соответствующих цветов;
  • Для реле все нули, которые являются приходящими и отходящими, а также элементы, позволяющие достигнуть заземления, соединяются в схеме на клеммнике через устройство, не задевая его. Для катушки в 220 вольт берется ноль во время подсоединения, чего не следует делать для 380 вольт.

Последовательность подключения состоит из таких частей:

  • трех пар силовых элементов, которые будут отвечать за подачу электропитания, будь это схема электродвигателя или любого прибора;
  • схемы управления, включающей катушку, дополнительные провода и кнопки.

Самым простым считается процесс подключения реверсивного магнитного пускателя в количестве одной единицы. Это самая простая схема (на 220 или 380 вольт), чаще всего ее используют в работе двигателя.


Для фотореле нам понадобиться трехжильный кабель, который мы подключим к кнопкам, а также пара разомкнутых контактов.

Рассмотрим типичную схему подключения на 220 вольт. Если же Вы выбрали схему подключения на 380 вольт, то вместо синего ноля важно подключить другую разноименную фазу.

Пост контакта фотореле – это четвертая свободная фаза. На силовые контакты через схему идут три фазы.

Чтобы их можно было нормально подключить, на катушку подаем 220 вольт (или 380, а зависимости от выбора реле). Цепь замкнется — и мы сможем управлять работой электродвигателя.

Подключаем тепловое реле

Между магнитным пускателем и устройством двигателя можно пустить тепловое реле, которое может понадобиться для безопасной подачи тока к устройству двигателя.

Для чего нужно подключать тепловое реле? Неважно, какое напряжение идет в нашей схеме, 220 или 380 вольт: при скачках любой мотор может сгореть. Именно поэтому стоит поставить пост для защиты.

Фотореле позволяет схеме работать, даже если перегорела одна из фаз.

Подключают фотореле у выхода магнитного пускателя на устройство двигателя. Тогда ток напряжением 220 или 380 вольт проходит через пост с нагревателя фотореле и попадает внутрь двигателя.

На самом фотореле можно найти контакты, которые следует подключать к катушке.

Нагреватели теплового реле (фотореле) не вечны и имеют свой предел работы.

Так, пост такого магнитного пускателя сможет пропустить через себя только определенный показатель тока, который может иметь максимальный предел.

В противном случае последствия работы фотореле для двигателя будут плачевными – несмотря на защитный пост, он сгорит.

Если возникает неприятная ситуация, когда через пост пропускается ток выше заданных пределов, то нагреватели начинают воздействовать на контакты, нарушая общую цепь в приборе.

Как итог, пускатель выключается.

Выбирая фотореле для двигателя, обращайте внимание на его характеристики. Ток механизма должен подходить мощности двигателя (быть рассчитанным на 220 или 380 вольт).

Ставить такой защитный пост на обычные приборы не рекомендуется – только на моторы.

Как правильно выбрать магнитный пускатель?

Чтобы устройство не сгорело после подключения через пару недель, нужно внимательно относиться к выбору. Самые популярные серии пускателя ПМЛ и ПМ12.

Они поставляются как отечественными, так и зарубежными фирмами.


Каждая цифра величины указывается на тот ток, который пост сможет провести через схему без поломок и возгораний. Если ток нагрузки выше 63 А, то лучше покупать для подключения в схему контакторы.

Важная характеристика при подключении – класс износостойкости. Она показывает, сколько раз устройство сможет без затруднений срабатывать на нажатие.

Важный показатель, если механизм предстоит часто включать и выключать. Если в час предстоит много нажатий, то выбирают бесконтактные пускатели.

Кроме того, устройства могут продаваться с реверсами и без них. Применяют для реверсивных двигателей, где вращение идет сразу в две стороны.

Пускатель такого типа имеет сразу две катушки и две пары силовых контактов. К дополнительным элементам относят защитный механизм, лампочку, кнопки.

Промышленные пускатели с управлением двигателями | Магнитный пускатель двигателя

Введение

Пускатели двигателя — одно из основных изобретений в области управления двигателями. Как следует из названия, стартер — это электрическое устройство, которое регулирует электрическую мощность для запуска двигателя. Эти электрические устройства также используются для остановки, реверсирования и защиты электродвигателей. Ниже приведены два основных компонента пускателя:

  1. Контактор: Основная функция контактора — регулирование электрического тока двигателя.Контактор может включать или отключать питание цепи.
  2. Реле перегрузки: Перегрев и потребление слишком большого тока могут привести к перегоранию двигателя и его практически бесполезному использованию. Реле перегрузки предотвращают это и защищают двигатель от любой потенциальной опасности.

Пускатель — это сборка этих двух компонентов, которая позволяет ему включать и выключать электродвигатель или электрическое оборудование, управляемое электродвигателем. Пускатель также обеспечивает необходимую защиту цепи от перегрузки.

Типы пускателей двигателей

Существует несколько типов пускателей двигателей. Однако существуют два основных типа этих электрических устройств:

Ручные пускатели

Ручные пускатели — это устройства, которые управляются вручную. Эти пускатели чрезвычайно просты в эксплуатации и не требуют вмешательства специалиста. Стартер включает в себя кнопку (или поворотную ручку), которая позволяет пользователю включать или выключать подключенное оборудование.Кнопки имеют механические связи, которые размыкают или замыкают контакты, запуская или останавливая двигатель. Следующие особенности ручного пускателя делают его предпочтительным выбором по сравнению с другими типами:

  • Эти пускатели обеспечивают безопасную и экономичную работу.
  • Компактные размеры этих устройств делают их пригодными для широкого спектра приложений.
  • Они обеспечивают защиту двигателя от перегрузки, защищая его от любого потенциального повреждения.
  • Эти устройства поставляются с широким выбором корпусов.
  • Начальная стоимость ручного стартера невысока.

Магнитный пускатель двигателя

Это другой основной тип пускателя двигателя. Он работает от электромагнита. Это означает, что нагрузка двигателя, подключенная к пускателю двигателя, обычно запускается и останавливается с использованием более низкого и безопасного напряжения, чем напряжение двигателя. Как и другие пускатели двигателей, магнитный пускатель также имеет электрический контактор и реле перегрузки для защиты устройства от слишком большого тока или перегрева.

Схема и работа пускателя двигателя

В пускателе двигателя есть две цепи, а именно:

  1. Цепь питания: Цепь питания соединяет линию с двигателем. Он обеспечивает передачу электроэнергии через контакты стартера, реле перегрузки, а затем на двигатель. Ток двигателя передается по силовым (главным) контактам контактора.
  2. Цепь управления: Это другая цепь пускателя двигателя, которая включает или выключает контактор.Главные контакты контактора отвечают за разрешение или прерывание прохождения тока к двигателю. Для этого контакты в цепи управления либо разомкнуты, либо замкнуты. Схема управления питает катушку контактора, которая создает электромагнитное поле. Силовые контакты притягиваются этим электромагнитным полем в закрытое положение. Это замыкает цепь между двигателем и линией. Таким образом, дистанционное управление становится возможным с помощью схемы управления. Схема управления может быть подключена двумя способами:
    1. Метод 1: Один из наиболее широко используемых методов, используемых для подключения схемы управления, называется «Двухпроводным методом».При двухпроводном способе подключения управляющей цепи используется пилотное устройство с поддерживаемым контактом, такое как датчик присутствия, термостат или поплавковый выключатель.
    2. Метод 2: В отличие от двухпроводного метода, «трехпроводный метод» подключения цепи управления использует контакт удерживающей цепи и управляющие устройства с мгновенным контактом.

Цепь управления может получать мощность одним из следующих трех способов:

  • Общее управление: Этот тип управления возникает, когда источник питания схемы управления такой же, как и у двигателя.
  • Раздельное управление: Это самый популярный тип управления. Как следует из названия, в этой схеме схема управления получает питание от отдельного источника. Обычно получаемая мощность имеет меньшее напряжение по сравнению с источником питания двигателя.
  • Управление трансформатором: Как следует из названия, цепь управления получает питание от трансформатора цепи управления. Обычно получаемая мощность имеет меньшее напряжение по сравнению с источником питания двигателя.

Типы пускателей магнитных двигателей

В зависимости от того, как они подключены в цепь, существует множество типов пускателей магнитных двигателей, таких как:

1. Пускатель прямого включения

-Онлайн-пускатель — это простейшая форма пускателя двигателя, кроме ручного пускателя. Контроллер этого стартера обычно представляет собой простую кнопку (но может быть селекторным переключателем, концевым выключателем, поплавковым выключателем и т. Д.). Нажатие кнопки пуска замыкает контактор (путем подачи питания на катушку контактора), подключенный к основному источнику питания и двигателю.Это обеспечивает ток питания двигателя. Для выключения мотора предусмотрена кнопка останова. Чтобы защитить его от перегрузки по току, цепь управления подключена через нормально замкнутый вспомогательный контакт реле перегрузки. При срабатывании реле перегрузки нормально замкнутый вспомогательный контакт размыкается и обесточивает катушку контактора, а главные контакты контактора размыкаются.

Преимущества использования пускателей двигателя с прямым включением:
  • Они имеют компактную конструкцию.
  • Они рентабельны.
  • Имеют простую конструкцию.

2. Стартер сопротивления ротора

В пускателе сопротивления ротора три сопротивления соединены так, что они включены последовательно с обмотками ротора. Это помогает значительно снизить ток ротора, а также увеличивает крутящий момент двигателя.

Преимущества использования пускателей электродвигателей с сопротивлением ротора:
  • Они экономичны.
  • У них простой метод регулирования скорости.
  • Они обеспечивают низкий пусковой ток, большой пусковой момент и большой момент отрыва.

3. Пускатель сопротивления статора

Пускатель сопротивления статора состоит из трех резисторов, которые последовательно соединены с каждой фазой обмоток статора. На каждом резисторе возникает падение напряжения, поэтому возникает необходимость подавать низкое напряжение на каждую фазу. Эти сопротивления устанавливаются в начальное или максимальное положение на этапе запуска двигателя. Пусковой ток в пускателях этого типа поддерживается на минимальном уровне.Кроме того, необходимо поддерживать пусковой момент двигателя.

Преимущества использования пускателей электродвигателей с сопротивлением статора:
  • Они подходят для использования в системах регулирования скорости.
  • Они обладают чрезвычайно гибкими пусковыми характеристиками.
  • Обеспечивают плавный разгон.

4. Пускатель автотрансформатора

С пускателем автотрансформатора трансформатор подает определенный процент первичного напряжения на вторичную обмотку трансформатора.Автотрансформатор подключен по схеме звезды. В пускателе этого типа три вторичных обмотки трансформатора с ответвлениями подключены к трем фазам двигателя. Это помогает снизить напряжение, подаваемое на клеммы двигателя.

Преимущества использования пускателей двигателей с автотрансформатором:
  • Их можно использовать для ручного управления скоростью, но с ограниченными возможностями.
  • Они обладают чрезвычайно гибкими пусковыми характеристиками.
  • Имеют высокий выходной крутящий момент.

5.

Пускатель звезда-треугольник

По сравнению с другими типами пускателей, пускатель звезда-треугольник широко используется. Как следует из названия, в пускателях звезда-треугольник три обмотки соединены звездой. Определенное время устанавливается таймером или любой другой схемой контроллера. По истечении этого времени обмотки подключаются по схеме треугольник. Фазное напряжение при соединении звездой снижается до 58%, а общий потребляемый ток составляет 58% от нормального тока.Это приводит к уменьшению крутящего момента.

Преимущества использования пускателей электродвигателей звезда-треугольник:
  • Они идеально подходят для длительного разгона.
  • У них меньший импульсный ток на входе по сравнению с другими пускателями.
  • Они имеют более простую конструкцию по сравнению с другими пускателями.

Характеристики пускателей двигателей

Сегодня пускатели двигателей широко используются из-за их ряда полезных свойств.Ниже приведены некоторые особенности этих очень полезных электрических устройств:

  1. Они облегчают запуск и остановку двигателя.
  2. Пускатели рассчитаны на мощность (в лошадиных силах, киловатт) и ток (в амперах).
  3. Обеспечивают необходимую защиту двигателя от перегрузки.
  4. Электрическое устройство обеспечивает функцию дистанционного включения / выключения.
  5. Эти устройства позволяют быстро включать и отключать ток (включение и выключение).

Основные функции пускателей двигателей

Ниже перечислены основные функции, которые должен выполнять пускатель:

  1. Управление: Функция управления в основном выполняется контактором пускателя.Он контролирует размыкание и замыкание силовой электрической цепи. Коммутация осуществляется главными контактами (полюсами) контактора. Электромагнитная катушка находится под напряжением, которая размыкает или замыкает контакты. Эта электромагнитная катушка имеет номинальное управляющее напряжение и может быть переменным или постоянным напряжением.
  2. Защита от короткого замыкания: В промышленных приложениях нормальный ток нагрузки может достигать тысяч ампер. В случае короткого замыкания ток короткого замыкания может превысить 100 000 ампер.Это может вызвать серьезное повреждение оборудования. Защита от короткого замыкания отключает питание и безопасным образом предотвращает потенциальное повреждение. Защита от короткого замыкания обеспечивается предохранителями или автоматическими выключателями в комбинированном контроллере двигателя.
  3. Защита от перегрузки: Когда двигатель потребляет больше тока, чем рассчитано, возникает состояние перегрузки. Основная задача реле перегрузки — обнаружение избыточных токов. При обнаружении перегрузки вспомогательный контакт реле перегрузки размыкает цепь и предотвращает перегрев или перегрев двигателя.Электронные или электромеханические реле перегрузки используются в сочетании с контактором для обеспечения необходимой защиты от перегрузки.
  4. Отключение и отключение: Чтобы предотвратить непреднамеренный перезапуск, необходимо отключить двигатель от основной цепи питания. Чтобы безопасно выполнять техническое обслуживание двигателя или стартера, двигатель должен отключаться и быть изолированным от источника питания. Эту функцию выполняет размыкающий выключатель цепи. Отключение и отключение обеспечивается размыкающим выключателем или автоматическим выключателем в комбинированном контроллере двигателя (или может быть установлен удаленно от стартера).

Стандарты и рейтинги

Номинальные параметры пускателя двигателя зависят от многих факторов, таких как тепловой ток, длительный ток, напряжение двигателя и мощность.

Тепловой ток зависит от теплопроводности (k), которая является свойством, указывающим теплопроводность материала. Это означает, что тепловой ток прямо пропорционален теплопроводности.

Постоянный ток, который также обычно называют номинальным постоянным током, является мерой способности пускателя, управляющего двигателем, выдерживать ток в течение непрерывного времени.

Номинальная мощность пускателя двигателя зависит от типа используемого двигателя. Пускатели двигателей постоянного тока рассчитаны на мощность постоянного тока. С другой стороны, пускатели двигателей переменного тока имеют номинальную мощность однофазной и трехфазной мощности.

Параметры пускателя двигателя основаны на размере и типе нагрузки, на которую он рассчитан. Стартеры соответствуют стандартам и рейтингам Underwriters Laboratories (UL), Канадской ассоциации стандартов (CSA), Международной электротехнической комиссии (IEC) и Национальной ассоциации производителей электрооборудования (NEMA).

Рейтинг NEMA

Рейтинг NEMA стартера в значительной степени зависит от максимальной номинальной мощности, указанной в стандарте ISCS2 Национальной ассоциации производителей электрооборудования. Выбор стартеров NEMA осуществляется на основе их размера NEMA, который варьируется от размера 00 до размера 9.

Стартер NEMA с его заявленной мощностью может использоваться для широкого спектра приложений, от простых до и от приложений до приложений для подключения к сети и бега трусцой, которые более требовательны.При выборе подходящего пускателя двигателя NEMA необходимо знать напряжение и мощность двигателя. В случае значительного количества закупорок и толчков, потребуется снижение номинальных характеристик устройства, соответствующего требованиям NEMA.

Рейтинг МЭК

Международная электротехническая комиссия (МЭК) определила рабочие и рабочие характеристики устройств МЭК в публикации МЭК 60947. Стандартные размеры не указаны МЭК.Типичный рабочий цикл устройств IEC определяется категориями использования. Что касается общих применений для запуска двигателей, наиболее распространенными категориями применения являются AC3 и AC4.

В отличие от типоразмеров NEMA, они обычно рассчитываются по максимальному рабочему току, тепловому току, номинальной мощности и / или кВт.

Существуют и другие параметры, которые важно учитывать при выборе пускателей двигателя, такие как ускорение с ограничением по времени, ускорение линии тока, управляющее напряжение, количество полюсов и рабочая температура.Мы рассмотрим их в будущем официальном документе.

Мы надеемся, что этот краткий технический документ дал вам хорошее базовое представление о пускателях двигателей. Другие статьи c3controls ищите на c3controls.com/blog.

Отказ от ответственности:
Содержимое, представленное в этом техническом документе, предназначено исключительно для общих информационных целей и предоставляется при том понимании, что авторы и издатели не участвуют в предоставлении технических или других профессиональных консультаций или услуг.Инженерная практика определяется обстоятельствами конкретного объекта, уникальными для каждого проекта. Следовательно, любое использование этой информации должно осуществляться только после консультации с квалифицированным и лицензированным специалистом, который может принять во внимание все соответствующие факторы и желаемые результаты. Информация в этом техническом документе была размещена с разумной тщательностью и вниманием. Однако возможно, что некоторая информация в этих официальных документах является неполной, неверной или неприменимой к определенным обстоятельствам или условиям.Мы не несем ответственности за прямые или косвенные убытки, возникшие в результате использования информации, содержащейся в этом техническом документе, или действий на ее основе.

Разница между контакторами и пускателями двигателей (и пускателями пониженного напряжения)

Электродвигатели абсолютно необходимы для автоматизации бесчисленных приложений по всему миру. В большинстве случаев для привода двигателей — подачи на них электроэнергии — требуется некоторая техническая система, которая также должна быть совместима с устройством обмотки двигателя.Поскольку в этих системах питания двигателей часто используются или сопровождающие другие устройства электрического управления и связи, уже описанные в этом Руководстве по проектированию, мы рассмотрим их наиболее распространенные варианты. Дополнительную информацию о моторных приводах, имеющих функции помимо пускателя двигателей, можно найти в этой статье motioncontroltips.com.

Только самые простые и самые маленькие конструкции — обычно с однофазными двигателями мощностью 5 л.с. или меньше или трехфазными двигателями мощностью 15 л.с. или меньше — допускают прямое подключение к сети (также называемое , проходящее через линию ). источник без риска перенапряжения двигателя и пониженного напряжения в сети.Трехфазные двигатели, управляемые таким образом, могут иметь обмотки, соединенные простой звездой (также называемой звездой) или , треугольник … а двигатели с двойным напряжением (удобно, поскольку они могут принимать входное напряжение 230 В или 460 В) имеют комплекты с двумя катушками, которые могут работать параллельно или (для более высокого напряжения) последовательно.

Этот автоматический выключатель Siemens SIRIUS 3RV2011-1HA10 типоразмера S00 является токоограничивающим выключателем для фидеров нагрузки до 3 кВт при трехфазном напряжении 400 В переменного тока. Защита от короткого замыкания 104 А и регулируемая защита от перегрузки 5.От 5 до 8 А надежно защищает электродвигатели. Изображение любезно предоставлено Automation24 Inc.

Повсюду в других местах пуск двигателя через линию представляет слишком много проблем для самого двигателя, а также для систем, подключенных к двигателю, включая вредные электрические эффекты, а также чрезмерный износ компонентов механической передачи энергии. Цели проектирования, связанные с безопасностью, производительностью и точностью, обычно требуют использования более совершенных подходов к управлению автомобилем.

Пусковой ток является важным параметром при выборе правильного размера и сопряжения двигателей и пускателей двигателей.Пусковой ток от пускателя двигателя должен быть достаточным для обеспечения соответствия двигателя требованиям по крутящему моменту и ускорению, но не должен вызывать чрезмерного падения напряжения в линии электропитания.

Терминологическая основа: Разница между контакторами и пускателями двигателей

В предыдущем разделе этого Руководства по проектированию мы подробно описали, как контакторы и реле являются отдельными компонентами, несмотря на то, что время от времени в промышленности используются термины, говорящие об обратном. Контакторы и пускатели двигателей также являются отдельными компонентами.Здесь термины используются взаимозаменяемо, потому что их ядро ​​- это та же самая точная технология — переключатель, способный работать с высокими напряжениями.

Этот пускатель двигателя с прямым включением представляет собой SIRIUS 3RM1001-1AA04 от Siemens с управляющим напряжением 24 В пост. Тока и регулируемым расцепителем тока перегрузки от 0,1 до 0,5 А. Он обеспечивает твердотельную защиту двигателя и подходит для систем с малым током. двигатели мощностью до 0,12 кВт Стандартная ширина 22,5 мм занимает минимум места внутри шкафов управления. Изображение предоставлено Automation24 Inc.

Разница в том, что у пускателей двигателей есть одна дополнительная система или системы, которых нет в контакторах — реле перегрузки определенного типа для отключения входа напряжения , если это реле обнаруживает перегрузку двигателя или термически компромиссное состояние из-за длительной перегрузки по току. Пускатели двигателей с самозащитой также имеют защиту от короткого замыкания. Здесь снова ключевое значение имеет точное использование терминологии: вместо того, чтобы использовать короткое замыкание для обозначения любой электрической неисправности, целесообразно использовать этот термин только при обсуждении внезапного сверхтока, возникающего из-за потока электроэнергии, который обнаружил какой-то непреднамеренный путь выхода из строя. путешествовать.Защита от короткого замыкания действует мгновенно, отключая систему от источника питания.

Это пример силового контактора. Это Siemens SIRIUS 3RT2015-1BB41 для питания трехфазных двигателей и электрических систем отопления мощностью до 3 л.с. при 480 В переменного тока. Силовой контактор использует управляющее напряжение 24 В постоянного тока, имеет замыкающий контакт и винтовые кабельные розетки.
Фактически, существует множество размеров и версий этого силового контактора для фидеров нагрузки с автоматическими выключателями и различных коммутационных устройств SIRIUS для безопасного и функционального переключения электрических нагрузок.
• Контакторы 3RT2 бывают типоразмеров от S00 до S3. Контакторы 3RT1 бывают типоразмеров от S6 до S12
• Силовые контакторы 3RT.0 и вакуумные контакторы 3RT12 предназначены для переключения моторизованных нагрузок
• Четырехполюсные контакторы 3RT23 (и трехполюсные контакторы 3RT24 / 3RT14) переключают резистивные нагрузки
• Четырехполюсные 3RT25 контакторы предназначены для изменения полярности двигателей подъемных редукторов
• реле контактора 3Rh3 переключают в цепь управления
• контакторы конденсатора 3RT26 переключают емкостные нагрузки (AC-6b)
• контакторы 3RT1 / 3RT2 / 3Rh3 имеют расширенный рабочий диапазон… 3RT10 / 3RT20 / Контакторы 3Rh31 предназначены для использования на рельсах… а реле сопряжения 3RT20 / 3Rh31 предназначены для системного взаимодействия с электронными контроллерами.
• 3RT1… -.Контакторы S.36 имеют входы отказоустойчивого управления для приложений, связанных с безопасностью.
Также доступны реверсивные контакторы в сборе, а также контакторы для пуска трехфазных двигателей с уменьшенными пиками пускового тока (в виде комплектов контакторов для схем звезда-треугольник.

Еще одно различие между контакторами и пускателями двигателей связано с тем, как эти два компонента рассчитаны и указаны. Контакторы обычно классифицируются по их допустимому напряжению. В отличие от них, пускатели двигателей обычно оцениваются в соответствии с их допустимой токовой нагрузкой и мощностью двигателей, для которых они предназначены. re совместимы… даже при учете пускового тока при запуске без ложных срабатываний.Обычно это достигается за счет небольшой задержки срабатывания реле — многие двигатели (особенно двигатели меньшего размера) могут достичь полной рабочей скорости всего за несколько секунд.

Принципиальные схемы типовых вариантов контакторов, пускателей двигателей полного напряжения и устройств плавного пуска показывают их различия и сходства. Нажмите, чтобы увеличить.

Пуск двигателя на самом базовом уровне подразделяется на ручной или автоматический.

Ручной запуск включает переключатели включения-выключения, которые просто замыкают или размыкают входную цепь двигателя при активации персоналом завода.Некоторые версии, которые квалифицируются как настоящие пускатели двигателя (как указано выше), включают реле тепловой перегрузки для обесточивания двигателя в случае его перегрева.

Напротив, автоматический запуск двигателя иногда называют магнитным запуском для электромеханических контакторов, которые являются стержнем этой конструкции.

Как и в любой технологии электромеханических реле, они имеют стационарные электромагнитные катушки, которые (по команде от кнопки, концевого выключателя, таймера, поплавкового выключателя или другого реле) объединяют две цепи.Эти схемы включают в себя входные силовые контакты и ответный носитель, который (будучи замкнутым вместе) позволяет току течь в обмотки двигателя. Одним из вариантов этой конструкции является комбинированный пускатель, который включает в себя магнитное действие, а также некоторый способ отключения электроэнергии при необходимости… либо с помощью предохранителя, прерывателя или переключателя цепи двигателя.

Пуск двигателя по схеме звезда-треугольник (один из типов системы с пониженным пусковым током) передает полное линейное напряжение на обмотки двигателя в звезду во время запуска, хотя напряжение на каждой обмотке двигателя уменьшается на величину, обратную величине квадратного корня из трех (57.7%), поэтому такое расположение иногда (довольно неточно) называют пуском при пониженном напряжении. Затем схема (обычно с контактором для каждой фазы, реле перегрузки, таймером и механической блокировкой) переключает вход двигателя для подачи полного линейного напряжения на его обмотки треугольником.

Пуск двигателя с частичной обмоткой — используется вместе со специальными двигателями с двойным напряжением, упомянутыми выше — подает линейное напряжение только на одну часть (половину или две трети) обмоток двигателя (обычно девять или двенадцать) после Начало.Затем, когда установленное время истекло или было обнаружено установленное напряжение, срабатывает реле или таймер и приказывает добавить остальные обмотки и подать питание. Ускорение может быть нерегулярным, но пусковое сопротивление двигателя с частичной обмоткой не влияет на пусковой момент … и позволяет запускать с низким крутящим моментом, что полезно для насосов, вентиляторов и нагнетателей. Как и пуск звезда-треугольник, пуск с частичной обмоткой представляет собой тип системы с пониженным пусковым током, который обеспечивает пониженное полное линейное напряжение при запуске двигателя, но технически не квалифицируется как пуск с пониженным напряжением.

Реверсивный пуск при полном напряжении определяет, как асинхронные двигатели изменяют направление вращения при изменении направления вращения любых двух силовых проводов. Системы реверсивного пуска просто включают в себя пару зеркальных контакторов, дополненных блокирующими подкомпонентами, которые позволяют работать в условиях прямого и обратного хода. Более быстрое изменение направления вращения может быть выполнено с помощью вставки , которая является временным источником питания для обеих цепей.

Больше управляемости: Пускатели электродвигателей пониженного напряжения

Помимо линейки опций пуска двигателя при полном напряжении, есть пускатели пониженного напряжения.Там, где оси станков требуют плавного разгона без сотрясений до полной скорости (для защиты присоединенного машинного оборудования или некоторой присоединенной нагрузки) необходимы пускатели двигателей с пониженным напряжением. Фактически, они также полезны в настройках, регулируемых местными энергосистемами, которые ограничивают колебания напряжения и скачки тока на источниках питания во время запуска двигателя.

Пускатели двигателей с пониженным напряжением включают четыре общих подтипа.

Первичный резистор пускателя двигателя

Пускатели двигателей с первичным резистором — это экономичный вариант, в котором используются резисторы и некоторое количество контакторов, причем последнее определяет количество ступеней пускового напряжения.Эти шаги могут быть несколько резкими из-за низкой индуктивности схемы. Хотя резисторы могут быть громоздкими и снижать эффективность, этот тип стартера обеспечивает надежный пусковой момент двигателя.

Пускатели электродвигателей первичного реактора

Пускатели двигателей с первичным реактором чаще всего используются в больших высоковольтных двигателях. В них используется реактор (индуктор) в цепи, как в пускателе двигателя с первичным резистором. Возможны относительно длительные плавные ускорения (даже до десятка секунд или более), хотя дополнительная индуктивность системы может снизить общую эффективность, а низкий коэффициент мощности ухудшает составляющие тока, генерирующие крутящий момент, и магнитный поток двигателя.

Автотрансформаторные пускатели двигателей

Пускатели электродвигателей первичного реактора относительно дороги, но полезны там, где требуется регулируемый пусковой момент. В пускателях двигателей с автотрансформатором используется однообмоточный электрический трансформатор, который является пассивным электрическим устройством для передачи электроэнергии от одной цепи к другой. Более конкретно, пускатели автотрансформатора используют три электрических контактора на автотрансформаторе, имеющем выбираемые ответвления.Это обеспечивает ступенчатое стартовое напряжение для длительного плавного ускорения при запуске — даже до нескольких десятков секунд. Пусковое напряжение может составлять от 50% до 80% линейного напряжения для высоких пусковых моментов в приложениях, где это (а не эффективность) является основной целью проектирования.

Устройства плавного пуска

Устройства плавного пуска , использующие твердотельную полупроводниковую технологию, обладают наибольшей управляемостью из всех вариантов пускателя двигателя. Они также наиболее бережно относятся к внутренним компонентам двигателей и присоединенным механизмам передачи энергии.По своей сути устройства плавного пуска состоят из различных тиристоров или тиристоров… так, например, в некоторых конструкциях есть по паре тиристоров на каждой из трех линий двигателя. Ознакомьтесь с разделом настоящего Руководства по проектированию, посвященным твердотельным реле, чтобы узнать об основах этой технологии. Эти переключающие устройства работают для управления подачей электроэнергии на обмотки двигателя (как показано на схеме устройства плавного пуска, показывающей углы зажигания), при этом задействуя низкое напряжение двигателя, а также ток и крутящий момент при первоначальном запуске.Затем они постепенно повышают напряжение и крутящий момент в соответствии с установленной программой.

Программирование устройства плавного пуска двигателя определяет точные параметры увеличения заданного напряжения. Рассмотрим работу типичного устройства плавного пуска на основе SCR: здесь проводящий (стробируемый) SCR имеет подвижную точку затвора… и обратная регулировка этого значения скорости (называемого временем нарастания) вызывает увеличение накопления напряжения перед включением SCR. Затем, когда обмотки двигателя достигают полного напряжения, SCR отключается.

Одно предостережение: Чрезмерное время разгона может привести к тому, что ток превысит пределы безопасности двигателя или приведет к аварийному отключению по ограничению тока.

Помимо уже упомянутых преимуществ, устройства плавного пуска обеспечивают защиту двигателя (даже во время дисбаланса фаз во время сбоев в электросети), а также возможность плавного останова. Последнее полезно, когда двигатели приводят в движение такие конструкции, как конвейеры, которые обладают инерцией, способной смещаться или ломаться во время транспортировки.

Конечно, частотно-регулируемые приводы (VFD) — еще один вариант для функции плавного пуска. Они обеспечивают те же функции управляемого пуска и останова, что и устройства плавного пуска, хотя и другим способом — изменяя частоту входного напряжения двигателя, а не величину напряжения. Другие преимущества частотно-регулируемого привода перед устройствами плавного пуска включают возможность управления скоростью двигателя во всем рабочем диапазоне. Частотно-регулируемые приводы также могут обеспечивать мощность для удерживающего крутящего момента (полный крутящий момент при нулевой скорости), который является ключевым для приложений с моторным приводом, таких как краны и лифты.

Однако для некоторых конструкций частотно-регулируемые приводы слишком дороги и сложны. Пускатели двигателей с пониженным напряжением, как правило, более подходят, чем частотно-регулируемые приводы, для которых нет выигрыша в эффективности от работы подключенного двигателя ниже его максимальной скорости.

Схема подключения пускателя однофазного двигателя

pdf

См. Таблицу ниже. Конденсаторные асинхронные двигатели с пусковым конденсатором — это однофазные асинхронные двигатели, у которых есть конденсатор в пусковой обмотке и в ходовой обмотке, как показано на рисунках 12 и 13 (электрическая схема).В этом руководстве мы покажем метод пуска трехфазного асинхронного двигателя переменного тока звезда-треугольник (Y-Δ) с помощью автоматического пускателя звезда-треугольник с таймером со схемой, схемой питания, управления и электропроводки, а также как работает пускатель звезда-треугольник. и их приложения с преимуществами и недостатками. Он использует контактор, реле перегрузки, один блок вспомогательных контактов, нормально разомкнутую кнопку пуска, нормально замкнутую кнопку останова и источник питания с предохранителем. Список электрических символов, а также их краткое описание можно найти на веб-странице «Электрический значок».Галерея электрических схем однофазного пускателя двигателя — электрическая схема для энергосберегающей схемы подключения однофазного двигателя. Сопротивление: измеряемое в Омах (R или O), сопротивление определяет, насколько легко электроны могут проходить через материал. Схема подключения обычно предоставляет информацию о взаимном расположении и настройке устройств, а также клеммах на инструментах, чтобы помочь в сборке или обслуживании гаджета. Ключевые линии обозначаются L1, L2 и другими. Пускатель двигателя с прямым включением питания (DOL) предназначен для переключения одно- или трехфазного асинхронного двигателя при номинальном напряжении.Однофазные провода и предохранители должны иметь размер, соответствующий номинальной силе тока двигателя. Эта диаграмма предназначена для управления однофазным двигателем. Этот тип двигателя разработан для обеспечения высокого пускового момента и сильной работы для… Советы по привлечению красивых схемотехнических схем. Схема подключения Однофазный пускатель двигателя Dol Предложение компании Abbs по защите и управлению двигателями является одним из самых широких на рынке. Электрическая схема управления однофазным двигателем Электротехника. В общем, хорошо поставить положительный (+) источник питания вверху, а также отрицательный (-) источник в основании, а также разумную циркуляцию слева направо.Пуск и остановка… Он показывает части схемы в виде упрощенных форм, а также силовые и сигнальные связи между устройствами. Таким образом, асинхронный двигатель с конденсаторным пуском создает лучшее вращающееся магнитное поле, чем двигатели с расщепленной фазой. Вначале давайте рассмотрим некоторые термины, которые вам непременно следует знать: Напряжение: Определяемое в вольтах (В), напряжение — это напряжение или сила электрической энергии. Хорошая электрическая схема должна быть практически правильной и понятной для чтения. Схема электрических соединений стартера двигателя Dol, PDF-файл Схема подключения стартера двигателя скалывателя Например, схема должна показывать правильные инструкции как положительных, так и отрицательных клемм каждой части.Схема подключения — это упрощенное традиционное фотографическое представление электрической цепи. Автоматический пускатель звезда / треугольник с таймером для трехфазных двигателей переменного тока. Этому языку инженеры должны учиться, когда работают над электронными устройствами. Он использует контактор, реле перегрузки, один блок вспомогательных контактов, нормально разомкнутую кнопку пуска, нормально замкнутую кнопку останова и источник питания с предохранителем. электрическая схема однофазного пускателя двигателя pdf — Обзор принципиальных схем для новичка.Сборник электрических схем однофазного пускателя двигателя. Принципиальные схемы обычно показывают физическое положение компонентов, а также соединения в построенной схеме, но не обязательно в логическом порядке. Электросхема Анны Р. Хиггинботэм… вы, скорее всего, сможете завершить. Обычно это обеспечивается батареей (например, батареей 9 В) или электрическим током, розетки в вашем доме работают от 120 В. Инструкции по подключению рассчитаны на 3 фазы, а бумажный буклет бесполезен. Однофазные двигатели полного напряжения.Обычно схемы с более чем двумя компонентами имеют два основных типа соединений: последовательное и параллельное. На линейных диаграммах, также называемых «схематическими» или «элементарными» диаграммами, показаны схемы, которые образуют основные операции контроллера. Эти инструкции, вероятно, будет легко понять и реализовать. Пускатель двигателя прямого включения состоит из контактора MCCB или автоматического выключателя и реле перегрузки для защиты. Теперь самое интересное. Схема DD6 Схема DD8 M 1 ~ LN E Схема DD9 M 1 ~ LN E Белый Коричневый Синий L1 L2 NS / C Мост L1 и L2, если регулятор скорости (S / C) не требуется Схема DD7 LN E L1 L2 NS / C Z2 U2 Z1 U1 Cap.Щелкните изображение, чтобы увеличить, а затем сохраните его на свой компьютер, щелкнув изображение правой кнопкой мыши. На моем сверле с опорой Meddings они называются проводниками, а также неблагоприятные клеммы каждой части очень легко … Трехфазная двухскоростная схема DD6 DD7 M 1 ~ LN E L1 L2 S / C … Идентичная цепь протекает вдоль каждой идентичная ветвь, а также встроенные соединения … Используется для замены электроники в параллельной цепи, каждый инструмент напрямую подключается к производителю. Средства управления, которые мы проектируем, производим и распространяем по всему миру, на базе нашей централизованной операции.Электроэнергия или используйте скачки линий, чтобы показать пересекающиеся линии, которые не предназначены для отображения тех. Могут перемещаться не только через проводники, но и должны быть поняты для чтения … Круг с двумя выводами, обозначенными T1 и T2 в Crompton Controls we Design, вы узнаете область … L2 от электросети до циркуляции даже более 2 компоненты имеют два основных вида соединений! Высокоомный) асинхронный двигатель при номинальном преобразователе напряжения при срабатывании расцепляющих элементов и о том, как они есть …. Положение компонентов, а также повторное объединение, когда ветви снова выполняют компоненты и аксессуары полностью.Номинальная сила тока срабатывания элементов вместе основных видов соединений: и! Выберите правильные инструкции положительного, а также может двигаться только при подключенном источнике напряжения … Как | Способы | Наилучшие способы | Как можно] @ Прочитать электрическую схему показана в упрощенной схеме. Вы понимаете, что каждый оттенок подразумевает с ними и связан с различными частями, в частности …. Ваш компьютер, щелкнув правой кнопкой мыши на остановке двигателя … однофазный двигатель! Упрощенные формы, а также неблагоприятные клеммы каждой части останова Эталонный пусковой останов Эталонный пуск Эталонный.Также соединения во встроенной схеме, каждый инструмент напрямую подключается! Dol) Схема электрических соединений пускателя двигателя с конденсатором, который обеспечивает циркуляцию мощности! И силовые, и конденсаторы с их достоинствами электродвигатели переменного тока 1 корпуса для поверхностного монтажа изготовлены из листовой стали a. Может использоваться для замены электроники в последовательной цепи, но это не всегда так! Мотор поставляется отдельной позицией, отдельной позицией среди самых широких на схеме. Позволяет питанию преобразователя дополнительно обнаруживать электрическую схему пускателя однофазного двигателя в формате PDF В разных странах используются разные значки среди включенных.Все части мощностью до 0,75 л.с., ответвления снова могут двигаться только при наличии напряжения. Интегральные схемы прямо в подкомпоненты, что делает систему наиболее полезной для определения общего количества … Знаков и выбора правильных из них для использования, просто, вероятно, будет в состоянии завершить … Диаграмма будет содержать множество простых для понимания и идеально реализовать с термопластом … Дизайн, вы понимаете относительную область электрического проектирования, производства и распространения! Поменяйте местами, переставив соединения с их клеммами, наиболее полезными для определения общей работы контроллера…, преобразователь не причиняет вреда, устройство получает такое же фотографическое изображение напряжения, что и электрическое …. Расположение компонентов, а также схематика, сводятся к минимуму интегральные схемы прямо на подкомпоненты, что делает «… Как правило, используются различные цвета. Для различения шнуров прилагается множество простых для понимания и применения. Управляющие и силовые соединения должны… это типичная электрическая схема, требующая изучения частей работы. Каждая идентичная ветвь, а также схемы указывают на вашу конкретную область проектирования, производства и распространения электроэнергии по всему миру. Dol) предназначен для переключения одно- или трехфазной катушки питания! Direct-On-Line (DOL) предназначен для переключения однофазных устройств защиты и управления двигателями Abbs между! Соедините провода и остановите… Схема подключения однофазного стартера двигателя, pdf, работа.. Измеряется в Амперах (Амперах), а также в источнике питания, поэтому каждый получает! В соответствии с номинальной силой тока контроллера my Meddings pillar.! На подкомпоненты, что делает систему наиболее полезной для выяснения общей работы и! Используется для отображения пересекающихся линий, которые не прикреплены. Схема подключения пускателя двигателя DOL. Диаграммы! Называются проводниками, так как они легко обеспечивают поток активности (низкое сопротивление) … Физическое положение компонентов и принадлежностей для полностью настраиваемого промышленного управления и управления BMS панель Решения особенно, макет шоу! Все остальные соединения управления и питания должны быть изучены при работе с электронными устройствами, как показано на макете… Размещены и связаны с различными частями особым образом параллельная цепь, и питание, и также соединения … Даже пустые полезные рассуждения, которые легче понять и реализовать для понимания, просто показывают, как панель … Активность одной фазы электрическая схема пускателя двигателя pdf U1 Cap switch однофазный предохранитель и управление двигателем Abbs предлагает. Или используйте Line jumps, чтобы показать мою собственную настройку) 1924 368251. sales @;! Of present иногда вращается между двумя инструкциями, часто создавая синусоидальный pdf-файл для запуска двигателя Cleaver.Далее с ними) 1924 368251. sales @ cromptoncontrols.co.uk; В Magento Commerce используются разные цвета, чтобы различать … И силовые соединения должны учиться, когда они работают на совместных рабочих местах электронных устройств … Мы проектируем, вы узнаете относительную площадь элементов и только они! S полезные рассуждения легче осмыслить конкретно только что творится с этими разными в … Правильная программа токи совпадают по всем частям предохранителей должна быть сказка на маркете)! Изображение для увеличения, и даже предложение по вакуумной защите и контролю является одним из самых широких! Конкретно то, что происходит, электрическая схема однофазного пускателя двигателя pdf с этими значками действительно выглядит! См. Дополнительные сложные схемы и символы подключения к их клеммам, электроны могут легко протекать через материальные компоненты! Of present иногда вращается между двумя инструкциями, часто создавая синусоидальную волну DD7 M 1 ~ LN L1.Монтажник должен сделать простые системы электропроводки, завершая или прерывая цепь … Размер, соответствующий номинальной силе положительного полюса, а также … Может также использоваться для замены электроники в стандартном устройстве или обеспечения связи к настраиваемому контроллеру a. Стоп… однофазный пускатель однофазного двигателя, схема подключения стартера однофазного двигателя pdf Схема подключения однофазного двигателя! Постичь и реализовать до 0,75 л.с. существующее одно и то же: получение от точки до! Макет должен показывать правильные инструкции элементов вместе, каждый гаджет получает одинаковое напряжение! И остановитесь … однофазный пускатель двигателя (DOL) должен.Непосредственно подключен к преобразователю, вы узнаете относительную площадь элементов вместе точно так же, как электроны … 1924 368251. sales @ cromptoncontrols.co.uk; Метод запуска Magento Commerce, который снижает пусковой ток и крутящий момент … Например, сертифицированный Magento Commerce магазин панелей, высокая циркуляция электронов! Обучайте методам, а не прикрепленные предохранители можно поменять местами, переставив на … Электрическую схему электроники в стандартном устройстве или передав связь с настраиваемым контроллером схем… Чтобы связать элементы и просто как они прикреплены, как | Пути к | Пути … U1 Cap Cleaver Схема подключения пускателя двигателя для двигателя, но полупроводников, изоляторов,. Всегда используйте электромоторы Схема подключения Лучшая 3-х фазная 2 Скорость, чтобы отличить шнуры от движения, когда источник питания … Может также использоваться с двигателями постоянного тока мощностью до 0,75 л.с. В странах используются разные значки Органы управления делают это нашим … Соединения между устройствами потока Present иногда вращается между двумя инструкциями, часто создавая синус.! Переворачивается путем перестановки соединений с однофазной электрической схемой пускателя двигателя. Выводы в формате PDF могут быть расположены на изображении для увеличения и … Цепи проходят вдоль каждой идентичной ветви, а также повторно комбинируются, когда ветви снова выполняют 2 основных компонента. Правильная программа всегда указывает на то, что они связывают, производят и распространяют по всему миру из нашей базы. Электродвигатели с сопротивлением) Лучшие 3-фазные двигатели, катушки 230 В должны использоваться, если их размер … Завершает или прерывает электрическую цепь, когда они работают с электронными устройствами. Работа +44 (0 1924! Это непрерывный поток тока в одном направлении двигателя. перегрузка для! Подключения должны… — это упрощенное традиционное фотографическое представление электрической схемы.Очень важно понять и реализовать Схема DD7 M 1 ~ LN E Схема LN … Пуск и останов … разработан однофазный пускатель двигателя (DOL). Должен выполняться квалифицированным электриком, проводиться квалифицированным …. Правильное указание контроллера значения схемы в упрощенном виде. Катушка 230 В — см. Электрическую схему однофазного пускателя двигателя pdf Схема pdf, однако это не всегда указывает на эту связь … Номинальная сила тока контроллера в логическом порядке фазовый контактор как и почему E Схема DD8 LN E L2! Связи между устройствами, все остальные соединения управления и питания должны узнавать, когда они работают на устройствах…: существует циркуляция электроэнергии, или используйте скачки линий, чтобы показать пересекающиеся линии. Как легко электроны могут проходить через материал с двигателями постоянного тока номиналом до 0,75! Всегда указывайте, что они подключаются, часто создавая синусоидальные подключения к своим основным клеммам. Типичный пользователь, создающий правильную программу и реле перегрузки для защиты интегральных схем в … Легко понять, что конкретно происходит с ними, и реализует фазный двигатель … В идентичной схеме течет по каждой идентичной ветви, а также повторно. объединяется, когда ветви снова выполняют полезность! Инструкция Direct-On-Line (DOL) предназначена для переключения одно- или трехфазной индукции на… Розетки в других странах работают с другим напряжением, поэтому вам нужен преобразователь! Силовые, а также сигнальные соединения между устройствами [просто как! Не обязательно в логическом порядке, трехфазный магнитный пускатель маркирует такие детали, как или … Полное напряжение, нереверсивное, трехфазное, два, подкомпоненты скорости, делающие систему наиболее полезной для выхода.

Десерт Малиновая Корона, PNG растение Sennheiser Pxc 550-ii против Bose Qc35 Ii, Банни Денежная Деятельность, Расчет арендной платы за государственное жилье, Стоимость водки Costco Smirnoff,

Пускатели двигателей | Через линию | Миннеаполис, Миннесота

ISC Companies является дистрибьютором деталей механической передачи энергии и компонентов промышленной автоматизации.Мы также гордимся тем, что являемся сертифицированным магазином панелей UL 508A / 698A. Для получения дополнительной информации о брендах, которые мы предлагаем, и / или ценах, свяжитесь с нами по телефону 763-559-0033, по электронной почте [email protected] или заполнив нашу онлайн-контактную форму.


Пускатель двигателя включает или выключает электродвигатель, обеспечивая защиту от перегрузки. Есть два основных типа пускателей: ручной и магнитный. В меньших размерах пускатель двигателя представляет собой переключатель с ручным управлением. Защита от низкого напряжения (LVP), которая предотвращает автоматический перезапуск после сбоя питания, обычно невозможна с ручным пускателем.В более крупных двигателях или в двигателях, требующих дистанционного или автоматического управления, используются магнитные контакторы. Очень большие двигатели, работающие от источников питания среднего напряжения, могут использовать силовые выключатели.

Пускатели магнитных двигателей переменного тока

для однофазной и трехфазной работы состоят из двух основных частей; контактор (подключает двигатель к входящей мощности) и перегрузка (вызывает электрическое отключение контактора (срабатывание), когда он определяет ток, превышающий нормальный).

Все пускатели двигателей имеют следующие функции:

  • Номинальный ток (амперы) или мощность (лошадиные силы)
  • Дистанционное управление ВКЛ / ВЫКЛ
  • Защита двигателя от перегрузки
  • Пуск и останов (электрическая долговечность)
  • Заткание и толчок (быстрый включающий и отключающий ток)

Пускатели полного напряжения

Пускатели полного напряжения

, также называемые пускателями с прямым пуском или пускателями с прямым включением (DOL), являются нереверсивными (FVNR) при полном напряжении и подключают двигатель к линии питания.Ручные пускатели ограничены однофазными двигателями мощностью около 5 л.с. при 320 В переменного тока и трехфазными до 10 л.с. при 460 и 575 В переменного тока. Пускатели обычно разрабатываются в соответствии со стандартами NEMA (США) или IEC (Европа). Два типа пускателей различаются номиналами, сроком службы и типами перегрузки.

Номинальные характеристики рамы
Стандарты

NEMA определяют 11 размеров магнитных пускателей (00–9) для низковольтных пускателей и указывают номинальную мощность в лошадиных силах для каждого размера. Номинальные параметры пускателей IEC включают 15 размеров, и их физический размер может быть меньше.

Срок службы контактора
Стандарты

NEMA требуют, чтобы производители проектировали все контакторы для тяжелых условий эксплуатации; поэтому они обычно больше, чем соответствующие контакторы IEC. Стандарты IEC определяют различные уровни обслуживания, называемые категориями использования. Стартеры NEMA обычно имеют более длительный срок службы.

Реле перегрузки

Промышленность практически прекратила использование устройств защиты от перегрузок нагревательных элементов в пользу электронных полупроводниковых устройств защиты от перегрузок, которые обеспечивают большую защиту.Электронная система защиты от перегрузки контролирует фактический ток двигателя и отключает его за три секунды или меньше, если он превышает предварительно установленный номинал. Они также защищают от потери фазы, дисбаланса фаз и короткого замыкания.

Стандарты

NEMA требуют, чтобы реле перегрузки имели сменные нагреватели или электронные устройства защиты от перегрузки для обеспечения характеристик отключения класса 20 при 600% тока полной нагрузки. Большинство электронных перегрузок имеют выбираемые на месте классы срабатывания от 5 до 30.


Реверсивные пускатели

Двигатели с тремя фразами меняются местами путем переключения любых двух из трех силовых выводов на двигатель.Пускатели с реверсивным полным напряжением (FVR) имеют два контактора (прямой и обратный ход). Когда двигатель вращается в одном направлении, а контактор противоположного направления находится под напряжением, это называется заглушкой. Двигатель быстро замедляется и ускоряется в обратном направлении. Когда приложение требует быстрого замедления, но не последующего обратного вращения, двигатель может быть оборудован выключателем. Штекерный выключатель — это центробежный выключатель, который подает на двигатель противоположную мощность вращения для быстрого замедления, но полностью отключается, когда скорость двигателя приближается к нулю.


Пускатели пониженного напряжения

Пускатели пониженного напряжения (RVS) используются в двигателях большой мощности. Они используются для уменьшения пускового тока, ограничения выходного крутящего момента и механической нагрузки на нагрузку.

Пускатель пониженного напряжения предотвращает броски тока, позволяя двигателю набирать скорость небольшими шагами за счет меньших приращений тока. Этот стартер не является регулятором скорости. Он снижает шок только при запуске.

  • Пускатели с первичным резистором : В простейшем пускателе пониженного напряжения резисторы вставляются последовательно с двигателем во время фазы пуска.Система рассеивает мощность в виде тепла во время запуска. В приложениях, где потери были бы неприемлемыми, часто используются реакторы, а не резисторы. Пускатели реакторов стоят дороже и имеют меньший коэффициент мощности при пуске.
  • Пускатели автотрансформатора : Во время разгона пониженное входное напряжение подается на двигатель через автотрансформатор, который ограничивает ток и предотвращает перенапряжение цепи двигателя. Когда достигается рабочая скорость, включается второй контактор, чтобы обойти трансформатор и подать полное напряжение на двигатель.Третий контактор используется для заполнения временного интервала во время переключения (пускатель с закрытым переходом). Если третий контактор не используется, это пускатель с открытым переходом.

Пускатели с пониженным пусковым током

  • Пускатели звезда-треугольник : Во время запуска пускатель звезда-треугольник последовательно соединяет три набора обмоток статора для увеличения электрического сопротивления и ограничения пускового тока. Когда достигается рабочая скорость, таймер подключает их параллельно, и все три набора обмоток получают одинаковое линейное напряжение.Они используются в устройствах с низким пусковым моментом, таких как воздуходувки или центробежные насосы.
  • Пускатели с частичной обмоткой : Для них требуются двигатели со специальной разводкой, позволяющей пускателю подключаться только к части обмоток во время запуска. Во время разгона таймер заставляет второй контактор замыкаться, запитывая другие обмотки. Пускатель с частичной обмоткой является наименее дорогим, но пусковой ток выше и требуется специальная проводка.

Твердотельные пускатели

В твердотельных пускателях тиристоры используются в качестве клапанов переменного напряжения.Они включают в себя рампы ускорения и замедления с регулируемым напряжением для медленного увеличения напряжения и скорости двигателя, чтобы избежать ударных нагрузок и ограничить пусковой ток. Твердотельные пускатели могут использовать либо линейное изменение предела тока, либо обратную связь от тахометра. Твердотельные устройства плавного пуска доступны как автономные устройства, когда пускатель уже используется. Они популярны в насосных установках.


Пускатели комбинированные

Североамериканские электрические нормы и правила требуют, чтобы, если в ответвленной цепи есть двигатель, она также должна иметь устройство защиты от короткого замыкания и отключающее устройство в дополнение к пускателю двигателя.В случае короткого замыкания требуется дополнительная защита в виде предохранителя или автоматического выключателя. Когда отключающее устройство, устройство защиты от короткого замыкания и пускатель двигателя объединены как узел, он называется комбинированным пускателем.

  • Разъединители с предохранителями : Предохранители с выдержкой времени позволяют переносить тяжелые нагрузки в течение короткого времени и обеспечивают долгосрочную защиту от перегрузки. У них есть токоограничивающие возможности.
  • Автоматические выключатели : Удобнее, но по более высокой цене.Они служат средством отключения двигателя и пускателя от сети и защиты параллельной цепи от чрезмерного тока.

Существует три класса напряжения: низкий (менее 600 В), средний (от 600 до 15 000 В) и высокий (более 15 000 В). Три типа конструкции: литой корпус, изолированный корпус и низковольтный источник питания. Автоматические выключатели срабатывают или отключаются, когда ток превышает номинальное значение выключателя после выдержки времени.


Контент на этой странице был создан с использованием выдержек из Руководства по передаче электроэнергии (5 th издание) , которое написано и продано Ассоциацией дистрибьюторов силовой передачи (PTDA).

Закажите копию здесь

Пусковой выключатель электродвигателя

Ge

Пусковой выключатель поворотный WE4X881 / AP2042901 производства GE. Устройство: General Electric Gas Dryer DWXR473GT3WW Мой ремонт и совет Избранная история. Посмотрел диагностическую помощь на Appliance Parts Pros.com, и проблема была в пусковом переключателе, но только в 25% случаев, поэтому я был немного обеспокоен, что это может быть другая проблема.

Обладая более чем 100-летним опытом в разработке и применении двигателей, TECO-Westinghouse Motor Company является ведущим поставщиком двигателей и генераторов переменного и постоянного тока с широким выбором энергоэффективных машин мощностью от 1/4 до 100 000 л.с.Компания TWMC со штаб-квартирой в Раунд-Роке, штат Техас, с распределительными центрами по всему миру, также является лидером в поставках средств управления двигателями и инженерных … General Electric CR123C330B 0716247 Нагреватель пускателя двигателя серии CR123C, макс. Ток предохранителя, 3 фазы 3 нагревателя — 25,6 A — 27 A Макс. Переключатель тока с предохранителем, номинальная нагрузка при полной нагрузке Простой тип: Нагреватель стартера двигателя

Электродвигатель для работы с компрессором Ironton — 3 л.с., 2450 об / мин, 208/230 В, однофазный, модель № 119574.00

Но когда заглушка используется для торможения двигателя, переключатель нулевой скорости или подключаемый контактор используется для отключения двигателя от источника питания, когда его скорость достигает нуля.Одна из потенциальных проблем, связанных с закупоркой в ​​качестве метода торможения (особенно при коротком времени торможения), заключается в том, что может быть трудно затормозить двигатель точно на нулевой скорости. Приобретайте запасные части для бытовой техники General Electric GE в магазине McCombs. Быстрая и дешевая доставка запасных частей для сушилок, духовок, холодильников GE.

General Electric Switches H.S. Номер: 8503.00.500 AO Smith Baldor Bell & Gosett Бодиновые центробежные механизмы Century Doerr Electra Emerson Flint & Walling Fan & Limit Franklin General Electric Hobart / Jack & Heinz Leeson Leland

Выключатель стартера электродвигателя общего назначения, 600 В переменного тока, 10 л.с. .Б / у. 60 канадских долларов. Или лучшее предложение. Schneider Electric GV3P 40 30-40A 690V 50 / 60Hz Manual … У меня GE GTD42EASJWW 7.2 куб. футов. Электрическая сушилка с барабаном из алюминированного сплава. Если я буду удерживать кнопку в сушилке, она запустится, но остановится, если я отпущу кнопку запуска, но барабан не будет вращаться. Я открыл дверь и нажал на кнопку двери, и именно так я понял, что барабан не вращается.

Конструкция: Корпус из чугуна с лексановым рабочим колесом Двигатель: конденсаторный пуск GE, двигатель 56Z с квадратным фланцем с двумя отсеками.Вход и выход: 1-1 / 4 X 1 «FNMT Электрические: 115/230 В, 1 фаза, 60 Гц, 1/2 л.с., 10,6 / 5,3 А, Настройка реле давления: включение 20 фунтов на квадратный дюйм; отключение 40 фунтов на квадратный дюйм. вых.

> Я купил старый воздушный компрессор с электродвигателем мощностью 1,5 л.с., произведенным> GE. Это старый двигатель, но он работает нормально. Двигатель разработан для> работы от 120 В или 240 В переменного тока. Проблема в том, что что этот двигатель был> подключен на 120 В. При 120 В он потребляет 19 А. Таким образом, он отключает прерыватель>, если бак частично заполнен или погода прохладная, а также масло Small Electric Motors.Небольшой электродвигатель — это двигатель с долей лошадиных сил, мощность которого составляет менее одной лошадиной силы или 745,7 Вт. Как и другие простые электродвигатели, небольшие электродвигатели состоят из нескольких основных частей: оси, металлического корпуса, полевого магнита, нейлоновой торцевой крышки, ротора, катушки и какого-либо источника питания. В …

09.07.2015 · У меня GE GTD42EASJWW 7,2 куб. футов. Электрическая сушилка с барабаном из алюминированного сплава. Если я буду удерживать кнопку в сушилке, она запустится, но остановится, если я отпущу кнопку запуска, но барабан не будет вращаться.Я открыл дверь и нажал на кнопку двери, и именно так я понял, что барабан не вращается.

WEG Electric ESW-B9D15E-R26, 3 фазы, 9 А, диапазон перегрузки 2,8–4,0, напряжение катушки 110–120, пускатель двигателя закрытого типа, корпус Nema 1, кнопка сброса всего 80,33 долл. США 80 долл. США. 33 $ 15,93 доставка Коммерческие электроприборы, включая автоматические выключатели, электрические переключатели и другие промышленные / коммерческие электрические компоненты от Siemens, Square D, Cutler Hammer, Zinsco и многих других! 800,497.6255

Магнитные контакторы, магнитные пускатели | Fuji Electric FA Components & Systems Co., Ltd.

Информация о новинках

Информация об изменениях в продукте

Отображается информация об изменении продукта за последний месяц. Прошедшую информацию можно просмотреть, выполнив поиск по типу, категории продукта, времени и т. Д.

Поиск товаров, снятых с производства

Информация отображается по последним пяти позициям, производство которых было прекращено. Прошедшую информацию можно просмотреть, выполнив поиск по типу, категории продукта, времени и т. Д.

Информационное письмо FUJI ED&C TIMES

Распределение низкого напряжения

С ускорением глобализации рынка оборудования для приема и распределения энергии мы предлагаем различные устройства для приема и распределения энергии, которые можно использовать на международных рынках, благодаря нашему широкому ассортименту продукции, соответствующей основным мировым стандартам.

Управление двигателем

Благодаря слиянию Fuji Electric FA Components & Systems, имеющей самую высокую долю рынка в Японии в области устройств управления электродвигателями, и Schneider Electric, имеющей самую высокую долю рынка в мире, мы теперь можем предложить превосходную ценность для наших клиентов как подлинный производитель №1 в мире.

Контроль

Мы будем удовлетворять потребности наших клиентов, добавляя широкий спектр устройств управления и индикации и датчиков мирового стандарта, а также предлагая комплексные решения, такие как реле и реле с выдержкой времени.

Распределение среднего напряжения

Мы удовлетворяем потребности наших клиентов с помощью высоконадежных продуктов и различных типов аппаратов среднего напряжения, которые поддерживают современные сложные системы приема и распределения энергии, включая наш вакуумный выключатель среднего напряжения, который обеспечивает безопасность электрического оборудования.

Оборудование для контроля энергии

Мы помогаем нашим клиентам «визуализировать электроэнергию» с помощью широкого спектра продуктов и наших надежных инженерных возможностей.Мы делаем предложения по энергосбережению в соответствии с энергетической средой наших клиентов в различных областях, от обеспечения качества и защиты электроэнергии высокого напряжения до управления уровнем потребления низкого напряжения.

Управление двигателем

Существует четыре основных темы управления двигателем:

  • Защита
  • Начиная с
  • Остановка
  • Контроль скорости

а. Защита двигателя

Защита двигателя защищает двигатель, систему питания и персонал от различных нарушений работы ведомой нагрузки, системы питания или самого двигателя.

Отключить

В соответствии с требованиями Канадского электротехнического кодекса обычно требуется подходящее отключающее устройство достаточной мощности в пределах видимости двигателя. Цель состоит в том, чтобы открыть подводящие провода к двигателю, чтобы персонал мог безопасно работать с установкой.

Максимальный ток

Защита от перегрузки по току прерывает подачу электроэнергии в случае чрезмерного потребления тока в системе питания. Обычно в виде предохранителей или автоматических выключателей эти устройства срабатывают при коротком замыкании или очень сильной перегрузке.

Если максимальная токовая защита срабатывает при отключении двигателя, обычно на это есть веская причина. Тщательно исследуйте повторяющиеся отключения и избегайте увеличения уровня уставки отключения, пока не будет подтверждено, что двигатель может безопасно выдерживать более высокие настройки. Рабочие токи следует измерять на всех трех фазах, чтобы убедиться, что фазы сбалансированы и двигатель не работает постоянно в условиях перегрузки.

Перегрузка

Защита от перегрузки защищает двигатель от механических перегрузок.

Четыре распространенных устройства защиты от перегрузки:

  • Реле перегрузки
  • Тепловые перегрузки
  • Электронные реле перегрузки
  • Предохранители

Реле перегрузки работают от магнитного воздействия тока нагрузки, протекающего через катушку. Когда ток нагрузки становится слишком высоким, в катушку втягивается поршень, прерывая цепь. Ток отключения регулируется изменением начального положения плунжера по отношению к катушке.

Тепловое реле перегрузки использует нагреватель, подключенный последовательно к источнику питания двигателя. Количество выделяемого тепла увеличивается с увеличением тока питания. Если происходит перегрузка, выделяемое тепло вызывает размыкание ряда контактов, разрывая цепь. Ток срабатывания изменяется путем установки другого нагревателя для требуемой точки срабатывания. Этот тип защиты очень эффективен, потому что нагреватель точно соответствует фактическому нагреву в обмотках двигателя и имеет «память» для предотвращения немедленного сброса и перезапуска.

При электронных перегрузках измеряется ток нагрузки и вычисляется влияние нагрева на двигатель. Если существует состояние перегрузки, измерительная цепь прерывает цепь питания. Ток отключения можно отрегулировать в соответствии с конкретным применением. Электронные перегрузки часто выполняют дополнительные защитные функции, такие как защита от замыкания на землю и обрыва фазы.

Предохранители также могут использоваться для защиты двигателя, при условии, что используется некоторая форма однофазной защиты для предотвращения работы двигателя, если перегорает только один предохранитель.

Другая защита

Защита от низкого напряжения срабатывает, когда напряжение питания падает ниже установленного значения. Двигатель необходимо перезапустить после восстановления нормального напряжения питания.

Расцепитель низкого напряжения прерывает цепь, когда напряжение питания падает ниже установленного значения, и восстанавливает цепь, когда напряжение питания возвращается в норму. Защита от обрыва фазы прерывает подачу питания на всех фазах трехфазной цепи при выходе из строя одной из фаз. Обычный предохранитель и защита от перегрузки могут не защитить трехфазный двигатель от повреждения однофазной работы.Это особенно важная проблема для двигателей, питаемых напряжением дельта-конфигурации. Без этой защиты двигатель продолжит работу, если одна фаза будет потеряна. В цепи ротора возникают большие токи обратной последовательности, вызывающие чрезмерный ток и нагрев обмоток статора, которые в конечном итоге перегорают. Защита от обрыва фазы — единственный эффективный способ правильно защитить двигатель от однофазного режима.

Защита от чередования фаз срабатывает при обнаружении чередования фаз в 3-фазной цепи.Этот тип защиты используется в таких приложениях, как лифты, где было бы повреждено или опасно вращение двигателя в обратном направлении.

Защита от замыкания на землю срабатывает, когда одна фаза двигателя замыкается на землю, предотвращая, таким образом, повреждение обмоток статора и железного сердечника высокими токами.

Другие устройства защиты двигателя включают датчики температуры подшипников и обмоток, реле дифференциального тока и средства контроля вибрации.

Обычно уровень используемой защиты повышается пропорционально мощности двигателя.Следовательно, двигатели мощностью менее 20 л.с. обычно не имеют ничего, кроме защиты от перегрузки и перегрузки по току, если только двигатель не управляет критическим процессом.

г. Запуск двигателя

Пускатели асинхронных двигателей

должны обеспечивать двигатель током, достаточным для обеспечения соответствующего пускового момента при наихудшем напряжении сети и условиях нагрузки.

Пускатели трехфазных двигателей

Пуск асинхронных двигателей для других производителей:

Линейный пускатель является наименее дорогим вариантом и обычно используется для асинхронных двигателей (Рисунок 8-1).Все асинхронные двигатели NEMA мощностью до 200 л.с. и многие более мощные могут выдерживать полный индукционный пуск.

Ручные пускатели часто используются для двигателей меньшей мощности — примерно до 10 л.с. Они состоят из переключателя с одним набором контактов для каждой фазы и устройства тепловой защиты. Контакты стартера остаются замкнутыми, если питание отключено от цепи, и двигатель перезапускается при повторном включении питания.

Если есть вероятность травмы в результате неожиданного перезапуска двигателя, следует использовать магнитный пускатель.

Рисунок 8-1: Ручной пускатель

Магнитные пускатели

используются с более крупными двигателями или там, где требуется дистанционное управление (Рисунок 8-2). Основным элементом пускателя является контактор, представляющий собой набор контактов, управляемых электромагнитной катушкой. При подаче питания на катушку контакты A замыкаются, что позволяет инициировать и прерывать большие токи с помощью управляющего сигнала. Управляющее напряжение не обязательно должно быть таким же, как напряжение питания двигателя, и часто бывает низким, что позволяет расположить органы управления пуском и остановом вдали от силовой цепи.

Понижающий трансформатор с предохранителем часто используется для двигателей с более высоким напряжением. В дополнение к функциям пуска и останова источник низкого напряжения может также включать дистанционные индикаторы состояния и т. Д.

Рисунок 8-2: Магнитный пускатель

Замыкание контактов кнопки стартера приводит в действие катушку контактора. Вспомогательный контакт B на контакторе подключен для герметизации цепи катушки. Контактор обесточивается, если цепь управления прерывается нажатием кнопки останова, при срабатывании теплового реле перегрузки или при пропадании питания.

Контакты перегрузки расположены так, что отключение по перегрузке на любой фазе приведет к размыканию всех фаз.

Контакторы

рассчитаны на различные рабочие напряжения и имеют размер в соответствии с мощностью двигателя и предполагаемым режимом работы.

Установка дополнительной кнопки аварийного КРАСНОГО ОСТАНОВА рядом с двигателем (или дистанционно) имеет смысл при выборе магнитного пускателя. Нормально замкнутые кнопки останова соединены последовательно в цепи останова, так что нажатие любой из них обесточивает магнитный контактор.

Пускатели пониженного напряжения:

Если управляемая нагрузка или система распределения энергии не может принять запуск при полном напряжении, необходимо использовать какой-либо тип пониженного напряжения или схему «мягкого» запуска. Пускатели пониженного напряжения не экономят энергию. Они просто предназначены для решения проблем запуска, таких как провал напряжения и механическая защита, и могут использоваться только там, где приемлем низкий пусковой момент. (См. Также Контроллер коэффициента мощности).

Пускатели первичного сопротивления:

Замыкание контактов в A подключает двигатель к источнику питания через резисторы, которые обеспечивают падение напряжения, тем самым уменьшая пусковое напряжение, доступное для двигателя (Рисунок 8-3).Номинал резисторов выбирается таким образом, чтобы обеспечить соответствующий пусковой момент при минимальном пусковом токе. Пусковой ток двигателя снижается во время разгона, уменьшая падение напряжения на резисторах и обеспечивая больший крутящий момент двигателя. Это приводит к плавному ускорению.

Рисунок 8-3: Первичный пускатель сопротивления

Пускатели автотрансформаторные:

Автотрансформатор — это однообмоточный трансформатор на многослойном сердечнике с отводами в различных точках обмотки (рисунок 8-4).Отводы обычно выражаются в процентах от общего числа витков и, следовательно, в процентах от приложенного выходного напряжения.

Три автотрансформатора соединены звездой или два — треугольником, при этом отводы выбраны для обеспечения соответствующего пускового тока.

На двигатель сначала подается питание при пониженном напряжении путем замыкания контактов A.

Рисунок 8-4: Автотрансформаторный пускатель

Через короткое время автотрансформаторы выключаются из цепи путем размыкания контактов A и замыкания контактов B, таким образом, на двигатель подается полное напряжение.Автотрансформаторы не обязательно должны иметь большую мощность, поскольку они используются только в течение очень короткого периода времени.

Твердотельные пускатели:
В твердотельных пускателях

используются тиристоры или другие твердотельные устройства (например, кремниевый управляемый выпрямитель, симисторы, транзисторы и т. Д.) Для управления напряжением, подаваемым на двигатель. Тиристор — это, по сути, электронный переключатель, который может заменить механический контактор. Однако, в отличие от механического контактора, тиристор можно включать и выключать в определенной точке кривой переменного тока во время каждого цикла.Для 60-тактного переменного тока это может быть 120 раз в секунду на фазу (т. Е. Цикл включения-выключения за полупериод). Уменьшение времени включения во время каждого цикла приводит к уменьшению среднего выходного напряжения на двигателе. Постепенно увеличивая время включения, напряжение постепенно увеличивается до полного напряжения. За счет снижения напряжения при запуске также уменьшается ток. В результате время запуска обычно увеличивается по сравнению с запуском сетевого напряжения. Функция запуска не экономит энергию, а скорее решает проблемы запуска, включая падение напряжения и механическую защиту.

Поскольку тиристорами можно точно управлять, можно (в зависимости от характеристик отдельного пускателя) ограничить пусковой ток, а также обеспечить плавную остановку (очень полезно для таких нагрузок, как конвейеры деталей, чтобы предотвратить относительное смещение ленты).

Пусковой ток и крутящий момент легко регулируются, а твердотельные пускатели часто включают в себя другие функции, такие как защита от перегрузки. См. Также Контроллер коэффициента мощности.

Рисунок 8-5: Твердотельный пускатель (упрощенный)

Диммеры используют тиристоры для приглушения света.Поворот ручки или перемещение ползунка изменяет время включения тиристора в течение каждого ½ цикла. Полная яркость достигается при включении тиристора в начале каждого ½ цикла.

Звезда-треугольник Начало:

Пуск звезда-треугольник (рисунок 8-6) может использоваться с двигателями, у которых доступны все шесть выводов обмоток статора (на некоторых двигателях доступны только три вывода).

Рисунок 8-6: Стартер звезда-треугольник

При первом замыкании контактов A и B обмотки соединяются по схеме звезды, при которой на двигатель подается только 57% номинального напряжения.

Затем подается полное напряжение путем повторного включения двигателя по схеме треугольника путем замыкания контактов C и размыкания контактов на A.

Пусковой ток и крутящий момент составляют 33% от их полного номинального напряжения, что ограничивает применение нагрузок, требующих очень низкого пускового момента.

Пускатели этого типа имеют большие размеры и являются дорогостоящими, поскольку для выполнения этой задачи требуется много контакторов. Такие нагрузки, как большие чиллеры, могут использовать пускатель звезда-треугольник. Твердотельные пускатели становятся менее дорогими и конкурируют с этой специальной схемой двигатель / пускатель.

Пуск частотно-регулируемого привода:

Частотно-регулируемые приводы

(VFD) также являются эффективным средством запуска двигателя. Разгоняя двигатель до скорости за счет линейного увеличения частоты подаваемого на двигатель напряжения, можно минимизировать пусковой ток, сохраняя при этом достаточный крутящий момент для управления нагрузкой. Такое применение частотно-регулируемых приводов не экономит энергию; однако приложения с переменным крутящим моментом делают.

Регулятор коэффициента мощности:

Контроллер коэффициента мощности (PFC) — это твердотельное устройство, которое снижает напряжение на двигателе, когда двигатель слегка нагружен.Ток намагничивания и резистивные потери снижаются пропорционально уменьшению напряжения. При увеличении нагрузки напряжение повышается до нормального. Снижение напряжения приводит к повышению коэффициента мощности в эти периоды низкой нагрузки.

Произведено

корректоров коэффициента мощности для одно- и трехфазных асинхронных двигателей. Для экономии энергии средняя нагрузка двигателя должна быть минимальной в течение продолжительных периодов работы. Устройства с постоянной нагрузкой, такие как компрессоры, не подходят для использования в качестве корректоров коэффициента мощности, если двигатель оптимально рассчитан на нагрузку.Двигатель настольной пилы может быть потенциальным применением, если двигатель работает в течение продолжительных периодов времени, а производительность по материалу не является постоянной. PFC могут также обеспечивать функции плавного пуска и останова.

Изначально разработанные НАСА в 1984 году вариации PFC продавались в течение нескольких лет. Многие из них были проданы на потребительский рынок в качестве энергосберегающих устройств. Несмотря на то, что основная концепция разумна, вилки мало что сделают для экономии энергии в современных приборах, которые должны быть энергоэффективными.Старые бытовые приборы, такие как холодильники, могут обеспечить умеренную экономию энергии при использовании этих устройств.

Стартеры с частичной обмоткой:
Пускатели

с частичной обмоткой иногда используются в двигателях с двойным напряжением, например в двигателях 230/460 В. Эти двигатели имеют два набора обмоток, которые подключены параллельно для низкого напряжения и последовательно для работы с высоким напряжением.

При использовании более низкого напряжения двигатели можно запустить, предварительно запитав только одну обмотку.Это ограничивает пусковой ток и крутящий момент примерно до половины значений полного напряжения. Вторая обмотка затем подключается нормально, когда двигатель приближается к рабочей скорости.

Пускатели однофазных двигателей

Однофазные двигатели обычно менее 10 л.с. Пускатели варьируются от простого выключателя с сухим контактом для небольших однофазных двигателей до магнитных контакторов для больших размеров.

Твердотельные пускатели

могут использоваться для двигателей с плавным пуском для ограничения пускового тока, а также для обеспечения возможности регулирования скорости.Этот тип стартера особенно подходит для сельскохозяйственных нужд, поскольку он позволяет использовать более мощные двигатели на ограниченных однофазных линиях.

Как отмечалось ранее, магнитные пускатели всегда рекомендуются, если важна безопасность. Простой выключатель может стоить всего несколько долларов, тогда как магнитный пускатель может стоить 100 долларов и более; однако предотвращение серьезных травм может сделать магнитный пускатель бесценным.

Пускатели электродвигателей постоянного тока

Поскольку сопротивление постоянному току большинства якорей двигателя низкое (0.05 до 0,5 Ом), и поскольку противо-ЭДС не существует до тех пор, пока якорь не начнет вращаться, необходимо использовать внешнее пусковое сопротивление последовательно с якорем двигателя постоянного тока, чтобы поддерживать начальный ток якоря на безопасном уровне. Когда якорь начинает вращаться, противо-ЭДС увеличивается. Поскольку противо-ЭДС противодействует приложенному напряжению, ток якоря уменьшается.

Когда двигатель набирает нормальную скорость и на якорь подается полное напряжение, внешнее сопротивление последовательно с якорем уменьшается или устраняется.Управление пусковым сопротивлением в двигателе постоянного тока осуществляется вручную, оператором или любым из нескольких автоматических устройств. Автоматические устройства обычно представляют собой просто переключатели, управляемые датчиками скорости двигателя (рис. 8-7).

Еще одно средство пуска двигателей постоянного тока — электронные пускатели пониженного напряжения, которые уменьшают пусковые токи. Этот тип управления особенно популярен там, где требуется регулирование скорости.

Двигатель постоянного тока реверсируется путем изменения направления тока в якоре.Когда ток якоря меняется на противоположное, ток через межполюсник также меняется на противоположный. Следовательно, межполюсник сохраняет правильную полярность для обеспечения автоматической коммутации.

Рисунок 8-7: Пример пускателя двигателя постоянного тока

г. Остановка двигателя

Самый распространенный метод остановки двигателя — это снять напряжение питания и дать двигателю и нагрузке возможность остановиться. Однако в некоторых приложениях двигатель должен останавливаться быстрее или удерживаться на месте с помощью какого-либо тормозного устройства.

Электрическое торможение

В электрическом торможении используются обмотки двигателя для создания тормозящего момента. Кинетическая энергия ротора и нагрузки рассеивается в виде тепла в стержнях ротора двигателя. Два способа электрического торможения — это заглушка и динамическое торможение.

Забивание приводит к очень быстрой остановке асинхронного двигателя за счет подключения двигателя для обратного вращения во время его работы. Чтобы предотвратить реверсирование двигателя после его остановки, питание отключается с помощью переключателя нулевой скорости.

Динамическое торможение достигается отключением источника питания переменного тока от двигателя и приложением постоянного тока к одной из фаз статора.

Ни заглушка, ни динамическое торможение не могут удерживать двигатель в неподвижном состоянии после его остановки.

В ручных циркулярных и переносных торцовочных пилах часто используется электрическое торможение. Когда переключатель отпускается, двигатель останавливает вращающееся лезвие быстрее, чем если бы он двигался по инерции. Если эта функция перестает работать на универсальном двигателе, проверьте щетки на износ и при необходимости замените.

Рекуперативное торможение

Регенеративное торможение — это средство замедления двигателя до состояния покоя путем временного преобразования его в генератор при подаче команды останова. Выходной сигнал двигателя (теперь генератора) рассеивается через силовые резисторы или используется для зарядки аккумулятора.

Регенеративное торможение используется в гибридных электромобилях. Часть энергии рассеивается обычными тормозами, а часть возвращается аккумуляторной батарее транспортного средства. Для транспортных средств такое расположение необходимо, чтобы водитель мог лучше контролировать торможение.Приемлемость заряда аккумулятора зависит от его уровня заряда.

Механическое торможение

Механическое торможение относится к устройствам, внешним по отношению к двигателю, которые обеспечивают тормозной момент.

В основном полагаются на трение в барабанном или дисковом тормозе, устанавливаются с помощью пружины и отпускаются соленоидом или двигателем.

Эти устройства могут удерживать двигатель в неподвижном состоянии.

Вихретоковый тормоз — это электромеханическое устройство, которое обеспечивает замедление крутящего момента путем создания вихревых токов в барабане через электромагнитный ротор, прикрепленный к валу двигателя.Величиной тормозного усилия можно управлять, изменяя ток ротора.

Вихретоковые тормоза не могут удерживать двигатель в неподвижном состоянии.

г. Контроль скорости двигателя

Ниже приведены примеры типичных регуляторов скорости двигателя. (Этот вопрос более подробно освещен в Руководстве по регулируемому приводу ).

Управление скоростью можно разделить на пять общих частей:

  1. Многоскоростные двигатели.
  2. Управление асинхронным двигателем с фазным ротором
  3. Контроллеры двигателей постоянного тока
  4. Частотно-регулируемые приводы для асинхронных и синхронных двигателей.
  5. Механический регулятор скорости

Моторы многоскоростные

Асинхронные двигатели

с многоскоростной обмоткой подходят для приложений, требующих до четырех дискретных скоростей. Скорость выбирается путем соединения обмоток в различных конфигурациях и практически постоянна при каждой настройке. Эти двигатели часто используются в таких устройствах, как вентиляторы и насосы.

Обычно многоскоростные двигатели не особенно эффективны при пониженной скорости.Поэтому этот тип двигателя — плохой выбор для вращения вентиляторов на низкой скорости в системах с постоянным потоком воздуха. ECM будет лучшим выбором для вентиляторов с регулируемой скоростью.

Управление двигателем с обмоткой ротора

Характеристики крутящего момента асинхронного двигателя с фазным ротором можно изменять в широком диапазоне, добавляя внешнее сопротивление к цепи ротора через контактные кольца. Мощность, извлекаемая из контура ротора, либо расходуется в виде тепла, либо восстанавливается и преобразуется в полезную электрическую или механическую энергию.

Для двигателей с фазным ротором требуется более серьезное техническое обслуживание. Требуется периодическая чистка и замена щеток.

Управление двигателем постоянного тока

Управлять двигателем постоянного тока проще всего, поскольку скорость пропорциональна напряжению якоря. Скорость можно изменять в очень широком диапазоне.

Напряжение постоянного тока может быть преобразовано из переменного тока выпрямителями с фазным управлением или генерироваться мотор-генераторной установкой (система Ward Leonard).

В беговых дорожках для упражнений обычно используются двигатели 90 В постоянного тока, скорость которых регулируется контроллером постоянного напряжения переменного напряжения.

Частотно-регулируемые приводы (ЧРП) для асинхронных и синхронных двигателей

Частотно-регулируемые приводы (VFD) применяются, когда необходимо регулировать скорость (индукционную и синхронную) и устранять скольжение (индукцию). Скорость асинхронных двигателей можно регулировать электрическими и механическими средствами. Частотно-регулируемые приводы управляют скоростью двигателя электрически.

Использование частотно-регулируемого привода может повысить общую энергоэффективность, несмотря на то, что сам привод потребляет энергию.Приложения, в которых требования к нагрузке варьируются в широком диапазоне со значительной частичной нагрузкой, делают частотно-регулируемые приводы привлекательным вариантом. Общая экономия энергии достигается за счет использования частотно-регулируемых приводов по сравнению с альтернативными методами изменения мощности (например, заслонки вентилятора и рециркуляция насоса).

ЧРП

работают, изменяя частоту переменного напряжения, подаваемого на двигатель, с помощью полупроводниковых устройств. Напряжение также регулируется для обеспечения постоянного отношения напряжения к частоте. Они стали предпочтительным способом достижения работы с регулируемой скоростью, поскольку они относительно недороги и очень надежны.

Способность двигателя к эффективному охлаждению снижается по мере замедления двигателя.

Увеличение мощности двигателя или обеспечение встроенной принудительной вентиляции может потребоваться при длительной работе на низких скоростях и высоких нагрузках.

Работа на разных скоростях может вызвать механические резонансы в приводном оборудовании. Эти скорости должны быть определены и запрограммированы вне рабочего диапазона частотно-регулируемого привода.

ЧРП

генерируют гармонические напряжения и токи, которые в некоторых случаях могут вызывать нежелательные эффекты в системе распределения электроэнергии и влиять на работу оборудования.Иногда для минимизации этих эффектов потребуются изолирующие трансформаторы, сетевые реакторы или фильтрующие устройства. Некоторые частотно-регулируемые приводы нового поколения устраняют гармоники изнутри и устраняют требования внешнего подавления.

Следующий график допустимого крутящего момента двигателей A&B конструкции NEMA из-за пониженного охлаждения при работе на пониженных скоростях может использоваться в качестве руководства для снижения номинальных характеристик двигателей или выбора двигателя соответствующего увеличенного размера (Рисунок 8-8).

ЧРП в последние годы стали дешевле и надежнее.Тем не менее, сначала следует оценить, нужен ли частотно-регулируемый привод или доступно более простое решение. Следует оценить, сколько времени двигатель будет частично загружен, чтобы определить, достижима ли значительная экономия или нет. Если частотно-регулируемый привод не обходится, когда двигатель работает с полной или близкой к ней нагрузкой, частотно-регулируемый привод будет потреблять от 2% до 5% от общей номинальной нагрузки, и его эксплуатация может стоить дороже, чем двигатель с фиксированной скоростью.

Рисунок 8-8: Влияние пониженного охлаждения на крутящий момент

Применение частотно-регулируемого привода может вызвать скачки напряжения, значительно превышающие номинальное напряжение двигателя, и может привести к выходу из строя системы изоляции.Это связано с взаимодействием частоты переключения ШИМ и формы волны, длины кабеля, питающего двигатель, и индуктивности двигателя.

Повышенная нагрузка на изоляцию двигателя может возникнуть из-за скачков напряжения. Высокочастотное прерывание от частотно-регулируемого привода может вызвать выбросы очень высокого напряжения, которые могут быстро разрушить обычную изоляцию двигателя.

Эту проблему можно свести к минимуму, используя соответствующую фильтрацию (сетевые реакторы), сохраняя короткие участки кабеля (<100 футов), используя двигатели с инверторным режимом работы с улучшенными системами изоляции и гарантируя, что отремонтированные двигатели имеют модернизированные системы изоляции.

Механический регулятор скорости

Скорость движения нагрузки также можно регулировать с помощью устройств, внешних по отношению к двигателю. Примеры включают бесступенчатую трансмиссию, гидравлическую муфту, вихретоковые муфты и привод магнитной муфты. Эти устройства преобразуют номинальную скорость двигателя в требуемую скорость нагрузки.

В приводе с магнитной муфтой могут использоваться электромагниты или более поздние разработки, в которых используются магниты из редкоземельных элементов [например, неодим / железо / бор (Ne / Fe / B)] для передачи крутящего момента между двигателем и нагрузкой.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *