Закрыть

Схема подключения фотореле для уличного освещения: Как подключить фотореле для уличного освещения

Содержание

3 схемы подключения датчика света

Фотореле, датчик света или как его еще называют датчик день-ночь, необходим для автоматического управления светильниками без вашего участия, в зависимости от уровня освещенности.

Стемнело на улице – фонарь сам собой включился. Утром при восходе солнца отключился.

От него же можно запитывать рекламные баннеры и вывески на фасадах домов и магазинов.

Кто-то в этом деле использует реле времени или таймер-розетки. Однако в связи с постоянным изменением продолжительности светового дня, такие девайсы придется постоянно перенастраивать.

Поэтому полноценной альтернативой датчикам света их считать никак нельзя.

Настройка датчика света

Кроме того, у фотореле есть собственная регулировка чувствительности. Вы можете вручную задать тот или иной порог срабатывания.

То есть, будет фонарь срабатывать при полной темноте уже ночью, или вечером, когда только-только начинает смеркаться.

На популярных моделях фотореле от ИЭК ФР-601 и ФР-602 регулятор расположен в основании и поворачивается в диапазоне от “+” до “-”.

Если вы его выкрутите на максимальный “+”, то фотореле будет срабатывать в сумерках или при плохой погоде (небо в тучах). По техническим характеристикам эта регулировка соответствует примерно 50 Люкс.

Если убрать его в крайнее положение на “-”, то датчик сработает только в полной темноте (освещенность 5 Люкс).

Обычно его устанавливают в среднее положение.

Крутилки эти довольно нежные и при чрезмерном усилии легко ломаются. Так что будьте осторожны, в особенности регулируя чувствительность на морозе.

При этом обратите внимание на важный нюанс.

Ошибка №1

Настраивать фотореле следует именно на улице, а не в помещении.

В комплекте с датчиком всегда идет черный пакетик для проверки работоспособности. Накрыли им колпак прибора – реле сработало.

Так вот, у многих моделей чувствительные фотоэлементы, расположенные внутри корпуса, могут реагировать помимо освещенности еще и на ультрафиолет в составе солнечных лучей.

Дома за счет остекления 80% УФ-лучей гасится, а на улице – нет. Поэтому настройка в домашних условиях с созданием искусственного затемнения, может отличаться от реальной уличной настройки.

Когда не хватает диапазона, некоторые применяют смекалку и для дополнительной регулировки используют фольгу. Ею обматывают датчик (полностью или наполовину), и тем самым, добиваются изначально большего значения затемнения.

Схема подключения напрямую

Для подключения датчика света используется трехпроводная схема. Она означает, что вам необходимо подать на прибор полноценные 220В (фазу+ноль), а не только фазу.

Практически такая же схема используется и для датчиков движения. Правда там есть варианты и двухпроводного подключения без ноля.

Куда подключать фазу, а куда ноль? В этом деле можете ориентироваться по цветам.

Обычно один из проводов должен быть синего или зеленого цвета – это ноль.

Два других проводника также отличаются расцветкой. Например, один будет коричневым (черным), другой – красным.

Коричневый – это входная фаза от автомата питания. Третий провод (красный) – это выход на нагрузку. На нем фаза появляется только в момент срабатывания фотореле.

Ее как раз-таки и нужно заводить в светильник.

Заводские провода на датчике коротковаты, поэтому их приходится удлинять. Приготовьте заранее клеммы или гильзы для прессовки.

Наращивание производится кабелем сечением 1,5мм2. Общее соединение всех проводников должно осуществляться в защитной распредкоробке.

Вот как будет выглядеть такая схема подключения напрямую от выключателя расположенного в распредщитке.

Схема подключения через выключатель

Если вы захотите установить еще один промежуточный одноклавишный выключатель, дабы не бегать каждый раз в щитовую для отключения света, то схема соединения проводов фотореле немного изменится:

В распредкоробку будет заходить 4 кабеля. Фаза питания будет поступать по следующей цепочке:

  • автомат в щитовой
  • выключатель света

Где устанавливать?

Обратите внимание на место установки фотореле.

Ошибка №2

При любой схеме подключения сам датчик не должен попадать в зону освещения светильника.

Поэтому в 90% случаев фотореле размещают над фонарем.

Если позволяет корпус прожектора, то можно даже закрепить непосредственно на нем.

В противном случае вся схема будет работать некорректно и возможны самопроизвольные срабатывания и моргания.

При этом на кратковременные вспышки, например свет фар от проезжающих машин, реле реагировать не должно, благодаря выставленной на заводе задержке по времени.

Если нет никакой возможности спрятать датчик как можно дальше от светильника, то хотя бы прикройте корпус со стороны фонаря фанерой или другой непрозрачной перегородкой.

Также некорректная работа возможна по истечении длительной эксплуатации. Связано это с тем, что колпачок фотореле постепенно загрязняется и темнеет, пропуская со временем уже другое количество солнечных лучей через себя.

В результате резко меняются пороги срабатывания. Если это обычная грязь и пыль, то проблема легко решается влажной очисткой. А вот когда чернеет от времени пластик, тут уже поможет только замена защитного колпачка или всего прибора целиком.

Еще часто в таких реле сгорает стабилитрон. Это их главное слабое место.

Также при выборе фотореле обращайте внимание на температуру эксплуатации. К примеру, те же ФР-601 хорошо работают до -25С, а потом у них начинаются проблемы.

В этом случае вам опять поможет обычный выключатель света. Только в схеме его нужно подключать иначе, чем рассматривалось выше.

Фаза через него должна проходить напрямую к светильнику. Это своего рода перемычка на тот случай, если датчик не сработал или вышел из строя.

Свет будет зажигаться обычным щелчком выключателя, ровно также, как и все лампочки у вас дома.

Также в паспортных данных таких фотореле указана степень защиты — IP44.

Это означает, что датчики можно спокойно использовать на улице. Они защищены от брызг и капель дождя.

Однако обращайте внимание на правильное расположение прибора.

Ошибка №3

Например, отдельные модели можно устанавливать только вниз «головой»!

У них в защитной крышечке присутствует отверстие, через которое влага запросто может проникать во внутрь устройства.

Работа датчика света наоборот

А если вам для каких-то нужд понадобится, чтобы реле работало в реверсном режиме? Подавало напряжение и включало нагрузку днем, а выключало ночью.

Например, для освещения в сарае с животными, где нет окон. Что делать в этом случае?

Тогда идете в ближайший магазин и покупаете промежуточное реле, у которого один из контактов замыкается, а другой размыкается при срабатывании.

Все что вам нужно будет сделать, это подключать данное промежуточное реле после датчика света по нижеприведенной схеме.

В качестве такого реле может выступать и пускатель с доп.контактами.

Схема подключения через пускатель

Также пускатель понадобится при управлении освещением с мощной нагрузкой. Допустим это не одна лампочка, а полноценные уличные прожекторы или фонари с ДРЛ, ДНаТ или другими мощными источниками света.

Стандартное фотореле от того же IEK ФР-601, рассчитано на подключение нагрузки не более 10А. Это несколько светодиодных прожекторов мощностью около 2кВт.

Хотите больше? Воспользуйтесь следующей схемой с магнитным пускателем.

Его катушка подключается как раз-таки к фотореле, а силовые контакты подают питание на основную линию освещения.

Если вас не устраивает большой габаритный колпак датчика света, который портит весь дизайн фасада здания, воспользуйтесь фотореле с выносным датчиком.

В этом случае основной коммутирующий элемент располагается в щитке и напоминает современный модульный контактор на дин-рейке. Миниатюрный выносной датчик тем временем незаметно прячется под крышей или в любом другом месте.

Схема подключения здесь следующая:

Более расширенный и усовершенствованный вариант:

Внутри прибора по прежнему коммутируется фазный проводник.

Настройка чувствительности может осуществляется потенциометром на передней панели, в зависимости от модели. Вам больше не придется каждый раз подниматься на высоту под козырек дома.

Рассчитаны такие приборы уже на несколько большие токи (25А), чем китайские модели ФР-601.

Выносной датчик можно наращивать проводом до 50 метров. Вы его безболезненно сможете протянуть не только через крышу дома, но и через весь участок.

2 в 1 схемы подключения уличного освещения

Монтаж уличного освещения в загородном доме можно разделить на три этапа работ:

  • раскопка траншеи и укладка кабеля
  • монтаж закладных и установка светильников
  • сборка схемы и подключение автоматики освещения
При этом само подключение можно выполнить в ручном режиме, когда все запускается и выключается вручную через один единственный выключатель, либо в автоматическом от датчиков освещенности.

Но лучше всего применить более универсальный вариант с реализацией обоих способов в одной щитовой. Его то и рассмотрим более подробнее.

До начала работ вам потребуется закупить следующие материалы:

  • 3-х жильный кабель сечением 1,5мм2

Для освещения с потреблением не более 16А обычно хватает данного сечения. Но все может зависеть от протяженности участка и мощности ламп.

Если вы не ограничены финансово, то можно выбрать бронированный кабель. В этом случае не придется использовать трубы ПНД.

Однако разделывать его как в щитовой, так и при подключении светильников будет не просто. Поэтому большинство использует привычную марку ВВГнГ 3*1,5мм2.

  • труба ПНД
  • модульный контактор с нормально открытыми контактами
  • датчик освещенности или фотореле + сумеречное реле
  • уличные светильники
  • модульные автоматы
  • переключатель 3-х позиционный

Прокладка кабеля под землей

Начинают работу с подготовки траншей. Заранее составляете схему расположения всех светильников на своем участке.

После чего, от места выхода кабеля с щитовой РЩ-0,4кв, прокапываете вдоль всех этих точек траншею глубиной 70см.

Далее на дно засыпаете песчанную подушку высотой в 10-15см. 

Поверх нее укладываются ПНД трубы. В конечном итоге у вас должен получиться примерно вот такой пирог.

Каждая труба должна иметь выход в местах установки уличного светильника. То есть, довели до первого ближайшего, сделали подъем выше уровня земли и отрезали.

Потом отсюда проложили таким же образом вторую, третью и т.д. Таким образом у вас в дальнейшем получится так называемая параллельная схема подключения уличных светильников.

В каких-то точках может быть по 3 ли 4 выхода трубы на поверхность. Все зависит от схемы освещения и мест расстановки садовых фонарей.

Кое-где рекомендуется сделать отдельный выход под розетки.

Они бывают очень полезны на территории сада.

После полной укладки труб, тросиком затягиваете в них кабель и оставляете некоторый запас (примерно в 30-40см) в каждой светоточке на выходе из трубы.

Разрезаете в этих местах кабель и тяните его к следующему фонарю.

Если у вас разветвленная система освещения и проложено несколько линий, то каждый из кабелей стоит заранее подписать.

Когда все провода проложены присыпаете траншею землей.

На глубине от поверхности в 30см желательно проложить сигнальную ленту.

Стоит она недорого, зато вы в будущем, когда захотите произвести перепланировку или проложить еще дополнительные коммуникации на участке, данной лентой защитите свой кабель от случайного повреждения.

Установка уличного светильника

Теперь можно приступить к монтажу закладной для установки светильников.

Делаете в местах выхода труб ПНД опалубку с армирующей сеткой. Размер опалубки зависит от подпятника фонарного столбика.

Для хорошей устойчивости фонарного столба, фундамент должен быть заглублен не менее 30см.

Схема укладки проводов и монтажа закладной в разрезе выглядит следующим образом:

После этого заливаете все раствором и дав ему выстояться и застыть, демонтируете все лишнее.

Есть садовые светильники с отдельной нижней тумбой, встраиваемые на уровне земли. Для них не нужно делать никакой опалубки для подпятника.

Достаточно засыпать нижний слой гравием, дабы обеспечить дренаж дождевой воды.

Далее закрепляете нижний диск на небольшой слой цементного раствора.

При этом обязательно контролируйте строительным уровнем горизонт установки.

Внутри такой тумбы заливать раствор также не нужно. В ней как раз таки и осуществляется вся разводка и подключение проводов.

Есть еще один простой вариант монтажа закладной. Берется круглый фланец по диаметру основания фонарного столба.

К нему приваривается арматура.

В земле ручным садовым буром делается лунка на соответствующую глубину, и все это заливается бетоном.

Жесткость такой конструкции даже лучше, чем у просто забетонированной опалубки. Кроме того, все крепежные шпильки уже будут выведены наружу.

Когда бетонное основание готово, пропускаете кабель через нижнюю часть фонарного столбика, а само основание закрепляете на закладной.

Для этого прикладываете его к бетонной подложке и отмечаете места крепления под анкера.

Перфоратором высверливаете отверстия нужной глубины.

Вставляете и забиваете в них дюбель.

После чего прочно притягиваете основание фонаря к бетонной площадке.

Далее необходимо подключить и соединить все жилы кабелей. Зачищаете концы жил и заводите их в распредкоробку.

Соединение можно выполнить любым удобным способом. 

Самый простой — это применение клеммников Ваго.

Самое главное — надежно заизолировать и герметизировать данное место. Сделать это можно при помощи специального электроизоляционного компаунда.

После полной герметизации размещаете залитую распредкоробку в основании и окончательно монтируете уличный светильник.

Есть модели светильников, у которых все расключение проводов происходит непосредственно на специальной контактной колодке, расположенной внутри столбика.

Тут все будет зависеть от вида и типа уличных фонарей. А разнообразие у них очень богатое, есть из чего выбрать. 

Проделываете все эти операции по подключению со всеми остальными светильниками на вашем загородном участке.

Сборка и подключение схемы уличного освещения

Переходим к монтажу и подключению всей коммутационной аппаратуры для управления освещением в щитке.

Общая схема подключения и управления уличным освещением от фотореле с применением пускателя, будет выглядеть следующим образом:

Давайте разберем подробнее, как она работает и собирается «вживую» своими руками.

Для того, чтобы обеспечить два режима работы освещения — ручной и автоматический, используйте трехпозиционный выключатель.

В первом положении через обычный одноклавишник, можно будет вручную включать и выключать уличное освещение когда вам захочется.

Также это пригодится, если вдруг автоматика выйдет из строя или заглючит.

Второе положение — это режим автоматического управления от выносного датчика света и сумеречного реле.

В позиции «0» — освещение полностью отключено.

На DIN рейке по порядку в один ряд выставляете всю необходимую автоматику:

  • 3-х позиционный выключатель или как его еще называют переключатель ввода резерва
  • сумеречное реле
  • модульный пускатель
Первым делом подключаете фазу питания. Заводите ее от отдельного дифф.автомата в щитке сначала на трехпозиционник (контакт №1).

А далее на сумеречное реле (нижний контакт L) и входные контакты пускателя №2 и №4.

Если мощность светильников небольшая и общий ток не превышает 16А, то все подключение можно сделать перемычками как на рисунках выше.

Если же у вас стоят мощные фонари, типа ДНаТ или весь периметр обвешан прожекторами, то пускатель следует запитывать только напрямую от автомата без всяких перемычек.

Выход с пускателя заводите на верхние клеммы автоматов, к которым будут непосредственно подключаться кабели проложенные в земле до светильников.

После подключения питающей фазы, подсоединяете ноли. Один на клемму N сумеречного реле.

А другой на катушку пускателя А2.

Дабы постоянно не лазить в рапредшкаф при ручном управлении, на удобной для вас стене, рядом с щитовой монтируете обыкновенный одноклавишный выключатель.

Подводите к нему двухжильный кабель ВВГнГ 2*1,5мм2.

Один провод кабеля сажаете на трехпозиционный переключатель (клемма №2).

А второй пускаете на обмотку модульного контактора А2.

Таким образом, переключив 3-х позиционник в ручной режим (положение язычка — I) и включив выключатель на стенке, вы тем самым напрямую подадите напряжение на катушку пускателя. Он втянется и фаза пойдет через автоматы на освещение.

Осталось подключить автоматику. Снаружи здания на улице монтируете датчик фотореле.

При этом соблюдайте два правила:

  • датчик не должен находиться в тени деревьев или другого соседнего здания
  • фотореле не должно ночью попадать под прямой свет от уличных светильников

В противном случае это все приведет к некорректной работе и ложным срабатываниям. К датчику от щитка протягиваете кабель ВВГнГ 2*1,5 и подключаете к его контактам.

Второй конец от кабеля фотодатчика заводите на сумеречное реле (контакты №2 и №4).

При срабатывании реле снаружи, сумеречное реле в щитке будет замыкать свои верхние контакты №1 и №3. Поэтому на эти клеммы также нужно подать фазу от трехпозиционника с клеммы №4.

После сумеречного реле она поступает на катушку пускателя А1.

В итоге и получается следующая схема работы автоматики:

3-х позиционный переключатель находится в положении II. На улице темнеет, а следовательно в определенный момент срабатывает фотореле.

Замыкание его контактов запускает сумеречное реле и фаза через него попадает на обмотку модульного контактора. Ноль на обмотке дежурит постоянно.

Как только на ней появляется фаза, пускатель втягивается и подает напряжение на верхние клеммы автоматов освещения. Уличные свет и фонари загораются.

На рассвете фотореле размыкает свой контакт, заставляя своего «сумеречного собрата» в щитке разорвать фазу. Контактор отпадает и свет отключается.

Хотите выключить всю автоматику? Просто перещелкните вводной переключатель в положение I.

Источники — https://cable.ru, Кабель.РФ

уличный датчик освещенности для включения света

Большинство входов в затемненные места на бессознательном уровне воспринимаются с тревогой и чувством опасности. Но все меняется. После своего появления датчик света для уличного освещения, стал обладать большим спросом. Автоматическое управление включением осветительными приборами стало доступнее и легче в установке и в эксплуатации.

Как работает уличный фотодатчик

Если установить датчик освещенности для включения света над входом в подъезд, то он будет работать по тому же принципу, что и обычный фонарь с датчиком движения. Работой лампы управляет сенсор, чувствующий изменение в перемещении объектов в зоне контроля. Или фоточувствительный элемент, который реагирует на изменения в световом потоке.

Главным элементом такого устройства является чувствительный фотоэлемент, который размещен на плате и может менять свои свойства.

Фотоэлемент реализован на основе фоторезистора. Пока уровень света, попадающий на его поверхность, достаточный, цепь питания разомкнута. Сумерки сгущаются, и параметры фотоэлемента меняются, вызывая замыкание цепи. Лампа перед входом включается. Поутру происходит обратная церемония. Как только уровень света повысится до заданного показателя, цепь размыкается и светильник гаснет. Это основной принцип работы фотореле.

Если дополнительно установить детектор движения, свет будет подключаться именно в тот момент, когда датчик зафиксирует движение.

Плюсы и минусы использования уличного фотореле

Главное преимущество, которым обладает датчик дневного света — ощутимая экономия электроэнергии. Несомненные достоинства систем с применением фотоэлементов это:

  1. Устройство работает на малых токах.
  2. Моментальное включение/выключение.
  3. Высокая производительность.
  4. Нет трущихся механических частей, что повышает долговечность устройства.
  5. Продолжительный период эксплуатации.

Но следует учитывать, что прибор не рассчитан на применение в экстремальных условиях. Поэтому следует тщательным образом следить за его герметичностью. Попадание влаги может, если не полностью вывести датчик из строя, то повредить его, вызвав окисление контактов реле.

Грязный и запыленный датчик также не будет нормально функционировать. Необходимо всегда поддерживать всё устройство в чистоте.

Где купить

Приобрести оборудование для управления светом можно как в специализированном магазине, так и онлайн в Интернет-магазине. Во втором случае, особого внимания заслуживает бюджетный вариант приобретения изделий на сайте Алиэкспресс. Для некоторых видеокамер есть вариант отгрузки со склада в РФ, их можно получить максимально быстро, для этого при заказе выберите «Доставка из Российской Федерации»:

Разновидности

По типу применяемых датчиков их разделяют на несколько групп:

  1. Инфракрасные. Срабатывают на тепло в поле работы датчика. Так как теплокровным, кроме человека, относятся и домашние животные, среагировать инфракрасные детекторы могут и на них.
  2. Акустические. Реагируют на шум. Если двери открываются со скрипом, или громкие шаги человека датчик сработает.
  3. Микроволновые. Датчики активного типа. Сами формируют волны в микроволновом диапазоне и выслеживают их возврат обратно. Если есть разница от движущегося объекта, электрические цепи замыкаются/размыкаются.
  4. Ультразвуковые. Принцип работы аналогичен микроволновым датчикам, но в практике применяются редко. На ультразвук неадекватно могут среагировать домашние животные.
  5. Комбинированные. В одном устройстве освещённости может сочетаться сразу несколько типов обнаружения движения. Более надежные системы, но и более дорогие.
  6. Астрономический таймер. Реле нового поколения. Также контролирует работу осветительных приборов, но основано на ином принципе управления. В микрокомпьютер астротаймера заложена программа с данными о времени движения солнца в разных регионах планеты. Для того чтобы настроить прибор, надо вбить в прибор данные GPS своего населённого пункта, текущие дату и время. Опираясь на эти ключевые настройки, он автоматически будет определять, когда пора включать лампы освещения. Если у фотореле возможны ложные срабатывания, то у астротаймера таких ошибок нет. Он работает в любую погоду.

Обычно инфракрасный датчик освещения применяется для уличного фонаря, так как он обладают рядом преимуществ:

  • недорогой;
  • с большим радиусом действия;
  • можно легко отрегулировать под свои предпочтения.

Уличные или лестничные детекторы преимущественно используют или ультразвуковые или микроволновые. Способные среагировать на достаточно большом расстоянии от источника освещения. Микроволновые — могут среагировать, даже если человек еще находится за преградой.

Есть еще классификация автоматических осветительных приборов для уличного освещения по типу конструкции фотореле.

  1. Все элементы управления светильником размещены в одном корпусе. Такая конструкция более объемная, но и довольно удобная — нет лишних проводов. Надо просто закрепить рядом со светильником.
  2. Сам датчик «дня» крепится снаружи, а управляющее реле со светильником располагается в отдельном щитке внутри помещения. Таким образом, все элементы регулирования уличным освещением основательно предохранены от погодных катаклизмов.

Чувствительность приборов можно настраивать. Регуляторы размещены снизу корпуса и подписаны знаками «+» и «—».

Работать с регулированием датчика света лучше при наступлении темноты и когда он установлен и подключен к сети.

Накручивая винт в сторону знака минус, датчик теряет свою чувствительность. И реле начнет срабатывать только при полной темноте. И соответственно, поворотом в сторону плюса, чувствительность повышается.

Когда все манипуляции произведены, и результат работы будет положительный — настройка фотореле будет закончена.

Кроме таких регулируемых фотореле есть такие же девайсы, но дополненные детектором движения. Фонарь не включится в темноте до тех пор, пока детектор не среагирует на перемещение человека в зоне своего влияния.

На заметку

При подборе уличного детектора света стоит учесть некоторые моменты:

  • размеры придомовой территории;
  • для загородных участков рекомендуются релюшки с функцией регулировки на срабатывание. Такие датчики света легко настроить самостоятельно;
  • на регулировку потребуется время и минимальные навыки;
  • датчик света с таймером позволит точнее подстроить включение/отключение, запрограммировав время срабатывания;
  • уличный фотодатчик лучше оборудовать ограничителем, чтобы оградить его от засветки от оконных и фонарных фонарей. Сделать такой световой козырек можно самостоятельно, например, из отрезка пластиковой трубы подходящего диаметра;
  • для уличных приборов освещения лучше применять не обычные лампы накаливания, а светодиодные или люминесцентные. Так можно сэкономить на счетах за электричество. Кроме того и сам датчик можно подобрать с меньшей пропускной способностью, а значит и дешевле;
  • место установки выбирать согласно прилагаемой инструкции.

Перед покупкой прибора важно выбрать угол осмотра в горизонтальной плоскости. Если в зону освещения могут подходить с любого курса движения, нужны реле с углом обзора от 180° до 360°:

  1. Стеновые с углом видимости 180°.
  2. Столбовые с углом видимости 360°.

Немаловажна и высота установки. Основное условие, когда работает фотореле — чтобы не было «мёртвых зон». Для бытовых приборов характерна узконаправленная зона обнаружения по вертикали — от 15° до 20°.

Для того чтобы датчики движения работали без поломок нужно знать, что они рассчитаны на определённую нагрузку. Просто перед покупкой рассчитайте суммарную мощь подключаемых ламп, которыми такое устройство будет управлять.

Монтаж и подсоединение

Чтобы фотореле правильно работало, необходимо точно избрать место установки. Для этого важно соблюдать некоторые условия:

  1. На элементы фотодатчика должен попадать солнечный свет.
  2. В ночное время с датчиком не размещать работающие осветительные приборы.
  3. Оградить фотоэлемент от попадания освещения фар проезжающих рядом машин.
  4. Размещать сенсор на доступной высоте для периодического технического обслуживания.
  5. Перед покупкой необходимо выбрать от чего будет запитано устройство: от сети 220 В или 12 В.
  6. Так как реле будет работать под открытым небом, класс защиты лучше выбрать не ниже IP44. Но в любом случае, чем он выше, тем лучше работа прибора.
  7. Необходимо соблюдать, определённые заводом-изготовителем, температурные диапазоны работы датчика.
  8. Если планируется подключить не один, а несколько светильников, фотореле должно обладать запасом по мощности. Это поможет предотвратить перегрузки и поломки прибора.

Если собираетесь подключить датчик света своими руками, то нужно знать, что есть три проводка: фаза и ноль для включения реле, соединительная фаза для подключения светильника.

Провода соединяются в герметичной распределительной коробке уличного исполнения. Для одного светильника коробку разрешается устанавливать рядом с реле. Если светильников несколько подключение рекомендуется выполнить через пускатель.

В стандартном исполнении провода для включения имеют разную окраску: один — всегда красный. Два других — это синий и черный.

  1. Красным подсоединяются или приборы освещения или детектор движения.
  2. Синим — выполняется подключение к нулевой фазе.
  3. Черным — подсоединяется фаза.

Если цвет проводков другой, рекомендуется внимательно изучить прилагаемую к датчику инструкцию по подключению.

Прибор управления светом придомовой области работает автоматически. Но есть кнопка переключения в ручной режим работы.

Схемы подключения

Итак, основная функция датчика света подать напряжение на уличное осветительное оборудование, когда начинает темнеть и отключить его с рассветом. Это как бы выключатель, но, управляемый светочувствительным элементом.

Получается простая схема наружного подключения, когда фаза ставится в разрыв с фотореле и осветительным устройством.

Дабы по датчику света проходил ток, к нему также нужно подключить и рабочий ноль.

Для того чтобы можно было управлять разными по мощности устройствами, фотодатчик подбирается по мощности подключаемой нагрузки. Но тут надо понимать, как работает прибор. С увеличением мощности включаемого прибора возрастает и цена на подобные девайсы.

Чтобы обойти этот момент, в схему включается обычный магнитный пускатель. Он как раз и предназначен для управления сетью. А для управления пускателем в схему добавляется фотодатчик с малой подключаемой нагрузкой. То есть датчик, уже не включает сами уличные фонари, а подает малый ток на управляющий магнитный пускатель. А вот к нему уже можно подсоединять и мощную нагрузку.

Если фотореле недостаточно, то расширить функционал управления можно за счет дополнения в схему таймера и датчика движения. Их устанавливают последовательно после датчика света. Что установить первым — датчик движения или таймер в этой схеме роли особой не играет.

Если установка детектора движения или таймера не планируется, их можно не ставить, не меняя схемы — он все равно будет работать.

Известные модификации уличных датчиков освещения

На современном рынке есть большой выбор фотодатчиков как импортного, так и отечественного производства. Вариации выбора очень большие:

  • по условиям освещения;
  • виды освещения;
  • по мощности подключаемых осветительных приборов;
  • расширенные функции.

Фотореле ФР-601 и ФР-602

Для бытовых нужд пользуются спросом однофазные модели ФР-601 и более совершенная модификация ФР-602 от компании ІЕК. Оба достаточно надежны для освещения и просты в подключении. Они практически идентичные по функционалу, питаются от домашнего тока с одинаковым напряжением и частотой. Мощность — 0.5 Вт.

Также с одинаковым классом защиты IP44, что предполагает защиту от пыли и влаги.

Различия в сечении подключаемых проводов:

  • ФР-601 1.5 квадрата;
  • ФР-602 2.5 мм².

Поэтому есть и различия по току нагрузки: у первого 10 А, у второго 20 А.

У обоих встроенные фотоэлементы с регулировкой от 0 до 50 лк с интервалом в 5 лк.

Основное применение — уличные осветительные приборы для дач и частных домов, когда наступает ночь.

Датчики высокой мощности: фотореле ФР-7 и ФР-7Е

Для регулирования освещением возле подъезда, на городских улицах применяются более мощные модификации. Которые способны работать от сети переменного тока в 220 В и силой тока до 5 ампер.

К таким устройствам относятся фотоэлементы ФР-7 и ФР-7е.

У этих моделей есть ряд отличительных особенностей:

  • большой уровень требуемой мощности;
  • низкий класс защиты IP40, рассчитанный в основном на защиту от влаги;
  • нет защиты построечного резистора;
  • зажимы подключения открытого типа.

Заключение

Современные технологии управления уличным освещением позволяют исключить вмешательство человека и сделать полностью автоматизированным. Все это позволяет добиться максимального удобства и экономии. Потребителю остается подобрать нужное устройство, исходя из собственных конкретных целей. Главное — подключение выполнять с соблюдением техники безопасности и не нарушать рекомендации завода-изготовителя.

Видео по теме

 

Facebook

Twitter

Мой мир

Вконтакте

Одноклассники

Pinterest

что это, принцип работы, классификация и области применения

Фотореле представляют собой разновидность электронных приборов, которые предназначены для дистанционного контроля и управления разнообразными исполнительными устройствами малой и средней мощности. Достоинства современных фотореле (как устройств) — это компактность и простота настройки, поэтому подобная аппаратура широко используется в промышленности и быту.  В частности, они управляют системами включения и защиты крупного металлообрабатывающего оборудования (листоштамповочных прессов, сварочных автоматизированных комплексов или радиально-сверлильных станков), используются для контроля внешнего освещения и тому подобное.

Принципы функционирования и базовые компоненты фотореле

Что такое фотореле? Исполнительная схема устройства состоит из следующих компонентов:

  1. Датчика, который представляет собой электронный компонент, обнаруживающий присутствие видимого света, инфракрасного излучения и/или источника ультрафиолетового излучения.
  2. Усилителя сигнала (иногда — в комплекте с преобразователем одного вида излучаемой энергии в другой).
  3. Исполнительного элемента — микроконтроллер, который содержит биполярный полевой фототранзистор.
  4. Блока управления.
  5. Блока питания.

Фотодатчики

Большинство фотодатчиков — это полупроводники, обладающие свойством, называемым фотопроводимостью. Оно заключается в изменении параметров электрической проводимости в зависимости от интенсивности светового излучения, попадающего на материал.

Как работает фотореле, ясно из рисунка. Фотоэлектрические устройства можно подразделить на две основные категории: те, которые генерируют электричество при освещении — фотоэлектрические или фотоэмиссионные излучатели — и те, которые каким-либо образом изменяют свои электрические характеристики (фоторезисторы или фотопроводники).

Типы фотоэлектрических устройств (слева — полупроводниковое, справа — фотоэмиссионное)

Таким образом, в типовую конструкцию фотореле могут входить следующие исполнения фотодатчиков:

  • Фотоэмиссионные ячейки — это устройства, которые выделяют свободные электроны из светочувствительного материала, для чего на световоспринимающую поверхность должен попасть фотон с достаточной энергией. Количество энергии, которое имеют фотоны, зависит от частоты света: чем выше частота, тем больше энергии у фотонов, преобразующих энергию света в электрическую энергию;
  • Фотопроводящие элементы, которые изменяют своё электрическое сопротивление при воздействии света. Фотопроводимость возникает в результате попадания света на полупроводниковый материал, который контролирует протекающий через него ток. Наиболее распространенным фотопроводящим материалом является сульфид кадмия, используемый в фотоэлементах LDR;
  • Фотоэлектрические элементы. Принцип действия основан на генерировании ЭДС пропорционально полученной энергии лучистого света, что по своему эффекту аналогично фотопроводящим компонентам. Световая энергия попадает на два полупроводниковых материала, расположенных вместе. В результате вырабатывается напряжение не менее 0.5 В. Наиболее распространенным фотоэлектрическим материалом является селен, используемый в солнечных элементах;
  • Фотоприёмные устройства. Это — полупроводники (фотодиоды или фототранзисторы), на которые нужно направить свет для управления потоком электронов и дырок через PN-переход. В фотореле используют электронные компоненты, специально разработанные для применения детектора и проникновения света с их спектральным откликом, который настраивается на длину волны падающего света.

Фотореле на базе LDR-элементов с блоком питания

Фоторезистор

Фотопроводящий датчик не вырабатывает электричество, а просто изменяет свои физические свойства при воздействии энергии света. Наиболее распространенным типом фотопроводящего устройства является фоторезистор, который изменяет свое электрическое сопротивление в ответ на изменения интенсивности света.

Фоторезисторы — это полупроводниковые устройства, которые используют энергию света для управления потоком электронов и, следовательно, током, протекающим через них. Обычно этот элемент называется светозависимым резистором или LDR.

Принцип работы фотореле на соответствующем фотодатчике представлен на рисунке:

Устройство и принцип действия фоторезистора

Как следует из его названия, светозависимый резистор (LDR) нужно изготовить из открытого полупроводникового материала, например, сульфида кадмия, который изменяет своё электрическое сопротивление от нескольких тысяч Ом в темноте до нескольких сотен Ом, когда на него падает свет, создавая дырочно-электронные пары в материале.

Эффект заключается в улучшении проводимости фотодатчика с уменьшением сопротивления для увеличения освещения. Фоторезистивные ячейки имеют большое время отклика, которое нужно, чтобы отреагировать на изменение интенсивности света.

Светочувствительные материалы

Материалы, используемые в качестве полупроводниковой подложки — сульфид свинца (PbS), селенид свинца (PbSe), антимонид индия (InSb), которые обнаруживают свет в широком диапазоне волн. Наиболее часто используемым из всех фоторезистивных датчиков света является сульфид кадмия (Cds), потому что его кривая спектрального отклика ближе всего соответствует кривой человеческого глаза, для чего требуется наличие любого источника света. Длина волны пиковой чувствительности для фотоэлемента из сульфида кадмия составляет от 560 до 600 нм в видимом спектральном диапазоне.

В качестве фотодатчика часто используют проводящий элемент ORP12. Этот светозависимый резистор имеет спектральный отклик около 610 нм в области света от жёлтого до оранжевого. Сопротивление элемента, когда он не освещён (темновое сопротивление), очень высокое, около 10 МОм, которое падает до 100 Ом при полном освещении (номинальное сопротивление).

Чтобы увеличить темновое сопротивление и, следовательно, уменьшить темновой ток, резистивный путь образует зигзагообразный рисунок на керамической подложке. Фотоэлемент CdS — это очень недорогое устройство, их часто используют для автоматического затемнения, а также для определения времени темноты или сумерек, в фотореле для уличного освещения.

Типовая схема электронного управляющего блока, где используются светопроводящие элементы из сульфида кадмия, приведена на рисунке:

Преимущества фотореле

В отличие от управляющих компонентов контактного типа, например, электромеханических или индукционных реле, описываемые устройства отличаются своей долговечностью. Кроме того, данные устройства на полевых транзисторах (так называемых MOSFEТ-транзисторах) меньше нагреваются, а потому могут быть применены в длительно эксплуатируемых управляющих схемах, например, в фотореле для уличного освещения.

Металлооксидный транзистор с полевым затвором

Применение МДП-транзисторов в качестве устройства для вывода сигнала позволяет использовать их в схемах твердотельных реле, которые функционируют как на переменном, так и на постоянном токе.

Последующее сравнение эффективности изделия с другими типами следящих устройств аналогичного предназначения может быть выполнено по следующим параметрам:

  1. Необходимо минимальное монтажное пространство (меньше, чем у реле с подвижными элементами).
  2. Надёжность (выше, поскольку при этом отсутствуют подвижные контакты, изнашивающиеся в процессе трения и электрической эрозии).
  3. Потребление энергии (меньше из-за отсутствия вспомогательных компонентов; возможна работа от аккумуляторных источников питания).
  4. Интенсивность переключения — не зависит от числа включений, ибо нет необходимости в передающих устройствах.

Фотореле выгодно характеризуются также отсутствием шума при работе, высокой скоростью переключения режимов управления, отсутствием звуковых щелчков при работе.

Компактность схемы типового фотореле для уличного освещения иллюстрирует рисунок:

Области рационального применения фотореле

Типовые ситуации, в которых требуется присутствие данного устройства:

  • Когда включение и выключение цепи производится при помощи сигнала малой мощности;
  • Когда несколько цепей должны управляться одним сигналом.

Эффективность применения фотореле обуславливается также и их универсальностью (помимо стандартной аппаратуры контроля можно использовать компьютеры или ноутбуки). Это позволяет реализовывать также и логические управляющие команды типа «если…то…».

Рассмотрим использование фотореле для уличного освещения. Технология их применения основана на использовании триггерных FEТ-переключателей.

Блок-схема фотореле с FET-переключателем

В приведенной блок-схеме используется серия К МДП-транзисторов.  В отличие от твердотельных реле, схема управляет фотодиодами напрямую. Это обеспечивает гораздо более высокие скорости переключения, поскольку время отключения питания при включении светодиода некритично. Из-за отсутствия механических составляющих поддерживается высокая компактность устройства, однако физический изоляционный барьер здесь отсутствует, а потому необходимо использовать только низковольтный управляющий сигнал.

Поскольку фотореле является альтернативой уже существующей панели дистанционного управления освещением, то прежде всего стоит подумать — а так ли уж необходима подобная замена. Если существующая система полностью соответствует электрическим нормам, то перед нагрузкой достаточно просто добавить релейную панель, и полный контроль за осветительной цепью будет обеспечен. В небольшом корпусе может быть размещено до 64 фотореле вместе с источником низкого напряжения, а рядом можно расположить панель выключателя.  Чем меньше число цепей, тем более экономичным становится применение релейной панели.

Фотореле можно использовать для управления однополюсными цепями 127/220 В переменного тока и двухполюсными (208…240 В) цепями переменного тока. Релейные панели наиболее экономичны при управлении меньшими нагрузками, но имеют один недостаток — они рассчитаны на ограниченное количество циклов включения/ выключения: от 20000 до 50000 (при нормальных обстоятельствах этого хватит примерно на 5 лет).

Общий вид блочной компоновки фотореле для уличного освещения и монтажная схема приведены на следующих рисунках.

Некоторые нюансы имеются в использовании фотореле совместно с датчиками движения.  Как правило, уличные фонари включаются на всю ночь. Но в ночное время уличные фонари не нужны, если нет движения. Поэтому всё чаще используют схемы, которые включают уличные фонари только при перемещения транспортного средства и некоторое время после него. Используется микроконтроллер AVR 8051 и несколько пар (чем больше, тем лучше) инфракрасных (ИК) датчиков.

Подключение релейной панели управления освещением

Предлагаемая система состоит из микроконтроллера Atmega8, LDR, PIR-датчика и RTC. Эта система управляет уличным освещением, используя светозависимый резистор и ИК-датчик.

Уличные фонари включаются в зависимости от интенсивности светового потока, который воспринимается на LDR. Если такая интенсивность на фоторезисторах низкая, значение их сопротивления — высокое. С уменьшением общей освещённости это значение увеличивается, и, таким образом, определяет, когда уличные фонари должны включиться.

Ночью движение транспорта минимально. Это обстоятельство можно использовать для настройки контроллера. По наступлении пикового времени, когда трафика нет, фотореле отключит наружное освещение. При появлении единичного транспортного средства ИК-датчик подаст управляющий сигнал микроконтроллеру. Тот на 2…3 минуты включит освещение, после чего автоматически его выключит.

Блочная компоновка фотореле

Схема включения фотореле для управления наружным освещением

Установка датчиков движения

Монтажная схема управления движением на базе фотореле

Типичные неисправности фотореле

Неудачи в применении фотореле чаще всего вызваны с их неправильным выбором и/или эксплуатацией. Наиболее распространены отказы, превышение ресурса, однако можно перечислить ещё ряд причин:

  1. Превышение значения допустимого тока и/или напряжения.
  2. Сбои, связанные с длительностью рабочего цикла (особенно, когда реле переключает очень низкие уровни сигнала или, когда реле не срабатывает очень часто, из-за чего контакты окисляются).
  3. Загрязнение рабочей поверхности фотодатчиков (особо характерно для фотореле, которые обслуживают промышленное оборудование).
  4. Неудовлетворительная вентиляция релейных панелей, что вызывает, перегрев MOSFEТ-транзисторов.

При надлежащем регламентном облуживании все эти проблемы можно предотвратить. Сроки службы реле и его номинальная мощность всегда указываются производителем. Эти параметры определяются для работы фотореле в условиях переключения низкого уровня и соответствуют минимальному количеству операций, которое можно ожидать без механического отказа из-за износа контактов.

Гораздо информативнее, когда разработчик указывает в инструкции по эксплуатации срок службы реле в условиях горячего переключения нагрузки, когда значения тока и напряжения максимальны (при номинальной мощности устройства). В этих случаях реле выходит из строя по факту загрязнения материала контактов, когда для срабатывания приходится увеличивать ток и напряжение: это сопровождается резким возрастанием сопротивления при прохождении управляющего сигнала. Поэтому световоспринимающие поверхности следует очищать возможно чаще, используя для этих целей химически нейтральные очистители.

При интенсивном применении датчик фотореле никогда не работают дольше, чем указано в их технической характеристике. Даже в приложениях с низким уровнем сигнала неисправности в проверяющих устройствах могут вызывать сбои устройства. В результате пусковые токи, вызванные ёмкостными нагрузками, горячим переключением и скачками напряжения ускоряют их старение.

Видео по теме

Хорошая реклама

 

Схема Подключения Фотореле — tokzamer.ru

В чем может быть причина??? Внутреннее устройство прибора Реле или симистор представляет собой специальное устройство на выходе, которое распределяет нагрузку.


Обратите внимание!

И вот еще что: на силовых проводах к этим релюшкам после выхода из строя замечено пониженное напряжение 40 и вольт.
Автоматическое освещение ИНСТРУКЦИЯ как подключить фотореле — или видеонаблюдение в Омске. Зорко.

Есть модели фотореле, которые могут использоваться в линиях с заземлением. В данной ситуации схема для подключения фотореле к уличному освещению будет стандартной.

Желательно установить в распределительный щит шкаф отдельный автомат на этот контроллер.

В ней или на обратной стороне устройства обязательно должно быть схематичное изображение подключения. Для повышения безопасности при эксплуатации изделия в идеале желательно подключить заземление.

Фотодатчик ведет контроль над интенсивностью световых потоков и передает информацию на реле. В этих приборах сенсорный элемент располагается в прозрачном герметически закрытом корпусе.

Благодаря данному способу подключения можно добиться довольно значительной экономии электроэнергии.

Датчик деньночь Feron SEN26: подключение

Фотореле принцип работы

Есть модели фотореле, которые могут использоваться в линиях с заземлением. Некоторые образцы включаются, при каком-либо движении напротив места установки.

Электрики меняют каждый раз силовой и вместе с ними реле и опять работает. Схема монтажа устройства Полезная информация!

Схема подключения фотореле Это самая простая схема, согласно которой правильно собрать электроцепь самостоятельно не составит труда даже неопытному человеку.

Обязательно соблюдаем маркировку провода по цвету.

Для заземления предназначена отдельная винтовая клемма с соответствующим обозначением.

Вероятность попадания света от автомобильных фар должна быть минимальной. Есть два ых датчика.

Может быть от перепада, ведь этажи размещения этих фотореле находятся в одном здании?
Как подключить фотореле. Какое лучше?!

Принцип действия

Как подключить фотореле: схемы подключения Для подключения фотореле к светодиодному прожектору необходимо внимательно изучить инструкцию, которая находится в техпаспорте. Перед тем, как подключить светильник обязательно проверяйте паспорт, сертификат и патент продавца, чтобы потом не пришлось делать капитальный ремонт проводки в квартире.

Чаще всего этот параметр имеет диапазон от 5 до 16 А. Установить подобное оснащение можно самостоятельно, без помощи электриков. Отличным вариантом станет дополнительный монтаж датчика времени.

Он выбирается исходя из количества и мощности подключаемых через фотореле источников света.

Устанавливая датчик движения на улице, учитывайте те же условия, что и для монтажа фотореле Если ваш выбор пал на фотореле для уличного освещения с выносным датчиком, то предлагаем ознакомиться со схемой его подключения: Схема фотореле для уличного освещения с выносным датчиком Блок реле 1 устанавливается в распределительный щит, фотоэлемент 2 крепится снаружи, в месте, исключающем попадание лучей светильника 3 и по возможности затеняющих предметов. Обратите внимание!

Некоторые производители изменяют маркировку проводников. Чтобы сэкономить, питание в цепи можно подавать через магнитный пускатель.


Получается ноля нет который нужен для датчика? Так как по функциональности подаче и отключению питания фотореле похоже на традиционный выключатель, монтаж тоже отличается мало. При расположении дома у проезжей части на прибор не должен направляться свет фонарей проезжающих машин.

Фото — Подключение фотореле ФР Согласно заложенной программе устройство и работает. Результат — лампа, к которой подсоединено устройство, включается до тех пор, пока не начнет светать. Этот проводник необходим для подключения к фазе питания от сети; красный проводник. Для экономии на платежах за электроэнергию наши читатели советуют «Экономитель энергии Electricity Saving Box».

Решение этой проблемы облегчается при использовании некоторых хитростей. Такие датчики освещенности не могут работать от сети или вольт. Она имеет катод, который способен вырабатывать электроны пропорционально интенсивности направленного к ней света, также трубка оснащена анодом для сбора электронов. Появляются охранные функции.
Как подключить датчик освещенности и одноклавишный выключатель .

Основные технические характеристики

Будь то лужайка с газоном или грядки, за ночь все будет хорошенько увлажнено без вашего участия. Обратите внимание!

Можно перейти к настройке подключенного оборудования. Каждый из перечисленных выше фотоэлементов по-разному реагирует на свет: резисторный тип — изменяет величину своего сопротивления, в результате чего и происходит включение света или его выключение; транзисторный тип осуществляет регулирование при облучении электрического сигнала светом. Пример смонтированного и подключенного реле Кроме того, система освещения выполняется функцию охраны, так как может включать свет при отсутствии хозяев.

В чем может быть причина??? Когда стали переводить уличное освещение с выключателей на ые фотореле через управление катушка магнитного пускателя на одно реле возникла проблема.

Ну и плюс обращайте внимание на допустимую нагрузку. По логике нагрузка с катушки почти никакая, а на самом деле «обратка» по току делает свое дело. Зачищаем жилы от изоляции на мм, чтобы подключить их в клеммы.

Схемы подсоединения

Впрочем, большинство моделей оснащены обычными механическими тумблерами, настраивающими порог световой чувствительности. Чтобы понять, какой выбрать датчик, учитывается мощность нагрузки суммарная мощность источников света, ламп. Зато не нужно тянуть провода до распределительного щита.

Место установки зависит от освещенности, постарайтесь подобрать такой участок, где ничто не мешает солнечным лучам попадать на рабочую поверхность приспособления, иначе на фотодиоде начнутся помехи, и прибор будет работать неверно. Некоторые образцы включаются, при каком-либо движении напротив места установки. Каждый из перечисленных выше фотоэлементов по-разному реагирует на свет: резисторный тип — изменяет величину своего сопротивления, в результате чего и происходит включение света или его выключение; транзисторный тип осуществляет регулирование при облучении электрического сигнала светом.

Ноль вроде по схеме поступает и на реле, и на лампочку же. Подключил фотореле фр по схеме для освещения подъезда состоящего из 5-ти светодиодных светильников, но при срабатывании свет в подъезде начинает моргать.

Тем не менее, можно воспользоваться маленькими хитростями, облегчающими задачу: Воспользуйтесь куском пластиковой трубы желательно черного цвета длиной см с увеличенным диаметром, чтобы оградить фотореле или датчик от света, бьющего из окон или от фонарей. Так вы сможете выбрать более простой способ установки; при монтаже прибора помните, что его минимальный предел срабатывания будет составлять 5 Люкс. Угол подпиливания — о от столба или стены. В этих приборах сенсорный элемент располагается в прозрачном герметически закрытом корпусе.
КАК ОТПУГНУТЬ НОЧНОГО ВОРА.ОДИН ИЗ СПОСОБОВ!!!

установка фотореле для уличного освещения. Как подключить датчики света? Регулировка освещенности и монтаж к светодиодному прожектору

Каждый вечер мы наблюдаем то, как на городских улицах, где располагаются фонари освещения, они включаются автоматически в какой-то определенный момент. На сегодняшний день фотосенсоры, которые управляют данным процессом, доступны не только коммунальщикам, но и обычным людям, что дает возможность существенно сэкономить на электричестве и не тратить свое время на активацию и отключение света на определенной территории.

Необходимо сказать, что сделать осветительный механизм благодаря фотореле не проблема – достаточно понимать схему подключения датчика света и правила работы с рассматриваемой техникой.

Устройство и принцип работы

Следует сказать, что фотореле для уличного освещения похоже на некий датчик освещенности, что работает благодаря оснащенности специальным фотоэлементом. С использованием именно этой составляющей датчик может оценить осветительный уровень открытого пространства, и при совпадении ряда характеристик осуществляет активацию света в механизме освещения уличного исполнения.

План фотореле не слишком труден и может уместиться в корпус малых размеров, откуда уходят 3 проводника. Они необходимы для подключения гаджета к обычной электросети. Часто они применяются и для активации такой техники в зависимости от необходимого осветительного уровня в настройках. Такой датчик обычно используется для управления наружным вариантом освещения.

Сегодня довольно распространены на рынке модели, которые оснащены специальным регулятором. Его задача – управление работой устройства, а также максимально точная настройка оборудования. Благодаря наличию такой опции, можно добиться точной работы подобного решения в различных ситуациях.

Если регулятор поставить в режим «– », то освещение будет активироваться лишь ночью, а если в режим «+», то уже во время сумерек. Но большинство производителей рекомендует выбирать нечто среднее между режимами, чтобы стабильность работы оборудования такого типа была максимальной.

Отдельно следует заметить, что максимально эффективное управление датчиком невозможно без понимания некоторых параметров:

  • диапазон световой чувствительности – от 5 до 50 люкс;
  • мощность – 1-3 киловатта;
  • максимальная энергонагрузка – 10 ампер.

Кроме того, следует знать, что существует еще несколько категорий фотореле. Их отличие будет в расположении фотоэлемента. По этому критерию они бывают:

  • с выносным фотоэлементом;
  • со встроенным.

Если говорить о решениях первого типа, то тут конструкция устройства будет состоять из 2 элементов: фотоэлемента, расположенного на открытом воздухе, и выключателя, который следует подсоединить отдельно. Вариант с фотоэлементом встроенного типа получает реле времени и регулятор. Тогда подключение устройства будет осуществляться по простой электросхеме для фотореле.

Упомянутое решение обычно используется в различных сложных осветительных механизмах. Тут будет необходима щитовая схема подключения.

Для любой отдельной модели будет нужна своя схема фотореле, что следует принимать в расчет при дальнейшем приборном подключении.

Еще одним решением подключения будет вариант при помощи таймера. Тогда можно просто поставить датчик на включение либо отключение регулятора. По этой причине активация света будет осуществляться через определенное время, что позволит существенно снизить расходы на электрическую энергию.

Теперь немного скажем о принципе использования подобной системы. Датчик в данном варианте будет работать через специальный фотографический элемент, который можно быть разного типа:

  • диод;
  • тиристор;
  • резистор;
  • транзистор;
  • симистор.

Каждый из упомянутых типов по-разному реагирует на наличие света:

  • диод будет во время облучения потоком света выбрасывать специальный импульс, что имеет прямо пропорциональное значение осветительной интенсивности;
  • тиристор при светооблучении будет осуществлять взаимодействие с током постоянного типа;
  • резистор меняет величину собственного сопротивления, что станет причиной отключения либо включения света;
  • транзистор проводит регулировку при облучении электросигнала светом;
  • симисторное решение активирует или деактивирует свет при работе с «+» или «–» составляющей.

Монтаж

Теперь остановимся на том, как соединить фотореле с датчиком движения для освещения и осуществить его установку. Вместе указанные решения дадут возможность активировать источник света еще во время сумеречного периода дня в тот момент, когда в нужной зоне кто-то появится. Если же на территории никого нет, то освещение не загорится, что даст возможность сэкономить электричество и, соответственно, деньги.

Метод монтажа будет зависеть от того, какой защитный вариант и категория крепления выключателя сумеречного вида были приобретены. На сегодня существуют следующие решения по установке:

  • уличный либо внутренний вариант применения;
  • внешний либо встроенный фотоэлемент;
  • с закреплением на рейку типа DIN, на стенку или поверхность горизонтального типа.

Приведем пример монтажа фотореле для освещения улицы с закреплением на стенке. Чтобы осуществить самостоятельный трехфазный монтаж, следует выполнить следующие действия.

  1. Сначала убираем подачу электричества на щитке ввода и осуществляем проверку, есть ли ток в распределительном ящике, откуда будет вестись кабель.
  2. Теперь осуществляем протягивание провода питания к области, где установим фотореле. Обычно она располагается рядом с прибором освещения. Лучше всего для подключения выключателя рассматриваемого типа применять 3-жильный провод типа ПВС, что будет довольно надежным.
  3. Осуществляем зачистку жил от изоляции где-то на сантиметр для последующего подключения в клеммы, после чего делаем в коробке дырки для ввода жил и последующего подключения фотореле к электросети.
  4. Для улучшения корпусной герметичности, прикрепляем в дырках уплотнители из резины, которые будут предотвращать попадание внутрь пыли и грязи. Оптимально, если такие отверстия расположены снизу, чтобы внутрь также не попала вода.
  5. Производим подключение фотореле по нужной нам электрической схеме. Сначала фаза ввода идет на разъем с обозначением L, а вводная нейтраль – на N. Для заземления есть специальная клемма винтового типа.
  6. Отрезаем определенную часть провода, дабы подключить фотореле к лампочке, после чего немного зачищаем изоляцию и подсоединяем на клеммы L и N. Второй проводниковый кончик подводится к светоисточнику и подсоединяется к патронным клеммам. Если корпус проводит ток, то можно обойтись без подключения заземления.

Схема подключения

Теперь поговорим о том, как установить фотореле правильно. Подключить этот элемент может оказаться сложно по ряду причин. Например, электрическая схема размещения осветительных приборов не предусматривает этого, к элементам управления ограничен доступ либо же имеются довольно жесткие требования активации светильников. План подключения фотореле к светодиодному прожектору будет зависеть от особенностей техники, что будет использоваться. Часто она вообще изображается на самом решении.

Стоит отметить, что в техпаспорте всегда можно найти подробную инструкцию. Если она по каким-либо причинам отсутствует или неясна, рассмотрим следующий план подключения. Фотореле получает несколько проводов. Их цвет может быть различным, но обычно они имеют синий, коричневый и красный расцветки. Также они часто имеют буквенные значения: N – нулевой кабель, L – фазный кабель, Load – нагрузочный кабель. Устройство обычно подпитывается при помощи синего провода.

Этот кабель следует подключить к нулю в распределительной коробке, как и нагрузку к лампочке освещения. Фазный кабель подводится к вводу соответствующего типа. Провод красного цвета уходит на фазу, откуда ток идет к осветительному фонарю. Если мощность лампочек, что подсоединяются к фотореле, будет выше показателя его мощности, то нагрузка идет через магнитный пускатель либо контактор, который имеет некое значение мощности.

Если необходимо подключение фотореле с 2 выводами, то фазный ввод замыкается на необходимой клемме на корпусе.

Таким образом, по аналогии подключается нуль. Нагрузка идет к нужным выводам нуля и фазы. Подобное фотореле предназначается для управления лампочкой. Для регулирования работы более чем одной лампы, их следует соединить в цепь параллельного типа и подключить, как говорилось ранее. Если говорить о подключении фотореле с заземлительными клеммами, то у них будет схема подключения, описанная ранее, но разница состоит в том, что здесь будут добавлены провода заземления.

Особенности настройки

Когда установка и последующее подключение были завершены, следует перейти к тому, чтобы настроить, отрегулировать и проверить работу системы. Все несложно по причине того, что в комплекте есть специальный пакет черного цвета, необходимый, чтобы имитировать ночь. А день имитировать необходимости нет, ведь он есть и так.

На корпусе датчика освещения можно увидеть спецрегулятор, что обычно обозначается аббревиатурой LUX – он необходим для подбора осветительной интенсивности, которая станет причиной активации реле. Если же есть желание сэкономить немного электрической энергии, то следует поставить ручку регулятора поворота на минимум. Тогда сигнал об активации будет подаваться лишь тогда, когда на улице максимально темно.

Как правило, регулятор располагается у клемм винтового типа, чуть выше слева. Последнее, что останется сделать для подключения фотореле, – прикрепить крышку защитного типа и активировать электроэнергию на щитке. Когда это будет сделано, можно начинать тестировать устройство.

О том, как подключить и настроить фотореле, смотрите далее.

Схема автоматического уличного освещения

с использованием LDR и реле

Вы видели уличный фонарь, который автоматически включается ночью и выключается утром или днем, есть датчики, которые определяют свет и соответственно управляют светом. Эти уличные фонари — важный проект в умных городах.

Итак, здесь, в этом проекте, мы собираемся создать простую автоматическую схему уличного освещения с использованием LDR и реле , которое будет включать и выключать лампочку в зависимости от окружающего освещения.Эта схема довольно проста и может быть построена с использованием транзисторов и LDR, вам не нужен операционный усилитель или микросхема 555 для запуска нагрузки переменного тока. Здесь мы использовали лампочку переменного тока в качестве уличного фонаря. Некоторые применения этой схемы — управление уличным освещением, управление освещением дома / офиса, указатели дня и ночи и т. Д.

Требуется компонентов:

  1. Транзистор BC547-2
  2. LDR (светозависимый резистор)
  3. Реле
  4. Резистор 1к
  5. Потенциометр 100k
  6. Блок питания 12В -1
  7. Соединительные провода
  8. Перемычки
  9. Клеммная колодка с винтовыми зажимами, 2 или 3 контакта
  10. Доска для хлеба или перфорированная плита
  11. 1n4007 Диод
  12. Электропитание переменного тока
  13. Нагрузка переменного тока или лампа

Что такое LDR?

LDR

изготавливаются из полупроводниковых материалов, чтобы иметь светочувствительные свойства.Существует много типов, но один из самых популярных материалов — это сульфид кадмия (CdS). Эти LDR или ФОТОРЕИСТОРЫ работают по принципу «фотопроводимости». Этот принцип гласит, что всякий раз, когда свет падает на поверхность LDR (в данном случае), проводимость элемента увеличивается или, другими словами, сопротивление LDR падает, когда свет падает на поверхность LDR. Это свойство уменьшения сопротивления для LDR достигается благодаря тому, что это свойство полупроводникового материала, используемого на поверхности.

Ранее мы построили много полезных схем с использованием LDR, вы можете найти несколько популярных проектов схем LDR ниже.

Принципиальная схема и пояснения

:

Ниже приведена принципиальная схема этого проекта светочувствительного уличного фонаря .

В этом проекте мы использовали LDR (светозависимый резистор) , который отвечает за обнаружение света и темноты.Сопротивление LDR увеличивается в темноте и уменьшается в присутствии света. Эта схема такая же, как схема детектора темноты или детектора света, только здесь мы заменили простой светодиод на нагрузку переменного тока, используя реле. Два транзистора BC547 NPN используются для управления реле.

Всякий раз, когда свет падает на LDR , его сопротивление уменьшается, и транзистор Q1 включается, а коллектор этого транзистора переходит в низкий уровень, и это заставляет второй транзистор ВЫКЛЮЧАТЬСЯ из-за получения низкого сигнала на его базе, поэтому реле также остается выключенным из-за ко второму транзистору.

Теперь , когда LDR обнаруживает темноту, означает отсутствие света, затем транзистор Q1 включается из-за увеличения сопротивления LDR, которое отвечает за падение напряжения на базе Q1. Из-за НИЗКОГО сигнала на базе Q1 транзистор Q2 получает ВЫСОКИЙ сигнал от коллектора Q1 и включает реле. Реле включило нагрузку переменного тока, подключенную к реле. Поток 10K также используется для настройки чувствительности схемы.

Итак, вот как автоматические уличные фонари включаются ночью и выключаются днем, посмотрите демонстрационное видео ниже.

Как подключить датчик освещенности для уличного освещения?

Каждый человек пытается придумать это устройство, которое сделает жизнь намного комфортнее. За последний век созданы компьютеры, различная бытовая техника, автомобили. Датчик освещенности для уличного освещения не стал исключением. Это необходимо для комфортного передвижения в темноте. Благодаря потенциометру датчик уличного освещения автоматически определяет время включения и выключения. В его конструкцию также входит регулировка, с помощью которой человек может самостоятельно установить время отклика.Для людей, длительно живущих на дачах или в частных домах, этот агрегат — очень полезное приобретение.

Общая информация

Что такое датчик освещенности для уличного освещения? У него есть еще одно название — фотореле. Первая часть слова (фото) означает, что он начинает включаться при попадании световых лучей, вторая (реле) — это выключатель.

Принцип работы устройства довольно прост. Если через датчик не проходит достаточное количество света, контакты замыкаются и включается освещение.При восходе солнца происходит автоматическое отключение оборудования.

Где еще используется это устройство?

Может устанавливаться не только возле частных домов, но и использоваться в подъездах многоэтажных домов. Независимо от времени суток, территория будет освещена. К тому же устройство значительно экономит электроэнергию.

Его основное назначение — включение и выключение. Например, для автоматического полива сада каждую ночь датчик подключается к системе полива.Тогда все происходит автоматически.

Также используется для системы умного дома. Это нужно для имитации присутствия хостов. Когда хозяина нет на месте, периодически включается и выключается свет. Кроме того, сама система используется для других функций умного дома.

Производство

Датчик освещенности для уличного освещения, фото которого представлено ниже, может стоить по разному.

Цена зависит от производителя, а также от наличия или отсутствия регулировочных возможностей.Датчик освещенности для уличного освещения имеет три провода. Один выходит прямо из устройства и используется для включения или выключения устройства. Остальные подключены к источнику питания.

Прибор

Датчик освещенности для уличного освещения бывает двух типов:

  • Встроенный — в электрощит.
  • Пульт находится рядом с корпусом.

Последний вид фотореле должен быть прочным, не подвергаться механическим воздействиям. Кроме того, он должен быть герметичным и защищенным от воздействия атмосферных осадков.Принцип работы этого оборудования довольно прост. Главное, что в комплект входят встроенные и выносные датчики. В зависимости от степени освещенности улицы один из них передает информацию на реле, расположенное в электрощите. При достижении определенного показателя электрическая сеть замыкается и включается освещение.

Датчик освещенности для уличного освещения: характеристики

Любой фотоэлемент можно запрограммировать по личным предпочтениям владельца участка или помещения.Например, если прибор установлен в гараже, порог включения и включения освещения будет отличаться от установленного на улице. Поэтому на эту особенность стоит обратить внимание. Выставлять чувствительность к световым индикаторам необходимо в зависимости от места использования.

Максимальная рабочая нагрузка на датчик зависит от количества подключенных к нему устройств.

Это значение находится в диапазоне от 1000 до 2300 Вт. Рабочее напряжение 220 В. Световой датчик уличного освещения, регулировка которого составляет от 2 до 2000 люкс, включается при достижении заданных параметров.

Чтобы это устройство прослужило долго, необходимо знать критерии, на которые стоит обращать внимание при его покупке, а также мелкие детали и элементы. В первую очередь необходимо разобраться в схеме подключения, а также в условиях эксплуатации. Эта информация присутствует в инструкции. Поэтому, чтобы избежать серьезных проблем, нужно его внимательно изучить.

Принцип работы и установки

Датчики предназначены для автоматического включения и выключения осветительных приборов.Все зависит от времени суток. Когда наступает темнота, устройство включается, когда сходит солнце, оно выключается. Эта особенность дала возможность значительно сэкономить электроэнергию, а также увеличить срок службы ламп.

Устройство работает от обычной потребительской сети с напряжением 220 В, а ток в коммутируемой цепи более 10 А. Процесс свечения зависит от настройки. Такой прибор монтируется внизу датчиков. Подобрать необходимые кадры вы сможете сами.

Если установить регулятор на «минус», то уличное освещение включится только с наступлением темноты. В положении «плюс» устройство будет работать даже в малейшую пасмурную погоду.

Датчик света крепится к стене с помощью кронштейнов, которые крепятся специальным винтом. Держатель должен проходить сквозь корпус. При его установке следует обратить внимание на наличие помех. Если они есть, то необходимо переустановить прибор в другом месте, где лучи естественного света попадают на фотореле.Также перед датчиком освещенности не должно быть помех, таких как деревья, дома и т. Д.

Датчик освещенности для уличного освещения: подключение

Схема подключения данного устройства есть либо на упаковке, либо в инструкции по эксплуатации. Размещенная проводка другого цвета. Это сделано для того, чтобы избежать неправильного подключения. Каждый из трех проводов имеет свое предназначение. Догадаться о них можно только с помощью цветов. Итак, черный провод указывает на фазу, зеленый — ноль, а красный — фазу на осветительном приборе.

Как подключить датчик освещенности для уличного освещения? Перед тем, как начать подключение, прочтите инструкцию. Провода подключаются к распределительной коробке. Устанавливается бок о бок на стене и крепится скобами.

Для подключения коммутируемой нагрузки необходимо непрерывное питание. Для этого необходимо подключить автоматическую систему управления уличным освещением ag

с использованием LDR и транзистора BC 547

Базовый электронный проект — Автоматическая система управления уличным освещением

Вот наш новый простой электрический / электронный проект об автоматическом уличном освещении Система управления для студентов и любителей.

Характеристики:

  • Это простая и мощная концепция, в которой транзистор (BC 547 NPN) используется в качестве переключателя для автоматического включения и выключения уличного освещения.
  • Он автоматически включает свет, когда солнечный свет опускается ниже видимой области наших глаз. (например, вечером после заката).
  • Он автоматически выключает свет, когда на него падает солнечный свет (например, на LDR), например, утром, с помощью датчика под названием LDR (Light Dependent Resistor), который воспринимает свет так же, как наши глаза.
  • A

Также проверьте:

Преимущества:

  • Используя эту автоматическую систему управления уличным освещением, мы можем снизить потребление энергии, поскольку ручные уличные фонари не выключаются должным образом даже при попадании солнечного света и также не включались раньше до заката.
  • В солнечные и дождливые дни время включения и выключения заметно различается, что является одним из основных недостатков использования схем таймера или ручного управления для переключения системы уличного освещения.

Достаточно… .Теперь приступим (Шаг за шагом)

Требования:

  • Светозависимый резистор LDR
  • Возьмите 2 транзистора. (NPN транзистор — BC547 или BC147 или BC548)
  • Резистор — 1 кОм, 330 Ом, 470 Ом
  • Светоизлучающий диод (LED) — любой цвет
  • Соединительные провода — Используйте одножильный провод с пластиковым покрытием диаметром 0,6 мм ( стандартного размера) -Вы можете использовать провод, который используется для компьютерных сетей.
  • Источник питания — 6 В или 9 В

Магнитная левитация, простая электрическая схема

Процедура

  • Вставьте первый транзистор Q1-BC547 (NPN) на макетную плату (или общую печатную плату), как показано на принципиальной схеме 1.
  • Подключите еще один транзистор Q2- BC547 (NPN) на макетной плате, как в шаге 1.
  • Подключите провода через вывод эмиттера обоих транзисторов и клемму –ve батареи (нижний / нижний ряд макета).
  • Подключите провод к коллектору. вывод транзистора Q1 и вывод базы транзистора Q2.
  • Подключите резистор 1K к положительной клемме батареи (самый верхний ряд макетной платы) и коллекторному контакту транзистора Q1.
  • Подключите светозависимый резистор (LDR) к положительной клемме батареи (самый верхний ряд макета) и базовой клемме транзистора Q1.
  • Вставьте резистор 330 Ом между базовым выводом транзистора Q1 и отрицательной клеммой аккумулятора (нижний нижний ряд макета).
  • Подключите резистор 330R к положительной клемме аккумулятора (верхний ряд макета) и анодной клемме светодиода (светоизлучающий диод) и подключите катодную клемму светодиода к контакту коллектора транзистора Q2.

Мини-система воздушного охлаждения от вентилятора 12 В (самодельная из мусора)

Простая схема готова к тестированию.Подключите клеммы аккумулятора 6 В к цепи, как показано на рисунке, и посмотрите на выход. Когда вы блокируете свет, падающий на резистор, зависимый от света (LDR), светодиод светится.

СВЕТОДИОД Горит даже при меньшей темноте. Используйте фонарик или зажигалку, если светодиод светится в меньшей темноте. Кроме того, вы можете попробовать отрегулировать чувствительность этой схемы с помощью переменного резистора вместо R1-300Ом. Попробуйте эту схему с другими сопротивлениями (например, 1 кОм, 10 кОм и 100 кОм и т. Д.)

USB Mini Fan (самодельный, очень простой с использованием двигателя вентилятора на 12 В на ПК)

Рассказ в картинках: (Щелкните изображения, чтобы увеличить)

Компоненты и принципиальные электрические схемы для автоматической системы управления уличным освещением

Принципиальная схема 1.Автоматическая система управления уличным освещением (датчик с использованием LDR и транзистора BC 547.) Очень просто. Мы пробовали это в этом уроке, но вы также можете попробовать второй, упомянутый ниже.

Принципиальная схема 2. Автоматическая система управления уличным освещением (датчик с использованием LDR и транзистора BC 547.) Очень просто.

Когда свет падает на LDR (светозависимый резистор), светодиод не светится. (Светодиод = выключен).

Теперь вы можете видеть, что мы заблокировали свет, падающий на резистор, зависимый от света (LDR), поэтому светодиод светится (LED = ON).

Снимок взят из видео.

Для получения дополнительных руководств по проектам в области базовой электротехники и электроники посетите: Библиотека простых проектов в области электротехники и электроники

SMPS 50-ваттная схема драйвера светодиодного уличного фонаря

В сообщении представлена ​​схема драйвера светодиодного уличного фонаря на основе SMPS, которая может использоваться для управляя любой светодиодной лампой мощностью от 10 Вт до 50 Вт плюс.

Использование микросхемы L6565

В предлагаемой схеме драйвера уличного фонаря мощностью 50 Вт (и выше) в качестве основного устройства управления используется микросхема L6565, которая в основном представляет собой микросхему первичного контроллера текущего режима, специально созданную для квазирезонансного обратного хода ZVS. конвертеры.ZVS означает переключение при нулевом напряжении.

Микросхема реализует указанную квазирезонансную функцию, считывая размагничивание трансформатора и последовательно переключая МОП-транзистор для дальнейших действий.

Функция прямой связи

Функция прямой связи позволяет ИС компенсировать колебания напряжения сети, что, в свою очередь, обеспечивает возможность управления мощностью преобразователя.

В случае, если подключенная нагрузка ниже указанной величины, устройство соответствующим образом регулирует и компенсирует рабочую частоту, не влияя существенно на функцию ZVS.

В дополнение к вышеупомянутым функциям IC также включает в себя встроенный датчик тока, усилитель ошибки с точным опорным напряжением и универсальную двухступенчатую защиту от перегрузки по току.

Более подробную информацию об IC L6565 можно найти в ее техническом описании.

Остальная конфигурация преобразователя является стандартной и может быть понята следующим образом:

Работа схемы

Сеть 120/220 В переменного тока подается на мостовой выпрямитель B1 через фильтр EMI L1.

Выпрямленное напряжение фильтруется C1 и подается на первичную часть преобразователя, который включает в себя IC L6565 вместе с первичной обмоткой ферритового трансформатора и переключающим МОП-транзистором.

Микросхема мгновенно запускает себя и МОП-транзистор, выполняя указанные операции ZVS и переключая МОП-транзистор с заданной компенсированной скоростью, в зависимости от входного уровня сети.

Выход трансформатора реагирует на это и генерирует необходимые напряжения на соответствующей обмотке.

Выходы соответствующим образом выпрямляются и фильтруются подключенными диодами быстрого восстановления и конденсаторами фильтра высокого напряжения.

N2 можно увидеть с выходной мощностью 105 В при 350 мА.

Другая входящая в комплект вспомогательная обмотка вырабатывает 14 В (1 ампер) и 5 ​​В (50 мА), которые можно использовать для других соответствующих приложений, таких как зарядка аккумулятора или включение контрольной лампы.

Оптоэлектронная микросхема IC3, как обычно, включена для обеспечения постоянного выходного напряжения с точки зрения напряжения, тока и для предоставления соответствующей выходной информации микросхеме, чтобы микросхема могла выполнять необходимые защитные действия в неблагоприятных ситуациях.

Детали обмотки трансформатора

Детали обмотки трансформатора для предлагаемой схемы драйвера уличного фонаря мощностью 50 Вт представлены на самой схеме.

В приведенных выше разделах мы узнали о конструкции SMPS, которая может использоваться для управления светодиодной лампой мощностью 50 Вт, состоящей из 50 номеров светодиодов мощностью 1 Вт. Здесь мы пытаемся разобраться в деталях соединения светодиодов со схемой драйвера.

Конфигурация светодиода

Предполагая, что мы хотим использовать светодиоды мощностью 1 Вт (рекомендуется) для предлагаемого уличного фонаря мощностью 50 Вт, нам потребуется 50 таких светодиодов для конфигурации со схемой.

Ссылаясь на описание выше , мы видим, что на одном из выходов указано 105 В при 350 мА.
Этот конкретный выход становится предпочтительным для управления 50 числами светодиодов мощностью 1 Вт, хотя он может быть реализован только после серьезных вычислений.

Если мы соединим все 50 светодиодов параллельно, потребуется выход, равный 50 x 3,3 = 165 В, но, поскольку этот выход, кажется, недоступен, мы могли бы выбрать более осуществимое последовательное / параллельное соединение со светодиодами. .

Итак, мы можем сделать две цепочки светодиодов, каждая из которых состоит из 25 светодиодов, и соединить эти две цепочки параллельно.

Однако использование двух цепочек означало бы, что для светодиодов теперь потребуется 3,3 x 25 = 82,5 В при 700 мА

Приведенные выше значения снова кажутся не соответствующими выходным характеристикам драйвера.

Нет проблем, указанные выше значения можно согласовать, выполнив несколько простых настроек соответствующей выходной обмотки трансформатора драйвера.

Регулировка уровня тока

Ток (в амперах) можно увеличить, заменив обмотку N2 бифилярной обмоткой, состоящей из двух проводов 28AWG, намотанных одновременно.

Это позаботится о требуемом токе 700 мА, поскольку теперь мы использовали два параллельных провода для N2 вместо рекомендованного одиночного провода.

Далее, для понижения напряжения со 105 В до 82,5 В, нам просто нужно сделать указанную выше обмотку на 24 витка вместо указанного 31 витка.

Вот и все, как только пара вышеупомянутых простых настроек сделана, драйвер теперь становится идеально подходящим для управления предлагаемым модулем светодиодной лампы мощностью 50 Вт.

Детали подключения светодиодов можно увидеть на следующей принципиальной схеме:
О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

Простая схема солнечного освещения в саду — с автоматическим отключением

Очень простая автоматическая система солнечного освещения для освещения ваших садовых проходов может быть построена с использованием некоторых светодиодов, аккумуляторной батареи и небольшой солнечной панели. Система автоматически включает лампы в сумерках и выключает их на рассвете.

Как это работает

Схема чрезвычайно проста и может быть понята по следующим пунктам:

Как видно на данной принципиальной схеме, конструкция в основном состоит из солнечной панели, транзистора PNP, нескольких светодиодов, аккумулятор и несколько резисторов.

Транзистор — единственный активный компонент, который позиционируется как переключатель для предотвращения попадания напряжения батареи на подключенные светодиоды в дневное время.

В дневное время солнечная панель вырабатывает необходимое количество напряжения, которое подается на аккумулятор через диод 1N4007 и резистор R *.Это напряжение постепенно заряжает аккумулятор от рассвета до заката.

Выбор резистора ограничителя тока

Значение резистора R * должно быть отрегулировано в соответствии со спецификациями батареи для ограничения чрезмерного тока.

Резистор также служит токоограничивающим резистором для подключенных светодиодов, когда транзистор включен.

Здесь оно было рассчитано как 10 Ом.

Пока солнечная панель генерирует оптимальное количество энергии, положительный потенциал на базе транзистора удерживает ее в выключенном состоянии.

Однако, когда наступают сумерки, солнечное напряжение начинает падать, а когда оно падает ниже номинала стабилитрона, транзистор начинает медленно проводить, постепенно освещая светодиоды.

При полном отсутствии солнечного света или в полной темноте транзистор полностью проводит ток с помощью резистора 1K и обеспечивает полную яркость светодиодов.

На следующее утро цикл повторяется снова.

Схема может быть изменена множеством различных способов.

Принципиальная схема

Вышеупомянутая диаграмма также может быть построена следующим образом. Теперь это выглядит более разумным, поскольку резистор удален с эмиттера для облегчения эффективного срабатывания транзистора.

Дизайн печатной платы

Графическая схема

Список деталей

На схеме показан неправильный номер транзистора (8050), используйте вместо него 8550.

Рекомендуемые характеристики солнечных панелей

6-8 В / 2 Вт

Напряжение — 6 В

Ток — 330 мА

Вышеупомянутые конструкции также могут быть воспроизведены с использованием двух транзисторов NPN, как показано на следующей диаграмме:

Solar Pathway Light Схема с постоянным напряжением

Если литий-ионная батарея предназначена для использования в описанной выше схеме, функция постоянного напряжения становится критически важной для сохранения срока службы батареи и ее продления.

Следующая схема показывает, как это можно сделать, добавив простую схему повторителя напряжения:

Если используется литий-ионная батарея 3,7 В, обязательно отрегулируйте предустановку 10K для достижения ровно 4 В в точках выхода, где аккумулятор должен быть подключен, выполните эту регулировку, не подключая аккумулятор.

Уровень 4 В гарантирует, что аккумулятор никогда не будет перезаряжен (при 4,2 В), а также позволяет схеме заряжать аккумулятор без источника постоянного тока.

1,5 В солнечный садовый светильник с расширенными функциями

Следующий садовый светильник на солнечной энергии был разработан г-ном Гуидо, который включает в себя дополнительные функции, такие как отключение избыточного заряда и низкого заряда аккумулятора, а также триггер Шмидта.

Это гарантирует, что подключенный аккумулятор никогда не будет заряжаться или разряжаться сверх опасного уровня.

Основным достоинством схемы является использование одной перезаряжаемой ячейки фонарика AAA, которая способна зажигать 3.Светодиод высокой яркости 3 В через подключенную схему джоулева вора.

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

Фотореле

Проект электронного строительства


Реле подает питание 120 В переменного тока на нагрузку в темноте.

  • Максимальная нагрузка два ампера (скачок 30 ампер)
  • Адаптируется к более высоким токам
  • Адаптируется к 240 В переменного тока
  • Адаптируется к темноте
  • Адаптируется к стационарной установке

Рисунок 1

Схема


* КОНТРОЛЬ СМЕЩЕНИЯ: Увеличение сопротивления смещает цепь к состоянию «ВКЛ».
Этот элемент управления не является обязательным. Если контроль смещения не используется, замените его на короткое.
(Фотореле также можно смещать, частично блокируя свет, падающий на LDR.)
** ПРОВЕРКА ПОЛЯРНОСТИ БЕЗОПАСНОСТИ: Клемма заземления для проверки полярности.
Если горит неоновая лампа, полярность правильная. Если неон не горит, переверните входной штекер.
Ознакомьтесь с указаниями по безопасности ниже.
*** См. Приложение по нагрузке ниже.

Описание цепи

Вторичная обмотка трансформатора, два диода и конденсатор 270 мкФ создают рабочую мощность постоянного тока 6-9 В для схемы. Резистор 8,2 кОм, регулируемый резистор 1 кОм и LDR образуют делитель напряжения. Сопротивление LDR изменяется обратно пропорционально интенсивности падающего на него света. Средь бела дня сопротивление LDR составляет около 100 Ом, а напряжение на контактах 2 и 6 находится рядом с отрицательной шиной питания. По мере приближения темноты сопротивление LDR увеличивается, а напряжение на контактах 2 и 6 7555 повышается.7555 действует как компаратор напряжения. Когда напряжение на контактах 2 и 6 достигает примерно 2/3 положительного напряжения шины питания, контакт 3 становится низким, запуская реле SS. Реле замыкает цепь переменного тока, подавая напряжение на нагрузку. По мере приближения дневного света операция меняется на противоположную. Сопротивление LDR падает, и напряжение на контактах 2 и 6 падает. Когда напряжение на контактах 2 и 6 достигает примерно 1/3 напряжения источника питания, контакт 3 становится высоким, обесточивая реле SS. Резистор 10 кОм обеспечивает отрицательную обратную связь, которая сужает 2/3 — 1/3 двухпозиционного окна.† Резистор 150 кОм ограничивает ток в неоновой лампе примерно до 200 мкА.

† Уменьшите значение этого резистора, чтобы сузить окно включения / выключения; увеличьте значение (или удалите), чтобы расширить окно.


Детали для рисунка 1

TRANSFORMER 115V / 6Vx2, BV020-5417.0 (Pulse), Digikey cat # 567-1007
LDR Light Dependent Resistor, All Electronics cat # PRE-12 (or similar)
7555 Таймер CMOS, LMC555CN (Nat.Полупроводник), Digikey cat # LMC555CN
SS RLY 2-амперное твердотельное реле, G3MC-202PL DC5 (Omron), номер по каталогу Mouser 653-G3MC-202PL-DC5
POT 1 кОм, 9 мм, Digikey 3309-102 (Необязательно. Если не используется, заменить на короткое)
NE-2 Неоновая лампа, кот Mouser № 606-A1A
РЕЦЕПТИЧЕСКИЙ 2-х проводный, защелкивающийся, Digikey Q281
КОРПУС Пластик, 4.5 дюймов x 2,75 дюйма x 1 дюйм (11,4 см x 7 см x 2,5 см)
MISC Мелкие детали, как показано на схеме

Digikey Mouser Electronics Вся электроника



Строительство начато

Все детали крепятся к корпусу с помощью герметика из силиконовой резины (RTV).

Монтажная плата завершена

Большинство мелких компонентов для проекта смонтированы на плате.
2-контактный разъем подключается к LDR.

Печатная плата

в корпусе

Проводной

Выходной приемник

Установлен в корпус

Установлены входной линейный шнур и первичная проводка трансформатора

Детали проверки полярности

Гнездо наконечника (это будет вывод заземления), резистор 150 кОм, монтажная втулка светодиода, NE-2.

Установлены неоновая лампа и клемма заземления

в океане RTV.

Завершенный проект — Внутренний

Завершенный проект — Внешний

Да, это крышка от бутылки. Он защищает LDR и придает ему направленность.

LDR

крупным планом

Фотореле в эксплуатации

Это открытое место, защищенное от непогоды накануне.



— Соображения по безопасности —

Эта схема, если она построена с использованием сертифицированных устройств, прошедших испытания в режиме высокого напряжения, указанных в списке деталей (трансформатор и реле SS), обеспечивает очень высокую гальваническую развязку.Тем не менее, фотоэлемент, показанный на этой странице, является автономной переносной (временной) версией. Таким образом, при его использовании следует помнить о нескольких вещах:

  • Фотоэлемент необходимо защищать от погодных и других влажных условий. (См. Ниже.)
  • Перед вводом фотоэлемента в эксплуатацию необходимо выполнить проверку полярности. Это гарантирует, что оба выходных проводника будут обесточены, когда устройство находится в состоянии «ВЫКЛ». (Проверка полярности не применяется, если реле рассчитано на использование 240 В переменного тока.См. Ниже.)
  • Отсоедините фотоэлемент от источника питания, прежде чем работать с любым устройством или проводкой, управляемой устройством.


Вариант № 1: Построение версии на 240 В переменного тока

Однополюсный:

Фотореле можно сконструировать как однополюсную версию на 240 В переменного тока, заменив трансформатор на 240 В на трансформатор, показанный в списке деталей на Рисунке 1 выше, и удалив резистор 150 кОм и неоновую лампу.Никаких других изменений не требуется. Однополюсная версия подходит для портативного (временного) обслуживания только , если реле будет подключено к 240-вольтовой полностью плавающей и сбалансированной ответвленной цепи, защищенной прерывателем цепи замыкания на землю (GFCI).

ТРАНСФОРМАТОР 230V / 6Vx2, BV020-5388.0 (импульсный), Digikey 567-1022

Двухполюсный:

Двухполюсная версия показана на рисунке 2. Используйте эту конфигурацию, если фотореле будет подключено к 240-вольтной ответвленной цепи без защиты GFCI (или если тип автоматического выключателя неизвестен).

Рисунок 2

Схема — 240 В переменного тока, 2-полюсное исполнение

* КОНТРОЛЬ СМЕЩЕНИЯ: Увеличение сопротивления смещает цепь к состоянию «ВКЛ».
Этот элемент управления не является обязательным. Если контроль смещения не используется, замените его на короткое.
(Фотореле также можно смещать, частично блокируя свет, падающий на LDR.)
*** См. Приложение по нагрузке ниже.

Детали для рисунка 2

ТРАНСФОРМАТОР 230V / 6Vx2, BV020-5388.0 (импульсный), Digikey 567-1022
LDR Светозависимый резистор, вся электроника PRE-12 (или аналогичный)
7555 Таймер CMOS, LMC555CN (Nat. Semiconductor), Digikey cat # LMC555CN
SS RLY (2) 2-амперное твердотельное реле, G3MC-202PL DC5 (Omron), номер по каталогу Mouser 653-G3MC-202PL-DC5
POT 1 кОм, 9 мм, Digikey 3309-102 (Необязательно. Если не используется, заменить на короткий.)
РЕЦЕПТИЧЕСКИЕ
КОРПУС
MISC Мелкие детали, как показано на схеме

Вариант № 2: создание удаленной / всепогодной версии

Датчик освещенности (LDR) может быть удален с помощью низковольтной проводки для создания «погодоустойчивой» версии схемы, как показано на рисунке 3. Поместите LDR в прозрачный или полупрозрачный водонепроницаемый внешний кожух; установите оставшуюся часть цепи в защищенном от атмосферных воздействий месте.

Рисунок 3

Пульт ДУ LDR

Вариант № 3: Построение сильноточной версии

Для приложений с более высоким током указанные твердотельные реле серии G3MC и резисторы на 390 Ом могут быть заменены сильноточными твердотельными реле (или реле), такими как Omron G3NA-2xxB-DC5-24 серия (до 90 ампер) или серия Crydom h22WD (до 125 ампер). Замените резистор на 390 Ом на короткое замыкание.

В качестве альтернативы, схему на Рисунке 1 можно использовать для управления (пилотирования) электромеханического реле или контактора 120/240 В переменного тока, как показано на Рисунке 4.

Рисунок 4

Фото реле управляет электромеханическим реле.


Пример установленного

Электромеханическое реле в сером ящике.

Вариант № 4: Построение версии для выключения темноты

Цепь реле может быть изменена для отключения нагрузки в темноте. Схема остается той же во всех отношениях, за исключением того, что проводка реле SS и связанного с ним резистора на 390 Ом изменена, как показано на рисунке 5.Обратите внимание, что работа регулятора BIAS изменится.

Рисунок 5

Схема — Модификация Off-When-Dark.

* КОНТРОЛЬ СМЕЩЕНИЯ: Увеличение сопротивления смещает цепь к состоянию «ВЫКЛ».
Этот элемент управления не является обязательным. Если контроль смещения не будет использоваться, замените его на короткий.
(Фотореле также можно смещать, частично блокируя свет, падающий на LDR.)

Приложение: нагрузки на твердотельное реле

Минимальная нагрузка

В отличие от электромеханического реле, твердотельное реле не будет полностью переключаться из состояния «ВЫКЛ» на высокое сопротивление (т.е.е., низкая мощность) нагрузки или обрыва цепи. Максимальное сопротивление, которое может выдержать реле Omron SS, составляет около 1200 Ом, что эквивалентно 12 Вт резистивной нагрузки без накаливания (0,1 А) при 120 В. Для лампы накаливания минимальная эквивалентная нагрузка составляет около двух ватт (холодное сопротивление 2-ваттной лампы накаливания составляет менее 1200 Ом). Интересно, что для магнитной нагрузки (двигатель, реле, трансформатор и т. Д.) Минимальная нагрузка составляет практически нуль Вт, поскольку магнитные устройства переменного тока регистрируют очень низкое сопротивление в обесточенном состоянии.Другими словами, минимальная нагрузка зависит от типа нагрузки:

Минимальная нагрузка, необходимая для различных типов нагрузки
Тип нагрузки Минимальная мощность включения для этого типа нагрузки Типичное сопротивление выключения при этой мощности
Резистивное 12 Вт (24 Вт при 240 В) 1200 Ом (2400 Ом при 240 В)
Лампа накаливания 2 Вт (4 Вт при 240 В) <1200 Ом (<2400 Ом при 240 В)
Магнитный <1 Вт <200 Ом

Особый случай — светодиодные нагрузки

Интересный эффект можно увидеть, когда реле подключено к цепочке светодиодных декоративных фонарей.Эти цепи состоят из выпрямителя и примерно 35 светодиодов, соединенных последовательно (70 светодиодов для цепочек на 240 вольт). Поскольку светодиоды являются высокоскоростными нелинейными устройствами, они выключаются каждый раз, когда напряжение привода падает ниже порогового значения в 2-3 вольта на светодиод. Это происходит при нормальной работе дважды в течение каждого цикла переменного тока. Кажется, что светодиоды горят непрерывно, но на самом деле они мигают с частотой, в два раза превышающей частоту линии переменного тока.

Требование минимальной нагрузки / максимального сопротивления вступает в игру, когда реле SS переключается в состояние «ВЫКЛ».Каждый раз, когда напряжение цепочки падает ниже порогового напряжения светодиодов, цепочка для реле выглядит как разомкнутая цепь. Реле пытается подать ток на цепочку светодиодов, и напряжение в цепочке поднимается до порогового значения. В результате на светодиоды подается серия импульсов с ограничением на пороге с частотой, в 2 раза превышающей линейную. Видимый результат: вместо того, чтобы потемнеть, струна тускло светится. Это происходит независимо от количества светодиодных цепочек, подключенных к реле.

Если это неприемлемо, решение простое: в дополнение к светодиодной нагрузке обеспечьте по крайней мере 2 Вт лампы накаливания.Одна лампа мощностью 2 Вт (или больше) на 120 В (4 Вт при 240 В) или цепочка ламп, подключенная параллельно светодиодной цепочке, полностью устранит эффект. В качестве альтернативы можно использовать какую-либо магнитную нагрузку, например, трансформатор дверного звонка или сетевой адаптер питания от бородавок с питанием от трансформатора (без переключателя). (Нет необходимости подключать бородавку к ее нагрузке.)

Если ваша единственная забота — устранить тусклое свечение светодиодов при выключенном фотореле, можно использовать резистор относительно высокого номинала.Хотя это не позволит реле SS полностью переключиться в состояние «ВЫКЛ», оно снизит выходное напряжение до уровня, достаточного для того, чтобы погасить цепочку светодиодов. Вероятно, наиболее практичным местом для этого резистора являются клеммы приемника выходной нагрузки фотоэлемента, как показано на рисунке 6. Присутствие этого резистора не влияет на работу реле с другими типами нагрузки.

Рисунок 6

Дополнительный нагрузочный резистор, если реле должно использоваться со светодиодными цепочками.

(используйте 100 кОм, 1 Вт для 240 В переменного тока)

Особый случай — импульсные источники питания и импульсные источники питания

Указанное реле SS рассчитано на импульсный ток 30 ампер.Хотя этого вполне достаточно для большинства ситуаций с нагрузкой, включая люминесцентные лампы и двигатели, существует один тип нагрузки, в котором это может не быть импульсных источников питания без коррекции коэффициента мощности (PFC) : . Эти источники обычно работают напрямую от линии переменного тока с двухполупериодным выпрямителем, за которым следует конденсатор для фильтрации пульсаций большой емкости. Этот конденсатор представляет собой виртуальное короткое замыкание на линию в момент подачи питания, и в течение первого или двух циклов после включения может протекать 100 ампер или более, что значительно превышает номинальное значение перенапряжения реле SS.

Хорошо спроектированный импульсный источник питания будет включать коррекцию коэффициента мощности или ограничитель пускового тока, также известный как термистор с отрицательным температурным коэффициентом (NTC), который предотвращает это. Если вы не уверены в своем импульсном источнике питания, вы можете включить его в фотоэлемент в качестве меры предосторожности. Ограничитель тока подключается, как в приведенном выше примере, в задней части приемного устройства. Ограничитель пускового тока должен быть подключен между реле SS и нагрузкой, как показано на рисунке 7.Указанный ограничитель тока будет ограничивать пусковой ток значительно ниже номинального значения импульсного тока реле SS. Ограничитель тока нагревается во время нормальной работы под нагрузкой.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *