Закрыть

Защита от импульсных перенапряжений схема подключения – устройство защиты от импульсных перенапряжений

Содержание

Устройство защиты от импульсных перенапряжений

Устройство защиты от импульсных перенапряжений. Что это такое? Отвечу по возможности кратко, это прибор, позволяющий простым и доступным способом уберечься от внезапных скачков напряжения в сети, а простота, в этом случае, служит залогом надёжности и эффективности.

Неспроста, установка УЗИП при воздушном способе подвода проводников электропитания к зданию не только рекомендована, но и обязательна к выполнению (ПЭУ 7.1.22.)

Прежде чем переходить к разбору особенностей этого прибора, давайте разберёмся, отчего мы собственно собираемся защищаться.

Виды отклонений величин напряжения в сети 220 V от нормы

Все “неприятности”, связанные с напряжением, которое поступает в наши дома можно разделить на несколько отдельных больших тем:

  1. Возникновение и прохождение кратковременного импульса перенапряжения.
  2. Устойчивое длительное перенапряжение, как правило, превышающее 300–400V.
  3. Постоянное пониженное напряжение.

Какого-то универсального способа прибора, устройства для устранения всех этих проблем не существует.

Каждый отдельный прибор “заточен” для решения конкретной задачи, поэтому все рассуждения по поводу, нужно или не нужно какое-либо устройство, по крайней мере, неуместны.

Импульсное перенапряжение что это такое

На самом деле амплитуд и форм волны, может быть, большое множество, но считается, что в описании всех возможных случаев нет необходимости. Достаточно двух типов импульсов.

Это кратковременный импульс или импульсы длительностью несколько микросекунд, но с очень высокой амплитудой напряжения. Такие импульсы могут возникнуть вследствии грозы либо по одной из причин, вызванных технологическими, чаще всего не контролируемыми процессами.

Чем импульсное перенапряжение отличается  от длительного перенапряжения

Ответ очевиден, длительностью и формой волны, но здесь интересен другой важный момент. Когда именно импульсное перенапряжение переходит в фазу длительного устойчивого перенапряжения.

Пользуясь определениями приведёнными в ГОСТе 13109, под временным перенапряжением понимается превышение номинального напряжения на 1,1 Unom, на срок более 10 мс (0,01 с). Продолжительность всего процесса стандарт не регламентирует, но вполне очевидно, что для наблюдателя всё произойдёт практически мгновенно.

Все эти рассуждения имеют практическое значение. Дело в том, что:

Устройство защиты от импульсных перенапряжений сразу же после прохождения импульса само нуждается в защите т. е. УЗИП своевременно должно быть отключено от питающей сети

Казалось бы, зачем нужно такое устройство, которое само придётся защищать, но повторюсь, какого-то единого устройства способного защитить от всех видов перенапряжений не существует. Решить проблему можно только комплексно с привлечением всех возможных способов и средств в том числе путём взаимодействия различных приборов.

Устройство защиты от импульсных перенапряжений для чего оно нужно

Если этот вопрос задать неспециалисту, то он, вероятно, прежде всего подумает об некоем устройстве, обеспечивающем защиту от разрядов молнии и отчасти, будет прав.

Действительно, классические газоразрядники давно и успешно применяются, как одно из средств защиты от грозовых разрядов, но если бы возможности УЗИП ограничивались только этим, то в установке этого устройства в каждой отдельной квартире многоквартирного дома не было бы никакого прока. Колоссальный электрический разряд разрушил бы организованную подобным образом общедомовую электрическую инфраструктуру, прежде чем импульс достигнул хотя бы одной из квартир.

На самом деле, защита от грозовых разрядов и защита от импульсных перенапряжений, вызванных технологическими причинами, по сути, две отдельные большие темы. То что актуально для жителей жилых домов запитанных от воздушной электросети (схема TT), совсем ненужно жителям многоэтажного дома (схемы TN-C, TN-S, TN-C-S).

Технологические причины перенапряжений

Одна из показательных причин, коммутационные импульсы. Здесь потенциальная опасность (резкое изменение параметров электроснабжения) возникает во время переходных процессов.

Наверное, многие наблюдали, как при включении нагрузки большой мощности на некоторое время уменьшается накал горящей лампочки, проседание фазы. Нечто обратное происходит при отключении питающего напряжения от нагрузки обладающей большой накопительной ёмкостью, индуктивностью, а следовательно, инертностью.

Другие причины:

  • Индукционные наводки
  • Гармонические искажения
  • Различные аварийные ситуации
  • Сброс статического электричества

Этот список можно продолжать, потому что само возникновение импульсов носит вероятностный характер. Предусмотреть, что и как может произойти, особенно при наложении различных факторов невозможно.

Вполне может быть, что ничего плохого никогда и не случится, но утверждать это на все 100% никогда нельзя.

Почему объединение всех устройств защиты от импульсных перенапряжений в принципе неверно

Объединение всех устройств, предназначенных защищать от спонтанных неконтролируемых (природных, техногенных) импульсов перенапряжения одним общим названием, вызывает в лучшем случае неудобство, в том числе и для нахождения путей решения проблемы.

Как уже говорилось выше, молниезащита и проблема коммутационных импульсов, по сути, две отдельные большие темы. Хотя в обеих случаях используются УЗИПы, но принцип действия базовых элементов, применяемых в этих устройствах различен. К тому же эти устройства сами, в большинстве случаев, нуждаются в защите. Осуществить такую защиту учитывая несопоставимость амплитуд каким-то единым способом методом просто не получится.

Поэтому было бы правильнее УЗИПы на базе варисторов и применяемые именно для сглаживания остаточного импульса, называть ограничителями, а УЗИПы предназначенные для защиты от атмосферных разрядов, разрядниками.

Рассказать обо всём и сразу невозможно, поэтому учитывая специфику сайта, более подробно остановлюсь на особенностях использования УЗИП на варисторе.

Устройство защиты от импульсных перенапряжений на базе варистора

Предназначены всё-таки для установки в УЗИП 2–3 класса. Хотя можно встретить приборы и с такой маркировкой, Iimp-25kA. Повторюсь, мы говорим об устройствах защиты от импульсного перенапряжения на основе варистора. Учитывая неоднородность p-n перехода создать такой прибор даже в единственном экземпляре довольно проблематично. Ни о каком массовом производстве в этом случае не может быть и речи.

Сейчас самое время более подробно познакомится с предметом разговора.

Что такое варистор

Это полупроводниковый прибор с ярко выраженной нелинейностью и способностью преобразовать электрическую энергию в тепловую. Что это значит? Нелинейность элемента в этом случае выражается почти нулевой проводимостью при классификационном уровне (несколько МОм) и созданием под воздействием высокого напряжения (электрического поля) благоприятных условий (с сопротивлением нескольких Ом) для новообразований (дырок) способных беспрепятственно пересечь p-n переход.

О побочных явлениях, которые сопутствуют этому процессу чуть ниже.

Почему УЗИП с варистором иногда называют “миной замедленного действия”

Надо сказать, не без основания.

Как выглядит примитивный варистор. Это некая масса, выполненная в виде таблетки с приваренными на её плоскостях металлическими выводами.

При прохождении высоковольтного импульса через такую конструкцию, почти наверняка произойдёт искровой пробой. Собственно, сам варистор, то же не останется безучастным в этом процессе. Вся прошедшая через него электрическая энергия преобразится в тепловую. В итоге мы получаем идеальный очаг возгорания.

Наличие теплушки (теплового реле), обладающей непозволительной в этом случае инертностью никак, не решает проблему

Учитывая небольшие размеры теплового реле в его блочном исполнении, корпус теплушки, уже к этому времени спёкшийся, будет служить, за неимением лучшего, прекрасным проводником для разряда.

Как правильно подключить УЗИП

Проницательный читатель уже догадался, что если бы всё обстояло так плохо, как было ранее сказано то продолжать статью не было бы никакого смысла.

На самом деле, все проблемы с УЗИП происходят из-за недопонимания принципа действия этого прибора и пренебрежением правил его эксплуатации.

Поэтому повторюсь.

Устройство защиты от импульсного перенапряжения служит для сброса (сглаживания) кратковременного высоковольтного импульса, после чего оно уже не отчего не защищает. Более того, при несвоевременном отключении УЗИП от сети это устройство может стать источником многих бед.

Как защитить УЗИП

Поставить перед ним автоматический выключатель или блок предохранителей. На вопрос, что лучше, есть простой ответ. Хотите надёжность ставьте предохранитель номиналом, указанным в паспорте или на корпусе прибора.

В заключении статьи

Надо сказать, что УЗИП очень неоднозначное устройство. Любой аспект его использования порождает ещё большее количество вопросов, но можно поставить вопрос и по-другому. Рассматривать применение УЗИП, как единственное возможное средство для защиты от импульсных перенапряжений.

masterkvartira.ru

Схема подключения ограничителя импульсных перенапряжений

Ограничитель импульсных перенапряжений

  1. Преимущества в использовании ОПН
  2. Технические характеристики ОПН
  3. Устройство ограничителей импульсных перенапряжений
  4. Защита от импульсных перенапряжений

Среди множества защитных устройств широко известен такой высоковольтный аппарат, как ограничитель импульсных перенапряжений. Импульсные перенапрежения возникают в результате нарушений в атмосферных или коммутационных процессах и способны нанести серьезный вред электрооборудованию.

Основным средством защиты дома при попадании молнии служит громоотвод или молниеотвод. Но он не способен справиться с разрядом, проникшим в сеть через воздушные линии. Поэтому проводник, принявший на себя этот импульс, становится основной причиной выхода из строя электрооборудования и домашней аппаратуры, подключенной к данной сети. Чтобы избежать подобных неприятностей рекомендуется их полное отключение на период грозы. Гарантированная защита обеспечивается путем установки ограничителей перенапряжения (ОПН).

Преимущества в использовании ОПН

В обычных средствах защиты установлены карборундовые резисторы, а также соединенные последовательно искровые промежутки. В отличие от них в ОПН устанавливаются нелинейные резисторы, основой которых является окись цинка. Они объединяются в общую колонку, помещенную в фарфоровый или полимерный корпус. Таким образом, обеспечивается их эффективная защита от внешних воздействий и безопасная эксплуатация устройства.

Особенности конструкции оксидно-цинковых резисторов позволяют выполнять ограничителям перенапряжения более широкие функции. Они свободно выдерживают, независимо от времени, постоянное напряжение электрической сети. Размеры и вес ОПН значительно ниже, чем у стандартных вентильных разрядников.

Технические характеристики ОПН

Основной величиной, характеризующей работу ограничителя перенапряжения ОПН, является максимальное действие рабочего напряжения, которое может подводиться к клеммам прибора без каких-либо временных ограничений.

Ток, проходящий через защитное устройство под действием напряжения, называется током проводимости. Его значение измеряется в условиях реальной эксплуатации, а основными показателями служит активность и емкость. Общая величина такого тока может составлять до нескольких сотен микроампер. По этому параметру оцениваются рабочие качества ОПН.

Все импульсные ограничители способны устойчиво переносить медленно изменяющееся напряжение. То есть, они не должны разрушаться в течение определенного времени при повышенном уровне напряжения. Значения, полученные при испытаниях, позволяют настроить защитное отключение прибора по истечению установленного срока.

Величина предельного разрядного тока является максимальным значением грозового разряда. С ее помощью устанавливается предел прочности импульсного ограничителя при прямом попадании молнии.

Нормативный ресурс ОПН определяется и токовой пропускной способностью. Он рассчитывается для работы в наиболее тяжелых условиях, когда присутствуют максимальные грозовые или коммутационные перенапряжения.

Устройство ограничителей импульсных перенапряжений

Производители электротехники пользуются технологией и конструкторскими решениями, которые применяются в других электроустановочных изделиях. Прежде всего, это материал корпуса и габаритные размеры, внешний вид и прочие параметры. Отдельно решаются технические вопросы, связанные с установкой ОПН и его подключением к общим электроустановкам потребителей.

Существуют отдельные требования, предъявляемые именно этому классу устройств. Корпус ограничителя перенапряжений должен обеспечивать защиту от прямых прикосновений. Полностью исключается риск возгорания защитного устройства из-за перегрузок. При его выходе из строя на линии не должно быть коротких замыканий.

Современный ограничитель импульсных перенапряжений оборудуется простой и надежной индикацией. К нему может подключаться сигнализация дистанционного действия.

Защита от импульсных перенапряжений

Защита от импульсных перенапряжений. Ограничитель импульсных перенапряжений

Просмотров 1 856

Причины возникновения импульсных перенапряжений

Бытовая электротехника изготовлена на полупроводниках и микропроцессорах, которые имеют слабую изоляцию. Эта техника может выйти из строя даже при небольшом импульсном скачке напряжения. Поэтому для защиты электрооборудования от импульсных перенапряжений применяются ограничители импульсных перенапряжений УЗИП.

Причин возникновения импульсных помех несколько. Это удары молнии в линию электропередач или в металлические конструкции, которые находятся рядом с потребителями электроэнергии. Поражение молнией устройств молниезащиты. разряды молний в облаках и близкие удары молний, также наводят электрические импульсные помехи в системе энергоснабжения.

Переключение больших индуктивных и емкостных нагрузок на энергоемких предприятиях, короткое замыкание в сети. Еще на предприятиях во время работы мощных электроустановок создаются электромагнитные помехи.

Устройство защиты от импульсных перенапряжений УЗИП

Работа устройства УЗИП похожа на работу ограничителя перенапряжений имеющих вольтамперную характеристику. Для осуществления качественной защиты от импульсных перенапряжений создают трехступенчатую защиту. Каждая ступень рассчитана на свою величину уровня помех и свою крутизну фронта импульса.

Схема подключения УЗИП к сети TNC и сети TNS

Так УЗИП-I рассчитан на амплитуду помех 25-100 кА с длительностью фронта импульса 350 мкс. УЗИП-II отсекает уровень амплитуды импульсов значением 15-20кА. Защищает это устройство от импульсных помех, вызванных переходными процессами в распредсетях. УЗИП-III предназначен для установки рядом с нагрузкой, и защищает электрооборудование от остаточных импульсных перенапряжений.

Защита от импульсных перенапряжений тремя ступенями УЗИП

Все модули УЗИП крепятся на din-рейке, что удобно при быстрой замене неисправного импульсного блока. Чтобы согласовать работу и временную задержку всех трех ступеней, расстояние между которыми не должно быть меньше 5 метров (для УЗИП на нелинейных элементах — варисторах).

Уменьшение импульсных перенапряжений после каждой ступени защиты УЗИП

Такое расстояние проводников вызвано временной задержкой, которая необходима для нарастания импульса на следующей ступени УЗИП, Эта задержка дает возможность отработать предыдущей ступени, тем самым защитить последующие УЗИП от перегрузки.

Когда длина проводников меньше 5 метров, то ставят компенсационные индуктивности, которые рассчитывают с учетом 1 мкГ/м. Чтобы компенсировать длину проводов в 5 метров, нужно ставить индуктивность 5 мГ. В электросети частного дома УЗИП-I нужно ставить на вводе электрощита ,

Схема подключения одного УЗИП в частном доме

УЗИП-II после счетчика и несколько УЗИП-III перед каждым потребителем электроэнергии. Компенсационную индуктивность 5 мГ ставят перед УЗИП-II и УЗИП-III. Это способ защиты дает наилучшие результаты.

Тоже интересные статьи


Принцип работы стабилизатора напряжения


Скачки напряжения в электросети


Схема подключения реле напряжения


Как выбрать стабилизатор напряжения для дома

Любое электротехническое оборудование создается для работы с определённой электрической энергией, зависящей от тока и напряжения в сети. Когда их величина становится больше запроектированной нормы, то возникает аварийный режим.

Предотвратить возможность его образования или ликвидировать разрушение электрооборудования призваны защиты. Они создаются под конкретные условия возникновения аварии.

Особенности защит домашней электропроводки от повышенного напряжения

Изоляция бытовой электрической сети рассчитывается на предельное значение напряжения чуть выше одного-полутора киловольт. Если оно возрастает больше, то через диэлектрический слой начинает проникать искровой разряд, который может перерасти в дугу, образующую пожар.

Чтобы предотвратить его развитие создают защиты, работающие по одному из двух принципов:

1. отключения электрической схемы дома или квартиры от повышенного напряжения;

2. отвода опасного потенциала перенапряжения от защищаемого участка за счет быстрого его перенаправления на контур земли.

При незначительном повышении напряжения в сети исправить положение призваны также стабилизаторы различных конструкций. Но, в большинстве своем они создаются для поддержания рабочих параметров электроснабжения в ограниченном диапазоне его регулирования на входе, а не как защитное устройство. Их технические возможности ограничены.

В домашней проводке напряжение может повыситься:

1. на относительно продолжительный срок, когда происходит отгорание нуля в трехфазной схеме и потенциал нейтрали смещается в зависимости от сопротивления случайно подключенных потребителей;

2. кратковременным импульсом.

С первым видом неисправности успешно справляется реле контроля напряжения. Оно постоянно занимается мониторингом входных параметров сети и при достижении ими уровня верхней уставки отключает схему от питания до момента устранения аварии.

Причинами появления кратковременно возникающих импульсов перенапряжения могут быть две ситуации:

1. одновременное отключение нескольких мощных потребителей на питающей линии, когда трансформаторная подстанция не успевает мгновенно стабилизировать систему;

2. ударе грозового разряда молнии в электрооборудование ЛЭП, подстанции или дома.

Второй вариант развития аварии представляют наибо́льшую опасность, чем во всех предыдущих случаях. Сила тока молнии достигает огромных величин. При усредненных расчетах ее принимают в 200 кА.

Она при ударе в молниеприемник и нормальной работе молниезащиты здания протекает по молниеотводу на контур заземления. В этот момент во всех рядом расположенных проводниках по закону индукции наводится ЭДС, величина которой измеряется киловольтами.

Она может появиться даже в отключенной от сети проводке и сжечь ее оборудование, включая дорогостоящие телевизоры, холодильники, компьютеры.

Молния может ударить и в питающую здание воздушную ЛЭП. В этой ситуации нормально работают разрядники линии, гася ее энергию на потенциал земли. Но полностью ликвидировать его они не способны.

Часть высоковольтного импульса по проводам подключенной схемы станет растекаться во все возможные стороны и придет на ввод жилого дома, а с него — ко всем подключенным приборам чтобы сжечь их наиболее слабые места: электродвигатели и электронные компоненты.

В итоге мы получили два варианта повреждения дорогостоящего бытового электрооборудования жилого здания при нормальном ликвидации штатными защитами последствий удара молнии в молниеприемник собственного здания или питающую ЛЭП. Напрашивается вывод: необходимо устанавливать для них автоматическую защиту от импульсных разрядов .

Виды ограничителей перенапряжения для домашней электропроводки

Ассортимент подобных защит создается для работы в разных условиях, отличается конструкцией, применяемыми материалами, технологией работы.

Принципы формирования элементной базы ОПН

При создании защит от перенапряжения учитываются технические возможности различных конструкторских решений. Для газонаполненных разрядников характерно то, что они после окончания прохождения импульса разряда поддерживают протекание дополнительного тока, близкого по величине к нагрузке короткого замыкания. Его называют сопровождающим током.

Разрядники, обеспечивающие ток сопровождения порядка 100÷400 ампер, сами могут стать источником пожара и не обеспечить защиту. Их нельзя устанавливать для защиты изоляции от пробоя между любой фазой, рабочим и защитным нулем. Модели других типов разрядников работают вполне надежно внутри сети 0,4 кВ.

В домашней проводке приоритет в защитах от перенапряжения получили варисторные устройства. При нормальных условиях эксплуатации электроустановки они создают очень маленькие токи утечек до нескольких миллиампер, а во время прохождения высоковольтного импульса напряжения максимально быстро переводятся в туннельный режим, когда способны пропускать до тысяч ампер.

Классы стойкости изоляции домашней электропроводки к импульсным перенапряжениям

Электрооборудование жилых зданий создается по четырем категориям, которые обозначаются римскими цифрами IV÷I и характеризуются предельной величиной допустимого перенапряжения в 6, 4, 2,5 и 1,5 киловольта. Под эти зоны и проектируются защиты от импульсных перенапряжений.

В технической литературе их принято называть «УЗИП». что расшифровывается как устройство защиты от импульсного перенапряжения. Производители электрооборудования в маркетинговых целях ввели более понятное для простого населения определение — ограничители. В интернете можно встретить и другие названия.

Поэтому, чтобы не запутаться в используемой терминологии, рекомендуется обращаться к техническим характеристикам устройств, а не только к их наименованию.

Основные параметры взаимосвязи категорий стойкости изоляции с зонами опасности здания и применением для них трех классов УЗИП поможет понять приведенный ниже рисунок.

Он демонстрирует, что на участке от трансформаторной подстанции по линии электропередач до вводного щита может прийти импульс в 6 киловольт. Его величину должен снизить ограничитель перенапряжения класса I в зоне 1 до четырех кВ.

В распределительном щитке зоны 2 работает ограничитель класса II, снижая напряжение до 2,5 кВ. Внутри жилой комнаты с зоной 3 УЗИП класса III обеспечивает итоговое снижение импульса до 1,5 киловольта.

Как видим, все три класса ограничителей работают комплексно, последовательно и поочередно снижают импульс перенапряжения до допустимой для изоляции электропроводки величины.

Если хоть один из составных элементов этой цепочки защит окажется неисправным, то откажет вся система и возникнет пробой изоляции на конечном приборе. Использовать их необходимо комплексно, а в процессе эксплуатации требуется проверять исправность технического состояния хотя бы внешним осмотром.

Подбор варисторов для разных классов ограничителей перенапряжений

Производители оборудования устройства УЗИП снабжают моделями варисторов, подобранных по вольт-амперным характеристикам. Их вид и рабочие пределы показаны на соответствующем графике.

Каждому классу защиты соответствует свое напряжение и ток открытия. Устанавливать их можно только на свое место.

Принципы формирования схем включения ограничителей перенапряжения

Для защиты линии электроснабжения квартиры могут использоваться различные принципы подключения УЗИП:

В первом случае выполняется продольный принцип защиты каждого провода от перенапряжений относительно контура земли, а во втором — поперечный между каждой парой проводов. На основе сбора статистических данных обработки неисправностей и их анализа выявлено, что возникающие противофазные импульсные перенапряжения создают бо́льшие повреждения и поэтому считаются самыми опасными.

Комбинированный способ позволяет объединять оба предшествующих метода.

Варианты схем подключения ограничителей перенапряжения для системы заземления TN-S

Схема с электронными УЗИП и разрядниками

В этой схеме УЗИП всех трех классов устраняют импульсы перенапряжений между фазами линии и рабочим нулем N по цепочкам «провод – провод». Функция снижения синфазных перенапряжений возложена на разрядники определённого класса за счет их подключения между рабочим и защитным нулем.

Этот способ позволяет гальванически разъединять PE и N между собой. Положение нейтрали трехфазной сети зависит от симметрии приложенных нагрузок по фазам. Она всегда имеет какой-то потенциал, который может быть от долей до нескольких десятков вольт.

Если в системе работают блоки питания с импульсной нагрузкой, то от них высокочастотные помехи могут передаваться по цепям уравнивания потенциалов и заземления через РЕ-проводник к чувствительным электронным приборам, мешать их работе.

Включение разрядников в этом случае уменьшает воздействие перечисленных факторов за счет лучшей гальванической развязки, чем у электронных ограничителей на варисторах.

Схемы с электронными УЗИП в классах защит I и II

В этой схеме зашита от импульсных напряжений в вводном и распределительном щитах выполняется только электронными ОПН.

Они устраняют все синфазные перенапряжения (любых проводов относительно контура земли).

В классе III работает предыдущая схема с электронным ОПН и разрядником, обеспечивая защиту (провод — провод) для оконечного потребителя.

Особенности использования различных моделей ОПН с учетом очередности работы каскадов

При эксплуатации ступеней защит от импульсного перенапряжения требуется их согласование, координация. Она осуществляется удалением ступеней по кабелю на расстояние более 10 метров.

Объясняется это требование тем, что при попадании в схему высоковольтного импульса с крутой формой волны за счет индуктивного сопротивления жил на них происходит падение напряжения. Оно сразу прикладывается к первому каскаду, вызывает его срабатывание. Если это требование не выполнять, то происходит шунтирование ступеней, когда защита работает неправильно.

По такому же принципу подключаются и последующие каскады защит.

Когда по конструктивным особенностям оборудования оно расположено близко, то в схему искусственно включают дополнительные разделительные дроссели импульсного типа, создающие цепочку задержки. Их индуктивность настраивают в пределах 6÷15 микрогенри в зависимости от типа используемого ввода электропитания в здание.

Вариант такого подключения при близком расположении вводного и распределительного щитов и удаленном монтаже оконечных потребителей показан на схеме.

Монтируя дросселя по такой системе следует учитывать их возможность надежно работать при создаваемых нагрузках, выдерживать их предельные значения.

В целях удобства обслуживания защиты от импульсного перенапряжения вместе с дроссельными устройствами могут быть помещены в отдельный защитный щиток, последовательно связывающий вводное устройство с ГРЩ дома.

Один из вариантов подобного исполнения для здания, выполненного по системе зазамления TN-C-S, показан на схеме ниже.

При таком монтаже можно все три класса ограничителей размещать в одном месте, что удобно при обслуживании. Для этого надо последовательно между ступенями защит смонтировать разделительные дроссели.

Конструктивно вводное устройство, ГРЩ и защитный щиток при таком способе монтажа схемы следует располагать как можно ближе.

Комбинированное расположение УЗИП и дросселей в одном месте — защитном щитке позволяет исключить попадание импульсов перенапряжения уже на оборудование ГРЩ, в котором выполняется разделение PEN проводника.

Подключение силовых кабелей к ГЗЩ имеет особенности: их необходимо прокладывать по кратчайшим путям, избегая совместного соприкосновения для участков защищенной схемы и без защит.

Современные производители постоянно модифицируют свои разработки УЗИП, используя встроенные импульсные разделительные дроссели. Они позволили не только располагать ступени защит на близком расстоянии по кабелю, но и объединять их в отдельном блоке.

Сейчас на рынке, с учетом реализации этого метода, появились конструкции УЗИП комбинированных классов I+II+III или I+II. Различный ассортимент моделей таких разрядников выпускает российская копания Hakel.

Они создаются под разные системы заземления здания, работают без установки дополнительных ступеней защит, но требуют выполнения определенных технических условий монтажа по длине подключаемого кабеля. В большинстве случаев он должен быть менее 5 метров.

Для нормальной работы электронного оборудования и защиты его от помех высокой частоты выпускаются различные фильтры, в которые включают УЗИП класса III. Они нуждаются в подключении к контуру заземления через РЕ проводник.

Особенности защиты сложной бытовой техники от импульсов перенапряжений

Жизнь современного человека диктует необходимость использования различных электронных устройств, обрабатывающих и передающих информацию. Они довольно чувствительны к высокочастотным помехам и импульсам, плохо работают или вообще отказывают при их появлении. Для устранения подобных сбоев используют индивидуальное заземление корпуса прибора, называемое функциональным.

Его электрически отделяют от защитного РЕ проводника. Однако, при ударе молнии в молниезащиту между заземлениями здания или линии и функциональным электронного прибора по контуру земли потечет ток разряда, вызванный приложенным высоковольтным импульсом перенапряжения.

Устранить его можно выравниванием потенциалов этих контуров за счет монтажа специального разрядника между ними, который будет выравнивать потенциалы контуров при авариях и обеспечивать гальваническую развязку в повседневных условиях эксплуатации.

На выпуске подобных разрядников также специализируется копания Hakel.

Дополнительное требование к защите ОПН от коротких замыканий

Все УЗИП включаются в схему для выравнивания потенциалов между различными ее частями в критических ситуациях. При этом необходимо учитывать, что они сами, несмотря на наличие встроенной тепловой защиты варисторов, могут быть повреждены и стать из-за этого источником короткого замыкания, перерастающего в пожар.

Защита на варисторах может отказать при длительном превышении номинального напряжения, связанного, например, с отгоранием нуля в трехфазной питающей сети. Разрядники же, в отличие от электроники, вообще не снабжаются тепловой защитой.

По этим причинам все конструкции УЗИП дополнительно защищаются предохранителями, работающими при перегрузках и коротких замыканиях. Они обладают специальной сложной конструкцией и сильно отличаются от моделей с простой плавкой вставкой.

Применение автоматических выключателей для таких ситуаций не всегда оправданно: они повреждаются от импульсов грозовых разрядов, когда происходит сваривание силовых контактов.

Используя схему защиты УЗИП предохранителями необходимо соблюдать принцип создания ее иерархии методами селективности.

Как видим, чтобы обеспечить надежную защиту домашней электропроводки от импульсных перенапряжений необходимо скрупулезно подойти к этому вопросу, проанализировать вероятность возникновения аварий в проектной схеме с учетом работающей системы заземления и под нее выбрать наиболее подходящие ограничители ОПН.

Электрик Инфо – электротехника и электроника, домашняя автоматизация, статьи про устройство и ремонт домашней электропроводки, розетки и выключатели, провода и кабели, источники света, интересные факты и многое другое для электриков и домашних мастеров.

Информация и обучающие материалы для начинающих электриков.

Кейсы, примеры и технические решения, обзоры интересных электротехнических новинок.

Вся информация на сайте Электрик Инфо предоставлена в ознакомительных и познавательных целях. За применение этой информации администрация сайта ответственности не несет. Сайт может содержать материалы 12+

Перепечатка материалов сайта запрещена.

Источники: http://electric-220.ru/news/ogranichitel_impulsnykh_perenaprjazhenij/2015-02-26-841, http://electricavdome.ru/zashhita-ot-impulsnyx-perenapryazhenij.html, http://electrik.info/main/electrodom/1179-ogranichiteli-perenapryazheniya-vidy-i-shemy.html

electricremont.ru

Нужно ли вам устройство для защиты от импульсных перенапряжений

Импульсные   перенапряжения   в   электрических   сетях   —   не   редкость. Возникают они при прямых или близких ударах молний, из-за переключений в высоковольтных сетях, а также из-за различных аварийных процессов. При этом особой опасности подвергаются частные домовладения, которые получают питание по воздушной линии электропередачи (ВЛ).

Молния   —   это   электрический   разряд   атмосферного   происхождения, который развивается между грозовым облаком и землей или между грозовыми облаками. Считается, что ток прямого удара молнии, составляет примерно 100 тысяч Ампер, а напряжение до 1 миллиарда Вольт. Форма импульса перенапряжения при ударе молнии показана на рисунке ниже.

Очевидно, что воздействие напряжения в десятки тысяч вольт на электроприборы, рассчитанные на 220В приведет как минимум к выходу их из строя, а чаще — к их возгоранию.

Когда нужно применять УЗИП

Защита зданий и сооружений от возгораний при прямом попадании молнии осуществляется молниеотводами. Для жилых зданий он представляет собой сваренную сетку из стали диаметром 8 мм на плоской кровле, с шагом ячейки 15х15 или трос, протянутый на коньке кровли, если она скатного типа.

Защита техники и электропроводки от воздействий молнии осуществляется специальными аппаратами — устройствами защиты от импульсных перенапряжений. Применение УЗИП при вводе в здание воздушной линией является обязательным. Такое требование предъявляет ПУЭ п.7.1.22. УЗИП могут выглядеть как модули, устанавливаемые на DIN-рейку, или как устройства, встраиваемые в вилки или розетки.

 

Стоит отметить, что автоматические выключатели и АВДТ не защищают электрооборудование от импульсных перенапряжений и реагируют только на ток КЗ, перегрузки или утечки на землю.

В случае питания дома по КЛ (кабельной линии), что характерно для многоэтажных домов, удар молнии в питающую сеть невозможен. Однако молния способна навести напряжение на больших расстояниях от места удара в землю с формой импульса 8/20 мкс, что менее опасно, но все равно способствует ускоренному старению изоляции электрооборудования. Поэтому применение УЗИП в кабельных сетях является рекомендуемым.

Функции УЗИП

УЗИП используется для защиты электрооборудования от коротких импульсов перенапряжения с фронтом волны 10/350 и 8/20 мкс (Т1/Т2), снижая напряжение до допустимых величин.

Т1 в дроби означает время, за которое импульс достигнет максимального значения в микросекундах. Т2 — время, за которое напряжение импульса снизится до половины от максимального значения. Естественно, что форма волны 10/350 мкс является более опасной, так как перенапряжение дольше воздействует на изоляцию электроустановок, вызывая ее ускоренное старение.

Конструкция и принцип работы УЗИП

УЗИП изготавливаются из оксидно-цинковых варисторов, разрядников или их комбинации. 90% стоимости УЗИП составляют именно эти элементы. В дешевых УЗИП варисторы имеют очень маленькие разрядные токи и часто выходит из строя.

Варисторы - это резисторы с нелинейным сопротивлением. В нормальном режиме сети варисторы имеют бесконечно большое сопротивление, через них ток не течет. При превышении напряжения, сопротивление варистора плавно падает, УЗИП пропускает через себя энергию перенапряжения.

Разрядники представляют собой трубку, наполненную инертным газом, с двумя или тремя электродами. При достижении напряжения определенного значения наступает пробой газового промежутка и срабатывание разрядника. Разрядники срабатывают медленнее, чем варисторы, поэтому их устанавливают между N и PE проводами на малые значения пробивного напряжения, так как в нормальном режиме напряжение между N и PE вовсе отсутствует.

УЗИП может пропустить через себя определенный ток без разрушения конструкции. Эти параметры называются:

  • импульсный ток (если УЗИП рассчитан на форму импульса 10/350 — класс I)
  • максимальный ток разряда (при форме импульса  8/20 — класс II)

Правильно выбрать эти параметры могут помочь специалисты техподдержки. В большинстве случаев типовым считается ток 12,5 кА для УЗИП класса I и 40 кА для класса II.

Классификация УЗИП

УЗИП делятся на три категории, в зависимости от класса испытания, а соответственно и места установки в сети — I, II, III. Согласно «Зоновой концепции» для полноценной защиты от перенапряжений следует устанавливать УЗИП разных классов каскадно, на стыке зон защиты:

1) В щите учета на опоре или на доме (снаружи) до счетчика следует устанавливать УЗИП класса I. Это устройство рассчитано на поглощение импульсов перенапряжения с формой волны 10/350 мкс и защищает от прямых ударов молнии в линию электропередачи или систему молниезащиты дома.

2) В распределительном щитке дома должен быть установлен УЗИП класса II. В функции этого аппарата будет входить гашение остаточного импульса, который прошел через УЗИП класса I, а также защита от перенапряжений, вызванных коммутацией в высоковольтных сетях.

3) В розетках, к которым подключается высокочувствительная цифровая техника, встраивается УЗИП класса III, которое будет выполнять функцию фильтрации высокочастотных помех.

При этом стоит иметь в виду, что между разными классами УЗИП должно выдерживаться расстояние не менее 15 метров кабеля, либо должен быть установлен специальный разделительный дроссель, иначе самая «слабая» ступень защиты примет на себя максимальную энергию импульса и выйдет из строя.

Исполнения УЗИП

УЗИП подключаются параллельно защищаемого оборудования и представляют собой корпус со сменными модулями или монолитную конструкцию.

В зависимости от системы заземления, принятой  на объекте, УЗИП нужно подключать по разному. Самыми распространенными в жилом секторе являются системы TN-C, TN-S и TT.

Система заземления TN-C

  • однофазная — варистор между L-N
  • трехфазная — варисторы между L1...L3-PEN

Система заземления TN-S

  • однофазная — варистор между L-PE, варистор между N-PE
  • трехфазная — варистор между L1...L3-PE, варистор между N-PE

Система заземления TТ

  • однофазная — варистор между L-N, разрядник между N-PE
  • трехфазная — варистор между L1...L3-N, разрядник между N-PE

Защита УЗИП

Несмотря на то, что УЗИП является устройством защиты электросети, оно само должно быть защищено от повреждений, которое может возникнуть из-за разрушения элементов конструкции в момент поглощения энергии перенапряжения. Нередко бывали случаи, когда из-за неграмотной защиты, УЗИП сами становились причиной возгораний.

  • Класс I должен быть защищен предохранителями на ток до 160А
  • Класс II должен быть защищен предохранителями на ток до 125А

Если ток предохранителя больше указанного, то должен быть установлен дополнительный предохранитель, защищающий оборудование щита от разрушения УЗИП.

В случае воздействия длительного перенапряжения на УЗИП, варисторы начнут пропускать ток и сильно нагреваться. Встроенный терморасцепитель отключает устройство от сети в случае, если температура варистора достигнет критического значения.

Допускается защищать УЗИП автоматическими выключателями с предельной коммутационной способностью (ПКС) не менее 6кА. Но устройства I может быть защищены только предохранителями, так как они могут отключить намного большие токи КЗ при воздействии повышенного напряжения. Например, предохранитель на рисунке имеет отключающую способность 50 кА.

Таким образом, правильное применение устройств защиты от импульсных перенапряжений позволит эффективно защитить электрооборудование от повреждений, вызванных перенапряжениями в сети.

 

Перейти в каталог

keaz.ru

Устройство защиты от импульсного перенапряжения (УЗИП)

Импульсное перенапряжение (ИП) – это кратковременное, длящееся доли секунд, и резкое повышение (скачок) напряжения, которое опасно для электрической линии и электрического оборудования своим разрушающим воздействием.

Причины появления ИП

Существует две основных причины появления ИП, это природная и технологическая. В первом случае причиной является прямое или косвенное попадание молнии в линию электропередачи (ЛЭП) или в молниезащиту защищаемого здания. Во втором случае скачки напряжения появляются из-за коммутационных перегрузок на силовых трансформаторных подстанциях.

Назначение УЗИП

Чтобы обезопасить электрическую линию, электрическое оборудование и электрические приборы от  резких скачков напряжения и опасных электрических токовых импульсов применяют устройства защиты от импульсных перенапряжений (сокращённо УЗИП).

В состав УЗИП входит как минимум один нелинейный элемент. Если их несколько, то внутреннее подключение УЗИП может выполняться между разными фазами, между фазой и заземлением (землёй), а также между нулём и фазой, между нулём и заземлением. Кроме того, подключение нелинейных элементов выполняется и в виде определённой комбинации.

Виды УЗИП

По количеству вводов УЗИП бывают одновводные и двухвводные. Подключение первого вида выполняется параллельно защищаемой электрической цепи. УЗИП второго вида имеют два комплекта выводов – вводные и выводные.

По типу нелинейного элемента делятся на:

● УЗИП коммутирующего типа;

● УЗИП ограничивающего типа;

● УЗИП комбинированного типа.

  1. УЗИП коммутирующего типа в нормальном рабочем режиме обладает достаточно высоким значением сопротивления. Но в случае резкого скачка напряжения сопротивление УЗИП резко изменяется до очень низкого значения. УЗИП коммутирующего типа основаны на «разрядниках».
  2. УЗИП ограничивающего типа также изначально имеет сопротивление большой величины, но по мере увеличения напряжения в сети и увеличения волны электрического тока, сопротивление постепенно снижается. УЗИП данного типа нередко называют «ограничителями».
  3. Комбинированные УЗИП конструктивно состоят из элементов с функцией коммутации и элементов с функцией ограничения, соответственно они способны коммутировать напряжение, ограничивать повышение напряжения, а также способны выполнять эти две функции одновременно.

Классы УЗИП

УЗИП делят на три класса. УЗИП класса 1 применяют для защиты от ИП, вызванных прямым попаданием молнии в молниезащиту или в линию электропередачи. УЗИП класса 1 обычно монтируют внутри вводного распределительного шкафа (ВРЩ) или внутри главного распределительного щита (ГРЩ). УЗИП класса 1 нормируются импульсным электрическим током с формой волны 10/350 мкс. Это наиболее опасное значение импульсного тока.

УЗИП класса 2 применяются в качестве дополнительной защиты от попаданий молнии. Также их применяют, когда нужно выполнить защиту от коммутационных помех и перенапряжений. Монтаж УЗИП класса 2 выполняется после УЗИП класса 1. УЗИП класса 2 нормируется импульсным током с формой волны 8/20 мкс. Конструкция УЗИП класса 2 – это основание (корпус) и специальные сменные модули, имеющие сигнализирующий индикатор. По индикатору можно узнать о состоянии УЗИП. Зелёный цвет индикатора указывает на нормальный режим работы устройства, оранжевый цвет индикации указывает на необходимость замены сменных модулей. Иногда в конструкции УЗИП используется специальный электрический контакт, который дистанционно передаёт сигнал о том, в каком состоянии находится устройство. Это очень удобно для обслуживания УЗИП.

УЗИП класса 1+2 применяются для защиты отдельных жилых зданий. УЗИП данного типа устанавливаются недалеко от электрооборудования. Они используются в качестве последнего барьера, защищаемого оборудование от небольших остаточных перенапряжений. В качестве УЗИП данного класса выпускаются специализированные электрические вилки, розетки и др.

Использование УЗИП всех трёх классов, позволяет построить трехступенчатую защиту от импульсных перенапряжений.

Схемы подключения УЗИП в частном доме

УЗИП подключаются к однофазной сети 220В или к трёхфазной сети 380В. На промышленных объектах наиболее часто применяются трёхфазные УЗИП. Что касается частных домов и бытовой электрической сети, то используется УЗИП на напряжение 220В. Поэтому полная схема, в которой используется УЗИП, должна быть выполнена на такое напряжение и с применением соответствующего типа УЗИП. Вариант схемы подключения и конструктивного исполнения применяемого УЗИП зависит от режима нейтрали.

Если нейтраль N и защитный проводник PE объединены в один общий проводник PEN, то для защиты от ИП применяется самое простое по конструкции УЗИП, которое состоит всего лишь из одного блока. Схема подключения такого УЗИП выполняется в следующем виде: фазный провод, подключаемый на вход УЗИП – выходной провод, подключённый к PEN-проводнику – параллельно подключённое защищаемое электрооборудование или электрические аппараты.

По современным электротехническим требованиям нейтраль электрической сети должна выполняться отдельно от защитного проводника PE. В таком случае используется УЗИП с двумя модулями и отдельными клеммами L, N, PE. Вариант такой схемы подключения выглядит следующим образом: фазный провод подключается на клемму устройства защитного отключения L и шлейфом идёт на защищаемое оборудование. Нулевой проводник подключается на клемму N устройства УЗИП и шлейфом также идёт на оборудование. Клемма PE устройства УЗИП подключается на защитную шину PE. Аналогично заземляется и защищаемое оборудование.

Таким образом, и в первом и во втором случае при возникновении перенапряжений импульсные токи уходят в землю либо по проводнику PEN либо по защитному проводнику PE, не затрагивая защищаемое электрооборудование.

aquagroup.ru

Схема подключения узип - Всё о электрике в доме

Устройства защиты от импульсных перенапряжений УЗИП: применение, схема подключения, принцип работы

Во время грозы в сети часто возникают импульсные помехи. Также их можно наблюдать при поломке трансформатора. Для защиты электрооборудования в доме используются специальные устройства УЗИП. Устанавливаются они в щитки разных комплектаций.

Различие модификаций заключается в величине параметров выходного напряжения, пороговой частоты и проводимости. Стандартная модель состоит из блока и контактов. Резисторы устанавливаются различных типов. Модулятор в устройствах соединяется с трансивером. В данном элементе имеются проводники, а также триод. Для того чтобы больше узнать об УЗИП, следует рассмотреть принцип работы модели.

Принцип работы

На рынке представлены различные устройства защиты от импульсных перенапряжений. Принцип работы их основан на изменении проводимости. Для этого в устройстве имеются контакты. Стабилизация пороговой частоты осуществляется за счет модулятора. Триод играет роль проводника. При подаче напряжения на выходные контакты параметр проводимости тока меняется. Если рассматривать устройства с расширителем, то у них контакты устанавливаются на пластине. Изменение положения элементов осуществляется за счет работы резистора.

Схема подключения устройств первой степени

Устройства защиты от импульсных перенапряжений первой степени подходят для щитков серии РВ. В данном случае для подключения моделей используется трансивер. Выходное напряжение в среднем обязано составлять 14 В. Параметр проводимости УЗИП зависит от типа резисторов. Как правило, они используются с усилителем. Для подключения контактов применяются фиксаторы. Параметр пороговой проводимости в среднем равен 4,5 мк.

Перед подключением УЗИП проверяется общее сопротивление в цепи. Указанный параметр для устройств первой серии равен 50 Ом. Также модификации указанного типа подходят для щитков типа СР. Они установлены во многих жилых домах. Подключение к щитку происходит через трансивер. Параметр общего сопротивления в цепи не должен превышать 55 Ом. Для щитков серии РР устройство не подходит из-за высокой проводимости тока.

Применение модификаций второй степени

Устройства защиты от импульсных перенапряжений второй степени – это устройства, которые подключаются к щиткам серии РР. В данном случае соединение осуществляется за счет проводников. Если рассматривать модификации на расширителях, то модуляторы используются с обкладкой. Перед подключением оборудования проверяется выходное напряжение на стабилизаторе. Указанный параметр колеблется в районе 13 В. Расширитель используется двухконтактного типа.

Если рассматривать щитки серии РР20, то у них установлен изолятор. Для подключения УЗИП используется сеточный триод. Наиболее часто он применяется на операционном усилителе. Также важно отметить, что в щитках серии РР21 имеются интегральные выпрямители. Указанные элементы необходимы для преобразования тока.

Устройства защиты третьей степени

Устройства защиты от импульсных перенапряжений третьей степени подходят для щитков, у которых используется динистор проходного типа. Получение оборудования осуществляется через демпфер. Контакты для соединения подбираются с медной обкладкой. Параметр общего сопротивления должен составлять около 40 Ом. Если рассматривать щитки серии РР19, то тиристор используется с усилителем. В некоторых случаях модификации выпускаются с конденсаторными резисторами.

Подключение элементов указанного типа происходит с адаптером и без него. Если рассматривать первый вариант, то варикапы берутся переменного типа. Показатель общего сопротивления в среднем равен 30 Ом. Если рассматривать второй вариант, то варикапы разрешается использовать переменного типа. Параметр пороговой перегрузки устройств составляет около 3 А. Также важно отметить, что у моделей используются фильтры магнитного типа.

Однополюсные модификации РН-101М

Однополюсные устройства защиты от импульсных перенапряжений – что это такое? Указанные приборы представляют собой контактные блоки, которые подходят для сетей с переменным током. Они часто подключаются к трансформаторам, у которых используется высоковольтное реле. В жилых домах устройства используются редко. Отличие моделей также заключается в выпрямителе. Он используется на демпферной основе. Параметр общего сопротивления в среднем равен 22 Ом.

Также важно отметить, что выходное напряжение составляет около 200 В. Внутри устройства используются контакты, а также модулятор. Пластины чаще всего устанавливаются в горизонтальном положении. Трансивер для подключения подбирается линейного типа. Многие модификации оснащены тетродами. Для их нормальной работы применяются преобразователи. Наиболее часто они производятся с выпрямителем.

Схема подключения двухполюсной модификации РН-105М

Двухполюсные устройства защиты от импульсных перенапряжений разрешается подключать через пентоды. Параметр общего сопротивления должен составлять 40 Ом. Также важно отметить, что контакты устройства соединяются с динистором напрямую. У многих элементов используется компаратор. Указанный элемент дает возможность устанавливать поворотный регулятор.

Для щитков серии СР модель подходит. В данном случае проводимость зависит от модулятора УЗИП. Если он используется интегрального типа, то вышеуказанный показатель в среднем составляет 2,2 мк. Также у моделей часто устанавливается дуплексный модулятор. Параметр проводимости в цепи в среднем равен 3 мк.

Применение моделей серии АВВ

Устройства защиты от импульсных перенапряжений АВВ часто устанавливаются в жилых домах. Если рассматривать щитки типа РР, то подключение конденсаторов происходит через расширитель. Непосредственно модулятор соединяется с демпфером. Во многих случаях выпрямитель не требуется. Если рассматривать щиток с обкладкой, то для нормальной работы устройства используется триод. Указанный элемент способен работать только с магнитным фильтром. Параметр проводимости тока в цепи составляет около 4 мк. Показатель общего сопротивления равен 40 Ом.

Устройства серии ZUBR D40

D40 устройства защиты от импульсных перенапряжений – что это? Указанные приборы являются блоками, в которых расположены контакты. Подходят они для щитков, у которых имеется трансивер операционного типа. Модулятор к прибору подсоединяется через компаратор. Параметр проводимости в среднем равен 5 мк. Также важно отметить, что модулятор разрешается подключать без обкладки. В некоторых случаях используется демпфер. Указанный элемент играет роль стабилизатора.

Трансивер в щитке соединяется с контактами. Если рассматривать щитки серии РР20, то важно отметить, что у них имеется адаптер. Указанный элемент часто установлен с регулятором. Для подключения УЗИП необходим импульсный конденсатор. Указанный элемент должен иметь проводимость на уровне 6 мк. Показатель общего сопротивления в среднем равен 12 Ом.

Схема прибора серии ZUBR D42

Применение устройств защиты от импульсных перенапряжений указанной серии очень ограниченное. Для высоковольтных трансформаторов они подходят. Контакты у модели используются с пластинами. Для подключения устройства к высоковольтному оборудованию используются демпферы. Если рассматривать электродные модификации, то подсоединение осуществляется благодаря триоду. Также есть модификации с операционными демпферами. У них есть регулятор фазового типа. Для щитков серии РР указанная модель не подходит.

Применение моделей серии ZUBR D45

Устройство защиты от импульсных перенапряжений указанной серии отличается высокой проводимостью. Контакты у него установлены на пластинах. Варикап в данном случае используется с подкладкой. Фильтры у модели применяются проводного типа. Для щитков серии РС устройства подходят. Подключение модулятора осуществляется через транзистор. Параметр общего сопротивления должен составлять около 20 Ом. Также важно обращать внимание на выходное напряжение.

Если использовать демпфер, то указанный параметр в среднем равен 12 В. Также в щитках серии РС часто используются динисторы. В такой ситуации выходное напряжение не превышает 15 В. Также УЗИП указанной серии можно подключать к щиткам типа РР19. В данном случае демпфер применяется многоканального типа. Динистор используется без фильтров. Модулятор подключается к сети через транзистор. Параметр выходной проводимости должен составлять около 4 мк. Показатель общего сопротивления лежит в районе 40 Ом.

Устройства серии TESSLA D32

Устройства данной серии производятся с проходными модуляторами. Контакты у них применяются подвижного типа. Для щитков серии РР20 указанное устройство используется часто. Модулятор подсоединяется через расширитель. Чаще всего он используется с преобразователем. Для решения проблем с повышением частоты устанавливается тетрод.

Если рассматривать щитки серии РР10, то в них имеется кенотрон. Указанный элемент устанавливается на два или три выхода. В первом варианте модулятор устройства подключается через демпфер. Параметр выходной проводимости у него равен 3,3 мк. Общее сопротивление в цепи составляет 30 Ом. Если рассматривать второй вариант, то для УЗИП потребуется динистор.

Схема прибора серии TESSLA D35

Это компактное и высоковольтное устройство защиты от импульсных перенапряжений. Схема подключения модификации предполагает использование демпфера. Если рассматривать щитки типа РР19, то он применяется электродного типа. Динистор используется с обкладкой. Фильтры могут устанавливаться проходного либо сетевого типа. Модулятор УЗИП подсоединяется через расширитель.

Также устройство подходит для щитков серии РР20. Компараторы в них применяются переменного типа. Модулятор в таком случае подсоединяется со стабилитроном. Параметр выходной проводимости в среднем равен 3,5 мк. Показатель общего сопротивления составляет около 45 Ом.

Применение моделей серии TESSLA D40

Устройство защиты от импульсных перенапряжений (УЗИП) указанной серии подходит для трансформаторов, у которых установлен резистор. Модулятор к оборудованию подключается через демпфер. Чаще всего фильтры используются проходного типа. Показатель выходной проводимости в среднем равен 3 мк. Параметр общего сопротивления не превышает 55 Ом. Транзисторы в устройствах указанной серии используются без пластин. Всего у модели имеется три пары контактов. Выходной разъем находится в нижней части конструкции. Для щитков серии РР модель не подходит.

Устройства серии VC-115

Устройство защиты от импульсных перенапряжений (УЗИП) указанной серии подключается без обкладки. Для щитков типа РР20 модель подходит. Модулятор разрешается подключать через демпфер либо динистор. В первом варианте необходим выпрямитель. Фильтр применяется проходного типа. Для увеличения пороговой частоты необходим выпрямитель. Если рассматривать схему с расширителем, то нормализовать выходную частоту можно только за счет конденсаторов. Параметр выходной проводимости в среднем составляет 4 мк. Общее сопротивление в цепи равно 40 Ом.

Схема прибора серии VC-122

Устройство защиты от импульсных перенапряжений и помех указанной серии подходит для понижающих трансформаторов. Также модель активно используется в щитках серии РС. В первую очередь важно отметить, что у модели применяется высоковольтный модулятор. Параметр выходной проводимости у него равен 2 мк. Для щитков РС19 модель подходит. Модулятор в данном случае подсоединяется через обкладку.

Фильтры разрешается использовать лишь проходного типа. Если рассматривать щитки серии РС20, то у них имеется демпфер. Расширитель для подключения используется магнитного типа. Также важно отметить, что понижающие трансформаторы на 200 В применяться не могут.

Подробности Опубликовано: 29 Сентябрь 2015 Просмотров: 25575

Здесь привожу несколько типовых схем подключения устройств защиты от импульсных перенапряжений (УЗИП). Ниже вы найдете однофазные и трехфазные схемы для разных систем заземления: TN-C, TN-S и TN-C-S. Они наглядные и понятные для простого человека.

Сегодня существует большое количество производителей УЗИП. Сами устройства бывают разных моделей, характеристик и конструкций. Поэтому перед его монтажом обязательно изучите паспорт и схему подключения. В принципе, суть подключения у всех УЗИП одинаковая, но все же рекомендую сначала прочитать инструкцию.

Во всех выложенных схемах присутствуют УЗО и групповые автоматические выключатели. Их я указал для наглядности и полноты распределительного щитка. Эта “начинка” щитка у вас может быть совсем другая.

1. Схема подключения УЗИП в однофазной сети системы заземления TN-S.

На данной схеме представлен УЗИП серии Easy9 производителя Schneider Electric. К нему подключаются следующие проводники: фазный, нулевой рабочий и нулевой защитный. Здесь он устанавливается сразу после вводного автомата. Все контакты на любом УЗИП обозначены. Поэтому куда подключать “фазу”, а куда “ноль” можно легко определить. Зеленый флажок на корпусе указывает на исправное состояние, а красный флажок сигнализирует о неисправной касете.

Представленное устройство относится к классу 2. Оно одно самостоятельно не способно защитить от прямого удара молнии. Грамотный выбор УЗИП это сложная и уже отдельная тема.

Также рекомендуется защищать устройства УЗИП с помощью предохранителей.

Думаю тут все понятно.

Ниже представлена аналогичная схема подключения УЗИП, но уже без электросчетчика и с использованием общего УЗО.

2. Схема подключения УЗИП в трехфазной сети системы заземления TN-S.

На схеме также изображен УЗИП производителя Schneider Electric серии Easy9, но уже для 3-х фазной сети. На рисунке изображено 4-х полюсное устройство с подключением нулевого рабочего проводника.

Еще существует 3-х полюсное УЗИП этой же серии. Оно применяется в системе заземления TN-C. В нем нет контакта для подключения нулевого рабочего проводника.

3. Схема подключения УЗИП в трехфазной сети системы заземления TN-C.

Здесь изображен УЗИП фирмы IEK. Данная схема представляет собой обычный вводной щит для частного дома. Он состоит из вводного автомата, электросчетчика, УЗИП и общего противопожарного УЗО. Также на схеме показан переход с системы заземления TN-C на TN-C-S, что требуется современными нормами.

На первом рисунке изображен 4-х полюсный вводной автомат, а на втором 3-х полюсный.

Выше представлены наглядные схемы подключения УЗИП. Думаю они понятны вам. Если остались вопросы, то жду их в комментариях.

Нет постояннее соединения, чем временная скрутка!

Вот здесь нужно быть очень внимательным. Неправильный выбор автоматического выключателя по номиналу может привести к возгоранию проводки или автомат будет срабатывать на отключение по пять раз.

У вас дома в квартирном щитке сработал автоматический выключатель. В итоге какая-то часть квартиры обесточилась. В такой ситуации оказывался практически каждый. Какие ваши дальнейшие действия.

Лампочки перегорали, перегорают и будут перегорать иначе не выгодно их производить. Сами подумайте завод изготовил одну лампочку, человек ее купил, вкрутил у себя дома и она работает положенны.

Кабели и провода играют одну из самых важных ролей в электропитании вашего дома. Не правильный выбор сечения может привести к перегреву изоляции, ее пробою, короткому замыканию и к серьезным п.

Друзья, уважайте чужой труд и при копировании материалов, пожалуйста, ставьте открытую ссылку на источник sam-sebe-electric.ru, а то свет отключу. |

Как подключить УЗИП в однофазной и трехфзаной сети?

Исправная и долгосрочная работа бытовой техники и электроники напрямую зависит от качества потребляемой энергии. Текущие значения напряжения и тока в электрических сетях по тем или иным причинам не всегда соответствуют заданным величинам. Для приведения искаженных параметров электроэнергии в норму служат системы стабилизации, установленные на вводе электрической сети дома или квартиры, а также в схемах электронных устройств. Однако не следует забывать, что в электрических сетях имеет место явление импульсного перенапряжения, которое длится всего доли секунды. Величина действующего напряжения при этом может многократно превысить номинальное и безвозвратно вывести из строя оборудование. Причиной появления импульсов могут служить воздействие грозы на электрические системы или коммутационные процессы в понижающих трансформаторных подстанциях, а также в схеме установок с высокой реактивной нагрузкой. Защитить электрические сети и оборудование можно с помощью устройств защиты от импульсных перенапряжений. В этой статье мы рассмотрим, как должно выполняться подключение УЗИП в щитке.

Правила и особенности установки

Установку устройств защиты от перенапряжения регламентируют Правила устройства электроустановок (ПУЭ), являющиеся основным нормативным документом в вопросах безопасного обслуживания электрических установок. Согласно требованиям ПУЭ, устройства защиты от перенапряжения подлежат обязательной установке на объектах с предусмотренной системой молниезащиты, а также в домах, электроснабжение которых осуществляется по проводам воздушных линий, в регионах, с годовой продолжительностью грозовых периодов, превышающих 25 часов.

Необходимость подключения УЗИП на объектах в районах, где грозы не являются частым явлением, носит рекомендательный характер, однако, учитывая, к каким разрушительным последствиям может привести прямой удар молнии, целесообразно выполнить все необходимые мероприятия для защиты от данного вида стихии даже для негрозоопасной местности.

Защита от импульсных напряжений промышленных и административных зданий, многоквартирных домов входит в сферу деятельности электромонтажных организаций. Установка и подключение УЗИП в частном доме или в квартире ложится на плечи хозяина жилья, поэтому каждому домовладельцу необходимо, хотя бы в общих чертах, знать основные правила обустройства защиты от импульсных перенапряжений, а также как установить и как подключить необходимое для этого оборудование.

Монтаж УЗИП необходимо выполнить соблюдая требования технических нормативов, которые предусматривают 3 уровня защиты. В качестве первого уровня защиты находят применение вентильные разрядники, которые относятся к категории УЗИП 1 класса. Они обеспечивают защиту от непосредственных грозовых воздействий на линии электропередач и устанавливаются в ВРУ (вводных распределительных устройствах). Дополнительная защита от удара молний и коммутационных процессов в понижающих трансформаторных подстанциях обеспечивается защитными аппаратами 2 класса, которые устанавливаются и подключаются в распределительных щитах дома или квартиры. Для защиты электроники и электротехники, чувствительной даже к незначительным импульсным перенапряжениям служат УЗИП 3 класса, подключение которых производится в щитке питания потребителей в непосредственной близости от них.

Как установить оборудование для того, чтобы обеспечить трехступенчатую защиту от импульсных перенапряжений, показано на схеме:

Более доступное объяснение:

Варианты подключения

Одним из важнейших вопросов является, как подключить УЗИП в щитке. Практически все варианты подключения идентичны и указаны в техническом паспорте изделия. Способы монтажа приборов защиты могут отличаться, в зависимости, где они будут установлены, в однофазной или трехфазной сети, также в зависимости от системы заземления .

Самой современной и отвечающая всем требованиям безопасности является система заземления tn-s, при которой нулевой рабочий (N) и нулевой защитный (PE) провод во всей системе энергоснабжения работают раздельно. Система tn-c-s представляет комбинированный вариант, при котором N и PE от источника питания до ВРУ дома объединены в один провод, после которого начинается разделение нулевого и защитного проводника. Следует помнить, что данная схема не будет работать без заземления, поэтому необходимо обязательно произвести его обустройство. Система tn-c наиболее простая и распространенная в устаревшем жилом фонде система заземления, при которой роль нулевого и рабочего проводника выполняет один провод (PEN).

Ниже на схеме показано, как подключить УЗИП класса II в однофазной сети, установленного в щитке квартиры или частного дома с двумя вариантами системы заземления. Для такого варианта подключения необходимо подобрать простейший одноблочный защитный аппарат, с соответствующим рабочим напряжением.

Схема подключения с системой заземления tn-c:

Если предусмотрена система заземления tn-s, в данном случае потребуется установка и подключение УЗИП, состоящего из двух модулей, конструкцией которого предусмотрены отдельные клеммы, для подключения фазного, нулевого рабочего и защитного проводов, обозначенные соответствующей маркировкой.

Подключение УЗИП в трехфазной сети осуществляется так, как показано на фото:

При монтаже УЗИП следует предусмотреть средства защиты сети в случае короткого замыкания в приборе и произвести его подключение через автомат или через предохранитель. Установку аппарата можно производить до и после счетчика, во втором случае прибор расхода электроэнергии останется не защищенным от импульсного перенапряжения.

На видео ниже наглядно демонстрируется, как подключить данный аппарат в щитке:

Вот мы и рассмотрели, как должно выполняться подключение УЗИП в щитке. Надеемся, предоставленная схема, видео и фото примеры пригодились вам и помогли понять, как подключить данный защитный аппарат.

Будет полезно прочитать:

Источники: http://fb.ru/article/243230/ustroystva-zaschityi-ot-impulsnyih-perenapryajeniy-uzip-primenenie-shema-podklyucheniya-printsip-rabotyi, http://sam-sebe-electric.ru/zashchita-ot-perenapryazheniya/120-skhema-podklyucheniya-uzip, http://samelectrik.ru/kak-podklyuchit-uzip-v-odnofaznoj-i-trexfzanoj-seti.html

electricremont.ru

схема подключения, типы заземляющих контуров

загрузка...

Природа непредсказуема. И это знает каждый из благоразумных граждан. Именно поэтому многие решают установить в своем частном доме дополнительную защиту от перенапряжения. А это весьма опасный фактор, который обычно сказывается на всей электронике в вашем доме. По воле рока страдает практически всё: начиная от холодильника и заканчивая компьютерными блоками питания и материнскими платами.

Самое интересное то, что защититься от ненастья можно, если заранее предусмотреть установку в распределительном щитке специального устройства, которое в экстренной ситуации замкнет цепь защемления по наименьшему пути, обеспечив таким образом прохождение тока по пути наименьшего сопротивления.

Возможные повреждения из-за молний


Величина напряжения молнии измеряется даже не тысячами, а десятками и сотнями тысяч Вольт. И пусть помеха имеет в прямом смысле слова молниеносный характер, но даже за доли секунд она успевает повредить многие внутренние элементы техники, выводя ее из строя. В холодильниках обычно сгорает компрессор, в импульсных блоках питания выгорает первичная цепь преобразования напряжений, и так далее.

Но на этом беда не окончится, потому что выход из строя электронной техники, а в данном случае она просто сгорает, может привести к реальному возгоранию и, как следствие, к пожару. И, к сожалению, только в этот момент хозяин частного дома осознает, что был неправ, когда при монтаже распределительного щитка решил сэкономить на установке УЗИП для частного дома.

Типы импульсов



Перенапряжение — это общее понятие, которое характеризует аварийное состояние цепи в момент его генерации. Но характер и причины его возникновения могут быть различными:

  1. Для молнии характерен иглообразный импульс, который сначала медленно нарастает, заряжая линию, а потом резко пробивает ее насквозь, так как ее мощность в разы больше, чем у проводников. Форма импульса измеряется в кВ/мкс. То есть, если она попадает в воздушную линию, и частный дом от нее подключен, то форма будет выражена как 10/350 или 10 кВ амплитудой и 350 мкс длительностью.
  2. Неисправности в цепях, вызванные коммутационными процессами. Нередко причиной генерации мощного высоковольтного импульса является авария на станции или переключение с одного генератора на другой. В этот момент во вторичной сети из-за потребления большой мощности также возникает достаточно мощный импульс. Он имеет более пологую форму, но с несколько меньшей амплитудой игл.

В обоих случаях может быть нанесен равносильный вред, поэтому для защиты частного дома или квартиры рекомендуется использовать те же УЗИП.

Первичные средства защиты

Установка УЗИП в частном доме — это только часть мероприятий, которые действительно спасут вас от непредвиденного пожара или сгоревшего блока питания. Первым делом необходимо предусмотреть так называемые первичные средства защиты от удара молнией. И они заключаются в следующем:

  • Обустройства внешнего контура заземления по периметру здания. То есть необходимо вокруг строения закопать шину защитного заземления и замкнуть ее в квадрат.
  • К шине необходимо подключить молниеотводы, расположенные по углам здания. Это необходимо для того, чтобы увеличить мощность проходной шины и не допустить ее перегрев на местах сварки или утончения.
  • На крыше установить громоотвод. При этом, если она имеет значительные габариты, их необходимо установить несколько.
  • Особенно нужно позаботиться о защитном контуре заземления и молниеотводах в домах и строениях с металлической кровлей. Потому что именно на нее придется удар, который может вызвать короткое замыкание в проводке под козырьком, если, например, там расположен фонарь или осуществлен ввод.

Но, кроме фактора удара самой молнией, важно учесть всевозможные пути проникновения импульсных помех внутрь здания. А их может быть много, и к ним относятся:

  1. Сеть ввода 220/380 В при ударе молнии в элементы внешней защиты.
  2. Через сеть в случае удара в воздушную линию. Скачок напряжения в линии также может произойти в момент коммутации высоковольтных устройств на подстанциях.
  3. Кабельное ТВ или эфирная антенна. По ней высоковольтный импульс проникает в ТВ-приемник, который с высокой вероятностью выходит из строя.
  4. Сеть Интернет. Довольно часто недалеко от телефонной линии или коммутатора ударившая молния перерастает в высоковольтный и очень мощный импульс, который попадает на сетевой порт ПК и выпаливает его напрочь.
  5. Также местами проникновения высоковольтного импульса могут стать другие слаботочные линии, которые подводятся к внутренним устройствам приема и обработки данных.

Все это может стать причиной не только временного выхода из строя оборудования, но и возникновения пожара, который явно принесет массу дополнительных проблем. Чтобы предотвратить все вышеперечисленные неприятности, необходимо каждую из линий и устройств надежно экранировать, подключать к общему контуру заземления, а во время молний и вовсе отключать их от сети.

Чаще сделать это невозможно по той простой причине, что вас может не оказать дома в роковой момент. А погода, само собой, ждать не будет. Поэтому намного удобнее и практичнее использовать дополнительные элементы защиты низковольтных сетей.

Способы защиты сетей низковольтного питания

Для каждого типа УЗИП схема подключения будет своя, поэтому рассмотрим несколько способов защиты низковольтных сетей от импульсных помех. Но лучше всего применять их все в комплексе, так как погода непредсказуема, и удар молнии может произойти в любое место или устройство. Различают следующие системы защиты от импульсных перенапряжений в результате удара молний:

Система внешней молниезащиты

В случае удара молнии в этот элемент защиты необходимо принимать во внимание максимально возможный ток, который будет протекать по компонентам. В данном случае величина тока, протекающего через защитное устройство, установленное в доме, будет равна 100 кА. Импульс будет иметь вытянутую форму длительностью до 350 мкс. Чтобы он не причинил много бед, его необходимо отвести по пути наименьшего сопротивления. Следовательно, в щитке потребуется установить специальное устройство.

Справиться с энергией такой величины сможет только комбинированный компонент УЗИП, относящийся к классу 1+2+3. Он обладает достаточной мощностью и скоростью срабатывания, чтобы защитить от перенапряжения потребителей в эквиваленте потребляемой ими мощности до 20 кВт.

Напомним. На практике применяется несколько схем подключения заземления: TN — C — S и TT. В зависимости от этого фактора следует выбирать и тип устройства защиты от импульсных помех. Первая представляет собой разделенное заземление, то есть в ней PEN проводник в определенном месте разделяется на два и далее отправляется к нагрузке. Разделение выполняется на ВРУ. То есть в щитке должны быть установлены две отдельных шины: нулевая и шина заземления PE.

Между ними имеется перемычка. Сделано это из тех соображений, что УЗИП успевает своевременно отключить нагрузку, а в случае возникновения пробоя на нулевом проводе от подстанции успевает выгореть перемычка между шинами. То есть, по сути, получается две защиты.

Второй тип схемы подключения заземления заключается в следующем: все потребители глухо заземлены, как и нейтраль источника питания на подстанции.

Также на практике используются и другие типы схем заземлений: С, C — S, S, I — T. Но в частных и многоквартирных жилых домах чаще применяются именно TN — C — S и T. T. Поэтому и рассматривать УЗИП будем только для этих случаев.

Выбор УЗИП в соответствии со схемой подключения заземляющего проводника

Вспомнив, какие бывают схему подключения контура заземления, можно определиться и с выбором УЗИП. Для первого варианта подойдет PowerPro BCD TNS 25/100. Для второго, соответственно, TT 25/100.

Защита на ответвлении при ударе в воздушную линию

Защита от перенапряжения в сети 380 вольт, как и 220 вольт, заключается в установке УЗИП не в распределительном щитке, а на ответвлении. То есть там, где воздушная линия расходится на ваш и соседский дом. Только в таком случае контур заземления состоит лишь в заземляющем периметре, без использования громоотводов.

Также разместить УЗИП можно на вводе в здание или непосредственно на месте ответвления заземляющего проводника. Но в случае размещения защитного устройства ближе к источнику импульса, то есть на столбе в щитке, использовать УЗИП 3 класса нецелесообразно. Это связано с тем, что длинный проводник от столба может стать повторным генератором перенапряжения.

В этом случае лучше применить УЗИП класса 1+2. Но если расстояние от столба со щитком до дома более 60 м, то в здании также должен быть предусмотрен второй УЗИП со 2 классом. Для более точного подбора устройства воспользуйтесь таблицей ниже:

Место монтажа TN-C-S TT
На столбе (ответвлении) PowerPro BC TNS 25/100 LE-373−950 PowerPro BC TT 25/100 LE-373−920
На вводе при расстоянии от столба более 60 м EnerPro C TNS 275 LE-381−178 EnerPro C TT 275 LE-381−180

Удар молнии возле подземной линии электропередачи

Третий способ подключения УЗИП используется в случае, когда к дому подводится питание не от столба (воздушной линии), а от подземного кабеля. В данном случае высоковольтные импульсные помехи возникают в основном по причине наведения их от других источников. Поэтому длительность импульса и его амплитуда будут намного меньше. В результате наведения энергии происходит частичное попадание тока в сеть, поэтому величина энергии на порядок меньше, чем в первых двух случаях. Но все же в такой сети также необходимо иметь надежное УЗИП, которое предохранит электронику от нежелательного воздействия.

Величина тока в этом случае будет равна всего 40 кА, а форма импульса 8/20 мкс также иная, за счет наличия гальванической развязки между источником и потребителем. Что касается типа контура заземления, то в этом случае чаще используется именно T. T. Но также применяют на практике и TN — C — S. Для защиты приборов от перенапряжения рекомендуется установить ограничитель 2 класса. Соответственно, для схемы TN — C — S подключения контура заземления рекомендуется устанавливать устройства LE -381−178, а для схемы TT необходимо использовать автоматы не ниже LE -381−180.

Защита от молний в частном доме

Перенапряжение — это фактор, который может возникать не только по сети переменного напряжения. Высоковольтные помехи довольно часто генерируются и телевизионных сетях, в частности, на антенных приемниках. Ведь они находятся ближе всего к заряженным облакам, которым необходимо разрядиться по пути наименьшего сопротивления. Такое обычно встречается в тех домах, на которых либо нет громоотвода, либо он есть, но антенна прикреплена к нему. Когда молния попадает в молниеотвод, то высоковольтный импульс обязательно наводится в канале передачи. Из-за чего выгорает селектор ТВ-приемника или приставки, к которой она была подключена.

Здесь также необходимо использовать УЗИП, только они представляют собой антенный переходник с отводом для заземления. По сути, это варисторный блок, который отводит наведенный импульс в контур заземления, не давая ему проникнуть далее в линию.

В зависимости от вида принимаемого сигнала различают два разных типа УЗИП:

  • для аналогового ТВ;
  • для спутникового или цифрового ТВ.

Соответственно, на первом будет написано Radio / TV, на втором SAT.

Защита от помех линии передачи Интернета

Чтобы полностью оградить свою жизнь и всю технику от нежелательного воздействия энергии стихии, рекомендуется подумать и об установке УЗИП для сетевого кабеля Ethernet. Установку подобного элемента лучше всего предусмотреть непосредственно перед вводом кабеля в дом, чтобы минимизировать его длину под открытым небом. Как и в случае с ТВ, блок заземляется толстым желто-зеленым проводом к общему контуру.

dachniki.guru

Защита от импульсных перенапряжений. Ограничитель импульсных перенапряжений

Причины возникновения импульсных перенапряжений

Бытовая электротехника изготовлена на полупроводниках и микропроцессорах, которые имеют слабую изоляцию. Эта техника может выйти из строя даже при небольшом импульсном скачке напряжения. Поэтому для защиты электрооборудования от импульсных перенапряжений применяются ограничители импульсных перенапряжений УЗИП.

Причин возникновения импульсных помех несколько. Это удары молнии в линию электропередач или в металлические конструкции, которые находятся рядом с потребителями электроэнергии. Поражение молнией устройств молниезащиты, разряды молний в облаках и близкие удары молний, также наводят электрические импульсные помехи в системе энергоснабжения.

Переключение больших индуктивных и емкостных нагрузок на энергоемких предприятиях, короткое замыкание в сети. Еще на предприятиях во время работы мощных электроустановок создаются электромагнитные помехи.

Устройство защиты от импульсных перенапряжений УЗИП

Работа устройства УЗИП похожа на работу ограничителя перенапряжений имеющих вольтамперную характеристику. Для осуществления качественной защиты от импульсных перенапряжений создают трехступенчатую защиту. Каждая ступень рассчитана на свою величину уровня помех и свою крутизну фронта импульса.

Схема подключения УЗИП к сети TNC и сети TNS

Так УЗИП-I рассчитан на амплитуду помех 25-100 кА с длительностью фронта импульса 350 мкс. УЗИП-II отсекает уровень амплитуды импульсов значением 15-20кА.  Защищает это устройство от импульсных помех, вызванных переходными процессами в распредсетях. УЗИП-III предназначен для установки рядом с нагрузкой, и защищает электрооборудование от остаточных импульсных перенапряжений.

Защита от импульсных перенапряжений тремя ступенями УЗИП

Все модули УЗИП крепятся на din-рейке, что удобно при быстрой замене неисправного импульсного блока. Чтобы согласовать работу и временную задержку всех трех ступеней, расстояние между которыми не должно быть меньше 5 метров (для УЗИП на нелинейных элементах — варисторах).

Уменьшение импульсных перенапряжений после каждой ступени защиты УЗИП

Такое расстояние проводников вызвано временной задержкой, которая необходима для нарастания импульса на следующей ступени УЗИП, Эта задержка дает возможность отработать предыдущей ступени, тем самым защитить последующие УЗИП от перегрузки.

Когда длина проводников меньше 5 метров, то ставят компенсационные индуктивности, которые рассчитывают с учетом 1 мкГ/м. Чтобы компенсировать длину проводов в 5 метров, нужно ставить индуктивность 5 мГ. В электросети частного дома УЗИП-I нужно ставить на вводе электрощита,

Схема подключения одного УЗИП в частном доме

УЗИП-II после счетчика и несколько УЗИП-III перед каждым потребителем электроэнергии.  Компенсационную индуктивность 5 мГ ставят перед УЗИП-II и УЗИП-III. Это способ защиты дает наилучшие результаты.

Тоже интересные статьи

electricavdome.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *