Схема подключения УЗИП — 3 ошибки и правила монтажа. Защита от импульсных перенапряжений.
Для всех нас стало нормой, что в распределительных щитках жилых домов, обязательна установка вводных автоматических выключателей, модульных автоматов отходящих цепей, УЗО или дифф.автоматов на помещения и оборудование, где критичны возможные утечки токов (ванные комнаты, варочная панель, стиральная машинка, бойлер).
Помимо этих обязательных коммутационных аппаратов, практически никому не требуется объяснять, зачем еще нужно реле контроля напряжения.
УЗИП или реле напряжения
Устанавливать их начали все и везде. Грубо говоря оно защищает вас от того, чтобы в дом не пошло 380В вместо 220В. При этом не нужно думать, что повышенное напряжение попадает в проводку по причине недобросовестного электрика.
Вполне возможны природные явления, не зависящие от квалификации электромонтеров. Банально упало дерево и оборвало нулевой провод.
Также не забывайте, что любая ВЛ устаревает. И даже то, что к вашему дому подвели новую линию СИПом, а в доме у вас смонтировано все по правилам, не дает гарантии что все хорошо на самой питающей трансформаторной подстанции – КТП.
Там также может окислиться ноль на шинке или отгореть контакт на шпильке трансформатора. Никто от этого не застрахован.
Именно поэтому все новые электрощитки уже не собираются без УЗМ или РН различных модификаций.
Что же касается устройств для защиты от импульсных перенапряжений, или сокращенно УЗИП, то у большинства здесь появляются сомнения в необходимости их приобретения. А действительно ли они так нужны, и можно ли обойтись без них?
Подобные устройства появились достаточно давно, но до сих пор массово их устанавливать никто не спешит. Мало кто из рядовых потребителей понимает зачем они вообще нужны.
Первый вопрос, который у них возникает: ”Я же поставил реле напряжения от скачков, зачем мне еще какой-то УЗИП?”
Запомните, что УЗИП в первую очередь защищает от импульсов вызванных грозой. Здесь речь идет не о банальном повышении напряжения до 380В, а о мгновенном импульсе в несколько киловольт!
Никакое реле напряжения от этого не спасет, а скорее всего сгорит вместе со всем другим оборудованием. В то же самое время и УЗИП не защищает от малых перепадов в десятки вольт и даже в сотню.
Например устройства для монтажа в домашних щитках, собранные на варисторах, могут сработать только при достижении переменки до значений свыше 430 вольт.
Поэтому оба устройства РН и УЗИП дополняют друг друга.
Защита дома от грозы
Гроза это стихийное явление и просчитать его до сих пор не особо получается. При этом молнии вовсе не обязательно попадать прямо в линию электропередач. Достаточно ударить рядышком с ней.
Даже такой грозовой разряд вызывает повышение напряжения в сети до нескольких киловольт. Кроме выхода из строя оборудования это еще чревато и развитием пожара.
Даже когда молния ударяет относительно далеко от ВЛ, в сетях возникают импульсные скачки, которые выводят из строя электронные компоненты домашней техники. Современный электронный счетчик с его начинкой, тоже может пострадать от этого импульса.
Общая длина проводов и кабелей в частном доме или коттедже достигает нескольких километров.
Сюда входят как силовые цепи так и слаботочка:
- интернет
- TV
- видеонаблюдение
- охранная сигнализация
Все эти провода принимают на себя последствия грозового удара. То есть, все ваши километры проводки получают гигантскую наводку, от которой не спасет никакое реле напряжения.
Единственное что поможет и защитит всю аппаратуру, стоимостью несколько сотен тысяч, это маленькая коробочка называемая УЗИП.
Монтируют их преимущественно в коттеджах, а не в квартирах многоэтажек, где подводка в дом выполнена подземным кабелем. Однако не забывайте, что если ваше ТП питается не по кабельной линии 6-10кв, а воздушной ВЛ или ВЛЗ (СИП-3), то влияние грозы на среднем напряжении, также может отразиться и на стороне 0,4кв.
Поэтому не удивляйтесь, когда в грозу в вашей многоэтажке, у многих соседей одновременно выходят из строя WiFi роутеры, радиотелефоны, телевизоры и другая электронная аппаратура.
Молния может ударить в ЛЭП за несколько километров от вашего дома, а импульс все равно прилетит к вам в розетку. Поэтому не смотря на их стоимость, задуматься о покупке УЗИП нужно всем потребителям электричества.
Цена качественных моделей от Шнайдер Электрик или ABB составляет примерно 2-5% от общей стоимости черновой электрики и средней комплектации распредщитка. В общей сумме это вовсе не такие огромные деньги.
На сегодняшний день все устройства от импульсных перенапряжений делятся на три класса. И каждый из них выполняет свою роль.
Модуль первого класса гасит основной импульс, он устанавливается на главном вводном щите.
После погашения самого большого перенапряжения, остаточный импульс принимает на себя УЗИП 2 класса. Он монтируется в распределительном щитке дома.
Если у вас не будет устройства I класса, высока вероятность что весь удар воспримет на себя модуль II. А это может для него весьма печально закончится.
Поэтому некоторые электрики даже отговаривают заказчиков ставить импульсную защиту. Мотивируя это тем, что раз вы не можете обеспечить первый уровень, то не стоит вообще на это тратить денег. Толку не будет.
Однако давайте посмотрим, что говорит об этом не знакомый электрик, а ведущая фирма по системам грозозащиты Citel:
То есть в тексте прямо сказано, класс II монтируется либо после класса 1, либо
Третий модуль защищает уже непосредственно конкретного потребителя.
Если у вас нет желания выстраивать всю эту трехступенчатую защиту, приобретайте УЗИП, которые изначально идут с расчетом работы в трех зонах 1+2+3 или 2+3.
Такие модели тоже выпускаются. И будут наиболее универсальным решением для применения в частных домах. Однако стоимость их конечно отпугнет многих.
Схема электрощита с УЗИП
Схема качественно укомплектованного с точки зрения защиты от всех скачков и перепадов напряжения распределительного щита, должна выглядеть примерно следующим образом.
На вводе перед счетчиком — вводной автоматический выключатель, защищающий прибор учета и цепи внутри самого щитка. Далее счетчик.
Между счетчиком и вводным автоматом — УЗИП со своей защитой. Электроснабжающая организация конечно может запретить такой монтаж. Но вы можете обосновать это необходимостью защиты от перенапряжения и самого счетчика.
В этом случае потребуется смонтировать всю схемку с аппаратами в отдельном боксе под пломбой, дабы предотвратить свободный доступ к оголенным токоведущим частям до прибора учета.
Однако здесь остро встанет вопрос замены сработавшего модуля и срыва пломб. Поэтому согласовывайте все эти моменты заранее.
После прибора учета находятся:
- реле напряжения УЗМ-51 или аналог
- УЗО 100-300мА – защита от пожара
- УЗО или дифф.автоматы 10-30мА – защита человека от токов утечки
- простые модульные автоматы
Если с привычными компонентами при комплектации такого щитка вопросов не возникает, то на что же нужно обратить внимание при выборе УЗИП?
На температуру эксплуатации. Большинство электронных видов рассчитано на работу при окружающей температуре до -25С. Поэтому монтировать их в уличных щитках не рекомендуется.
Второй важный момент это схемы подключения. Производители могут выпускать разные модели для применения в различных системах заземления.
Например, использовать одни и те же УЗИП для систем TN-C или TT и TN-S уже не получится. Корректной работы от таких устройств вы не добьетесь.
Схемы подключения
Вот основные схемы подключения УЗИП в зависимости от исполнения систем заземления на примере моделей от Schneider Electric. Схема подключения однофазного УЗИП в системе TT или TN-S:
Здесь самое главное не перепутать место подключения вставного картриджа N-PE. Если воткнете его на фазу, создадите короткое замыкание.
Схема трехфазного УЗИП в системе TT или TN-S:
Схема подключения 3-х фазного устройства в системе TN-C:
На что нужно обратить внимание? Помимо правильного подключения нулевого и фазного проводников немаловажную роль играет длина этих самых проводов.
От точки подключения в клемме устройства до заземляющей шинки, суммарная длина проводников должны быть не более 50см!
А вот подобные схемы для УЗИП от ABB OVR. Однофазный вариант:
Трехфазная схема:
Давайте пройдемся по некоторым схемкам отдельно. В схеме TN-C, где мы имеем совмещенные защитный и нулевой проводники, наиболее распространенный вариант решения защиты – установка УЗИП между фазой и землей.
Каждая фаза подключается через самостоятельное устройство и срабатывает независимо от других.
В варианте сети TN-S, где уже произошло разделение нейтрального и защитного проводника, схема похожа, однако здесь монтируется еще дополнительный модуль между нулем и землей. Фактически на него и сваливается весь основной удар.
Именно поэтому при выборе и подключении варианта УЗИП N-PE, указываются отдельные характеристики по импульсному току. И они обычно больше, чем значения по фазному.
Помимо этого не забывайте, что защита от грозы это не только правильно подобранный УЗИП. Это целый комплекс мероприятий.
Их можно использовать как с применением молниезащиты на крыше дома, так и без нее.
Особое внимание стоит уделить качественному контуру заземления. Одного уголка или штыря забитого в землю на глубину 2 метра здесь будет явно не достаточно. Хорошее сопротивление заземления должно составлять 4 Ом.
Принцип действия
Принцип действия УЗИП основан на ослаблении скачка напряжения до значения, которое выдерживают подключенные к сети приборы. Другими словами, данное устройство еще на вводе в дом сбрасывает излишки напряжения на контур заземления, тем самым спасая от губительного импульса дорогостоящее оборудование.
Определить состояние устройства защиты достаточно просто:
- зеленый индикатор – модуль рабочий
- красный – модуль нужно заменить
При этом не включайте в работу модуль с красным флажком. Если нет запасного, то лучше его вообще демонтировать.
УЗИП это не всегда одноразовое устройство, как некоторым кажется. В отдельных случаях модели 2,3 класса могут срабатывать до 20 раз!
Автоматы или предохранители перед УЗИП
Чтобы сохранить в доме бесперебойное электроснабжение, необходимо также установить автоматический выключатель, который будет отключать узип. Установка этого автомата обусловлена также тем, что в момент отвода импульса, возникает так называемый сопровождающий ток.
Он не всегда дает возможность варисторному модулю вернуться в закрытое положение. Фактически тот не восстанавливается после срабатывания, как по идее должен был.
В итоге, дуга внутри устройства поддерживается и приводит к короткому замыканию и разрушениям. В том числе самого устройства.
Автомат же при таком пробое срабатывает и обесточивает защитный модуль. Бесперебойное электроснабжение дома продолжается.
Запомните, что этот автомат защищает в первую очередь не разрядник, а именно вашу сеть.
При этом многие специалисты рекомендуют ставить в качестве такой защиты даже не автомат, а модульные предохранители.
Объясняется это тем, что сам автомат во время пробоя оказывается под воздействием импульсного тока. И его электромагнитные расцепители также будут под повышенным напряжением.
Это может привести к пробою отключающей катушки, подгоранию контактов и даже выходу из строя всей защиты. Фактически вы окажетесь безоружны перед возникшим КЗ.
Поэтому устанавливать УЗИП после автомата, гораздо хуже, чем после предохранителей.
Есть конечно специальные автоматические выключатели без катушек индуктивности, имеющие в своей конструкции только терморасцепители. Например Tmax XT или Formula A.
Однако рассматривать такой вариант для коттеджей не совсем рационально. Гораздо проще найти и купить модульные предохранители. При этом можно сделать выбор в пользу типа GG.
Они способны защищать во всем диапазоне сверхтоков относительно номинального. То есть, если ток вырос незначительно, GG его все равно отключит в заданный интервал времени.
Есть конечно и минус схемы с автоматом или ПК непосредственно перед УЗИП. Все мы знаем, что гроза и молния это продолжительное, а не разовое явление. И все последующие удары, могут оказаться небезопасными для вашего дома.
Защита ведь уже сработала в первый раз и автомат выбил. А вы об этом и догадываться не будете, потому как электроснабжение ваше не прерывалось.
Поэтому некоторые предпочитают ставить УЗИП сразу после вводного автомата. Чтобы при срабатывании отключалось напряжение во всем доме.
Однако и здесь есть свои подводные камни и правила. Защитный автоматический выключатель не может быть любого номинала, а выбирается согласно марки применяемого УЗИП. Вот таблица рекомендаций по выбору автоматов монтируемых перед устройствами защиты от импульсных перенапряжений:
Если вы думаете, что чем меньше по номиналу автомат будет установлен, тем надежнее будет защита, вы ошибаетесь. Импульсный ток и скачок напряжения могут быть такой величины, что они приведут к срабатыванию выключателя, еще до момента, когда УЗИП отработает.
И соответственно вы опять останетесь без защиты. Поэтому выбирайте всю защитную аппаратуру с умом и по правилам. УЗИП это тихая, но весьма своевременная защита от опасного электричества, которое включается в работу мгновенно.
Ошибки при подключении
1Самая распространенная ошибка — это установка УЗИП в электрощитовую с плохим контуром заземления.Толку от такой защиты не будет никакого. И первое же “удачное” попадание молнии, сожгет вам как все приборы, так и саму защиту.
2Не правильное подключение исходя из системы заземления.Проверяйте техдокументацию УЗИП и проконсультируйтесь с опытным электриком ответственным за электрохозяйство, который должен быть в курсе какая система заземления используется в вашем доме.
3Использование УЗИП не соответствующего класса.Как уже говорилось выше, есть 3 класса импульсных защитных устройств и все они должны применяться и устанавливаться в своих щитовых.
Статьи по теме
domikelectrica.ru
УЗИП для частного дома: 6 схем подключения
Парадокс наших дней — задал простой вопрос десятку знакомых: вы понимаете, что от удара молнии может сгореть стиралка, холодильник, морозильник и дорогая электроника: компьютер, телевизор, домашний кинотеатр?
Спастись от этой беды можно. Достаточно подключить УЗИП для частного дома в отдельном щитке и возложить на него защиту от случайной аварии.
Только один человек сказал, что планирует решить этот вопрос. Остальные же отложили его рассмотрение до лучших времен. Вот я и решил объяснить его подробнее.
Содержание статьи
Для чего предназначены внутренние устройства молниезащиты и как они работают при разрядах
Стихийное возникновение молнии происходит внезапно, создавая огромные разрушения.
Защитить дом от него позволяет внешняя молниезащита, состоящая из молниеприемника, распложенного над крышей, а также молниеотвода и контура заземления.
Ток разряда, проникающий кратковременным импульсом по подготовленной цепи, имеет очень большую величину. Он наводит в близкорасположенной проводке здания и токопроводящих частях перенапряжения, способные сжечь изоляцию, повредить бытовые приборы.
Предотвратить опасные последствия грозового разряда предназначены внутренние устройства молниезащиты, представляющие собой комплекс технических устройств и приборов на основе модулей УЗИП с подключением их к системе заземления.
Они надежно работают не только при непосредственном ударе молнии по дому, но и гасят разряды, попадающие в:
- питающую ЛЭП;
- близлежащие деревья и строения;
- почву, расположенную рядом со зданием.
Если с ударом по ЛЭП обычно вопросов не возникает, то в последних двух случаях перенапряжение способно импульсом проникнуть в домашнюю проводку по контуру земли, трубам водопровода, канализации, другим металлическим магистралям, как показано на самой первой картинке
Работа внутренней молниезащиты происходит за счет подключения проникшего высоковольтного импульса на специально подобранный разрядник или электронный элемент — варистор.
Он включается на разность двух потенциалов и для обычного напряжения обладает очень большим сопротивлением, когда токи через него ограничиваются, не превышают нескольких миллиампер.
При попадании на схему варистора аварийный импульс открывает полупроводниковый переход, замыкая его накоротко. Через него начинает стекать опасный потенциал на защитное заземление.
После варистора опасное напряжение значительно ограничивается. На базе этих электронных компонентов созданы современные модули защиты — УЗИП.
Устройство защиты от импульсных перенапряжений: как правильно выбрать и установить модуль
Представьте картинку, когда накопленная энергия статического электричества между движущимися на больших расстояниях облаками разряжается молниеносным ударом по зданию или питающей его ЛЭП.
Усредненная форма импульса тока приведена ниже. Она вначале круто возрастает примерно за 10 миллисекунд, а затем, достигнув своего апогея, начинает плавно снижаться. Причем спад до середины максимального значения тока происходит через 350 мс и продолжается дальше до нуля.
Этот импульс грозового разряда создает перенапряжение в сети, которое примерно повторяет форму тока, но может отличаться за счет работы ограничителей перенапряжения, установленных на воздушной ЛЭП.
Форма такого импульса, обработанного разрядниками, показана чуть правее, а обычная синусоида частотой 50 герц для сравнения ниже.
Ограничители перенапряжения ЛЭП работают за счет пробивания калиброванного воздушного зазора повышенным импульсом разряда. В обычном состоянии его сопротивление исключает протекание токов от напряжения нормальной величины.
У высоковольтных линий электропередач ограничители имеют довольно внушительные размеры.
На воздушных ЛЭП 0,4 кВ их габариты значительно меньше. Они располагаются на опоре рядом с изоляторами.
Ограничители перенапряжения ВЛ способны погасить очень высокое напряжение разряда молнии только до 6 киловольт. Такой импульс имеет измененную форму нарастания и спада напряжения с характеристикой 8/20 мкс. Он поступает на вводные устройства вашего дома.
Защита перенапряжения ЛЭП его сильно урезала и преобразовала. Но этого явно недостаточно для обеспечения безопасности оборудования и жильцов.
Бытовая проводка 220/380 вольт выпускается с изоляцией, способной противостоять импульсам 1,5÷2,5 кВ. Все, что больше, ее пробивает. Поэтому требуется использовать дополнительное устройство защиты от импульсных перенапряжений для частного дома.
Ассортимент таких конструкций обширен. Их необходимо уметь правильно выбирать и монтировать.
УЗИП для сети 0,4 кВ выпускаются на 2 режима возможной аварии для гашения:
- тока разряда с формой 10/350мкс, который не претерпел изменений от ОПН воздушной ЛЭП;
- импульса перенапряжения с характеристикой 8/20мкс.
По этим факторам удобно при выборе УЗИП пользоваться алгоритмом, который я показал картинкой ниже.
Однако следует представлять, что практически нет устройств, способных разово погасить импульс 6 киловольт до безопасной для бытовой проводки величины в 1,5 кВ.
Этот процесс происходит в три этапа. Под каждый из них используется свой класс УЗИП, хотя есть небольшие исключения из этого правила.
Модули класса 1 способны снизить импульс перенапряжения с 6 до 4 кВ, который проникает:
- после ограничителей ЛЭП;
- или наводится от тока разряда молнии, стекающего по молниеотводу;
- либо ее удара в близко расположенные строения, деревья, почву.
УЗИП класса 1 устанавливают во вводном щиту здания внутри отдельной герметичной пожаробезопасной ячейки. Пренебрегать этим правилом опасно.
При монтаже следует правильно прокладывать защищаемые кабели. Они не должны пересекаться с отводом аварийных токов на контур земли и приходящими, не подвергнутыми защите магистралями.
От сверхтоков модули спасают силовыми предохранителями с плавкими вставками.
Автоматические выключатели для этих целей не приспособлены. Их контакты не выдерживают создаваемые импульсные перегрузки. Они привариваются, а повреждение продолжает развиваться.
Следующий класс УЗИП №2 снижает импульс перенапряжения с четырех до 2,5 кВ. Его ставят в следующем по иерархии распределительном щите, например, квартирном. Он дополняет работу предшествующего модуля, но может использоваться и автономно.
Класс №3 устройства защиты от импульсных перенапряжений может выполняться модулями, устанавливаемыми на DIN-рейку или комплектами, встраиваемыми в бытовые приборы, удлинители, сетевые фильтры.
УЗИП класса 3 способен обеспечивать безопасность только после срабатывания защиты класса №2. Он ставится последовательно за ней потому, что от 4-х киловольт сгорает.
Производители побеспокоились о сложности выбора правильной конструкции УЗИП и предлагают комплексное решение этого вопроса общим модулем, называемым 1+2+3.
Он ставится в отдельном боксе. Однако, цена такой разработки не всем по карману.
Защита от импульсного перенапряжения: частный дом с однофазным питанием
Монтаж электропроводки в частном доме, особенно выполненном из древесины и горючих материалов, требует тщательного соблюдения правил электрической безопасности.
Необходимо учесть, что здание может быть запитано по разным схемам заземления:
- типовой старой TN-C;
- либо современной, более безопасной TN-S или ее модификациям.
Разберем оба случая.
Схема подключения УЗИП: 2 варианта по системе заземления TN-S
На картинке ниже представлена развернутая схема с защитой комбинированного класса 1+2, которое используется для установки после вводного автоматического выключателя.
Варистор ограничителя перенапряжения встроен в корпус модуля, защищает электрическую схему от прямых или удаленных атмосферных разрядов молний.
Традиционный для всех УЗИП сигнальный флажок имеет два цвета:
- зеленое положение свидетельствует об исправности устройства и готовности к работе;
- красное — о необходимости замены в случае срабатывания или перегорания.
Такой модуль может применяться во всех системах заземления, а не только TN-S. Он имеет 3 клеммы подключения:
- сверху слева L — фазный провод;
- сверху справа PE — защитный проводник заземления;
- снизу N — нулевой провод.
УЗИП защищает электросчетчик и все цепи после него.
На очередной схеме показан вариант использования защиты с УЗО. После него создается дополнительная шинка рабочего нуля N1, от которой запитаны все потребители квартиры.
Схема вроде понятна, вопросов не должно возникнуть.
Для дополнительных систем заземления TN-C-S и ТТ предлагаю к изучению и анализу еще две схемы. У них УЗИП монтируется тоже во вводном устройстве.
Цепи подключения счетчика, реле контроля напряжения РКН и УЗО, а также потребители подробно не показываю. Но принцип понятен: используется защитная шина PE.
А вот в старой системе заземления ее нет, за счет чего снижается надежность и безопасность. Но все же она осуществляет защиту, поэтому и рассматривается.
Схема подключения УЗИП по системе заземления TN-C
Отсутствие шины РЕ диктует необходимость подключения УЗИП только между потенциалами фазного провода и PEN. Других вариантов просто нет.
Слева показан способ монтажа защиты для однофазной проводки, а справа — трехфазной.
Импульс перенапряжения снимается по принципу создания искусственного короткого замыкания в питающей цепи.
Защита от импульсного перенапряжения: частный дом с трехфазным питанием
Разбираю принципы подключения УЗИП на примере разных систем заземления.
Схема подключения УЗИП для трехфазного питания дома по системе TN-S
Защита проводки возложена на:
- трехполюсный вводной автоматический выключатель;
- однополюсные и трехполюсные автоматы отходящих линий;
- устройство защиты от импульсных перенапряжений комбинированного типа 1+2+3.
Учетом электроэнергии занимается трехфазный электросчетчик. После него в цепях рабочего нуля образована дополнительная шинка N1. От нее запитываются все потребители.
Шинки N и РЕ, модуль УЗИП подключены стандартным образом.
При раздельном использовании защит классов №1, 2, 3 следует распределять их по зонам I, II, III.
Проникновение импульсов перенапряжения со всех сторон потенциалов фаз, рабочего нуля и соединенного с контуром земли оборудования блокирует включение модулей между шинами фаз, нуля и РЕ.
Схема подключения УЗИП: 2 варианта для трехфазного питания дома по системе TN-C
В предлагаемой разработке показан не чистый вариант подключения защит под систему заземления TN-C, а рекомендуемая современными требованиями модификация перехода на TN-C-S с выполнением повторного заземления.
Проводник PEN по силовому кабелю от питающей трансформаторной подстанции подается на свою шинку, которая подключается перемычкой к сборке рабочего нуля и шине повторного заземления.
Трехполюсный УЗИП, включенный после вводного автомата, защищает электрический счетчик и все его цепи, включая УЗО, от импульсов перенапряжения. Напоминаю, что он должен монтироваться в отдельном несгораемом боксе.
При отсутствии повторного заземления нижняя клемма модуля УЗИП подключается на шину PEN проводника отдельной жилой, а проводка работает чисто по старой системе TN-C.
Еще одна методика снижения нарастающего фронта броска импульса перенапряжения показана ниже. Здесь работают специальные реактивные сопротивления — дросселя LL1-3 с индуктивностью от 6 до 15 микрогенри, подбираемые расчетным путем.
Они используются при близком расположении оборудования для создания небольшой задержки срабатывания защиты, необходимой по условиям селективности.
Их монтируют в отдельном защитном щитке совместно с УЗИП. Так проще выполнять настройки и периодические обслуживания, профилактические работы.
Считаю, что необходимо указать еще на один вариант использования ограничителей перенапряжения и разрядников, которым иногда пренебрегают владельцы сложной электронной техники.
В отдельных ситуациях, как было у меня в электротехнической лаборатории на подстанции 330 кВ. Настольный компьютер подвергался различным видам облучения электромагнитных полей с частотами низкого и высокого диапазонов. Это сказывалось на отображении информации и даже быстродействии.
Выход был найден за счет создания мощного экранирующего чехла и подключения его к отдельному функциональному заземлению.
Однако при ударе молнии в рядом расположенную почву или молниезащиту такой путь может стать источником опасности. Исправить ситуацию позволяет метод создания дополнительной гальванической развязки.
Ее создают подключением разрядника. У меня использовалась разработка компании Hakel, как показано на картинке выше.
3 главных ошибки электрика в схемах молниезащиты
Отвод случайного разряда молнии от здания и ликвидация опасных последствий перенапряжения — это сложная и ответственная техническая задача, требующая:
- тщательного инженерного расчета;
- надежного монтажа;
- своевременного профилактического обслуживания.
Три перечисленных пункта требуют профессиональных знаний и опыта, которыми обладает далеко не каждый специалист.
Отличает профессионала от других электриков не наличие диплома об образовании, количество сертификатов или положительных отзывов, а готовность взять на себя всю полноту материальной ответственности за проделанную работу и причиненный ущерб в случае допущения ошибки на любом вышеперечисленном этапе.
Расчет проекта молниезащиты
Он должен выполняться по двум направлениям:
- внешней схеме отвода тока разряда;
- внутренней ликвидации импульса перенапряжения с полным учетом местных условий.
На расчет конструкции влияют характеристики грунтов, форма и габариты здания, условия подключения электроэнергии и многие другие факторы.
Их требуется просчитать, смоделировать, подвергнуть испытаниям специализированными компьютерными программами и внести необходимые усовершенствования.
Но есть и другой путь — собрать доступную информацию самостоятельно, например, с интернета и рискнуть безопасностью дома и жильцов: вдруг пронесет. Грозы то бывают не каждый день, авось… (Так поступает большинство, причем часто по незнанию.)
Монтаж внутренней и внешней молниезащиты
Попробуйте ответить на простой вопрос: можно ли изготовить надежно работающую систему без точного проекта, учитывающего аварийные и эксплуатационные режимы?
А ведь так поступают многие владельцы домов. В итоге создаются контуры заземления с завышенным электрическим сопротивлением, ненадежные молниеотводы, что превращает задуманную защиту в ловушку молний, когда молниеприемник притягивает на себя грозовой разряд, а его энергия не отводится на потенциал земли, а прикладывается к зданию.
Ошибки монтажа внутренней молниезащиты ведут к выгоранию бытовой проводки, повреждению дорогого оборудования, бесполезной трате денег, времени.
Профилактическое обслуживание систем молниезащиты
Здесь надо учитывать, что любая техника не только морально изнашивается, но и естественно стареет.
Электрические характеристики грунта меняются в зависимости от погоды, сезона, влажности. Электронные защиты на УЗИП при срабатывании, как и их предохранители могут выгореть. Контактные соединения собранных цепочек со временем увеличивают сопротивление.
Все эти процессы требуется контролировать внешним и внутренним осмотром, выполнением электротехнических измерений точными специализированными приборами.
Внутри многоэтажного здания вопросами внутренней и внешней молниезащиты занимается эксплуатирующая организация ЖКХ со своими работниками. Владелец частного дома решает их самостоятельно и выполнить их обязан надежно и качественно привлечением специалистов лабораторий.
В статье я привел типовые схемы, показывающие как подключить УЗИП для частного дома и постарался кратко объяснить принципы их работы.
Дополняет этот материал видеоролик владельца Василия Юферева. Обратите внимание на комментарии: отдельные люди так и не поняли роль этой защиты.
Если у вас возникли вопросы по изложенной теме, то воспользуйтесь разделом комментариев. Обсудим.
electrikblog.ru
Схема подключения УЗИП – 3 ошибки и правила монтажа. Защита от импульсных перенапряжений.
На сегодняшний день все устройства от импульсных перенапряжений делятся на три класса. И каждый из них выполняет свою роль.
Модуль первого класса гасит основной импульс, он устанавливается на главном вводном щите.
После погашения самого большого перенапряжения, остаточный импульс принимает на себя УЗИП 2 класса. Он монтируется в распределительном щитке дома.
Если у вас не будет устройства I класса, высока вероятность что весь удар воспримет на себя модуль II. А это может для него весьма печально закончится.
Поэтому некоторые электрики даже отговаривают заказчиков ставить импульсную защиту. Мотивируя это тем, что раз вы не можете обеспечить первый уровень, то не стоит вообще на это тратить денег. Толку не будет.
Однако давайте посмотрим, что говорит об этом не знакомый электрик, а ведущая фирма по системам грозозащиты Citel:
То есть в тексте прямо сказано, класс II монтируется либо после класса 1, либо КАК САМОСТОЯТЕЛЬНОЕ УСТРОЙСТВО.
Третий модуль защищает уже непосредственно конкретного потребителя.
Если у вас нет желания выстраивать всю эту трехступенчатую защиту, приобретайте УЗИП, которые изначально идут с расчетом работы в трех зонах 1+2+3 или 2+3.
Такие модели тоже выпускаются. И будут наиболее универсальным решением для применения в частных домах. Однако стоимость их конечно отпугнет многих.
Схема электрощита с УЗИП
Схема качественно укомплектованного с точки зрения защиты от всех скачков и перепадов напряжения распределительного щита, должна выглядеть примерно следующим образом.
На вводе перед счетчиком – вводной автоматический выключатель, защищающий прибор учета и цепи внутри самого щитка. Далее счетчик.
Между счетчиком и вводным автоматом – УЗИП со своей защитой. Электроснабжающая организация конечно может запретить такой монтаж. Но вы можете обосновать это необходимостью защиты от перенапряжения и самого счетчика.
В этом случае потребуется смонтировать всю схемку с аппаратами в отдельном боксе под пломбой, дабы предотвратить свободный доступ к оголенным токоведущим частям до прибора учета.
Однако здесь остро встанет вопрос замены сработавшего модуля и срыва пломб. Поэтому согласовывайте все эти моменты заранее.
После прибора учета находятся:
- реле напряжения УЗМ-51 или аналог
- УЗО 100-300мА – защита от пожара
- УЗО или дифф.автоматы 10-30мА – защита человека от токов утечки
- простые модульные автоматы
Если с привычными компонентами при комплектации такого щитка вопросов не возникает, то на что же нужно обратить внимание при выборе УЗИП?
На температуру эксплуатации. Большинство электронных видов рассчитано на работу при окружающей температуре до -25С. Поэтому монтировать их в уличных щитках не рекомендуется.
Второй важный момент это схемы подключения. Производители могут выпускать разные модели для применения в различных системах заземления.
Например, использовать одни и те же УЗИП для систем TN-C или TT и TN-S уже не получится. Корректной работы от таких устройств вы не добьетесь.
Схемы подключения
Вот основные схемы подключения УЗИП в зависимости от исполнения систем заземления на примере моделей от Schneider Electric. Схема подключения однофазного УЗИП в системе TT или TN-S:
Здесь самое главное не перепутать место подключения вставного картриджа N-PE. Если воткнете его на фазу, создадите короткое замыкание.
Схема трехфазного УЗИП в системе TT или TN-S:
Схема подключения 3-х фазного устройства в системе TN-C:
На что нужно обратить внимание? Помимо правильного подключения нулевого и фазного проводников немаловажную роль играет длина этих самых проводов.
От точки подключения в клемме устройства до заземляющей шинки, суммарная длина проводников должны быть не более 50см!
А вот подобные схемы для УЗИП от ABB OVR. Однофазный вариант:
Трехфазная схема:
Давайте пройдемся по некоторым схемкам отдельно. В схеме TN-C, где мы имеем совмещенные защитный и нулевой проводники, наиболее распространенный вариант решения защиты – установка УЗИП между фазой и землей.
Каждая фаза подключается через самостоятельное устройство и срабатывает независимо от других.
В варианте сети TN-S, где уже произошло разделение нейтрального и защитного проводника, схема похожа, однако здесь монтируется еще дополнительный модуль между нулем и землей. Фактически на него и сваливается весь основной удар.
Именно поэтому при выборе и подключении варианта УЗИП N-PE, указываются отдельные характеристики по импульсному току. И они обычно больше, чем значения по фазному.
Помимо этого не забывайте, что защита от грозы это не только правильно подобранный УЗИП. Это целый комплекс мероприятий.
Их можно использовать как с применением молниезащиты на крыше дома, так и без нее.
Особое внимание стоит уделить качественному контуру заземления. Одного уголка или штыря забитого в землю на глубину 2 метра здесь будет явно не достаточно. Хорошее сопротивление заземления должно составлять 4 Ом.
Принцип действия
Принцип действия УЗИП основан на ослаблении скачка напряжения до значения, которое выдерживают подключенные к сети приборы. Другими словами, данное устройство еще на вводе в дом сбрасывает излишки напряжения на контур заземления, тем самым спасая от губительного импульса дорогостоящее оборудование.
Определить состояние устройства защиты достаточно просто:
- зеленый индикатор – модуль рабочий
- красный – модуль нужно заменить
При этом не включайте в работу модуль с красным флажком. Если нет запасного, то лучше его вообще демонтировать.
УЗИП это не всегда одноразовое устройство, как некоторым кажется. В отдельных случаях модели 2,3 класса могут срабатывать до 20 раз!
Автоматы или предохранители перед УЗИП
Чтобы сохранить в доме бесперебойное электроснабжение, необходимо также установить автоматический выключатель, который будет отключать узип. Установка этого автомата обусловлена также тем, что в момент отвода импульса, возникает так называемый сопровождающий ток.
Он не всегда дает возможность варисторному модулю вернуться в закрытое положение. Фактически тот не восстанавливается после срабатывания, как по идее должен был.
В итоге, дуга внутри устройства поддерживается и приводит к короткому замыканию и разрушениям. В том числе самого устройства.
Автомат же при таком пробое срабатывает и обесточивает защитный модуль. Бесперебойное электроснабжение дома продолжается.
Запомните, что этот автомат защищает в первую очередь не разрядник, а именно вашу сеть.
При этом многие специалисты рекомендуют ставить в качестве такой защиты даже не автомат, а модульные предохранители.
Объясняется это тем, что сам автомат во время пробоя оказывается под воздействием импульсного тока. И его электромагнитные расцепители также будут под повышенным напряжением.
Это может привести к пробою отключающей катушки, подгоранию контактов и даже выходу из строя всей защиты. Фактически вы окажетесь безоружны перед возникшим КЗ.
Поэтому устанавливать УЗИП после автомата, гораздо хуже, чем после предохранителей.
Есть конечно специальные автоматические выключатели без катушек индуктивности, имеющие в своей конструкции только терморасцепители. Например Tmax XT или Formula A.
Однако рассматривать такой вариант для коттеджей не совсем рационально. Гораздо проще найти и купить модульные предохранители. При этом можно сделать выбор в пользу типа GG.
Они способны защищать во всем диапазоне сверхтоков относительно номинального. То есть, если ток вырос незначительно, GG его все равно отключит в заданный интервал времени.
Есть конечно и минус схемы с автоматом или ПК непосредственно перед УЗИП. Все мы знаем, что гроза и молния это продолжительное, а не разовое явление. И все последующие удары, могут оказаться небезопасными для вашего дома.
Защита ведь уже сработала в первый раз и автомат выбил. А вы об этом и догадываться не будете, потому как электроснабжение ваше не прерывалось.
Поэтому некоторые предпочитают ставить УЗИП сразу после вводного автомата. Чтобы при срабатывании отключалось напряжение во всем доме.
Однако и здесь есть свои подводные камни и правила. Защитный автоматический выключатель не может быть любого номинала, а выбирается согласно марки применяемого УЗИП. Вот таблица рекомендаций по выбору автоматов монтируемых перед устройствами защиты от импульсных перенапряжений:
Если вы думаете, что чем меньше по номиналу автомат будет установлен, тем надежнее будет защита, вы ошибаетесь. Импульсный ток и скачок напряжения могут быть такой величины, что они приведут к срабатыванию выключателя, еще до момента, когда УЗИП отработает.
И соответственно вы опять останетесь без защиты. Поэтому выбирайте всю защитную аппаратуру с умом и по правилам. УЗИП это тихая, но весьма своевременная защита от опасного электричества, которое включается в работу мгновенно.
Ошибки при подключении
1Самая распространенная ошибка – это установка УЗИП в электрощитовую с плохим контуром заземления.
Толку от такой защиты не будет никакого. И первое же “удачное” попадание молнии, сожгет вам как все приборы, так и саму защиту.
2Не правильное подключение исходя из системы заземления.
Проверяйте техдокументацию УЗИП и проконсультируйтесь с опытным электриком ответственным за электрохозяйство, который должен быть в курсе какая система заземления используется в вашем доме.
3Использование УЗИП не соответствующего класса.
Как уже говорилось выше, есть 3 класса импульсных защитных устройств и все они должны применяться и устанавливаться в своих щитовых.
Источник
Поделиться новостью в соцсетях
« Предыдущая запись Следующая запись »
psk-remont.ru
Схема подключения УЗИП
Здесь привожу несколько типовых схем подключения устройств защиты от импульсных перенапряжений (УЗИП). Ниже вы найдете однофазные и трехфазные схемы для разных систем заземления: TN-C, TN-S и TN-C-S. Они наглядные и понятные для простого человека.
Сегодня существует большое количество производителей УЗИП. Сами устройства бывают разных моделей, характеристик и конструкций. Поэтому перед его монтажом обязательно изучите паспорт и схему подключения. В принципе, суть подключения у всех УЗИП одинаковая, но все же рекомендую сначала прочитать инструкцию.
Во всех выложенных схемах присутствуют УЗО и групповые автоматические выключатели. Их я указал для наглядности и полноты распределительного щитка. Эта «начинка» щитка у вас может быть совсем другая.
1. Схема подключения УЗИП в однофазной сети системы заземления TN-S.
На данной схеме представлен УЗИП серии Easy9 производителя Schneider Electric. К нему подключаются следующие проводники: фазный, нулевой рабочий и нулевой защитный. Здесь он устанавливается сразу после вводного автомата. Все контакты на любом УЗИП обозначены. Поэтому куда подключать «фазу», а куда «ноль» можно легко определить. Зеленый флажок на корпусе указывает на исправное состояние, а красный флажок сигнализирует о неисправной касете.
Представленное устройство относится к классу 2. Оно одно самостоятельно не способно защитить от прямого удара молнии. Грамотный выбор УЗИП это сложная и уже отдельная тема.
Также рекомендуется защищать устройства УЗИП с помощью предохранителей.
Думаю тут все понятно…
Ниже представлена аналогичная схема подключения УЗИП, но уже без электросчетчика и с использованием общего УЗО.
2. Схема подключения УЗИП в трехфазной сети системы заземления TN-S.
На схеме также изображен УЗИП производителя Schneider Electric серии Easy9, но уже для 3-х фазной сети. На рисунке изображено 4-х полюсное устройство с подключением нулевого рабочего проводника.
Еще существует 3-х полюсное УЗИП этой же серии. Оно применяется в системе заземления TN-C. В нем нет контакта для подключения нулевого рабочего проводника.
3. Схема подключения УЗИП в трехфазной сети системы заземления TN-C.
Здесь изображен УЗИП фирмы IEK. Данная схема представляет собой обычный вводной щит для частного дома. Он состоит из вводного автомата, электросчетчика, УЗИП и общего противопожарного УЗО. Также на схеме показан переход с системы заземления TN-C на TN-C-S, что требуется современными нормами.
На первом рисунке изображен 4-х полюсный вводной автомат, а на втором 3-х полюсный.
Выше представлены наглядные схемы подключения УЗИП. Думаю они понятны вам. Если остались вопросы, то жду их в комментариях.
Улыбнемся:
Нет постояннее соединения, чем временная скрутка!
sam-sebe-electric.ru
схема подключения защиты от импульсных перенапряжений
В любой цепи могут случиться скачки напряжения. При большом значении тока возможен выход оборудования из строя. Чтобы предотвратить это, используется УЗИП.
Что это такое
Приборы для защиты от перенапряжений сетей и электрооборудования с напряжением до 1 кВ называются УЗИП. Они предназначены для предотвращения порчи электрооборудования при скачках напряжения, а также в различных непредвиденных ситуациях. Они используются для ограничения переходных перенапряжений и устранения импульсов тока, чтобы снизить величину перенапряжений до уровня, который безопасен для электрических приборов. УЗИП используются на промышленных предприятиях и
в гражданском строительстве.
УЗИП
Основным российским положением, дающим определение УЗИП, является ГОСТ Р 51992-2002 «Оборудование для предотвращения скачков напряжения в низковольтных распределительных сетях».
SPD стремится обеспечить молниезащиту для систем молниеотводов и заземления зданий (сооружений) или воздушных линий электропередачи (LEP) для защиты высокочувствительного оборудования и устройств от скачков напряжения и скачков импульсного напряжения. Широкий ассортимент УЗИП с возможностью быстрого монтажа, который можно установить на DIN-рейку.
Принцип работы
Принцип действия данных приборов может быть основан на возникновении искрового разряда между двумя проводниками при прохождении тока высокого напряжения. Также имеются устройства, которые собраны на основе нелинейных резисторов. Оба варианты защищают оборудование от перенапряжения путем перенаправления тока в цепь заземления.
Виды
В зависимости от устройства и принципа действия УЗИП делятся на несколько видов.
Коммутирующие защитные аппараты
Также называются искровыми разрядниками. Принцип работы разрядника основан применении явления искрового промежутка. Конструкция имеет воздушный зазор в перемычке, которая соединяет каждую из линий электропередачи с контуром заземления. Цепь в перемычке разомкнута при номинальном напряжении. Если происходит разряд молнии из-за перенапряжения в линии электропередачи, произойдет пробой воздушного зазора, цепь между фазой и землей будет замкнута, а импульс высокого напряжения будет напрямую заземлен. Конструкция разрядника клапана в цепи с искровым разрядником обеспечивает резистор, на котором подавляются импульсы высокого напряжения. В большинстве случаев разрядники используются в высоковольтных сетях.
УЗИП-разрядник
Ограничители сетевого перенапряжения (ОПН)
Эти устройства заменили устаревшие, громоздкие разрядники. Чтобы понять принцип работы ограничителя, необходимо рассмотреть характеристики нелинейного резистора, так как принцип работы разрядника основан на его вольтамперной функции. Варисторы используются в качестве нелинейных резисторов в данных устройствах. Основным материалом для изготовления варистора является оксид цинка. В смеси с другими оксидами металлов образуется компонент, образующий p-n-переход с вольтамперными характеристиками. Когда напряжение в сети соответствует номинальному параметру, ток в цепи варистора близок к нулю. Когда в p-n-переходе возникает перенапряжение, ток резко увеличивается, что приводит к падению напряжения до номинального значения. После стандартизации параметров сети варистор возвращается в непроводящий режим, не влияя на работу устройства.
Ограничители
Комбинированные УЗИП
Комбинированные приборы работают по принципу разрядника, но также имеют в конструкции резистор. С помощью данной конструкции напряжение не только заземляется, но и параллельно стабилизируется в основной цепи.
Классы
Такие устройства которые можно разделить на несколько категорий:
- Класс I. Предназначен для предотвращения прямого воздействия молнии. Эти устройства должны быть оснащены входным распределительным оборудованием (АСУ) для административных и промышленных зданий и жилых многоквартирных домов.
- Класс II. Они обеспечивают защиту распределительной сети от перенапряжений, вызванных процессом переключения, и выполняют функцию вторичной защиты, чтобы предотвратить воздействие ударов молнии. Они установлены и подключены к сети в щитке.
- Класс III. Они используются для защиты оборудования от импульсов напряжения, вызванных остаточными скачками и асимметричным распределением напряжения между фазовой и нейтральной линиями. Такие устройства также могут работать в режиме фильтра высокочастотных помех. Наиболее удобным для частных домов или квартир является то, что они подключены и установлены непосредственно потребителями. Особенно популярным является изготовление устройства в виде модуля, который можно быстро монтировать на DIN-рейку, или конфигурации с сетевой розеткой или штепсельной вилкой.
Как выбрать
При выборе УЗИП с любым рабочим элементом (варистор, искровой разрядник, пробойный диод) следует учитывать следующие факторы:
- Параметры сети (номинальный ток, напряжение, параметры передачи), эффекты защиты (пропускная способность и уровень напряжения защиты).
- Факторы, влияющие на установку (конструкция, условия подключения).
Принцип защиты силовой цепи заключается в установке УЗИП в соответствии с концепцией области, и при выборе типа важно надежно оценить его текущую нагрузку. Система защиты цепи управления и измерения основана на типе защищаемого сигнала и выборе УЗИП. Сначала необходимо определить параметры защищаемой цепи. В соответствии с номинальным выдерживаемым напряжением, сеть низкого напряжения 380/220 В подразделяется на 4 категории (I — IV) с нормированными значениями 1,5; 2,5; 4,0 и 6,0 кВ. Класс УЗИП соответствует уровню защиты: уровень I-≤4 кВ; уровень II-1,3 … 2,5 кВ; уровень III-0,8 … 1,5 кВ. Уровень защиты выбранного УЗИП не должен превышать выдерживаемое напряжение электросети.
Помимо этого, устройство имеет следующие параметры:
- Номинальное напряжение.
- Максимальное непрерывное рабочее напряжение (рабочее напряжение сети в течение длительного времени).
- Амплитуда импульсного тока, который может пройти, по крайней мере, один раз без повреждений цепи и устройства защиты (для класса I).
- Амплитуда импульса составляет 8/20 мкс, SPD, по крайней мере, один раз неразрушающий (для класса II).
- Амплитуда импульса тока, протекающего через УЗИП, который устройство защиты от перенапряжений может выдерживать многократно.
- Верхний уровень напряжения защиты — характеризует УЗИП, ограничивая напряжение на клемме при протекании тока.
- Допустимый сопутствующий ток (для разрядников).
- Время срабатывания.
Определение системы заземления
Тип системы заземления, используемой в доме, может быть определен тем, как разделены проводники PEN. Если все готово, проводка похожа на систему TN-C-S. В этом случае для трехфазной цепи пять главных проводов выходят из главного распределительного щита дома, а для однофазной цепи только три провода. PEN-проводники разделяются на PE и N компоненты.
На заметку! Если он не разделен, проводка будет работать в соответствии с системой TN-C, с 4 проводами от трехфазной системы и 2 проводами от однофазной системы, идущими от распределительного щита.
Основываясь на описанных принципах, можно легко определить тип системы заземления. Во всех случаях, когда система TN-C используется в частных домах, рекомендуется перенести ее на схему TN-C-S, которая является более перспективной и безопасной.
Значение защищаемого оборудования
Защищаемые объекты делятся на несколько классов:
- Специальные (критические) объекты вредные для окружающей среды, жизни человека и животных. Примеры: химическая и нефтехимическая продукция, биохимические и бактериологические центры, производство взрывчатых веществ, атомные электростанции и др. Надежность защиты от молниевого удара достигает 0,98 (для отдельных предметов в зонах категории A она может быть установлена на более высоком уровне 0,995). Негативные последствия ударов молнии: пожары, взрывы, выбросы токсичных веществ, повышение радиации на больших площадях, экологические катастрофы, повлекшие за собой непоправимые материальные и человеческие жертвы
- Виды специальных объектов, которые представляют опасность для окружающей среды. Примеры: нефтепереработка, АЗС, мукомольные заводы, деревообрабатывающие заводы, производство изделий из пластмасс и др.
Надежность защиты гарантированно будет равна 0,95. Негативное воздействие ударов молнии: пожары, взрывы в районе и вокруг него. Стены и потолки могут рухнуть, получить серьезные травмы и даже смерть сотрудников и посетителей. В этом случае значительные финансовые потери будут зафиксированы. - Объект — специальная критическая инфраструктура. Типы объектов: предприятия связи и ИКТ, трубопроводный транспорт, линии электропередачи, оборудование центрального отопления, транспортная инфраструктура и др. Надежность защиты от удара гарантирована — 0,9. Негативные последствия ударов молнии: нарушение связи, частичная или полная потеря контроля, прерывание воды и отопления, временное снижение качества жизни и потеря материала.
- Общие, промышленные и гражданские объекты и связанная с ними инфраструктура. Примеры: жилые дома, промышленные здания (до 60 м высотой), дома и хижины в селах, объекты социально-культурного назначения, учебные заведения, больницы и музеи, храмы, церкви. Гарантия от ударов молнии −0,8. Негативные последствия ударов молнии: сильные пожары, повреждения зданий, нарушение транспорта, нарушение систем связи, возможная потеря исторического и культурного наследия. Значительные материальные и финансовые потери. Может привести к травмам или смерти людей.
На заметку! Из приведенной выше системы классификации видно, что любой тип защищаемого объекта отличается от другого с точки зрения характеристик и цели молниезащиты установки и типа заземляющего устройства, его конструкция определяется назначением и расположением конструкции.
Риск воздействия объекта
Подключение УЗИП различной классности совместно с системой заземления снижает риск поломки оборудования из-за скачка напряжения в сети или удара молнии на 80-99%.
Подключение в частном доме
Подключение в частном доме может производиться в однофазную и трехфазную сеть. При этом могут для УЗИП схема подключения может быть различной.
Однофазная электрическая схема (TN-S)
На рисунке показан прибор серии Easy9 от Schneider Electric. Следующие проводники подключены: фаза, нулевой проводник и нулевой для защиты. Здесь он устанавливается сразу после включения автомата. Все контакты для подключения на любом приборе указаны. Следовательно, легко определить, где «фаза», а где «ноль». Зеленая отметка на корпусе указывает на хорошее состояние, а красная отметка указывает на неисправность.
УЗИП схема включения TN-S
Предоставленное оборудование относится к классу 2. Одно это устройство не может предотвратить прямые удары молнии. Также рекомендуется защитить оборудование с помощью предохранителя.
Схема включения TN-S с общим УЗО
Схема трехфазного сетевого подключения (TN-S)
На этой схеме также показаны устройство серии Easy9, производимые Schneider Electric, но использовавшиеся в трехфазных сетях. На рисунке показано 4-полюсное устройство с нулевым рабочим проводником.
Существует также 3-полюсный прибор той же серии. Используется в системах заземления TN-C. Нет контактов для подключения нейтрального провода.
Защита от импульсных перенапряжений схема подключения TN-S в трехфазную сеть
Схема трехфазного сетевого подключения (TN-C)
На рисунке показан переход от TN-C к системе заземления TN-C-S, что требуется по современным стандартам. На первом рисунке показан 4-полюсный входной автоматический выключатель, а на втором — 3-полюсный вход.
Четырехполюный разрядник для защиты от перенапряжений схема подключения TN-C
УЗИП — устройство необходимое для полноценной защиты электрического оборудования.
Схема подключения трехполюсного прибора
Конструкция может быть собрана на основе резисторов или использовать метод искровых промежутков. Подключение производится по различным схемам к одно- и трехфазной сети.
rusenergetics.ru
УЗИП так ли он нужен
Изначально вся молниезащита и защита от перенапряжений, возникающих при грозе, ориентировалась на такие величины, как киловольты и даже десятки и сотни киловольт.
Оборудование такого класса защищается высоковольтными разрядниками РВО, РВС, РДИП, РМК и т.п.
Что такое УЗИП и от чего оно защищает?
УЗИП – это устройство, которое защищает оборудование и эл.приборы в сети 220-380В от импульсных перенапряжений.
При этом не путайте импульсное перенапряжение, просто с повышенным, которое возникает при аварийных ситуациях – обрыве ноля или попадании фазы на нулевой проводник.
Импульсное длится не более 1 миллисекунды.
Никакое реле напряжения за это время отработать не успевает.
Помимо аббревиатуры УЗИП можно встретить и другие распространенные названия. Например, ОПС – ограничитель перенапряжения сети или ОИН – ограничитель импульсных напряжений.
Несмотря на разные названия, функциональное назначение у всех этих устройств одинаковая. Они должны выполнять две главные задачи:
- защищать оборудование от последствий удара молнии
Причем не обязательно от прямого попадания, но и от возникающих “наводок” и импульсных разрядов при грозе.
От них выйти из строя могут не только работающие приборы, но и “спящие”.
То есть те, которые просто воткнуты в розетку – TV, холодильники, зарядки.
- защищать от перенапряжений при коммутациях
Как сами понимаете, говорить об актуальности монтажа УЗИП в этом случае нужно не только для частных домов, но и для квартир в многоэтажках. Данная коммутация будет сопровождаться кратковременным импульсом, который спалит вам электронные компоненты телевизора, стиральной машинки или компьютера.
От всего от этого ни УЗО, ни диффавтоматы, ни реле напряжения не помогут.
А вот УЗИП реально спасет дорогостоящие приборы. Иногда такие импульсы не приводят к капитальной поломке, зато сопровождаются “зависанием” системы, потерей памяти и т.п. А это опять дополнительные расходы на ремонт, наладку и обслуживание.
Если взять все домашние электроприборы и разбить их на категории электрической стойкости к импульсам напряжения, то получится следующая табличка:
Технические характеристики
Вот базовые технические характеристики, на которые следует обращать внимание при выборе УЗИП. Они обычно прописаны на корпусе устройства.
- номинальное и максимальное напряжение сети
Это напряжение, при котором устройство будет нормально работать не срабатывая. При его превышении УЗИП становится активным.
- номинальный и максимальный разрядный ток
Это ток, который УЗИП может пропустить через себя несколько раз без последствий и риска выхода их строя.
УЗИП — это не обязательно одноразовое устройство, как некоторые считают.
- уровень защитного напряжения или классификационное напряжение
Максимальное U на клеммах устройства, когда варистор начинает открываться при протекании через него определенного тока.
- класс устройства
Классы или типы УЗИП — чем отличаются?
Все УЗИП подразделяются на три класса или три типа. Эти классы подсказывают в каких местах нужно ставить, то или иное устройство.
1 класс
Защищает от перенапряжения, спровоцированного прямым попаданием молнии в здание или молниеотвод.
Этот тип рассчитан на пиковое значение тока с фронтом 10/350мс.
Что это означает? Это значит, что рост тока до максимального значения происходит в течение 10мс. Далее его значение падает на 50% через 350мс.
Такое наблюдается именно при прямом ударе молнии. Это очень малое время воздействия, на которое остальные защитные аппараты зачастую не успевают среагировать. А при достаточном импульсном токе, просто выходят из строя, никак не защищая подключенное оборудование.
А вот УЗИП при максимальных величинах данного параметра гарантированно защитит цепь хотя бы один раз.
Тип 1 используется при наличии системы молниезащиты – молниеотвод, металлическая сетка на здании.
Кстати, устройства класса 1 соответствующей конструкции, при воздушном вводе проводом СИП и наличии хорошего контура заземления, можно легко установить непосредственно на опоре через специальные прокалывающие зажимы и арматуру.
2 класс
Обеспечивает защиту от импульсных скачков напряжения, которые появляются при включении-отключении очень мощного оборудования, либо при непрямом попадании молнии.
Они рассчитаны на пиковое значение тока с фронтом 8/20мс. То есть, максимум тока достигается за 8мс, а спадает он наполовину за 20мс.
Автоматы, УЗО, реле опять же пропускают такой импульс, не успевая среагировать вовремя.
УЗИП 2 класса должны монтироваться в вводных распредустройствах многоквартирных жилых зданий или в уличных ВРУ частных коттеджей и домов.
При воздушном вводе в здание это условие прямо регламентируется правилами ПУЭ.
Получается, что УЗИП Т-2 должны использоваться практически всегда.
3 класс
Защищает от остаточных импульсных перенапряжений, образующихся при коротких замыканиях, либо после гашения основного импульса, первыми двумя классами УЗИП.
Третий класс часто встраивают в сетевые фильтры и удлинители.
Эта защита нужна очень чувствительному электронному оборудованию. Например, дорогостоящим медицинским приборам, компьютерам и т.п.
Третий класс применяют только как дополнительную защиту к Т-2, и он имеет более низкую разрядную способность.
Обратите внимание, что для обеспечения селективности защиты, нельзя устанавливать УЗИП разных классов параллельно один за другим в одном месте. Иначе максимальный ток молнии изначально пойдет совсем не через то устройство и элементарно сожгет его.
Чтобы этого не произошло, между УЗИП разного класса должен быть развязывающий элемент – индуктивность. Роль этой индуктивности выполняет обычный кабель или провод.
Рекомендуемое расстояние между разными УЗИП – не менее 10 метров.
Принцип работы
Как работает УЗИП? Очень просто. При кратковременном превышении напряжения от заданного значения, происходит резкое падение сопротивления варистора, встроенного в корпус.
Вот наглядная схема принципа работы такого прибора. Через автомат 220В подключена однофазная нагрузка. В этой же цепочке присутствует УЗИП.
Один его контакт сидит на фазе, другой на заземлении. Подключение в цепь параллельное!
При этом всегда обращайте внимание на длину проводников, которыми подключено УЗИП. Они играют существенную роль.
Так на кабеле длиной всего 1 метр, от молнии может генерироваться перенапряжение в 1000В.
Для эффективной защиты приходится уменьшать расстояние по кабелю. Поэтому общая длина всей цепочки, через которую подключается УЗИП (провод на фазу + провод до заземления) не должна превышать 50см!
А сечение самого кабеля для типа-2 должно быть от 4мм2 и выше, для класса 1 от 16мм2 и выше. Более подробно о всех нюансах подключения и ошибках при выборе правильной схемы читайте в отдельной статье.
Но вернемся к принципу работы. При нормальном однофазном напряжении в пределах 220В, встроенный варистор имеет большое сопротивление. Соответственно ток через него не течет.
Если же происходит кратковременный импульс, во много раз превышающий пороговое напряжение, варистор резко меняет внутреннее сопротивление, вплоть до нулевых значений.
Вследствие чего фаза через него спокойно устремляется на заземляющий контур. И все перенапряжение, грубо говоря, сливается в землю.
Как только импульс проходит, варистор автоматически возвращается в нормальное (закрытое) состояние.
При достаточно длительном воздействии импульса создается искусственное короткое замыкание, на которое срабатывает автомат, отключая всю цепочку.
Все будет зависеть от величины импульса, его продолжительности, грозового разряда и силы тока.
Остаточное напряжение, которое все равно в некоторой степени доходит до эл.приборов в этот кратковременный промежуток времени, получается сглаженным до безопасной величины и не оказывает негативных последствий.
Есть модели УЗИП моноблочные, а есть картриджные, со съемным варисторным блоком.
При его выходе из строя вам не придется менять целиком все устройство, достаточно будет заменить один элемент. Это все равно что поменять сгоревший предохранитель.
Как узнать, что УЗИП вышло из строя? По цветному индикатору на передней панели.
Он должен поменять свою раскраску с зеленого на красный.
Не путайте, индикатор выпадает и сигнализирует не просто о срабатывании, а о выходе из строя элемента!
Автомат или предохранитель перед УЗИП
Обязательным условием установки УЗИП является наличие аппарата защиты перед ним – автомата или предохранителя.
Причем специалисты рекомендуют ставить именно предохранитель.
В любом автоматическом выключателе есть катушка, обладающая индуктивностью. А вы эту самую катушку, состоящую из множества витков, устанавливаете последовательно в цепь с УЗИП. Помните, что мы ранее говорили про максимальные расстояния проводников для подключения устройства?
Так вот, выставив перед УЗИП автомат, у вас получится ситуация, когда ток молнии, помимо самого ОПС, вынужден будет пройти через всю катушку, образуя на ней дополнительное напряжение. Иногда эта величина может доходить до 100кВ!
Поэтому и ставят перед УЗИП предохранители с плавкой вставкой, длина которой всего пару сантиметров.
Кстати, есть модели УЗИП, в которых плавкая вставка встроена в корпус устройства.
Только не путайте назначение всех этих предохранителей или автоматов. Они не нужны для защиты самого ОПС. Их обязанность — отсоединить после срабатывания поврежденный элемент цепи.
УЗИП выполнив свою главную задачу, остается фактически “закороченным”, и подать напряжение на все остальное оборудование с короткозамкнутым элементом внутри цепи вы не сможете.
При этом у данной защиты, когда она стоит непосредственно перед самим аппаратом, а не на главном вводе, есть один существенный недостаток. Дело в том, что большинство молний многокомпонентные и их разряд вызывает не один импульс, а несколько.
Причем импульсы эти достигают устройства одномоментно. Представьте себе такую картину – пришла первая волна максимальной величины и заставила не просто сработать УЗИП, но и вывела из работы сменный модуль (выпал красный индикатор) с аппаратом защиты до него.
И тут же за первым импульсом накатывает второй (всего через 60-80мс), а защиты то уже нет! Поэтому иногда лучше защиту в виде автоматов или предохранителей размещать на главном вводе. Она после первого срабатывания будет гасить всю сеть 220В.
УЗИП чаще всего выходят из строя (срабатывают без возможности восстановления параметров варистора) по двум причинам:
- слишком большое напряжение или разряд, который превышает рабочий диапазон (неправильно выбрали или установили не там, где надо)
- длительное перенапряжение (не кратковременный импульс)
Например, при обрыве нейтрали или при длительном однофазном КЗ.
Статьи по теме
domikelectrica.ru
Сборка щита учета с УЗИП и УЗО, заземление TN-C-S
Использование в щите учета частного дома Устройства Защиты от Импульсных Перенапряжений — УЗИП, позволяет значительно обезопасить жилище. Защитить электрооборудование, предотвратить возможное возникновение пожара.
В отличии от многоквартирного, частный дом значительно чаще страдает от воздействий кратковременных высоких напряжений. Например, при ударе молнии, коротком замыкании или включении в сеть мощных потребителей. Именно для таких случаев и используется УЗИП, оно не пропускает высокое напряжение, переводя его на контур заземления.
Из-за своего принципа работы или возможного брака оборудования, при сработке УЗИП – при улавливании высокого напряжения, оно разрушится, нередко его просто разрывает.
При этом, как и при взрыве, выделяется тепло, летят искры. Случись это внутри помещения, например, в распределительном щитке (РЩ), вероятность возникновения пожара очень велика. А если это произойдёт в щите учета, установленном на улице, за пределами жилища, большая вероятность потерять лишь электрощит, избежав серьезных последствий.
Ранее, мы уже рассмотрели все основные схемы монтажа учетных электрощитов 380В, для выделенной мощности 15кВт, в том числе и с УЗИП. При этом, для разных заземлений, подключения отличаются.
В этой статье, мы рассмотрим сборку щита учета электрической энергии частного дома с УЗИП и УЗО, при заземлении TN-C-S.
Вариант для системы ТТ – смотрите ЗДЕСЬ.
Сейчас же перейдём к самой схеме:
Щит учета частного дома с УЗИП при системе заземления TN-C-S
Чаще всего защиту от импульсных перенапряжений разумнее всего подключать сразу после вводного автомата, параллельно остальной нагрузке.
Мы рассмотрим пошаговую схему сборки такой схемы электрощита, где, для обеспечения максимальной защиты дома, используется и УЗИП и селективное противопожарное Устройство Защитного Отключения.
1. В первую очередь в электрощит устанавливается всё модульное оборудование.
Важно при этом не забыть, что всё, что стоит до счетчика электрической энергии, обязательно необходимо защитить от возможности несанкционированного подсоединения и кражи электроэнергии.
Обычно для этого монтируется пластиковый бокс, который имеет возможность пломбировки.
Именно в него устанавливается и вводной автоматический выключатель и Устройство защиты от импульсных перенапряжений
В данной сборке используется:
1) Стальной электрический щит (степень защиты ip54 или выше)
2) Бокс/кожух для установки вводного АВ на 3 модуля
3) Автоматический выключатель трехполюсный 25А
4) Трехфазный счетчик электрической энергии 380В
5) распределительный блок на DIN-рейку
6) Селективное УЗО от 40А, ток утечки 100мА или 300мА
7) Бокс/кожух для установки вводного АВ на 4 модуля (в зависимости от типа УЗИП)
8) Устройство Защиты от Импульсных Перенапряжений — УЗИП
Разводка проводов внутри щита и их подключение
Вводные проводники – СИП
В первую очередь подключаются провода с большим сечением, в нашем случае это ввод — СИП 4 х 16мм.кв.
Для системы TN-C-S они должны подсоединяться в следующем порядке:
Фазные проводники – с желтой, зеленой и красной полосой, к верхним контактам главного автомата, а провод с синей маркировкой – PEN, к распределительному блоку.
Соединение контура заземления с УЗИП при TN-C-S
Следующим шагом подключаем все защитные заземления. Провод идущий от контура дома 1х10мм.кв. заводится в распределительный блок. Затем от него, такой же провод прокладывается до соответствующей клеммы Устройства защиты от перенапряжений, со знаком заземления. А также заземляется корпус щита как показано на изображении ниже:
Соединение вводного автомата со счётчиком электрической энергии
Теперь можно соединять вводной автоматический выключатель и электросчётчик. Для этого три фазы, пробрасываются до соответствующих клемм счётчика. Схема и порядок подсоединения для трехфазного счётчика – подробно рассмотрена нами ранее ЗДЕСЬ.
Ноль прокинут до распределительного блока.
Подключение УЗИП в щите учета
От нижних клемм главного автоматического выключателя, где уже есть провода, идущие в счетчик, прокладываются фазные проводники к контактам устройства защиты от импульсных перенапряжений.
Нулевой проводник к клемме «N», подводится от распределительного блока. Как показано на изображении ниже:
Далее соединяется противопожарное селективное УЗО, с выводными клеммами электросчётчика.
При этом задействовано 4 провода — фазы и ноль.
Важно запомнить, что после УЗО соединять где-то в схеме НОЛЬ и ЗАЗЕМЛЕНИЕ уже нельзя.
Кабель идущий в Распределительный щиток дома
Финальный шаг – к нижним контактам Устройства Защитного Отключения, подсоединяются жилы кабеля, идущего в РЩ дома.
Фазные и нулевая жила, как показано выше, подсоединяются к УЗО снизу, при этом голубой — ноль, к контакту со маркировкой «N».
А вот заземление – желто-зеленая жила, цепляется к распределительному блоку.
На этом всё, сборка щита учета частного дома с защитой от импульсных перенапряжений – УЗИП, завершена. Теперь можно вызвать представителей энергосбытовой компании, чтобы они опечатали ВРУ и вы смогли им полноценно пользоваться.
rozetkaonline.ru