Закрыть

Схема подключения нормально разомкнутого реле: Подключение нормально замкнутого реле – АвтоТоп

Содержание

Устройство, схема и подключение промежуточного реле

Здравствуйте, уважаемые читатели сайта sesaga.ru. Промежуточные электромагнитные реле применяются во многих электронных и электрических схемах и предназначены для коммутации электрических цепей. Они используются для усиления и преобразования электрических сигналов; запоминания информации и программирования; распределения электрической энергии и управления работой отдельных элементов, устройств и блоков аппаратуры; сопряжения элементов и устройств радиоэлектронной аппаратуры, работающих на различных уровнях напряжений и принципах действия; в схемах сигнализации, автоматики, защиты и т.п.

Промежуточное электромагнитное реле представляет собой электромеханическое устройство, которое может коммутировать электрические цепи, а также управлять другим электрическим устройством. Электромагнитные реле делятся на реле постоянного и переменного тока.

Работа электромагнитного реле основана на взаимодействии магнитного потока обмотки и подвижного стального якоря, который намагничивается этим потоком.

На рисунке показан внешний вид промежуточного реле типа РП-21.

1. Устройство реле.

Реле представляет собой катушку, обмотка которой содержит большое количество витков медного изолированного провода. Внутри катушки находится металлический стержень (сердечник), закрепленный на Г-образной пластине, называемой ярмом. Катушка и сердечник образуют электромагнит, а сердечник, ярмо и якорь образуют магнитопровод реле.

Над сердечником и катушкой расположен якорь, выполненный в виде пластины из металла и удерживаемый при помощи возвратной пружины. На якоре жестко закреплены подвижные контакты, напротив которых расположены соответствующие пары неподвижных контактов. Контакты реле предназначены для замыкания и размыкания электрической цепи.

2. Как работает реле.

В исходном состоянии, пока на обмотку реле не подано напряжение, якорь под воздействием возвратной пружины находится на некотором расстоянии от сердечника.

При подаче напряжения в обмотке реле сразу начинает течь ток и его магнитное поле намагничивает сердечник, который преодолевая усилие возвратной пружины, притягивает якорь. В этот момент контакты, закрепленные на якоре, перемещаясь, замыкаются или размыкаются с неподвижными контактами.

После отключения напряжения ток в обмотке исчезает, сердечник размагничивается, и пружина возвращает якорь и контакты реле в исходное положение.

3. Контакты реле.

В зависимости от конструктивных особенностей контакты промежуточных реле бывают нормально разомкнутые (замыкающие), нормально замкнутые (размыкающие) или перекидные.

3.1. Нормально разомкнутые контакты.

Пока напряжение питания не подано на катушку реле, его нормально разомкнутые контакты всегда

разомкнуты. При подаче напряжения реле срабатывает и его контакты замыкаются, замыкая электрическую цепь. На рисунках ниже показана работа нормально разомкнутого контакта.

3.2. Нормально замкнутые контакты.

Нормально замкнутые контакты работают наоборот: пока реле обесточено, они всегда замкнуты. При подаче напряжения реле срабатывает и его контакты размыкаются, размыкая электрическую цепь. На рисунках показана работа нормально разомкнутого контакта.

3.3. Перекидные контакты.

У перекидных контактов при обесточенной катушке средний контакт, закрепленный на якоре, является общим и замкнут с одним из неподвижных контактами. При срабатывании реле средний контакт вместе с якорем перемещается в сторону другого неподвижного контакта и замыкается с ним, одновременно разрывая связь с первым неподвижным контактом. На рисунках ниже показана работа перекидного контакта.

Многие реле имеют не одну, а несколько контактных групп, что позволяет осуществлять управление несколькими электрическими цепями одновременно.

К контактам промежуточных реле предъявляются особые требования. Они должны иметь малое переходное сопротивление, большую износоустойчивость, малую склонность к привариванию, высокую электропроводность и большой срок службы.

В процессе работы контакты своими токоведущими поверхностями прижимаются друг к другу с определенным усилием, создаваемым возвратной пружиной. Токоведущая поверхность контакта, соприкасающаяся с токоведущей поверхностью другого контакта называется контактной поверхностью, а место перехода тока из одной контактной поверхности в другую называется электрическим контактом.

Соприкосновение двух поверхностей происходит не по всей кажущейся площади, а лишь отдельными площадками, так как даже при самой тщательной обработке контактной поверхности на ней все равно будут оставаться микроскопические бугорки и шероховатости. Поэтому

общая площадь соприкосновения будет зависеть от материала, качества обработки контактных поверхностей и усилия сжатия. На рисунке показаны контактные поверхности верхнего и нижнего контактов в сильно увеличенном виде.

В месте перехода тока с одного контакта в другой возникает электрическое сопротивление, которое называется переходным сопротивлением контакта. На величину переходного сопротивления существенное влияние оказывает величина контактного нажатия, а также сопротивление окисных и сульфидных пленок, покрывающих контакты, так как они являются плохими проводниками.

В процессе длительной работы поверхности контактов изнашиваются и могут покрываться налетами копоти, окисными пленками, пылью, непроводящими частицами. Также износ контактов может быть вызван механическими, химическими и электрическими факторами.

Механический износ происходит при скольжении и ударах контактных поверхностей. Однако главной причиной разрушения контактов являются электрические разряды, возникающие при размыкании и замыкании цепей в особенности цепей постоянного тока с индуктивной нагрузкой. В момент размыкания и замыкания на контактных поверхностях происходят явления плавления, испарения и размягчения контактного материала, а также перенос металла с одного контакта на другой.

В качестве материалов для контактов реле применяют серебро, сплавы твердых и тугоплавких металлов (вольфрам, рений, молибден) и металлокерамические композиции. Наибольшее применение получило серебро, обладающее малым контактным сопротивлением, высокой электропроводностью, хорошими технологическими свойствами и относительно невысокой стоимостью.

Следует помнить, что абсолютно надежных контактов нет, поэтому для повышения их надежности применяют параллельное и последовательное включение контактов: при последовательном включении контакты могут разорвать большой ток, а параллельное включение повышает надежность замыкания электрической цепи.

4. Электрическая схема реле.

На принципиальных схемах катушка электромагнитного реле изображается прямоугольником и буквой «К» с цифрой порядкового номера реле в схеме. Контакты реле обозначаются этой же буквой, но с двумя цифрами, разделенными точкой: первая цифра указывает на порядковый номер реле, а вторая на порядковый номер контактной группы этого реле. Если же на схеме контакты реле расположены рядом с катушкой, то их соединяют штриховой линией.

Запомните. На схемах контакты реле изображают в состоянии, когда на него напряжение еще не подано.

Электрическую схему и нумерацию выводов реле производитель указывает на крышке, закрывающей рабочую часть реле.

На рисунке видно, что выводы катушки обозначены цифрами 10 и 11, и что реле имеет три группы контактов:
7 — 1 — 4
8 — 2 — 5
9 — 3 — 6

Здесь же под электрической схемой указаны электрические параметры контактов, показывающие, какой максимальный ток они могут пропустить (коммутировать) через себя.

Контакты данного реле коммутируют переменный ток не более 5 А при напряжении 230 В, и постоянный ток не более 5 А при напряжении 24 В. Если же через контакты пропускать ток больше указанного, то они очень скоро выйдут из строя.

На некоторых типах реле производитель дополнительно нумерует выводы со стороны присоединений, что очень удобно.

Для удобства эксплуатации, замены и монтажа реле применяют специальные колодки, которые устанавливаются на стандартную DIN-рейку. В колодках предусмотрены отверстия для контактов реле и винтовые контакты для подключения внешних проводников. Винтовые контакты имеют нумерацию контактов, которая соответствует нумерации контактов реле.

Также на катушках реле указывают род тока и рабочее напряжение обмотки реле.

На этом пока закончим, а во второй части рассмотрим основные параметры и подключение электромагнитных реле, где на примерах простых схем разберем работу реле.

До встречи на страницах сайта.
Удачи!

Литература:

1. И. Г. Игловский, Г. В. Владимиров – «Справочник по электромагнитным реле», Л., Энергия, 1975 г.
2. М. Т. Левченко, П. Д. Черняев – «Промежуточные и указательные реле в устройствах релейной защиты и автоматики», Энергия, Москва, 1968, (Б-ка электромонтера, вып. 255).
3. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

Нормально разомкнутые и замкнутые контакты

Нормально разомкнутый контакт (замыкающий контакт, NO) – термин описывающий состояние основных или дополнительных контактов пускателя, кнопки, реле, контактора которые имеют два противоположных состояния. В рабочем состоянии нормально разомкнутый контакт замкнут, соответственно, в нерабочем – разомкнут.

Нормально замкнутый контакт (размыкающий контакт, NC) – по аналогии с нормально разомкнутым, но симметрично противоположен. В рабочем состоянии контакты разомкнуты, а в нерабочем, напротив – замкнуты.

Блок-контакты

Блок контакты – это электромеханические устройства применяемое для переключения цепей управления и сигнализации.

Как правило, такие устройства имеют от 1 до 4 нормально разомкнутых или замкнутых контактов.  Устанавливаются они на боковой или на лицевой части пускателя (контактора).

NC – контакты используются в основном в блокировочных цепях (см. пример далее). Но кроме блокировочных цепей они также могут быть использованы для подключения источника автономного питания или аварийной сигнализации.

NO – контакты применяют для сигнализации, например при включении контактора он срабатывает и подает напряжение на сигнальную лампу, или же управляющий сигнал на контроллер/станцию управления.

Электрическая блокировка контактора

Рассмотрим пример, как с помощью дополнительных контактов, осуществляется электрическая блокировка контактора.

При подаче напряжения на выводы катушки контактора K 1 он срабатывает вместе со своим блок-контактом K 1.1 . Нормально замкнутый контакт  K 1.1 размыкается, прерывая цепь питания катушки контактора K 2. Аналогичный процесс происходит при включении контактора K 2.

Данная схема электрической блокировки контактов исключает одновременное включение одновременно двух контакторов. Такое соединение контакторов зачастую применяется при подключении асинхронного двигателя. Нормально разомкнутые контакты в данной цепи не задействованы, но могут использоваться в цепях управления и сигнализации.

  • Просмотров: 32787
  • Описание внешних выводов — Реле блокировки R4

    Устройство выпускается с текстовой или цветной маркировкой проводов.

    МаркировкаРасшифровка
    GNDМасса
    BATПитание
    IGNЗажигание
    NOНормально разомкнутый контакт реле
    NCНормально замкнутый контакт реле
    COMОбщий контакт реле
    UNLOCKОткрытие замка капота
    LOCKЗакрытие замка капота
    INPUTВход управления (однопроводный интерфейс)
    OUTPUTВыход для подключения внешнего реле блокировки
    EXTВход концевого выключателя капота

    Провод IGN — вход подключения к зажиганию автомобиля. На проводе IGN должен быть потенциал +12 В во время включения зажигания и работы двигателя.

    Провода NO, NC, COM подключаются к блокируемой цепи. Для осуществления блокировок можно использовать как нормально замкнутые (COM и NC), так и нормально разомкнутые (COM и NO) контакты.

    При монтаже этой цепи необходимо следить за длиной и сечением проводов, используемых при коммутации, поскольку коммутируемый ток может быть значительным. Если ток в блокируемой цепи превышает 10 А, необходимо использовать дополнительное внешнее реле.


    Провода UNLOCK, LOCK — силовые выходы управления электроприводом замка капота. Выходы построены по силовой схеме (максимальный выходной ток 12 А), поэтому для управления замками не требуются дополнительные силовые модули. При отпирании замка капота на проводе UNLOCK появляется импульс +12 В на 0,8 с. При запирании замка капота на проводе LOCK появлется импульс +12 В на 0,8 с.
    Провод EXT — вход концевого выключателя капота. Подключается непосредственно к концевому выключателю капота автомобиля. Данное подключение необходимо для исключения запирания замка при открытом капоте.

    Обязательно подключите концевой выключатель капота к охранному комплексу StarLine. Если при постановке на охрану капот будет открыт (сопровождается четырьмя сигналами сирены и световыми сигналами), то в течение 1-й минуты закройте капот, чтобы кодовое реле закрыло замок капота.
    Если Вы закроете капот позднее 1-й минуты, то кодовое реле не закроет замок капота. В этом случае выключите охрану, закройте капот и снова поставьте на охрану, чтобы кодовое реле закрыло замок капота.

    Провод INPUT — вход управления (однопроводный интерфейс). Подключается к выходу дополнительного канала охранного комплекса StarLine. Для выбора дополнительного канала запрограммируйте необходимую функцию на вариант 3 согласно таблице программирования охранных и сервисных функций охранного комплекса.

    Провод OUTPUT – выход для подключения внешнего реле блокировки. При включении зажигании в режиме «В охране» на этом выходе появляется масса (корпус). Выход реализован по схеме открытого коллектора, максимально допустимый ток нагрузки 300 мА.

    контактное, 12В, промежуточное, принцип работы и управление

    На чтение 7 мин Просмотров 4.5к. Опубликовано Обновлено

    Реле является системой выключателей, необходимых для переключения, разъединения и соединения электроцепей. Цель эксплуатации коммутационного устройства – создание конкретных условий работы техники. Подключить реле означает создать нагрузку на выключатель, управляющий прибором.

    Механизмы реле

    Основные элементы электромагнитного реле

    Релейный прибор выполняется в виде катушки, обвитой большим количеством медной проволоки. Внутри нее расположен сердечник-стержень из металла, зафиксированный на ярме – Г-образной пластине. Поверх сердечника и катушки находится якорь – металлическая пластина, которая удерживается возвратная пружина. К якорю прикреплены подвижные контакты, а напротив них – неподвижные.

    Узел из катушки и сердечника – электромагнит, а узел из сердечника, якоря и ярка – магнитопровод. Контакты обеспечивают управление электроцепью, размыкая и замыкая ее.

    Принцип работы

    Принцип действия электромагнитных реле

    Принцип работы реле 4 контактного или 12-вольтной модели схож. Без подачи напряжения на устройство якорь при помощи возвратной пружины отдален от сердечника.

    В момент, когда подается напряжение, по обмотке начинает двигаться ток, магнитное поле которого воздействует на сердечник. Намагниченный элемент посредством преодоления усилий возвратной пружины, притягивает якорь. Его активные контакты перемещаются, размыкаясь или замыкаясь с неподвижными.

    После прекращения подачи напряжения ток обмотки пропадает, происходит размагничивание сердечника. Возвратная пружина приводит якорь и контакты в исходное состояние.

    Разновидности реле

    Реле контроля напряжения однофазное цифровое на DIN-рейку

    Релейные устройства классифицируются по нескольким параметрам.

    Количество фаз

    Подразделяются на:

    • однофазные – предназначены для подачи напряжения в жилых помещениях;
    • трехфазные – подходят для применения в промышленных условиях.

    Трехфазники отключают питание всего оборудования при скачках вольтажа на одной из линий.

    Тип переключения

    Можно приобрести модели:

    • максимальные – повышают параметр напряжения до определенной величины;
    • минимальные – понижают показатель до заданного значения.

    Порог напряжения пользователем не устанавливается.

    Тип активации воспринимающего элемента

    Реле промежуточное РП-18-54 220В DC

    Воспринимающий элемент, по включению которого будет работать прибор, – это электромагнит, магнитоэлектрический узел, индукционная или электродинамическая система. В зависимости от его вида существуют реле:

    • первичные с прямым подключением контактов в сеть;
    • вторичные – могут подключаться через измерительные индуктивные или емкостные трансформаторы;
    • промежуточные – усиливают или преобразуют сигналы первичных/вторичных моделей.

    Функции воспринимающего элемента – преобразование напряжения в процесс движения якоря относительно ярма.

    Тип управления нагрузкой

    Для управления напряжением применяются модели:

    • прямого действия – нагрузка переключается контактами;
    • косвенного действия – нагрузку подключаются вторичные элементы.

    Нагрузка подается и приостанавливается с определенными промежутками.

    Тип поступления сигнала

    Герконовое реле

    В продаже можно найти следующие коммутационные устройства:

    • электронные – обеспечивают контроль напряжения в условиях высокой нагрузки. Управляют освещением и узлами автомобиля;
    • герконовые – небольшие модели в виде катушки. Предназначены для замыкания, переключения, размыкания сети. Чувствительны к механическим воздействиям и ультразвуку;
    • электротепловые – отключают и включают электрический ток по нагреву биметаллической пластины. Используются для электродвигателей на производстве, обустройства однофазной или трехфазной электросети;
    • временной выдержки – для создания кратковременных пауз применяются схемы замедления. Приборы работают в автомобилях, светофорах, елочных гирляндах;
    • таймеры света – позволяют программировать освещение теплиц, аквариумов, животноводческих комплексов. К ним подключаются нагреватели, вентиляторы;
    • электромагнитные – ток статистической обмотки активируется по воздействию магнитного поля. Приборы со средней нагрузкой до 320 А и напряжение до 1,6 кВт могут работать только в сети с постоянным током.

    Конструктивно стандартный регулятор имеет вид пакетника для крепления на дин-рейку. Некоторые модели исполняются в виде переходников и удлинителей.

    Особенности контактов

    Распространенные конфигурации контактных групп реле

    По конструкции контактное промежуточное реле состоит из трех типов элементов.

    Нормально разомкнутые

    Находятся в разомкнутом состоянии до момента подачи питания на катушку. Реле активируется после подачи напряжения, и контакты приходят в замкнутое состояние. Электросеть замыкается.

    Нормально замкнутые

    Функционируют по обратному принципу, находясь в замкнутом состоянии на момент обесточивания реле. После появления напряжения происходит срабатывание реле, размыкание контактов и цепи.

    Перекидные

    При обесточивании катушки средний общий контакт якоря замкнут с неподвижным. После того как реле срабатывает, средний элемент вместе с якорем двигается в направлении стационарного контакта и замыкается с ним. Связь с первым стационарным контактом разрывается.

    Модели с несколькими контактными группами обеспечивают управление несколькими цепями.

    Электрическая схема реле

    Принципиальная электросхема реле

    Принципиальная схема реле наносится на крышку производителем. Само устройство имеет вид прямоугольника, помечается маркером К с цифрой. Для обозначения контактов без подачи нагрузки применяется буква К с двумя цифрами, разделенными точкой. Первая – это порядковый номер прибора, вторая – порядковый номер контактов.

    Контактные группы рядом с катушкой маркируются штриховой линией. Под электросхемой также указывают параметры контактов, величину максимального коммутационного тока. Разновидность токов и напряжение в рабочих условиях наносятся на релейную катушку.

    Схемы подключения

    Модуль подключается к потребителям в зависимости от конструктивного исполнения и количества контактов.

    С несколькими контактами

    Схема подключения 4-х контактного реле

    Схема активации и работы светового реле, состоящая из 4 контактов позволяет подключить противотуманки через предохранитель:

    1. Поиск дополнительного вольтажа посредством разрезания красного провода на предохранительном блоке и пайки дополнительного.
    2. Установка навесного предохранителя.
    3. Подключение силового реле по нумерации контактов. 30 – кабель после предохранителя, 87 – кабель к ПТФ напрямую, 86 – провод с зацепкой на болт около реле.
    4. Создание системы управления. Вытаскивается кнопка ПТФ без снятия колодки.
    5. Прозвонка провода мультиметром и присоединение его к кузову.
    6. Проверка фар и габаритов.
    7. Повторная прозвнока мультиметром и поиск цифры 12+.

    Контакт 85 подкидывается только на провод, при касании к которому появилось 12+.

    Схема подсоединения пятиконтактного реле

    Схема подсоединения пятиконтактного реле подходит для создания сигнализации. Подключение выполняется так:

    1. Определение контактов. 85 и 86 отвечают за катушку, 30 – общий, 87-а – нормально-замкнутый, 87 – нормально разомкнутый.
    2. Питающий контакт 85 соединяется с сигнализационным проводом.
    3. На катушечный контакт 86 при включенном зажигании подается 12+ Вольт.
    4. Контакты 87-а и 30 подкидываются в разрыв заблокированной цепи.
    5. Инвертируется полярность. На катушечный контакт 85 и контакт 87 подается минус, на контакт 86 с концевиков – плюс. На 30-м остается плюс.

    В качестве блокиратора может использоваться бензонасос, стартер, запитка форсунок, зажигание.

    Для реле напряжения

    Принципиальная схема домашней сети с использованием реле напряжения, УЗО и защитных автоматов

    Схема подключения реле напряжения предусматривает монтаж прибора на дин-рейку в распредщитке. Для трехфазной сети выполняется следующее:

    1. Определяется кабель подключения – медный, с сечением 1,5-2,5 мм2.
    2. Подсоединяются контакты ввода через пускатель или контактор.
    3. Находится фаза по маркерам А, В, С и клемма нуля N.
    4. Проводники трех фаз подкидываются на соответствующие верхние клеммы устройства.
    5. Проводник клеммы № 1 подключается на выход катушки.
    6. Клемма № 3 подсоединяется на фазу в обход реле напряжения.
    7. Выход № 2 контакторной катушки нужно подключать к нулевому проводнику сети.
    8. Проводники нагрузки соединяются с клеммами пускателя на выходе.
    9. Нулевые проводники в распредкоробе подкидываются на общую нейтраль.

    Для простоты соединения узлов руководствуйтесь схемой на корпусе реле.

    Настройки реле

    Схема для включения любого реле будет работать только в условиях правильной настройки. Пользователь может установить порог срабатывания по максимальному и минимальному значению, выбрать задержку активации и повторного включения после перезагрузки.

    Определившись с типом реле переключения и разобравшись в его схеме, можно самостоятельно создать электроцепь. При работе следует учитывать тип контактов, разновидность устройства и принцип его функционирования.

    принцип работы, характеристики, схема подключения

    электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД) и другие инженерно технические системы (ИТС)

    По принципу действия реле можно подразделить на несколько типов, например:

    • электромагнитные,
    • тепловые,
    • времени и др.

    Наиболее распространенными являются электромагнитные реле, устройство, принцип работы и основные технические характеристики которых будут рассмотрены ниже.

    Электромагнитное реле (рисунок 1) представляет собой парамагнитный сердечник С (стальной, например) поверх которого намотана катушка L.

    Электрические контакты K реле механически связаны с ярмом Я. При подаче на катушку напряжения Uуп ярмо воздействует на контакты, изменяя их состояние.

    Контакты реле могут быть трех основных типов (рисунок 2):

    1. Замыкающие (нормально разомкнутые). При отсутствии на реле напряжения они разомкнуты, при подаче напряжения контакты замыкаются.
    2. Размыкающие (нормально замкнутые). По сравнению с предыдущими контактами здесь все происходит наоборот.
    3. Переключающие. Из схемы видно, что они являются комбинацией первых двух типов контактов реле.

    Кроме того, реле может иметь несколько независимых (электрически изолированных) друг от друга контактов, иначе называемых направлениями. Так, для варианта 1 на рисунке 2 количество направлений равно двум.

    Хочу заметить, что существует тип реле, действующий по электромагнитному принципу, однако, не имеющий сердечника. Это герконовые реле (рисунок 3).

    Магнитное поле катушки действует непосредственно на электрические контакты, расположенные в герметичном корпусе. Собственно, название «геркон» происхождение имеет от двух слов: ГЕРметичный КОНтакт.

    Таким образом, принцип работы реле заключается в преобразовании управляющего напряжения Uуп в электромагнитное поле, управляющее работой механических контактов, которые, в свою очередь, могут коммутировать другие напряжения Uком и токи Iком.

    Вполне резонно может возникнуть вопрос: зачем нужно такое преобразование?

    Основных причин две:

    1. Можно достаточно небольшими значениями Uуп управлять гораздо большими величинами напряжений и токов.
    2. Реле позволяет при необходимости осуществить гальваническую развязку цепей, то есть осуществлять связь между ними без электрического контакта. Кстати, это иллюстрирует правая часть рис.1.

    Изложенный принцип работы электромагнитного реле определяет его основные электрические характеристики.

    • напряжение и ток срабатывания (отпускания),
    • номинальные (максимальные) коммутируемые токи и напряжение,
    • электрическое сопротивление обмотки.

    Стоит отметить, что помимо этих характеристик реле обладают рядом других, определяющих надежность, быстродействие, различные варианты исполнения, но, поскольку, приведенный материал является ознакомительным, подробное их описание представляется нецелесообразным.

    © 2012-2021 г. Все права защищены.

    Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


    Схема подключения через 5 контактное реле

    Зная, как работает реле, Вы сможете осуществить различные схемы подключения к электропроводке автомобиля.

    Обычно реле имеет 5 контактов (бывают и 4-хконтактные и 7-ми и т.д.). Если Вы посмотрите на реле внимательно, то увидите, что все контакты подписаны. Каждый контакт имеет своё обозначение. 30, 85, 86, 87 и 87А. На рисунке видно где, какой контакт.
    Контакты 85 и 86 — это катушка. Контакт 30 — общий контакт, контакт 87А — нормально-замкнутый контакт, контакт 87 — нормально-разомкнутый контакт.

    В состоянии покоя, т.е., когда на катушке нет питания, контакт 30 замкнут с контактом 87А. При одновременной подаче питания на контакты 85 и 86 (на один контакт «плюс» на другой — «минус», без разницы куда что) катушка «возбуждается», то есть срабатывает. Тогда контакт 30 отмыкается от контакта 87А и соединяется с контактом 87. Вот и весь принцип действия. Вроде бы ничего сложного.
    Реле часто приходит на выручку во время установки дополнительного оборудования.

    Примеры применения реле:

    В качестве блокируемой цепи может быть что угодно, лишь бы машина не заводилась при разорванной цепи (стартер, зажигание, бензонасос, питание форсунок и т.д.). Один контакт питания катушки (пусть 85) соединяем с проводом сигнализации, на котором появляется «минус» при постановке в охрану. На другой контакт катушки (пусть 86) подаём +12 Вольт при включении зажигания. Контакты 30 и 87А подцепляем в разрыв блокируемой цепи. Теперь, если попытаться завести автомобиль при включенной охране, контакт 30 разомкнётся с контактом 87А и не даст завести двигатель.
    Эта схема используется, если у вас «минус» с сигнализации на блокировку выходит при постановке в охрану. Если у вас «минус» с сигнализации на блокировку выходит при снятии с охраны, тогда вместо контакта 87А используем контакт 87, т.е. разрыв цепи теперь будет на контактах 87 и 30. При таком подключении реле будет всегда в рабочем состоянии (разомкнутом) при работающем двигателе.

    Инвертируем полярность сигнала (с «минуса» делаем «плюс» и наоборот). Подключаемся к слаботочным транзисторным выходам сигнализации.

    Допустим, нам надо получить «минус», но у нас есть только «плюсовой» сигнал (например, у автомобиля положительные концевики, а у сигнализации нет входа положительных концевиков, а есть только вход отрицательных). На помощь опять приходит реле.
    Подаём на один из контактов катушки (86) наш «плюс» (с концевиков автомобиля). На другой контакт катушки (85) и на контакт 87 подаём «минус». В итоге на выходе (контакт 30) получаем нужный нам «минус».
    Если нам надо, наоборот, из «минуса» получить «плюс», то маленько меняем подключение. На контакт 86 подаём исходный «минус», а на контакты 85 и 87 подаём «плюс». В итоге на выходе (контакт 30) получаем нужный нам «плюс».
    Если нам надо из слаботочного отрицательного выхода сигнализации (в сигнализации такие выходы могут называться по-разному и их назначение тоже различное: выход на 3-е зажигание, выход на открытие багажника, выход на закрытие стёкол и т.д.) сделать хороший мощный «минус» или «плюс», то тоже используем эту схему.
    На контакт 85 подаём выход с сигнализации. На контакт 86 подаём «плюс». На контакт 87 подаём сигнал той полярности, который нам надо получить на выходе. В итоге на контакте 30 мы имеем ту полярность, которая на контакте 87.

    Открытие багажника с брелока сигнализации.

    Если в автомобиле стоит электрический привод багажника, то можно подключиться к нему автосигнализацией для открытия его с брелока сигнализации.
    Если с сигнализации выходит слаботочный сигнал на открытие багажника (а чаще всего так и есть), то используем эту схему.
    Прежде всего, находим провод на привод багажник, где появляется +12 Вольт при открытии багажника. Разрезаем этот провод. Тот конец разрезанного провода, который идёт к приводу, подцепляем к контакту 30. Другой конец провода подцепляем к контакту 87А. Выход с сигнализации подцепляем к контакту 86. Контакты 87 и 85 подцепляем на +12 Вольт.
    Теперь, при подаче сигнала с сигнализации на открытие багажника, реле сработает и на провод электропривода багажника пойдёт «плюс». Привод сработает, и багажник откроется.
    Это лишь немногие схемы подключения с использованием реле.

    ДХО (дневные ходовые огни) – дополнительные световые устройства, устанавливаемые на автомобиль для использования в светлое время суток. Хотелось бы подчеркнуть, ДХО предназначены для обозначения вашего транспортного средства перед другими участниками дорожного движения, а не для дополнительного освещения проезжей части. В пользе использования ДХО сомневаться не приходится, ваш автомобиль станет заметен на расстоянии нескольких километров. Достигается это использованием ярких светодиодов в ДХО. В этой статье я расскажу вам о правовых аспектах установки ДХО, а также о различных схемах подключения ДХО.

    Законодательство

    Перед практикой установки ДХО, хотелось бы немного остановиться на правовых нормах установки ДХО, а также правилах их работы.

    Самое первое и основное правило – запрещена самовольная установка дополнительных световых сигналов на автомобиль. Да, вы правы, вы не имеете права устанавливать ДХО на свой автомобиль, если он не был укомплектован ими заводом изготовителем. Это будет расцениваться как внесение изменений в конструкцию транспортного средства. На каждое изменение конструкции транспортного средства должен быть получен сертификат, что само по себе дело не быстрое и не дешевое. В противном случае, сотрудники ДПС выпишут вам штраф, либо вовсе доставить ваш автомобиль на штрафстоянку.

    Как же так? Мой сосед на «Оку» поставил ДХО и спокойно ездит! – спросите вы. Ему просто везет на лояльных сотрудников ДПС, которые не обращают внимания на его ДХО – отвечу я вам.

    Еще раз — запрещена самовольная установка дополнительных световых сигналов на автомобиль, если он не был укомплектован ими заводом изготовителем. Поэтому, любые изменения конструкции транспортного средства вы производите на свой страх и риск. Совсем другое дело, если комплектация вашего автомобиля не включает в себя ДХО, но в более дорогих комплектациях вашей модели ДХО имеется. В этом случае, вы имеете право установить ДХО без каких-либо согласований с сертифицирующими органами.

    Первое правило установки ДХО касается их расположения на кузове автомобиля (см. рисунок). Если кратко описать этот рисунок, то мы получим следующее:

    • ДХО должны быть установлены на высоте от 250 до 1500 мм;
    • Расстояние между близлежащими краями ДХО должно быть не менее 600 мм;
    • Расстояние от внешней боковой поверхности автомобиля до близлежащего края ДХО должно быть не более 400 мм.

    Теперь кратко пройдемся по правилам работы и использования ДХО:

    • ДХО должны использоваться только в светлое время суток;
    • Запрещено использование ДХО совместно с габаритными огнями, с ближним и дальним светом фар, а также с противотуманными фарами.

    Все что не запрещено – разрешено. Вот так все просто. Отдельно хотелось бы остановиться на важном моменте, он касается использования ДХО совместно с дальним светом фар. Правило звучит примерно так: При кратковременном подаче сигнала дальним светом, при отключенных габаритных огнях и ближнем свете фар, ДХО не должны отключаться. Расшифрую: вы едете при отключенных фарах и габаритах, ДХО включены, когда вы сигналите дальним светом встречной машине о приближении к посту ДПС, ваши ДХО не должны отключаться.

    Просто? Я тоже думаю, что ничего сложного тут нет. Зная законодательство и правила использования ДХО, мы готовы перейти к практике их подключения. Начнем от простого и неправильного, закончим сложным и правильным. Поехали!

    Схема подключения ДХО без реле

    Это самая простая схема подключения ДХО, но и самая не правильная. Немного опишу ее. При такой схеме подключения вы подаете напряжение на ДХО от основной цепи питания автомобиля. Основная цепь питания включается в работу при повороте ключа в замке зажигания. Очевидно, ваши ДХО будут работать всегда, пока повернут ключ в замке зажигания, не зависимо от того, какие осветительные приборы вы используете при этом. У вас нет возможности отключить ДХО до тех пор, пока вы не вытащите ключ из замка зажигания.

    Как вам уже известно, запрещено использование ДХО совместно с другими осветительными приборами. Я не рекомендую подключение ДХО по такой схеме.

    Схема подключения ДХО от датчика давления масла

    В этой части мы расскажем, как подключить ДХО, чтобы включались при запуске двигателя. Для подключения по такой схеме, вам потребуется 4ех контактное реле. Принцип работы схемы примерно такой. В нормальном состоянии контакты реле 30 и 87 разомкнуты, т.е. между ними не проходит ток, ДХО выключены.

    Как только вы заводите двигатель, на приборной панели гаснет контрольная лампа давления масла, на контакт реле 86 приходит сигнал от датчика давления масла, этот сигнал возбуждает катушку в реле, которая управляет замыканием контактов 30 и 87. После замыкания контактов 30 и 87 ваши ДХО включаются. Данная схема тоже не является правильной т.к. ваши ДХО будут работать всегда, пока заведен двигатель вашего автомобиля.

    Схема подключения ДХО через 4 контактное реле

    Для подключения ДХО по такой схеме, вам так же, как и в предыдущем случае, потребуется 4ех контактное реле. Более того, схема подключения абсолютно идентична с предыдущим случаем, только вместо управляющего сигнала от датчика давления масла мы будем использовать кнопку в салоне автомобиля. Ваши ДХО будут включаться только при нажатии кнопки в салоне.

    Можете добавить немного автоматизации в данную схему. Для того чтобы ДХО гасли при остановке двигателя, вы можете подать сигнал на кнопку от бензонасоса, или от того же датчика давления масла. Данная схема уже имеет право на жизнь, т.к. вы можете управлять работой ДХО в зависимости от ваших условий движения.

    Единственный минус заключается в том, что вам необходимо вручную отключать ДХО (нажимать кнопку в салоне) при включении ближнего света фар, а также вручную включать ДХО при движении в светлое время суток.

    Схема подключения ДХО через 5 контактное реле

    Эта схема является наиболее правильной и автоматизированной, я рекомендую подключать ДХО именно по этой схеме. В этой схеме используется 5ти контактное реле. Давайте немного расскажу о принципе работы 5ти контактного реле. 5ти контактное реле имеет 2 силовых вывода. В нормальном состоянии первый из силовых выводов замкнут, второй разомкнут. После подачи на реле управляющего сигнала, первый вывод станет разомкнутым, а второй замкнутым. Это кажется сложным, но давайте разберемся на примере, и все станет ясно.

    • Контакты 85 и 86 — являются управляющими контактами. В зависимости от того, есть ли на них напряжение или нет, замыкаются контакты 87 или 87А;
    • Контакт 30 – силовой питающий контакт реле. Именно на него надо подавать напряжение для питания потребителей;
    • Контакты 87 и 87А – контакты присоединения потребителей.

    Приведу пример. Напряжения на контактах 85 и 86 нет, питание через реле идет к потребителю на контакт 87А. Напряжения на контактах 85 и 86 есть, реле переключает питание на потребителя на контакте 87.

    • Питание на ДХО и фары подаем через контакт 30. Для большей автоматизации возьмите питание от основной цепи автомобиля, которая включается при включении зажигания;
    • К контакту 87А присоединяем ДХО, которые будут включены всегда;
    • К контакту 87 присоединяем фары, которые буду включаться только при отключении ДХО;
    • На контакты 85 или 86 (не имеет значения), подаем управляющий сигнал от кнопки включения фар в салоне;
    • Оставшийся контакт 85 или 86 присоединяем к корпусу автомобиля.

    При таком подключении у вас могут работать или ДХО или фары. На заглушенном автомобиле и ДХО и фары отключаются.

    Зная, как работает реле, Вы сможете осуществить различные схемы подключения к электропроводке автомобиля.

    Обычно реле имеет 5 контактов (бывают и 4-хконтактные и 7-ми и т.д.). Если Вы посмотрите на реле внимательно, то увидите, что все контакты подписаны. Каждый контакт имеет своё обозначение. 30, 85, 86, 87 и 87А. На рисунке видно где, какой контакт.
    Контакты 85 и 86 — это катушка. Контакт 30 — общий контакт, контакт 87А — нормально-замкнутый контакт, контакт 87 — нормально-разомкнутый контакт.

    В состоянии покоя, т.е., когда на катушке нет питания, контакт 30 замкнут с контактом 87А. При одновременной подаче питания на контакты 85 и 86 (на один контакт «плюс» на другой — «минус», без разницы куда что) катушка «возбуждается», то есть срабатывает. Тогда контакт 30 отмыкается от контакта 87А и соединяется с контактом 87. Вот и весь принцип действия. Вроде бы ничего сложного.
    Реле часто приходит на выручку во время установки дополнительного оборудования.

    Примеры применения реле:

    В качестве блокируемой цепи может быть что угодно, лишь бы машина не заводилась при разорванной цепи (стартер, зажигание, бензонасос, питание форсунок и т.д.). Один контакт питания катушки (пусть 85) соединяем с проводом сигнализации, на котором появляется «минус» при постановке в охрану. На другой контакт катушки (пусть 86) подаём +12 Вольт при включении зажигания. Контакты 30 и 87А подцепляем в разрыв блокируемой цепи. Теперь, если попытаться завести автомобиль при включенной охране, контакт 30 разомкнётся с контактом 87А и не даст завести двигатель.
    Эта схема используется, если у вас «минус» с сигнализации на блокировку выходит при постановке в охрану. Если у вас «минус» с сигнализации на блокировку выходит при снятии с охраны, тогда вместо контакта 87А используем контакт 87, т.е. разрыв цепи теперь будет на контактах 87 и 30. При таком подключении реле будет всегда в рабочем состоянии (разомкнутом) при работающем двигателе.

    Инвертируем полярность сигнала (с «минуса» делаем «плюс» и наоборот). Подключаемся к слаботочным транзисторным выходам сигнализации.

    Допустим, нам надо получить «минус», но у нас есть только «плюсовой» сигнал (например, у автомобиля положительные концевики, а у сигнализации нет входа положительных концевиков, а есть только вход отрицательных). На помощь опять приходит реле.
    Подаём на один из контактов катушки (86) наш «плюс» (с концевиков автомобиля). На другой контакт катушки (85) и на контакт 87 подаём «минус». В итоге на выходе (контакт 30) получаем нужный нам «минус».
    Если нам надо, наоборот, из «минуса» получить «плюс», то маленько меняем подключение. На контакт 86 подаём исходный «минус», а на контакты 85 и 87 подаём «плюс». В итоге на выходе (контакт 30) получаем нужный нам «плюс».
    Если нам надо из слаботочного отрицательного выхода сигнализации (в сигнализации такие выходы могут называться по-разному и их назначение тоже различное: выход на 3-е зажигание, выход на открытие багажника, выход на закрытие стёкол и т.д.) сделать хороший мощный «минус» или «плюс», то тоже используем эту схему.
    На контакт 85 подаём выход с сигнализации. На контакт 86 подаём «плюс». На контакт 87 подаём сигнал той полярности, который нам надо получить на выходе. В итоге на контакте 30 мы имеем ту полярность, которая на контакте 87.

    Открытие багажника с брелока сигнализации.

    Если в автомобиле стоит электрический привод багажника, то можно подключиться к нему автосигнализацией для открытия его с брелока сигнализации.
    Если с сигнализации выходит слаботочный сигнал на открытие багажника (а чаще всего так и есть), то используем эту схему.
    Прежде всего, находим провод на привод багажник, где появляется +12 Вольт при открытии багажника. Разрезаем этот провод. Тот конец разрезанного провода, который идёт к приводу, подцепляем к контакту 30. Другой конец провода подцепляем к контакту 87А. Выход с сигнализации подцепляем к контакту 86. Контакты 87 и 85 подцепляем на +12 Вольт.
    Теперь, при подаче сигнала с сигнализации на открытие багажника, реле сработает и на провод электропривода багажника пойдёт «плюс». Привод сработает, и багажник откроется.
    Это лишь немногие схемы подключения с использованием реле.

    Схема Подключения Пятиконтактного Реле — tokzamer.ru

    Схемы инверсии сигналов могут применяться для инвертирования сигналов концевиков дверей или багажника при подключении к сигнализации или в других случаях. Как только вы заводите двигатель, на приборной панели гаснет контрольная лампа давления масла, на контакт реле 86 приходит сигнал от датчика давления масла, этот сигнал возбуждает катушку в реле, которая управляет замыканием контактов 30 и


    Как открыть багажник с брелока сигнализации?

    На якоре может быть размещена контактная медная пластика и гибкая подводка провод , тогда якорь находится под напряжением и по медным шинам подаётся напряжение на неподвижный контакт. При оплавлении деталей крепления, контакты смещаются и добавляется процесс искрения, что еще больше разогревает место контакта.
    Как работает и устроено 5 — ти контактное реле

    Электронные реле Обычное электромагнитное реле при срабатывании щелкает, что может мешать вам при использовании таких приборов в бытовых помещениях.

    Преимущества реле: простота конструкции; ремонтопригодность.

    Начал искать различные способы заработка в интернете. Эти элементы используют для защиты управляющих цепей от перегрузок возникающих в момент размыкания цепи катушки реле.

    Давайте немного расскажу о принципе работы 5ти контактного реле. Краткий обзор отечественных стандартных реле в корпусах как изображено ниже на фотографии.

    Теперь кратко пройдемся по правилам работы и использования ДХО: ДХО должны использоваться только в светлое время суток; Запрещено использование ДХО совместно с габаритными огнями, с ближним и дальним светом фар, а также с противотуманными фарами. При работе следует учитывать тип контактов, разновидность устройства и принцип его функционирования.

    Как подключить дневные ходовые огни (DRL) при помощи реле

    Информационный бизнес сайт

    Общий смысл подключения через реле — нагрузка на выключатель, который управляет устанавливаемым оборудованием. В состоянии покоя, т.

    А чем больше деталей — тем меньше надежность. In: Бизнес секреты Зная, как работает реле, Вы сможете осуществить различные схемы подключения к электропроводке автомобиля.

    Схема подключения центрального замка при дополнительно установленном активаторе активаторах к сигнализациям, не имеющим встроенных реле интерфейса центрального замка. Контакты 30 и 86 поменяны местами.

    А именно. Контакты обеспечивают управление электроцепью, размыкая и замыкая ее.

    У вас нет возможности отключить ДХО до тех пор, пока вы не вытащите ключ из замка зажигания.

    Напряжение подключается к катушке, магнитное поле притягивает якорь, он замыкает или размыкает контакты.

    Скачать тут.
    Импульсное реле принцип работы и схема подключения. Часть 2

    Читайте дополнительно: Показания изоляции не удовлетворяют требованием нтд

    Истории наших читателей

    Отдельно хотелось бы остановиться на важном моменте, он касается использования ДХО совместно с дальним светом фар. Он, без подачи напряжения на контакты обмотки, постоянно замкнут на контакт 87а.

    Под электросхемой также указывают параметры контактов, величину максимального коммутационного тока. Но хочу чтобы проводку не напрягать, через реле.

    Привод сработает, и багажник откроется.

    Начал искать различные способы заработка в интернете. Напряжение подключается к катушке, магнитное поле притягивает якорь, он замыкает или размыкает контакты. Это будет расцениваться как внесение изменений в конструкцию транспортного средства. При таком подключении у вас могут работать или ДХО или фары.

    Обычно реле имеет 5 контактов бывают и 4-хконтактные и 7-ми и т. Законодательство Перед практикой установки ДХО, хотелось бы немного остановиться на правовых нормах установки ДХО, а также правилах их работы. Напряжение срабатывания катушки.

    Схема 5 контактного реле


    Контакты 85 и 86 — это катушка. Для трехфазной сети выполняется следующее: Определяется кабель подключения — медный, с сечением 1,,5 мм2. Давайте немного расскажу о принципе работы 5ти контактного реле. Инвертируется полярность.

    На помощь опять приходит реле. Находится фаза по маркерам А, В, С и клемма нуля N. Зная, как работает реле, Вы сможете осуществить различные схемы подключения к электропроводке автомобиля. Сейчас зарабатываю тыс. Для управления реле блокировки можно использовать секретную кнопку, пару геркон-магнит или штатный орган управления выдающий сигнал управления положительной полярности при включенном зажигании например силовой сигнал на стеклоподъёмнике или обогрев заднего стекла.

    Для большей автоматизации возьмите питание от основной цепи автомобиля, которая включается при включении зажигания; К контакту 87А присоединяем ДХО, которые будут включены всегда; К контакту 87 присоединяем фары, которые буду включаться только при отключении ДХО; На контакты 85 или 86 не имеет значения , подаем управляющий сигнал от кнопки включения фар в салоне; Оставшийся контакт 85 или 86 присоединяем к корпусу автомобиля. Обычно реле имеет 5 контактов бывают и 4-хконтактные и 7-ми и т. После того, как вы поймете принцип работы этого несложного устройства, разобраться с его подключением будет гораздо легче. Напряжение отпускания: 1, Также советую скачать приложение на телефон, с телефона работать намного удобнее.
    Как подключить центральный замок в машине.

    Принцип работы

    Контакт 30 — общий контакт, контакт 87А — нормально-замкнутый контакт, контакт 87 — нормально-разомкнутый контакт.

    Схема подсоединения пятиконтактного реле Схема подсоединения пятиконтактного реле подходит для создания сигнализации. Каждый контакт имеет своё обозначение.

    Это кажется сложным, но давайте разберемся на примере, и все станет ясно.

    Схемы инверсии сигналов могут применяться для инвертирования сигналов концевиков дверей или багажника при подключении к сигнализации или в других случаях. Подключаемся к слаботочным транзисторным выходам сигнализации.

    Статья по теме: На какой глубине прокладывают электрокабель

    Поиск по сайту

    После подачи на реле управляющего сигнала, первый вывод станет разомкнутым, а второй замкнутым. В итоге на контакте 30 мы имеем ту полярность, которая на контакте

    Прежде чем изучать схему подключения какого-либо автомобильного устройства через реле, нужно знать, что такое реле вообще и как оно работает. Рассмотрим подключение противотуманок. Хочу запитать как ДХО, то есть завел горят, выключил — не горят. Если кратко описать этот рисунок, то мы получим следующее: ДХО должны быть установлены на высоте от до мм; Расстояние между близлежащими краями ДХО должно быть не менее мм; Расстояние от внешней боковой поверхности автомобиля до близлежащего края ДХО должно быть не более мм. После прекращения подачи напряжения ток обмотки пропадает, происходит размагничивание сердечника.

    Механизмы реле

    Теперь, если попытаться завести автомобиль при включенной охране, контакт 30 разомкнётся с контактом 87А и не даст завести двигатель. Истории наших читателей «Гребаный таз!!! Схемы инверсии сигналов могут применяться для инвертирования сигналов концевиков дверей или багажника при подключении к сигнализации или в других случаях. Зная законодательство и правила использования ДХО, мы готовы перейти к практике их подключения. Для реле напряжения Принципиальная схема домашней сети с использованием реле напряжения, УЗО и защитных автоматов Схема подключения реле напряжения предусматривает монтаж прибора на дин-рейку в распредщитке.

    Разрезаем этот провод. Как наиболее надежные и доступные в продаже, себя зарекомендовали импортные реле под маркой Saturn и San Hold, применяются так же реле других производителей. Максимальный ток в силовой цепи: 30А. Конструктивно стандартный регулятор имеет вид пакетника для крепления на дин-рейку. Для подключения по такой схеме, вам потребуется 4ех контактное реле.
    РЕЛЕ. Простое подключение

    Нормально замкнутые реле и нормально разомкнутые реле

    Реле с выдержкой времени являются важными компонентами различных машин и устройств. Эти системы преобразуют электрические токи от разных уровней напряжения, чтобы оборудование получало нужное количество энергии в нужное время.

    В настоящее время используется множество различных типов реле с выдержкой времени, в том числе реле с интервалом включения, реле мигания, нормально разомкнутые и нормально замкнутые реле. Реле срабатывают от электричества, хотя каждый тип реле срабатывает по-разному, а это означает, что у каждого есть свое место для определенных приложений.

    Давайте подробнее рассмотрим нормально разомкнутые и нормально замкнутые реле:

    Нормально открытый и нормально закрытый

    В чем разница между нормально разомкнутыми и нормально замкнутыми реле? Хотя оба они построены с двумя цепями, одна из которых больше другой, ключевое различие заключается в их названиях:

    • Нормально разомкнутые реле: Нормально разомкнутые реле по умолчанию находятся в разомкнутом положении, что означает, что, когда они не используются, нет контакта между цепями.При подаче питания электромагнит приводит первую цепь в контакт со второй, тем самым замыкая цепь и позволяя току течь через нее. Когда электричество отключается, цепь снова открывается, чтобы остановить поток.
    • Нормально замкнутое реле: Нормально замкнутое реле по умолчанию находится в замкнутом положении, что означает, что цепь замкнута, если не указано иное. Введение слишком большой мощности отводит первую цепь от второй цепи, чтобы выключить ее.

    Нормально разомкнутые реле встречаются чаще, чем нормально замкнутые реле, но нормально замкнутые реле также имеют множество важных применений.

    Применение нормально замкнутых реле

    Вот лишь несколько систем, требующих нормально замкнутых реле.

    • Кондиционеры: Нормально замкнутые реле используются для поддержания работы нагнетателей кондиционеров даже после отключения воздушного компрессора, позволяя системе продолжать генерировать остаточный холодный воздух без запуска компрессора.
    • Системы управления газовым клапаном: В этих системах нормально замкнутые реле действуют как предохранительные устройства, останавливая подачу питания на газовый клапан в случае неисправности.
    • Телефонные цепи: При нормально замкнутых реле телефонные звонки могут быть прерваны, если никто не отвечает в течение указанного периода времени.
    • Сиденье мертвеца: Некоторые машины отключены, если водитель больше не находится на сиденье. Однако немедленное отключение будет неудобно, если водитель просто подпрыгивает или переключается и случайно активирует эту функцию безопасности.Нормально замкнутое реле обеспечивает временную задержку, которая учитывает случайные отскоки водителя, но поддерживает эту меру безопасности, позволяя отключение, если водитель находится вне сиденья слишком долго.
    • Взрывоопасные среды: реле с выдержкой времени серии G герметично закрыты, поэтому их можно использовать во взрывоопасных средах без риска возгорания или взрыва из-за искр.

    Качественные реле с выдержкой времени от Amperite

    В компании Amperite Co., мы производим и продаем различные реле в соответствии с вашими потребностями. Если у вас есть какие-либо вопросы о наших продуктах или вы хотите запросить ценовое предложение, свяжитесь с нами сегодня!

    Электрическое реле и твердотельные реле для переключения

    До сих пор мы видели набор устройств Input , которые можно использовать для обнаружения или «восприятия» различных физических переменных и сигналов, поэтому они называются датчиками . Но есть также множество электрических и электронных устройств, которые классифицируются как устройства Output , используемые для управления или управления некоторыми внешними физическими процессами.Эти устройства вывода обычно называются приводами .

    Приводы преобразуют электрический сигнал в соответствующую физическую величину, такую ​​как движение, сила, звук и т. Д. Привод также классифицируется как преобразователь, поскольку он изменяет один тип физической величины на другой и обычно активируется или приводится в действие командным сигналом низкого напряжения. . Приводы можно классифицировать как бинарные или непрерывные в зависимости от количества стабильных состояний их выхода.

    Например, реле представляет собой бинарный исполнительный механизм, поскольку он имеет два стабильных состояния: активный и заблокированный или обесточенный и разблокированный, в то время как двигатель является исполнительным механизмом непрерывного действия, поскольку он может вращаться на полное 360 o движение.Наиболее распространенными типами исполнительных механизмов или выходных устройств являются электрические реле , Освещение , двигатели и Громкоговорители .

    Ранее мы видели, что соленоиды могут использоваться для электрического открытия защелок, дверей, открытия или закрытия клапанов, а также в различных робототехнических и мехатронных приложениях и т. Д. Однако, если плунжер соленоида используется для управления одним или несколькими наборами электрических контактов , у нас есть устройство, называемое реле , которое настолько полезно, что его можно использовать бесконечным количеством различных способов, и в этом руководстве мы рассмотрим электрические реле.

    Электрические реле также можно разделить на реле механического действия, называемые «электромеханические реле», и те, которые используют полупроводниковые транзисторы, тиристоры, симисторы и т. Д. В качестве коммутационного устройства, называемого «твердотельными реле» или SSR.

    Электромеханическое реле

    Термин Реле обычно относится к устройству, которое обеспечивает электрическое соединение между двумя или более точками в ответ на подачу управляющего сигнала. Наиболее распространенным и широко используемым типом электрического реле является электромеханическое реле или ЭМИ.

    Электрическое реле

    Самым важным элементом управления любым оборудованием является возможность его включения и выключения. Самый простой способ сделать это — отключить подачу электроэнергии с помощью переключателей. Хотя переключатели можно использовать для управления чем-либо, у них есть свои недостатки. Самый большой из них заключается в том, что их нужно вручную (физически) включить или выключить. Кроме того, они относительно большие, медленные и переключают только небольшие электрические токи.

    Электрические реле , однако, в основном представляют собой переключатели с электрическим приводом, которые бывают разных форм, размеров и номинальной мощности, подходящие для всех типов приложений.Реле также могут иметь один или несколько контактов в одном корпусе, при этом более крупные силовые реле, используемые для сетевого напряжения или коммутации высокого тока, называются «контакторами».

    В этом руководстве по электрическим реле мы просто рассматриваем фундаментальные принципы работы «легких» электромеханических реле, которые мы можем использовать в системах управления двигателями или робототехнических схемах. Такие реле используются в общих электрических и электронных схемах управления или коммутации, которые либо устанавливаются непосредственно на печатные платы, либо подключаются отдельно, и в которых токи нагрузки обычно составляют доли ампера до 20+ ампер.Релейные схемы распространены в приложениях для электроники.

    Как следует из названия, электромеханические реле представляют собой электромагнитные устройства , которые преобразуют магнитный поток, генерируемый приложением электрического управляющего сигнала низкого напряжения переменного или постоянного тока через клеммы реле, в тянущую механическую силу, которая воздействует на электрические контакты. внутри реле. Наиболее распространенная форма электромеханического реле состоит из возбуждающей катушки, называемой «первичной цепью», намотанной на проницаемый железный сердечник.

    Этот железный сердечник имеет как фиксированную часть, называемую ярмом, так и подвижную подпружиненную часть, называемую якорем, которая замыкает цепь магнитного поля, закрывая воздушный зазор между фиксированной электрической катушкой и подвижным якорем. Якорь является шарнирным или поворотным, что позволяет ему свободно перемещаться в создаваемом магнитном поле, замыкая электрические контакты, прикрепленные к нему. Между ярмом и якорем обычно соединена пружина (или пружины) для обратного хода, чтобы «вернуть» контакты в исходное положение покоя, когда катушка реле находится в «обесточенном» состоянии, т.е.е. выключено».

    Конструкция электромеханического реле

    В нашем простом реле выше у нас есть два набора электропроводящих контактов. Реле могут быть «нормально разомкнутыми» или «нормально замкнутыми». Одна пара контактов классифицируется как нормально разомкнутые, (NO) или замыкающие контакты, а другая группа — как нормально замкнутые, (NC) или размыкающие контакты. В нормально разомкнутом положении контакты замыкаются только тогда, когда ток возбуждения включен, а контакты переключателя подтянуты к индуктивной катушке.

    В нормально замкнутом положении контакты постоянно замкнуты, когда ток возбуждения «ВЫКЛ», поскольку контакты переключателя возвращаются в свое нормальное положение. Эти термины нормально разомкнутый, нормально замкнутый или замыкающие и размыкающие контакты относятся к состоянию электрических контактов, когда катушка реле «обесточена», то есть при отсутствии напряжения питания на катушке реле. Контактные элементы могут быть одинарными или двойными замыкающими или размыкающимися. Пример такого расположения приведен ниже.

    Контакты реле представляют собой электрически проводящие металлические части, которые соприкасаются друг с другом, замыкая цепь и позволяя току в цепи течь, как выключатель. Когда контакты разомкнуты, сопротивление между контактами очень велико в мегаомах, что вызывает состояние разомкнутой цепи и отсутствие тока в цепи.

    При замкнутых контактах сопротивление контакта должно быть нулевым, короткое замыкание, но это не всегда так. Все контакты реле имеют определенное «контактное сопротивление», когда они замкнуты, и это называется «сопротивлением во включенном состоянии», как и у полевых транзисторов.

    С новым реле и контактами это сопротивление во включенном состоянии будет очень маленьким, обычно менее 0,2 Ом, потому что наконечники новые и чистые, но со временем сопротивление наконечников будет увеличиваться.

    Например. Если контакты пропускают ток нагрузки, скажем, 10 А, то падение напряжения на контактах с использованием закона Ома составляет 0,2 x 10 = 2 вольта, что, если напряжение питания составляет, скажем, 12 вольт, тогда напряжение нагрузки будет всего 10 вольт (12 — 2). По мере того, как контактные наконечники начинают изнашиваться и если они не защищены должным образом от высоких индуктивных или емкостных нагрузок, они начинают проявлять признаки дугового повреждения, поскольку ток в цепи все еще течет, поскольку контакты начинают размыкаться, когда катушка реле обесточен.

    Это искрение или искрение на контактах приведет к дальнейшему увеличению контактного сопротивления наконечников по мере их повреждения. Если продолжить, контактные наконечники могут обгореть и повредиться до такой степени, что они будут физически закрыты, но не пропускают ток или пропускают очень слабый ток.

    Если это повреждение от дуги становится серьезным, контакты в конечном итоге «свариваются» вместе, вызывая короткое замыкание и возможное повреждение цепи, которую они контролируют.Если теперь контактное сопротивление увеличилось из-за дуги, скажем, на 1 Ом, падение напряжения на контактах при том же токе нагрузки увеличится до 1 x 10 = 10 вольт постоянного тока. Это высокое падение напряжения на контактах может быть неприемлемым для цепи нагрузки, особенно при работе от 12 или даже 24 вольт, тогда неисправное реле необходимо будет заменить.

    Для уменьшения эффекта дугового разряда и высоких сопротивлений в открытом состоянии современные контактные наконечники изготавливаются из различных сплавов на основе серебра или покрываются ими для увеличения срока их службы, как указано в следующей таблице.

    Материалы контактных наконечников электрического реле

    • Ag (чистое серебро)
      • 1. Электропроводность и теплопроводность самые высокие из всех металлов.
      • 2. Обладает низким контактным сопротивлением, недорогой и широко используется.
      • 3. Контакты легко тускнеют из-за воздействия серы.
    • AgCu (серебристая медь)
      • 1. Контакты, известные как «твердое серебро», имеют лучшую износостойкость и меньшую склонность к дуге и сварке, но немного более высокое сопротивление контакта.
    • AgCdO (оксид серебра и кадмия)
      • 1. Очень низкая склонность к дуге и сварке, хорошая износостойкость и дугогасящие свойства.
    • AgW (серебряный вольфрам)
      • 1. Высокая твердость и температура плавления, отличная устойчивость к дуге.
      • 2. Не драгоценный металл.
      • 3. Для снижения сопротивления требуется высокое контактное давление.
      • 4. Контактное сопротивление относительно высокое, а устойчивость к коррозии плохая.
    • AgNi (никель-серебро)
      • 1. Электропроводность равна серебру, отличное сопротивление дуге.
    • AgPd (серебряный палладий)
      • 1. Низкий контактный износ, большая твердость.
      • 2. Дорого.
    • Сплавы платины, золота и серебра
      • 1. Отличная коррозионная стойкость, используется в основном для слаботочных цепей.

    В технических паспортах производителей реле указаны максимальные номинальные характеристики контактов только для резистивных нагрузок постоянного тока, и этот рейтинг значительно снижен для нагрузок переменного тока, высокоиндуктивных или емкостных нагрузок.Для достижения длительного срока службы и высокой надежности при коммутации переменного тока с индуктивными или емкостными нагрузками требуется некоторая форма гашения дуги или фильтрации на контактах реле.

    Увеличение срока службы наконечников реле за счет уменьшения количества искрения, возникающего при их размыкании, достигается путем электрического соединения цепи резистор-конденсатор, называемой демпферной цепью RC , параллельно с контактными наконечниками электрического реле. Пик напряжения, возникающий в момент размыкания контактов, будет надежно закорочен RC-цепью, тем самым подавляя любую дугу, возникающую на контактных наконечниках.Например.

    Цепь демпфера электрического реле

    Типы электрических контактов реле.

    Наряду со стандартными описаниями нормально разомкнутых (NO) и нормально замкнутых (NC), используемых для описания того, как подключаются контакты реле, устройства контактов реле также могут быть классифицированы по их действиям. Электрические реле могут состоять из одного или нескольких отдельных переключающих контактов, каждый из которых называется «полюсом». Каждый из этих контактов или полюсов может быть соединен или « брошен » вместе путем подачи питания на катушку реле, и это дает начало описанию типов контактов как:

    • SPST — однополюсный односторонний
    • SPDT — однополюсный, двусторонний
    • DPST — двухполюсный одинарный бросок
    • DPDT — двухполюсный двойной бросок

    с действием контактов, описываемым как « Make » ( M ) или « Break » ( B ).Тогда простое реле с одним набором контактов, как показано выше, может иметь описание контакта:

    «Однополюсный двойной бросок — (Разрыв перед замыканием)» или SPDT — (B-M)

    Примеры лишь некоторых из наиболее распространенных схем, используемых для типов контактов электрических реле для идентификации реле в схемах или схемах, приведены ниже, но существует гораздо больше возможных конфигураций.

    Конфигурации контактов электрического реле

    • Где:
    • C — общая клемма
    • NO — нормально открытый контакт
    • NC — нормально замкнутый контакт

    Электромеханические реле также обозначаются комбинацией их контактов или переключающих элементов и количеством контактов, объединенных в одном реле.Например, контакт, который обычно разомкнут в обесточенном положении реле, называется «контактом формы А» или замыкающим контактом. В то время как контакт, который обычно замкнут в обесточенном положении реле, называется «контактом формы B» или размыкающим контактом.

    Когда и замыкающий, и размыкающий набор контактных элементов присутствуют одновременно, так что два контакта электрически соединены для создания общей точки (идентифицируемой тремя соединениями), набор контактов называется «контактами формы C». »Или переключающие контакты.Если между замыкающими и размыкающими контактами отсутствует электрическое соединение, это называется двойным переключающим контактом.

    И последнее, что следует помнить об использовании электрических реле. Совсем не рекомендуется подключать контакты реле параллельно, чтобы выдерживать более высокие токи нагрузки. Например, никогда не пытайтесь запитать нагрузку 10 А с двумя параллельно включенными контактами реле, каждый из которых имеет номинал контактов 5 А, поскольку контакты реле с механическим управлением никогда не замыкаются и не размыкаются в один и тот же момент времени.В результате один из контактов всегда будет перегружен даже на короткое время, что со временем приведет к преждевременному выходу реле из строя.

    Кроме того, в то время как электрические реле могут использоваться, чтобы позволить маломощным электронным или компьютерным схемам переключать относительно высокие токи или напряжения как в состояние «ВКЛ», так и «ВЫКЛ». Никогда не смешивайте разные напряжения нагрузки через соседние контакты в одном и том же реле, например, высокое напряжение переменного тока (240 В) и низкое напряжение постоянного тока (12 В), всегда используйте отдельные реле для безопасности.

    Одной из наиболее важных частей любого электрического реле является его катушка. Это преобразует электрический ток в электромагнитный поток, который используется для механического управления контактами реле. Основная проблема катушек реле заключается в том, что они представляют собой «высокоиндуктивные нагрузки», поскольку они сделаны из катушек проволоки. Любая катушка с проводом имеет значение импеданса, состоящее из последовательного сопротивления (R) и индуктивности (L) (последовательная цепь LR).

    Когда ток течет через катушку, вокруг нее создается самоиндуцированное магнитное поле.Когда ток в катушке выключен, возникает большое напряжение обратной ЭДС (электродвижущая сила), поскольку магнитный поток падает внутри катушки (теория трансформатора). Это индуцированное значение обратного напряжения может быть очень высоким по сравнению с коммутируемым напряжением и может повредить любое полупроводниковое устройство, такое как транзистор, полевой транзистор или микроконтроллер, используемый для управления катушкой реле.

    Одним из способов предотвращения повреждения транзистора или любого переключающего полупроводникового устройства является подключение диода с обратным смещением к катушке реле.

    Когда ток, протекающий через катушку, выключен, возникает наведенная обратная ЭДС, поскольку магнитный поток в катушке падает.

    Это обратное напряжение смещает вперед диод, который проводит и рассеивает накопленную энергию, предотвращая любое повреждение полупроводникового транзистора.

    При использовании в этом типе применения диод обычно известен как диод маховика , диод свободного хода и даже диод обратного хода , но все они означают одно и то же.Другие типы индуктивных нагрузок, для защиты которых требуется диод на маховике, — это соленоиды, двигатели и индуктивные катушки.

    Помимо маховиков для защиты полупроводниковых компонентов, другие устройства, используемые для защиты, включают в себя цепи демпфера RC Snubber Networks , металлооксидные варисторы или MOV и стабилитроны .

    Твердотельное реле.

    В то время как электромеханическое реле (EMR) недорогое, простое в использовании и позволяет переключать цепь нагрузки, управляемую маломощным, электрически изолированным входным сигналом, одним из основных недостатков электромеханического реле является то, что оно « механическое устройство », то есть у него есть движущиеся части, поэтому их скорость переключения (время отклика) из-за физического перемещения металлических контактов с использованием магнитного поля мала.

    Со временем эти движущиеся части изнашиваются и выходят из строя, или что контактное сопротивление из-за постоянного искрения и эрозии может сделать реле непригодным для использования и сократить срок его службы. Кроме того, они создают электрические помехи, поскольку контакты страдают от дребезга контактов, что может повлиять на любые электронные схемы, к которым они подключены.

    Чтобы преодолеть эти недостатки электрического реле, был разработан другой тип реле, названный твердотельным реле или ( SSR ) для краткости, который представляет собой твердотельное бесконтактное чисто электронное реле.

    Твердотельное реле, являющееся чисто электронным устройством, не имеет движущихся частей в своей конструкции, поскольку механические контакты были заменены силовыми транзисторами, тиристорами или симисторами. Электрическое разделение между входным управляющим сигналом и выходным напряжением нагрузки достигается с помощью светового датчика оптронного типа.

    Твердотельное реле обеспечивает высокую степень надежности, долгий срок службы и снижение электромагнитных помех (EMI) (отсутствие дуговых контактов или магнитных полей), а также гораздо более быстрое почти мгновенное время отклика по сравнению с обычным электромеханическим реле. .

    Кроме того, требования к входной мощности управления твердотельным реле обычно достаточно низки, чтобы сделать их совместимыми с большинством семейств логических микросхем без необходимости в дополнительных буферах, драйверах или усилителях. Однако, поскольку они являются полупроводниковыми устройствами, они должны устанавливаться на подходящие радиаторы, чтобы предотвратить перегрев полупроводникового устройства, переключающего выходы.

    Твердотельное реле

    Твердотельное реле переменного тока переключается в положение «ВКЛ» в точке пересечения нуля синусоидальной формы волны переменного тока, предотвращает высокие пусковые токи при переключении индуктивных или емкостных нагрузок, в то время как встроенная функция «ВЫКЛ» тиристоров и симисторов обеспечивает улучшение по сравнению с дуговым разрядом. контакты электромеханических реле.

    Как и в случае электромеханических реле, демпферная цепь резистор-конденсатор (RC) обычно требуется на выходных клеммах SSR для защиты полупроводникового устройства переключения вывода от шума и скачков напряжения при переходных процессах при переключении высокоиндуктивных или емкостных нагрузок. В большинстве современных SSR эта RC-демпферная сеть стандартно встроена в само реле, что снижает потребность в дополнительных внешних компонентах.

    Типы SSR

    с обнаружением перехода через нуль (мгновенное «ВКЛ») также доступны для приложений с фазовым управлением, таких как затемнение или затухание света на концертах, шоу, освещение дискотек и т. Д., Или для приложений, управляющих скоростью двигателя.

    Поскольку выходным переключающим устройством твердотельного реле является полупроводниковое устройство (транзистор для коммутации постоянного тока или комбинация симистор / тиристор для коммутации переменного тока), падение напряжения на выходных клеммах твердотельного реле при «ВКЛ» намного выше. чем у электромеханического реле, обычно 1,5 — 2,0 вольт. При переключении больших токов в течение длительных периодов времени потребуется дополнительный радиатор.

    Интерфейсные модули ввода / вывода.

    Интерфейсные модули ввода / вывода , (модули ввода / вывода) — это еще один тип твердотельного реле, разработанный специально для взаимодействия компьютеров, микроконтроллера или PIC с «реальными» нагрузками и переключателями.Доступны четыре основных типа модулей ввода / вывода: входное напряжение переменного или постоянного тока для выхода логического уровня TTL или CMOS и логический вход TTL или CMOS для выходного напряжения переменного или постоянного тока, причем каждый модуль содержит все необходимые схемы для обеспечения полного интерфейс и изоляция в одном небольшом устройстве. Они доступны как отдельные твердотельные модули или интегрированы в 4-, 8- или 16-канальные устройства.

    Модульная интерфейсная система ввода / вывода.

    Основными недостатками твердотельных реле (SSR) по сравнению с электромеханическими реле эквивалентной мощности является их более высокая стоимость, тот факт, что доступны только однополюсные однополюсные реле (SPST), токи утечки в выключенном состоянии протекают через переключающее устройство, а также высокое падение напряжения в состоянии «включено» и рассеиваемая мощность, что приводит к дополнительным требованиям к теплоотводу.Кроме того, они не могут переключать очень малые токи нагрузки или высокочастотные сигналы, такие как аудио или видеосигналы, хотя для этого типа приложений доступны специальные твердотельные переключатели.

    В этом руководстве по электрическому реле мы рассмотрели как электромеханическое реле, так и твердотельное реле, которое можно использовать в качестве устройства вывода (исполнительного механизма) для управления физическим процессом. В следующем уроке мы продолжим рассмотрение устройств вывода, называемых приводами , и особенно устройства, которое преобразует небольшой электрический сигнал в соответствующее физическое движение с использованием электромагнетизма.Устройство вывода называется соленоидом.

    Все, что вам нужно знать о реле: 6 шагов (с изображениями)

    ИЗОБРАЖЕНИЕ: 1. Условные обозначения схем реле. (C обозначает общий вывод в типах SPDT и DPDT.)

    Поскольку реле являются переключателями, терминология, применяемая к переключателям, также применяется к реле; реле переключает один или несколько полюсов, каждый из контактов которых может включаться путем подачи питания на катушку одним из трех способов:

    Нормально разомкнутые (NO) контакты подключают цепь, когда реле активировано; цепь отключается, когда реле неактивно.Это также называется контактом по форме А или «установочным контактом». НО-контакты также можно отличить от «раннего включения» или NOEM, что означает, что контакты замыкаются до того, как кнопка или переключатель будут полностью задействованы.

    Нормально замкнутые (NC) контакты отключают цепь при срабатывании реле; цепь подключена, когда реле неактивно. Это также называется контактом формы B или контактом «разрыва». НЗ-контакты также могут быть разделены на «поздний разрыв» или NCLB, что означает, что контакты остаются замкнутыми до тех пор, пока кнопка или переключатель не будут полностью отключены.

    Переключающие (CO) или двухходовые (DT) контакты управляют двумя цепями: одним нормально разомкнутым контактом и одним нормально замкнутым контактом с общей клеммой. Это также называется контактом формы C или контактом «передача» («разрыв перед замыканием»). Если в этом типе контакта используется функция «сделать до разрыва», то он называется контактом формы D.

    Обычно встречаются следующие обозначения:

    SPST — Single Pole Single Throw. Имеют две клеммы, которые можно подключать или отключать.У такого реле, включая две для катушки, всего четыре клеммы. Неясно, является ли полюс нормально открытым или нормально закрытым. Терминология «SPNO» и «SPNC» иногда используется для устранения неоднозначности.

    SPDT — однополюсный, двусторонний. Общая клемма подключается к любому из двух других. У такого реле, включая две катушки, всего пять клемм.

    DPST — двухполюсный одинарный. Имеют две пары клемм. Эквивалентно двум переключателям SPST или реле, приводимым в действие одной катушкой.С учетом двух катушек у такого реле всего шесть клемм. Полюса могут иметь форму A или форму B (или по одной каждой из них).

    DPDT — Double Pole Double Throw. Имеют два ряда переключающих клемм. Эквивалентно двум переключателям или реле SPDT, приводимым в действие одной катушкой. Такое реле имеет восемь выводов, включая катушку. Схема подключения 5-контактного реле

    — Использование реле

    Проще говоря, реле — это электромагнитный переключатель, который мы чаще всего использовали для автоматического или ручного переключения источника питания.В этом посте я делюсь простой схемой подключения 5-контактного реле . Реле доступно в различных формах и типах. это может быть в зависимости от штырей или контактов, ампер, напряжения (переменного или постоянного тока). Эти контакты могут быть штырями 4, 5, 8, 11, 14 и т. Д. Но во всех штырях у нас есть два контакта для катушки. Где мы обеспечиваем необходимый ток. Например, если у нас есть реле постоянного тока на 12 вольт. Таким образом, мы подадим на катушку реле постоянный ток 12 Вольт. А если у нас есть 220 В переменного тока, то мы подаем 220 В переменного тока (переменного тока) на катушку реле.

    Другой вывод или контакты называются главными контактами или переключающими контактами. В реле имеются коммутационные штыри: общий, NC (нормально открытый), NO (нормально закрытый).

    Схема подключения 5-контактного реле

    Контактное реле — это реле SPDT, что означает, что контакты реле однополюсные двойные. В однополюсном двухпозиционном реле один контакт является общим, второй — нормально замкнутым, а третий — нормально разомкнутым. Два контакта для катушки. Это реле можно использовать для различных типов управления или переключения.Например, для освещения, вентилятора, топливного насоса и т. Д. Здесь я показал схему 5-контактного реле.

    На приведенной выше схеме я показал однополюсное реле двойного направления (5-контактное реле). Не то, чтобы его реле могло быть 5 вольт постоянного тока, 12 вольт постоянного тока, 24 вольт постоянного тока и т. Д. В соответствии с номинальным напряжением катушки. На приведенной выше схеме реле с 5 контактами 1 и 2 контакта для катушки, 3 — общий контакт, 4 — нормально замкнутый, а 5 — нормально разомкнутый.

    Как использовать 5-контактное реле

    Реле можно использовать для различных переключений.Управляйте электрическими устройствами автоматически, тогда реле — лучший вариант. Когда мы говорим о реле, как я уже говорил, существуют разные типы реле, для разных работ. Но этот пост про 5-контактное реле. Как я показал на схеме 5-контактного реле. он содержит 3 основных контакта. В качестве одинарного полюса есть двойной бросок.

    Итак, когда мы говорим об однополюсном двойном броске, это означает, что у него есть общая точка и две другие точки (NC и NO).

    Итак, если вы хотите переключить что-либо из однополюсного реле с двойным переключением, вам необходимо использовать общие и другие точки.Например, если вам нужно выключить лампочку при срабатывании реле. Тогда вам нужно использовать обычный и нормально закрытый штифт. А если вы хотите включить лампочку, то вам нужно использовать общий и нормально разомкнутый контакт. Здесь я показал, как подключить 5-контактное реле для освещения.

    Схема подключения 5-контактного реле для освещения

    На приведенной ниже схеме подключения я показал, как включать освещение при срабатывании реле и как выключать при срабатывании реле.

    То же самое, вы также можете использовать это реле для вентилятора, если вы хотите управлять вентилятором или подключить его к реле, вы можете использовать тот же метод.Обратите внимание, что вы должны подать на катушку реле номинальное напряжение. Если ваше реле 12 вольт постоянного тока. Затем вы обеспечиваете 12 вольт постоянного тока.

    Как использовать реле

    Реле в основном используется для переключения электронных устройств в электронных схемах. Реле имеет контакты, в которых главные контакты используются для переключения цепи и контакты катушки. Реле имеет другое триггерное напряжение, триггерное напряжение — это напряжение, при котором работает катушка реле, и изменяется нормально закрытый на открытый и нормально открытый при закрытой цепи.

    Напряжение срабатывания может быть различным, например 3 В, 5 В, 12 В, 24 В и т. Д. На приведенной ниже диаграмме напряжение срабатывания «реле» составляет 5 вольт. На схеме ниже я показал реле, которое переключает нагрузку. На катушку реле подается +5 В, а заземление подключается через переключатель. (Переключатель может быть транзистором или микроконтроллером, который выполняет операцию переключения). Диод подключен к катушке реле, этот диод называется Fly back diode . Назначение диода — защитить транзистор или микроконтроллер от скачков высокого напряжения, которые могут быть вызваны катушкой реле.

    На приведенной выше схеме однополюсного двойного прохода с обратным диодом я показал, что земля подключена непосредственно к нагрузке, а положительное напряжение подключено к общему выводу реле, а питание проходит через нормально разомкнутые контакты. Когда реле срабатывает, общий и нормально разомкнутый цепи замыкаются, и на нагрузку начинает поступать положительное питание.

    Цепь реле

    и цепь переключения реле

    Преимущество реле в том, что для управления катушкой реле требуется относительно небольшое количество энергии, но само реле может использоваться для управления двигателями, нагревателями, лампами или цепями переменного тока, которые сами могут потреблять намного больше электроэнергии.

    Электромеханическое реле — это выходное устройство (исполнительный механизм), которое бывает самых разных форм, размеров и конструкций и имеет множество применений и применений в электронных схемах. Но в то время как электрические реле могут использоваться, чтобы позволить схемам электронного или компьютерного типа малой мощности переключать относительно высокие токи или напряжения как в состояние «ВКЛ», так и «ВЫКЛ», для управления им требуется некоторая форма схемы релейного переключателя.

    Конструкция и типы схем переключения реле огромны, но многие небольшие электронные проекты используют транзисторы и полевые МОП-транзисторы в качестве основного переключающего устройства, поскольку транзистор может обеспечить быстрое переключение постоянного тока (ВКЛ-ВЫКЛ) для управления катушкой реле от различных источников входного сигнала. Итак, вот небольшая коллекция некоторых наиболее распространенных способов переключения реле.

    Цепь релейного переключателя NPN

    Типичная схема релейного переключателя имеет катушку, управляемую транзисторным переключателем NPN, TR1, как показано, в зависимости от уровня входного напряжения. Когда базовое напряжение транзистора равно нулю (или отрицательно), транзистор отключен и действует как разомкнутый переключатель. В этом состоянии ток коллектора не течет, и катушка реле обесточена, потому что, будучи устройствами тока, если ток не течет в базу, то ток не будет проходить через катушку реле.

    Если теперь на базу подается достаточно большой положительный ток, чтобы насыщать NPN-транзистор, ток, протекающий от базы к эмиттеру (от B к E), управляет большим током катушки реле, протекающим через транзистор от коллектора к эмиттеру.

    Для большинства биполярных переключающих транзисторов величина тока обмотки реле, протекающего в коллектор, будет где-то в 50-800 раз больше, чем ток базы, необходимый для приведения транзистора в состояние насыщения. Текущее усиление или бета-значение (β) показанного BC109 общего назначения обычно составляет около 290 при 2 мА (техническое описание).

    Цепь переключателя реле NPN

    Обратите внимание, что катушка реле является не только электромагнитом, но и индуктором.Когда питание подается на катушку из-за переключающего действия транзистора, максимальный ток будет протекать в результате сопротивления катушки постоянному току, как определено законом Ома (I = V / R). Часть этой электроэнергии хранится в магнитном поле катушки реле.

    Когда транзистор переключается в положение «ВЫКЛ», ток, протекающий через катушку реле, уменьшается, и магнитное поле исчезает. Однако накопленная энергия в магнитном поле должна куда-то уйти, и на катушке возникает обратное напряжение, которое пытается поддерживать ток в катушке реле.Это действие вызывает всплеск высокого напряжения на катушке реле, который может повредить переключающий NPN-транзистор, если ему позволено накапливаться.

    Итак, чтобы предотвратить повреждение полупроводникового транзистора, к катушке реле подключен «диод маховика», также известный как диод свободного хода. Этот диод маховика ограничивает обратное напряжение на катушке примерно до 0,7 В, рассеивая накопленную энергию и защищая переключающий транзистор. Диоды маховика применимы только при питании поляризованным постоянным напряжением.Катушка переменного тока требует другого метода защиты, и для этого используется демпферная RC-цепь.

    Цепь переключателя реле Дарлингтона NPN

    Предыдущая схема транзисторного реле-переключателя NPN идеально подходит для переключения небольших нагрузок, таких как светодиоды и миниатюрные реле. Но иногда требуется переключить катушки реле большего размера или токи, выходящие за пределы диапазона транзистора общего назначения BC109, и это может быть достигнуто с помощью транзисторов Дарлингтона.

    Чувствительность и коэффициент усиления по току схемы релейного переключателя можно значительно увеличить, используя пару транзисторов Дарлингтона вместо одного переключающего транзистора.Пары транзисторов Дарлингтона могут состоять из двух отдельно соединенных биполярных транзисторов, как показано, или поставляться как одно устройство со стандартными соединительными выводами базы, эмиттера и коллектора.

    Два NPN-транзистора соединены, как показано, так что ток коллектора первого транзистора TR1 становится током базы второго транзистора TR2. Приложение положительного базового тока к TR1 автоматически включает переключающий транзистор TR2.

    Цепь переключателя реле Дарлингтона NPN

    Если два отдельных транзистора сконфигурированы как переключающая пара Дарлингтона, то между базой и эмиттером основного переключающего транзистора TR2 обычно помещается небольшой резистор (от 100 до 1000 Ом), чтобы гарантировать его полное выключение.Опять же, диод маховика используется для защиты TR2 от обратной ЭДС, генерируемой, когда катушка реле обесточена.

    Цепь переключателя реле повторителя эмиттера

    Помимо стандартной конфигурации общего эмиттера для схемы релейного переключателя, катушка реле также может быть подключена к выводу эмиттера транзистора для формирования цепи эмиттерного повторителя. Входной сигнал подключается непосредственно к базе, а выходной сигнал берется из нагрузки эмиттера, как показано.

    Цепь переключателя реле повторителя эмиттера

    Конфигурация с общим коллектором или эмиттерным повторителем очень полезна для приложений согласования импеданса из-за очень высокого входного импеданса, порядка сотен тысяч Ом, при относительно низком выходном сопротивлении для переключения катушки реле.Как и в предыдущей схеме релейного переключателя NPN, переключение происходит путем подачи положительного тока на базу транзистора.

    Цепь переключателя реле Дарлингтона эмиттера

    Это версия транзистора Дарлингтона предыдущей схемы эмиттерного повторителя. Очень небольшой положительный базовый ток, приложенный к TR1, вызывает гораздо больший ток коллектора, протекающий через TR2 из-за умножения двух значений Beta.

    Цепь переключателя реле Дарлингтона эмиттера

    Схема релейного переключателя Дарлингтона с общим эмиттером полезна для обеспечения усиления по току и мощности с коэффициентом усиления по напряжению, приблизительно равным единице.Другой важной характеристикой схемы эмиттерного повторителя этого типа является то, что она имеет высокий входной импеданс и низкий выходной импеданс, что делает ее идеальной для согласования импеданса с большими катушками реле.

    Цепь реле реле PNP

    Помимо переключения катушек реле и других подобных нагрузок с помощью биполярных транзисторов NPN, мы также можем переключать их с помощью биполярных транзисторов PNP. Схема переключателя реле PNP не отличается от схемы переключения реле NPN с точки зрения ее способности управлять катушкой реле.Однако для этого требуются разные полярности рабочих напряжений. Например, напряжение коллектор-эмиттер Vce должно быть отрицательным для типа PNP, чтобы ток протекал от эмиттера к коллектору.

    Цепь переключателя реле PNP

    Схема транзистора PNP работает противоположно схеме переключения реле NPN. Ток нагрузки течет от эмиттера к коллектору, когда база смещена в прямом направлении с напряжением, которое более отрицательно, чем на эмиттере.Чтобы ток нагрузки реле протекал через эмиттер к коллектору, и база, и коллектор должны быть отрицательными по отношению к эмиттеру.

    Другими словами, когда Vin имеет высокий уровень, PNP-транзистор выключается, как и катушка реле. Когда Vin имеет значение LOW, базовое напряжение меньше напряжения эмиттера (более отрицательное), и транзистор PNP включается. Значение базового резистора устанавливает базовый ток, который устанавливает ток коллектора, который управляет катушкой реле.

    Транзисторные переключатели

    PNP могут использоваться, когда сигнал переключения является обратным для транзистора NPN, например, на выходе затвора CMOS NAND или другого такого логического устройства.Логический выход CMOS имеет мощность возбуждения на уровне логического 0, чтобы потреблять ток, достаточный для включения транзистора PNP. Тогда приемники тока можно превратить в источники тока с помощью транзисторов PNP и источника питания противоположной полярности.

    Цепь переключателя реле коллектора PNP

    Работа этой схемы такая же, как и у предыдущей схемы переключения реле. В этой схеме релейного переключателя нагрузка реле была подключена к коллектору транзисторов PNP. Переключение транзистора и катушки в положение ВКЛ-ВЫКЛ происходит, когда Vin имеет низкий уровень, транзистор «включен», а когда Vin имеет высокий уровень, транзистор «выключен».

    Цепь переключателя реле коллектора PNP

    Мы видели, что либо биполярный транзистор NPN, либо биполярный транзистор PNP могут работать как переключатель для переключения реле или любой другой нагрузки в этом отношении. Но есть два разных состояния, которые нужно понимать, поскольку ток течет в двух разных направлениях.

    Итак, в транзисторе NPN к базе подается ВЫСОКОЕ напряжение относительно эмиттера, ток течет от коллектора к эмиттеру, и транзистор NPN переключается в положение «включено».Для транзистора PNP низкое напряжение по отношению к эмиттеру прикладывается к базе, ток течет от эмиттера к коллектору, и транзистор PNP переключается в положение «включено».

    Цепь переключателя реле N-канального МОП-транзистора

    Операция переключения реле

    MOSFET очень похожа на операцию переключения биполярного переходного транзистора (BJT), показанную выше, и любая из предыдущих схем может быть реализована с использованием MOSFET. Однако есть некоторые существенные различия в работе схем полевого МОП-транзистора, основные из которых заключаются в том, что полевые МОП-транзисторы являются устройствами, работающими от напряжения, а поскольку затвор электрически изолирован от канала сток-исток, они имеют очень высокие входные импедансы, поэтому ток затвора для полевого МОП-транзистора равен нулю, поэтому в базовом резисторе нет необходимости.

    Полевые МОП-транзисторы

    проходят через токопроводящий канал, при этом канал изначально закрыт, а транзистор выключен. Проводящая ширина этого канала постепенно увеличивается по мере того, как напряжение, подаваемое на вывод затвора, медленно увеличивается. Другими словами, транзистор работает путем расширения канала при увеличении напряжения затвора, и по этой причине этот тип полевого МОП-транзистора называется улучшенным полевым МОП-транзистором или E-MOSFET.

    N-канальные полевые МОП-транзисторы (NMOS) являются наиболее часто используемым типом полевых МОП-транзисторов, поскольку положительное напряжение на клемме затвора включает полевой МОП-транзистор, а нулевое или отрицательное напряжение на затворе переключает его в положение «ВЫКЛ», что делает его идеальным в качестве полевого МОП-транзистора. релейный переключатель.Также доступны дополнительные полевые МОП-транзисторы с P-каналом, которые, как и PNP BJT, работают с противоположными напряжениями.

    Цепь переключателя реле N-канального полевого МОП-транзистора

    Вышеупомянутая схема релейного переключателя MOSFET подключена по схеме с общим источником. При нулевом входном напряжении, состоянии LOW, значении V GS , привода затвора недостаточно для открытия канала, и транзистор находится в состоянии «ВЫКЛ». Но когда V GS увеличивается выше нижнего порогового напряжения MOSFET V T , канал открывается, ток течет и катушка реле срабатывает.

    Тогда полевой МОП-транзистор в расширенном режиме работает как нормально разомкнутый переключатель, что делает его идеальным для переключения небольших нагрузок, таких как реле. MOSFET-транзисторы E-типа имеют высокое сопротивление при выключении, но умеренное сопротивление при включении (подходит для большинства приложений), поэтому при выборе одного из них для конкретного приложения переключения необходимо учитывать его значение R DS .

    Цепь переключателя реле P-канального МОП-транзистора

    Расширенный МОП-транзистор с P-каналом (PMOS) сконструирован так же, как и расширенный МОП-транзистор с N-каналом, за исключением того, что он работает только с отрицательными напряжениями затвора.Другими словами, полевой МОП-транзистор с P-каналом работает таким же образом, но с противоположной полярностью, поскольку затвор должен быть более отрицательным, чем источник, чтобы включить транзистор, будучи смещенным в прямом направлении, как показано.

    Цепь переключателя реле P-канального МОП-транзистора

    В этой конфигурации клемма источника P-каналов подключена к + Vdd, а клемма стока подключена к земле через катушку реле. Когда на затвор подается ВЫСОКИЙ уровень напряжения, P-канальный MOSFET будет выключен.Выключенный E-MOSFET будет иметь очень высокое сопротивление канала и будет действовать почти как разомкнутая цепь.

    Когда на затвор подается НИЗКИЙ уровень напряжения, P-канальный полевой МОП-транзистор будет включен. Это вызовет протекание тока через канал с низким сопротивлением канала e-MOSFET, управляющего катушкой реле. Электронные МОП-транзисторы с каналом N и P образуют превосходные схемы переключения реле низкого напряжения и могут быть легко подключены к широкому спектру цифровых логических вентилей и микропроцессорных приложений.

    Цепь релейного переключателя с логическим управлением

    N-канальный полевой МОП-транзистор расширенного типа чрезвычайно полезен в качестве транзисторного переключателя, поскольку в состоянии «ВЫКЛ» (с нулевым смещением затвора) его канал имеет очень высокое сопротивление, блокирующее прохождение тока. Однако относительно небольшое положительное напряжение, превышающее пороговое напряжение V T , на его высоком импедансном затворе заставляет его начать проводить ток от его вывода стока к его выводу истока.

    В отличие от биполярного переходного транзистора, для включения которого требуется ток базы, e-MOSFET требует только напряжения на затворе, поскольку из-за его изолированной конструкции затвор нулевой ток течет в затвор.Тогда это делает e-MOSFET, N-канальный или P-канальный, идеальным для непосредственного управления типичными логическими вентилями TTL или CMOS, как показано.

    Цепь релейного переключателя с логическим управлением

    Здесь N-канальный E-MOSFET управляется цифровым логическим вентилем. Выходные контакты большинства логических вентилей могут подавать только ограниченный ток, обычно не более 20 мА. Поскольку электронные МОП-транзисторы являются устройствами, управляемыми напряжением, и не потребляют ток затвора, мы можем использовать схему релейного переключателя МОП-транзисторов для управления нагрузками большой мощности.

    Цепь переключателя реле микроконтроллера

    Помимо цифровых логических вентилей, мы также можем использовать выходные контакты и каналы микроконтроллеров, PIC и процессоров для управления внешним миром. Схема ниже показывает, как взаимодействовать с реле с помощью переключателя MOSFET.

    Цепь переключателя реле микроконтроллера

    Обзор схем переключения реле

    В этом руководстве мы увидели, как мы можем использовать оба биполярных переходных транзистора, NPN или PNP, и полевые МОП-транзисторы расширения, N-канальный или P-канальный, в качестве схемы переключения транзисторов.

    Иногда при создании электронных схем или схем микроконтроллера мы хотим использовать транзисторный переключатель для управления мощным устройством, например двигателями, лампами, нагревательными элементами или цепями переменного тока. Обычно эти устройства требуют больших токов или более высоких напряжений, чем может выдержать один силовой транзистор, тогда мы можем использовать для этого схему переключения реле.

    Биполярные транзисторы (BJT) составляют очень хорошие и дешевые схемы переключения реле, но BJT — это устройства, работающие от тока, поскольку они преобразуют небольшой базовый ток в больший ток нагрузки, чтобы запитать катушку реле.

    Однако переключатель MOSFET идеален в качестве электрического переключателя, поскольку для его включения практически не требуется ток затвора, преобразуя напряжение затвора в ток нагрузки. Следовательно, полевой МОП-транзистор может работать как переключатель, управляемый напряжением.

    Во многих приложениях биполярные транзисторы могут быть заменены полевыми МОП-транзисторами улучшенного типа, обеспечивающими более быстрое переключение, гораздо более высокий входной импеданс и, возможно, меньшее рассеивание мощности. Комбинация очень высокого импеданса затвора, очень низкого энергопотребления в выключенном состоянии и очень быстрой коммутации делает полевой МОП-транзистор подходящим для многих приложений цифровой коммутации.Также при нулевом токе затвора его переключающее действие не может перегрузить выходную цепь цифрового затвора или микроконтроллера.

    Однако, поскольку затвор E-MOSFET изолирован от остальной части компонента, он особенно чувствителен к статическому электричеству, которое может разрушить тонкий оксидный слой на затворе. Затем следует проявлять особую осторожность либо при обращении с компонентом, либо во время его использования, и чтобы любая схема, использующая полевые МОП-транзисторы, имела надлежащую защиту от статического электричества и скачков напряжения.

    Также для дополнительной защиты BJT или MOSFET всегда используйте диод маховика поперек и катушку реле, чтобы безопасно рассеивать обратную ЭДС, генерируемую действием переключения транзисторов.

    Как работает реле — Как подключить замыкающие и замыкающие контакты

    Электрическое реле состоит из электромагнита и подпружиненных переключающих контактов.Когда электромагнит включается / выключается от источника постоянного тока, подпружиненный механизм соответствующим образом подтягивается и отпускается этим электромагнитом, обеспечивая переключение между концевыми выводами этих контактов. Внешняя электрическая нагрузка, подключенная к этим контактам, впоследствии включается / выключается в ответ на переключение электромагнита реле.

    В этом посте мы подробно узнаем о том, как реле работает в электронных схемах, как определить его распиновку любого реле через счетчик и подключить в схемах.

    Введение

    Реле предназначены для таких применений, будь то мигание лампы, включение двигателя переменного тока или другие подобные операции. Однако молодые энтузиасты электроники часто сбиваются с толку, оценивая выводы реле и настраивая их со схемой возбуждения внутри предполагаемой электронной схемы.

    В этой статье мы изучим основные правила, которые помогут нам определить распиновку реле и узнать, как оно работает. Приступим к обсуждению.

    Как работает реле

    О работе электрического реле можно узнать из следующих пунктов:

    1. Релейный механизм в основном состоит из катушки и подпружиненного контакта, который может свободно перемещаться по оси вращения.
    2. Центральный полюс шарнирно поворачивается или поворачивается таким образом, что, когда на катушку реле подается напряжение, центральный полюс соединяется с одной из боковых клемм устройства, называемой замыкающим контактом (нормально замкнутым).
    3. Это происходит из-за того, что полюсное железо притягивается электромагнитным напряжением катушки реле.
    4. И когда катушка реле выключена, полюс отсоединяется от нормально разомкнутой клеммы и соединяется со второй клеммой, называемой нормально разомкнутым контактом.
    5. Это положение контактов по умолчанию, оно происходит из-за отсутствия электромагнитной силы, а также из-за натяжения пружины металлического полюса, которое обычно удерживает полюс соединенным с замыкающим контактом.
    6. Во время таких операций включения и выключения он переключается с N / C на N / O поочередно в зависимости от состояний ON / OFF катушки реле
    7. Катушка реле, намотанная на железный сердечник, ведет себя как сильный электромагнит, когда через катушку пропускают постоянный ток.
    8. Когда катушка находится под напряжением, генерируемое электромагнитное поле мгновенно вытягивает близлежащий подпружиненный металлический полюс, реализуя описанное выше переключение контактов
    9. Вышеупомянутый подвижный подпружиненный полюс по своей сути образует главный центральный переключающий провод, а его конец ts заканчивается как вывод этого полюса.
    10. Два других контакта N / C и N / O образуют соответствующие дополнительные пары клемм реле или выводы контактов, которые поочередно подключаются и отключаются от центрального полюса реле в ответ на активацию катушки.
    11. Эти замыкающие и замыкающие контакты также имеют концевые заделки, которые выходят из блока реле и образуют соответствующие выводы реле.

    Следующая приблизительная симуляция показывает, как полюс реле перемещается в ответ на катушку электромагнита при включении и выключении с входным напряжением питания. Мы можем ясно видеть, что первоначально центральный полюс удерживается подключенным к нормально-замкнутому контакту, а когда на катушку подается питание, полюс тянется вниз из-за электромагнитного воздействия катушки, заставляя центральный полюс соединиться с нейтралью О контакт.

    Пояснение к видео

    Таким образом, в основном есть три вывода контактов для реле, а именно центральный полюс, НЗ и НЗ.

    Две дополнительные выводы завершаются катушкой реле

    Это базовое реле также называется реле типа SPDT, что означает однополюсный двойной ход, так как здесь у нас один центральный полюс, но два альтернативных боковых контакта в виде N / O, N / C, отсюда и термин SPDT.

    Таким образом, всего у нас есть 5 выводов в SPDT-реле: центральная подвижная или переключающая клемма, пара замыкающих и замыкающих клемм и, наконец, две клеммы катушки, которые вместе составляют выводы реле.

    Как определить выводы реле и подключить реле

    Обычно и, к сожалению, многие реле не имеют маркировки выводов, что затрудняет их идентификацию новым энтузиастам электроники и их использование для предполагаемых приложений.

    Распиновки, которые необходимо идентифицировать, следующие (в указанном порядке):

    1. Выводы катушки
    2. Вывод общего полюса
    3. Вывод замыкающего контакта
    4. Вывод замыкающего контакта
    Идентификация контакта Типичные выводы реле могут быть выполнены следующим образом:

    1) Установите мультиметр в диапазоне Ом, предпочтительно в диапазоне 1K.

    2) Начните с подключения измерительных штырей к любому из двух контактов реле в случайном порядке, пока не найдете контакты, которые показывают какое-то сопротивление на дисплее измерителя. Обычно это может быть любое значение от 100 Ом до 500 Ом. Эти контакты реле будут обозначать распиновку катушки реле.

    3) Затем выполните ту же процедуру и подключите стержни счетчика в случайном порядке к оставшимся трем клеммам.

    4) Продолжайте делать это до тех пор, пока не найдете два контакта реле, указывающих на непрерывность между ними.Эти две распиновки будут, очевидно, нормально закрытым и полюсом реле, потому что, поскольку реле не запитано, полюс будет соединен с размыкающим контактом из-за внутреннего натяжения пружины, что указывает на непрерывность друг друга.

    5) Теперь вам нужно просто идентифицировать другой одиночный терминал, который может быть ориентирован где-то между двумя вышеуказанными терминалами, представляющими треугольную конфигурацию.

    6) В большинстве случаев центральная распиновка из этой треугольной конфигурации будет вашим контактом реле, замыкающий контакт уже идентифицирован и, следовательно, последним будет замыкающий контакт или вывод вашего реле.

    Следующая симуляция показывает, как типичное реле может быть подключено к источнику постоянного напряжения на его катушках и к сетевой нагрузке переменного тока через его замыкающие и замыкающие контакты

    Эти три контакта могут быть дополнительно подтверждены путем подачи питания на катушку реле с указанным напряжением и проверив сторону замыкающего контакта с помощью измерителя на предмет непрерывности.

    Вышеупомянутая простая процедура может быть применена для определения любой распиновки реле, которая может быть вам неизвестна или не маркирована.

    Теперь, когда мы тщательно изучили, как работает реле и как идентифицировать выводы реле, было бы также интересно узнать подробности о самом популярном типе реле, которое в основном используется в небольших электронных схемах, и о том, как это сделать. подключите это.

    Если вы хотите узнать, как спроектировать и сконфигурировать каскад драйвера реле с использованием транзистора, вы можете прочитать его в следующем посте:

    Как сделать схему драйвера транзисторного реле

    Типичные контакты реле китайского производства

    Как подключить клеммы реле

    На следующей схеме показано, как указанное выше реле может быть подключено к нагрузке, так что, когда катушка находится под напряжением, нагрузка срабатывает или включается через свои замыкающие контакты и через подключенный источник питания. Напряжение.

    Это напряжение питания последовательно с нагрузкой может соответствовать техническим характеристикам нагрузки. Если нагрузка рассчитана на постоянный потенциал, то это напряжение питания может быть постоянным, если предполагается, что нагрузка будет работать от сети переменного тока, тогда это последовательное питание может быть 220 В или 120 В переменного тока в соответствии со спецификациями.

    Принципиальная схема реле блокировки

    Что такое реле с фиксацией?

    Блокировочное реле — это двухпозиционный переключатель с электрическим приводом.Он управляется двумя переключателями или датчиками мгновенного действия, один из которых «устанавливает» реле, а другой «сбрасывает» реле. Блокировочное реле сохраняет свое положение после отпускания исполнительного переключателя, поэтому оно выполняет базовую функцию памяти.

    Реле с фиксацией похоже на двухпозиционный («двойной ход») тумблер. Ручка тумблера физически переводится в одно положение и остается в этом положении до тех пор, пока не будет переведена в противоположное положение. Блокирующее реле электрически «установлено» в одно положение, и оно остается «заблокированным» в этом положении до тех пор, пока оно не будет электрически «сброшено» в противоположное положение.

    Есть два типа реле блокировки:
    Реле с электрической фиксацией — это стандартное реле с одним из собственных контактов, подключенных к цепи катушки. Внешний переключатель сначала включает реле, а затем удерживает его включенным собственным контактом. Внешний переключатель сброса прерывает подачу питания на реле, которое выключает его. Бистабильное реле или реле с механической фиксацией обычно имеет две внутренние катушки и внутренний механизм защелки.При подаче питания на одну катушку контакты «устанавливаются» в одно положение, и контакты остаются в этом положении до тех пор, пока не будет подано напряжение на катушку «сброса».
    Отличия:
    Реле с электрическим фиксатором —
    • Использует стандартное реле с одной катушкой,
    • Всегда сбрасывается при отключении питания,
    • Один контакт предназначен для управления фиксацией,
    • Переключатель «Set» — нормально разомкнутый контакт,
    • Переключатель «Сброс» — это нормально замкнутый контакт.
    Реле с механической фиксацией —
    • Использует механизм с двумя катушками или поляризованными одиночными катушками,
    • Сохраняет свое положение при отключении питания, поэтому схема будет в том же состоянии при повторном включении питания,
    • Все контакты доступны для других функций цепи,
    • Переключатели «Set» и «Reset» являются нормально разомкнутыми контактами.

    На двух схемах подключения ниже показано, как подключить цепь реле с электрической фиксацией. Это создает базовую функцию памяти … реле «запоминает», какой переключатель был нажат последним.

    Для реле с механической фиксацией, нажмите здесь .

    В этих схемах переключатель «Set» — это любой нормально разомкнутый переключатель или релейный контакт, например, детектор поезда MRD1.Переключатель «Сброс» — это любой нормально замкнутый переключатель или релейный контакт. При нажатии переключателя «Set» реле включается. Реле остается включенным даже после того, как переключатель «Set» был отпущен, потому что катушка реле (контакты K1 и K2) теперь получает питание через свой собственный контакт (контакты 2C и 2NO).

    При нажатии переключателя «Сброс» питание катушки реле прерывается, в результате чего реле выключается. Это разрывает соединение через контакт 2C-2NO, поэтому реле остается выключенным.

    Этот тип схемы памяти называется энергозависимой памятью, потому что при отключении источника питания реле возвращается в свое выключенное состояние. При повторном включении источника питания реле будет оставаться в выключенном состоянии до тех пор, пока не будет нажат переключатель «Set».

    Используемое здесь реле — это любое стандартное реле с двумя или более наборами контактов или «полюсов» (DPDT, 3PDT, 4PDT и т. Д.), Такое как реле вспомогательного питания MRAPR. Реле MRAPR включает диоды на катушке для защиты контактов переключателя от «обратного» напряжения, и его можно использовать как в цепях переменного, так и постоянного тока.

    См. Примечание о номинальных характеристиках контактов переключателя.

    Эта первая схема представляет собой схему, в которой переключатель «Set» имеет приоритет. Это означает, что если одновременно нажать кнопки «Set» и «Reset», реле включится.

    На следующей схеме показана схема, в которой переключатель «Сброс» имеет приоритет. Если одновременно нажать переключатели «Set» и «Reset», реле выключится.



    Для реле с механической фиксацией, нажмите здесь .

    © Copyright 2009-2020 ООО «Азатракс», Лонгмонт, Колорадо
    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *