Как подключить счётчик через трансформатор тока
Не во всех случаях есть возможность измерять израсходованную электроэнергию с помощью простого подключения устройства учёта, то есть счётчика, в сеть. В электрических цепях с переменным напряжением 0,4 кВ (380 Вольт), силой тока больше чем 100 Ампер и с потреблением мощности соответственно больше 60 кВт применяется подключение трёхфазного электросчётчика через измерительный трансформатор тока. Такое подключение называется косвенным и только оно даёт точные показатели при измерении таких мощностей. Для начала перед рассмотрением самих схем соединения, нужно разобраться в принципе работы измерительного трансформатора.
Принцип работы измерительных трансформаторов
Принцип измерительного и обычного трансформатора тока (ТТ) не имеют различия кроме точности передачи тока во вторичной обмотке. Не измерительные ТТ применяются в цепях токовой релейной защиты, однако, в любом случае принцип их работы одинаков. По первичной обмотке, включенной последовательно в линию, будет протекать электрический ток такой же, как и в нагрузке. Иногда, это зависит от конструкции ТТ, первичной обмоткой может служить алюминиевая или медная шина, идущая от источника энергии, к потребителю. За счёт прохождения тока и наличия магнитопровода во вторичной обмотке возникает тоже ток но уже меньшей величины, который уже можно измерять с помощью обычных измерительных приборов, или же счётчиков. При расчете израсходованной электроэнергии нужно учитывать коэффициент, определяющий окончательную величину затрат. Фазный ток, протекающий по линии, будет в разы больше чем ток вторичной обмотки, и зависит он от коэффициента трансформации.
Таким образом, данная манипуляция и установленный трансформатор тока обеспечивает не только возможность измерять большие тока, но и способствуют безопасности проведения таких измерений.
Интересным является тот факт что все ТТ выдают при определённом номинале, на который он рассчитан в первичной обмотке, всего лишь 5 Ампер во вторичной. Например, если номинальный ток первичной обмотки будет 100А, то во вторичной будет 5 А. Если оборудование более мощное и выбирается измерительный трансформатор 500А, то всё равно коэффициент трансформации выбран таким образом, что во вторичной обмотке будет опять-таки 5 Ампер. Поэтому выбор счётчика здесь очевиден и несложен, главное, чтоб он был рассчитан на 5 Ампер. Вся ответственность лежит на выборе именно измерительного трансформатора. Ещё один важный фактор работы такой цепочки это частота переменного напряжения, она должна быть строго 50 Гц. Это стандартная величина частоты, которая чётко контролируется компанией поставщиком электроэнергии и её отклонение недопустимо для работы любого, применяемого в странах постсоветского пространства стандартного электрооборудования. По всей плане эта частота регламентируется другими величинами.
Одной из важных особенностей ТТ является также невозможность работы его без нагрузки, а когда это необходимо какими-либо мероприятиями, то стоит закоротить концы вторичной обмотки, чтобы не было пробоя.
Схема подключения к трёхфазной цепи
Существует несколько схем предназначенных для подключения счетчика через трансформаторы тока, вот самая распространённая из них
Как видно, измерительный трансформатор имеет клеммы, которые обозначены Л1 и Л2. Л1 обязательно подключается к источнику электроэнергии, а Л2 к нагрузке. Перепутывать их и переставлять местами нельзя.
А также имеются и клеммы идущие непосредственные на подключение непосредственно к счётчику, они обозначены как И1 и И2. Для цепей измерительного трансформатора рекомендуется использовать провода с сечением не меньше 2,5 мм2. Желательно иметь и выполнять монтаж соответствующего цвета проводами, для упрощения их коммутации. Стандартная раскраска жил и токоведущих шин:
- Жёлтый — это фаза А;
- Зелёный — В;
- Красный — С;
- Синий проводник или чёрный обозначает земляной или нулевой провод.
При монтаже лучше использовать клеммные коробки для соединения, чтобы было легче в случае неисправности производить диагностику или замену какого-либо узла или элемента. Это связано с тем что сами счётчики пломбируются.
Схема подключения соединенных ТТ звездой также применяется в электроустановках, как видно вторичная обмотка подлежит заземлению. Это делается для того, чтобы обезопасить, и устройства учета, и персонал обслуживающий их от возможного появления, в результате пробоя во вторичных цепях, высокого напряжения.
Недостатки такого подключения
- Ни в коем случае в трёхфазной цепи нельзя использовать трансформаторы с разными коэффициентами трансформации, подключаемые к одному и тому же счётчику.
- Существенный недостаток, который был замечен при применении устаревших индукционных электросчётчиков. При низких показателях тока в первичной цепи его вращающийся механизм может оставаться без движения, а значить не учитывать электроэнергию. Такой эффект получается из-за того, что сам индукционный прибор имеет значительное потребление и возникающий в его цепи ток уходил в его электромагнитный поток. С цифровыми современными приборами учёта такая ситуация невозможна.
Как подключить через ТТ счётчик в однофазной цепи
Очень редко появляется необходимость подключать счетчик через трансформаторы тока в однофазных сетях, так как токи в них не достигают больших величин. Но всё же если такая необходимость есть нужно воспользоваться схемой, приведённой ниже.
На рисунке «а» изображено обычное прямое подключение счётчика, на рисунке «б» через измерительный ТТ. Катушки напряжения в этих схемах подключены идентично, а вот токовые цепи подключаются через трансформатор тока. В таком случае производится гальваническая развязка, за счёт которой и возможно данное подключение.
В любом случае измерение затраченной электроэнергии необходимо, так как только так можно законно покупать этот вид продукции.
Как подключить трансформатор тока: информация, маркировка, инструкция
Сегодня обсудим, как подключить трансформатор тока. Рассмотрим некоторые особенности измерительных приборов. Должны называть инструмент вспомогательным. Используется совместно со счетчиками электрической энергии, защитными цепями. Ток вторичной обмотки пропорционален потребляемому полезной нагрузкой – электрическими двигателями, нагревательными приборами, освещением. Позволит оценить параметры мощной промышленной сети без риска порчи контрольного оборудования. Косвенной выгодой становится безопасность обслуживающего персонала, снимающего показания, ведущего контроль. Значительно уменьшает требования к квалификации, снимает другие ограничения.
Общие сведения о трансформаторах тока
Трансформаторы тока создаются согласно нормативной документации. Параметры регламентированы. Например, стандартами:
- ГОСТ 7746-2001.
- ГОСТ 23624-2001.
Небольшой трансформатор
Дело касается коэффициента трансформации. Главный параметр, показывающий отношение меж токами первичной, вторичной обмоток. Цифра позволит сопрягать трансформатор тока с счетчиком, защитным автоматом. Причем требования значительно снижаются. Сеть потребляет 200 А, коэффициент трансформации равен 100, достаточно наличия защитного автомата 2 А. Видите, очень выгодно. Безопасность персонала расписали.
Получается, во вторичной цепи напряжение сетевое. Выгоды не получается. Собственно, поэтому прибор называется трансформатором тока. Не меняет напряжения. Напоминаем, действующее значение фазы напряжения 380 вольт составляет 220 вольт. Работа с промышленной сетью напоминает однофазные. Трансформаторов тока понадобится три. Счетчик измеряет напряжение, ток, определяя параметры:
- Полную мощность потребления в ВА.
- Реактивную мощность в вар.
- Активную мощность Вт.
Часто нужен нейтральный провод (даже в трехпроводных промышленных сетях). К трансформатору тока не относится. Включается не так, как обычный. Первичная обмотка малого сопротивления, чтобы не вносить возмущений в цепь. Включается последовательно полезной нагрузке (двигателям).
Типичный трансформатор включается следующим образом: нагрузка находится в цепи вторичной обмотки. Позволит развязать потребителя, источник по постоянному току (гальваническая развязка), получить нужные параметры. В нашем случае (!) манипуляций с входными напряжениями, токами не производится.
В цепь вторичной обмотки включается прибор измерения, контроля. Счетчики снабжены двумя катушками: тока, напряжения. В цепь вторичной обмотки включается первая. Катушка напряжения одним концом заводится на фазу, на второй подается нейтраль. Комплексный подход позволит оценить мощность. На нейтраль положено заводить один конец токовой катушки. Как узнать последовательность действий более подробно? Схема дается на приборе контроля, измерения. Трансформатор тока является изделием универсальными, тонкости нужно искать на корпусе (шильдике) стороннего оборудования.
Первичная обмотка включается последовательно полезной нагрузке, вторичная используется для внедрения в сеть устройств контроля, измерения. Подробная схема включения зависит от типа сопрягаемых устройств, приводится на корпусе, шильдике, инструкцией. Рассмотрим, как трансформатор тока обозначается электрическими схемами. На просторах сети встретим много ошибок. В предыдущих обзорах приводили рисунок трансформатора тока, просто копируем из предыдущей локации:
- Прямой толстой линией показана первичная обмотка. К одному концу подводится фаза, к другому подключается потребитель. Холодильник, кондиционер, завод. Чертеж дан показывает трехфазное напряжение 380 вольт. Показана одна ветка. Прочие подключаются аналогично. В нижнем правом углу можем видеть измерительные катушки счетчика. Одна из возможных схем, не является догмой. Подробно электрические карты приводятся корпусами, шильдиками приборов. Можно достать на специализированном форуме.
Подключение трансформатора тока
- Витками схема обозначает вторичную обмотку. Иногда на рисунках точки включения могут лежать на толстой линии, не должно смущать. Для большей наглядности выводы вторичной обмотки расположили ниже. К ним подсоединяются приборы измерения, контроля. Здесь ток меньше потребляемого полезной нагрузкой (холодильники, кондиционеры) в разы. Сколько – показывает коэффициент трансформации. Кстати, согласно ГОСТ, не может быть произвольным. Значение выбирается из ряда! Согласно требованиям к измерительным приборам, контрольным, ток вторичной цепи равен 1, 2, 5 А. На такие условия работы рассчитываются счетчики, прочие контрольные, учетные приспособления. Коэффициент трансформации выбирается за счет варьирования тока полезной нагрузки, протекающего в первичной обмотке. Пределы широкие. Приводим неполный ряд, взятый из стандартов (для измерительных лабораторных трансформаторов тока), указанных выше – подробно читатели могут ознакомиться с документом самостоятельно: 0,1; 0,5; 1; 1,5; 5; 7,5; 10; 15; 20; 25; 30; 800 А; 1; 1,2; 5; 6; 8; 15; 16; 18; 30; 32; 50; 60 кА. Из неполного перечня видно: не всегда трансформатор тока понижающий. Может повысить значение тока 0,1 А до 5 А. Что позволит использовать мощные измерители простейшими цепями. Счетчик должен давать возможность учитывать существующее положение дел, некоторые предназначены для использования только с определенным коэффициентом трансформации. Подробно о пригодности прибора судим в каждом конкретном случае отдельно.
Что касается приборов, применяемых за пределами лабораторий, разброс ниже. Обратите внимание, нагрузка вторичной цепи ученых должна быть по возможности активной. Точнее говоря, если коэффициент мощности меньше 1, следует подключать только индуктивные сопротивления. По большей части выполняется, в особенности для трехфазных цепей. Сварочный аппарат на входе содержит обмотку трансформатора, двигатель подключается на катушку статора, ротора. Касается счетчиков, где витой провод послужит для оценки параметров напряжения, тока. Примеры индуктивных сопротивлений. В реальности лучше перестраховаться, если коэффициент мощности меньше 1 (реактивное сопротивление обусловило возникновение потерь), пусть лучше импеданс (комплексное сопротивление) будет индуктивным, не емкостным.
Маркировка трансформаторов тока
Различные трансформаторы
Прежде, чем произвести подключение трансформатора, убедитесь, что годится выбранным целям. Из сказанного выше понятно, как оценить количественно параметры, для применения знаний на практике следует уметь читать маркировку изделия. Код регламентируется стандартом. Приводим перечень параметров, указываемых производителем на шильдике трансформатора тока:
- Логотип производителя с последующей надписью «трансформатор тока». Достаточно сложно промахнуться, выбрав в магазине другой прибор.
- Тип трансформатора характеризуется конструктивными особенностями, видом изоляции. Расшифровка приводится в стандартах, указанных выше. Рядом в маркировке идет климатическое исполнение. Есть сомнения в умении читать шильдик, проще дома заранее распечатать таблицы ГОСТ. При необходимости следует изучить конструктивные особенности. Поможет понять, как подключить трансформатор, оценить пригодность для цепи в принципе.
- Порядковый номер по реестру предприятия-изготовителя понадобится при обращении в службу поддержки (иностранные компании), используется для отчетности, если покупку осуществит не физическое лицо.
- Номинальное напряжение первичной обмотки указывается для всех трансформаторов тока за исключением встроенных. Потому что в последнем случае электрические параметры должны быть соблюдены внешним по отношению к прибору устройством.
- Номинальная частота может отсутствовать, если (по значению напряжения) можно понять: стандартна для государства (РФ – 50 Гц).
- В природе встречаются трансформаторы с несколькими выводами вторичной обмотки. Позволит получить два-три прибора в одном. В зависимости от электрической схемы будет меняться коэффициент трансформации. Напротив параметров указывается номер вторичной обмотки.
Характеристики трансформатора тока
- Коэффициент трансформации является важнейшей величиной, идет далеко не первым в маркировке. Обозначается прямой, наклонной дробью, в числителе стоит первичный ток, в знаменателе вторичный. Коэффициент трансформации намного больше единицы. Среди лабораторных изделий найдем вопиющие исключения из правила. Планируется подключение трансформаторов тока в маломощную цепь для использования стандартных приборов учета – ищите покупку по другому номеру ГОСТ (23624-2001).
- Класс точности важен мощным потребителям. Едва ли захочется платить лишние деньги. При необходимости обращайте внимание на параметр. Расшифровывается согласно ГОСТ 7746-2001.
- Номинальный класс безопасности прибора свидетельствует о том, что упоминали выше: за счет более мягких условий во вторичной обмотке риск поражения электрическим током падает. При соблюдении требований никто не гарантирует 100%, что несчастный случай не произойдет. Производственный процесс сразу закладывает некую мизерную вероятность летальных исходов, наша задача цифру уменьшить. Про коэффициент безопасности вторичной обмотки трансформатора тока расскажем следующим образом. Допустим, максимальный ток счетчика составляет 20 А. Коэффициент трансформации обозначен 20/2 А. Коэффициент безопасности изделия должен равняться 10, не более. При коротком замыкании первичной обмотки сердечник войдет в насыщение, ток вторичной цепи не превысит 20 А. Счетчик не сгорит. Аналогично рассчитывается безопасность рабочего персонала.
- Предельная кратность тесно связана с предыдущим значением. Отношение некоторого тока, при котором погрешность составляет не менее 10%, к номинальному. Предел, при котором трансформатор тока способен помогать в измерениях, выступать средством контроля.
Надеемся, читатели теперь знают, чем рассматриваемая задача отличается от вопроса о том, как подключить понижающий трансформатор 220/12 В. Совершенно разные вещи. Обмотки идут последовательно с нагрузкой, измерителем. Коэффициент трансформации показывает, какой прибор контроля можно использовать во вторичной цепи.
Схема подключения амперметра через трансформатор тока: как выбрать, инструкция
Измерение тока в сетях производят с помощью электродинамических приборов. Но для того, чтобы проверить мощность, необходимо правильно подсоединить устройства к цепи. В статье представленная описательная схема подключения амперметра через трансформаторы тока. Силовые сети находятся под высоким напряжением, поэтому подключить напрямую обычные средства проверки не получится. Для этих целей существуют понижающие блоки. Они понижают мощность до пределов, необходимых для измерительных приборов.
Назначение и конструктивные особенности измерительных трансформаторов
Понижающие блоки используют в измерительно-вычислительных системах. Они имеют одну основную и несколько дополнительных катушек. Амперметры подключают во вторичную цепь, где первичный и вторичный токи прямо пропорциональны друг другу. Сила тока зависит количества витков и внутреннего сопротивления проволоки. Такое напряжение безопасно для обслуживающего персонала и позволяет проводить работы без риска для жизни.
Обмотки измерительных блоков выполнены на ферритовом стержне. При подаче напряжения на главную катушку генерируется магнитное поле, которое меняется в пространстве. Такие колебания порождают электродвижущую силу во второстепенных обмотках.
Подключение амперметров через трансформаторы тока
Для учета активной энергии в сетях переменного тока с разным количеством фаз используют индукционные или электронные амперметры, которые обеспечивают точность измерений, соответствующие классу устройства. С увеличение сопротивления он будет уменьшаться.
В простой схеме измерительный инструмент подключают последовательно с добавлением нагрузки.
Он снимает показания с потребителя энергии. Такая схема обеспечивает оптимальный вариант замеров, так как общее сопротивление цепи минимально. Однако существуют более сложные схемы, конструктивная особенность зависит от целей и задачей учета.
Однофазная цепь
Эта сеть является самой простой с точки зрения обслуживания и замеров показателей. Поскольку она имеет всего один силовой кабель, по которому проходит напряжение. Амперметр подсоединяют к нему, дополнительно в цепь включают нагрузку в качестве потребителя. Сила всегда измеряется последовательно. Один щуп идет на вывод трансформатора, другой на контакт силового объекта.
Поскольку сопротивление незначительно, то точность показаний всегда близко к реальным значениям. Напряжение во вторичной обмотке должен быть меньше предельных значений прибора. Максимальный показатель рассчитывают по сечению провода, количеству витков и сопротивлению цепи.
Трехфазная
Трехфазная сеть содержит три силовых кабеля и один нулевой, по которым проходит напряжение. Схема подключения трансформатора к такой цепи отличается от одинарных цепей. Часто бывает достаточно проверить одну жилу и затем сложить показания, поскольку они идентичны друг другу. Но для полноты и точности измерений, достаточно снять показания со двух контактов.
Для того чтобы проверить напряжение сети необходимо использовать два трансформатора и амперметра. Они подключаются параллельно друг другу и последовательно относительно нагрузки. Каждый прибор снимает одно линейное значение, в сумме они равны третьему с обратным знаком.
С промежуточным трансформатором
Когда измеряемые показания превышают предельные значения измерительного инструмента, то используют параллельную схему подключения из двух трансформаторов. Ее называют промежуточной, поскольку второй снимает нагрузки с первого, в каждом протекает половины от номинального тока. На первый блок подается сетевое напряжение. Контакты вторичной катушки соединяются со вторым трансформатором, который, в свою очередь, понижает его напряжение до необходимых значений.
С выключателем амперметров
Во время эксплуатации силового оборудования возникает необходимость в обслуживании измерительных приборов. Он требуют проверки точности и калибровки. Поэтому для таких случаев разработали схемы с отключением устройств учета.
Амперметр подключается в цепь последовательно с выключателем. Пока тумблер находится в активном положении, по нему протекает электрический ток. После перевода рукояти в положение ВЫКЛ, сеть обесточивается, и прибор перестает снимать показания.
Трехфазная цепь с тремя амперметрами
С целью получения точных результатов измерений сетей с несколькими силовыми жилами используют количество амперметров, равное числу проводов. Для тестирования применяют два трансформатора, подключенных параллельно другу друга, каждый к своей фазе. На основные катушки подают номинальное напряжение.
Амперметры включают в сеть параллельно, контакты замыкаются на вторых выводах второстепенной обмотки. Общее значение двух приборов равно показателю третьего с противоположным показателем. Результат соответствует правилу, когда сумма трех линейных значений тока равна нулю.
Как выбрать трансформатор
При выборе конвертера необходимо всегда учитывать нагрузку, создаваемую потребителями тока. Их одновременное включение в сеть в несколько раз увеличивает мощность, что приводит к нагреву блоков питания. Основные характеристики всегда пишут на шильдике, поэтому номинал напряжения, которое потребуется для обеспечения электроэнергией, рассчитывают по формуле I1+I2+…In, где I – ток потребления электроприбором.
Необходимо также учитывать класс точности объекта, который позволит вести точный учет потребления энергии.
Применение
Измерительные блоки применяют в схемах учета электроэнергии. Одну из обмоток с низким коэффициентом погрешности используют для того, чтобы подключить средства измерения. Приборы контролируют рабочие параметры сети и позволяют избежать перегрузок сети.
Схемы подключения трансформатора | Полезные статьи
Для осуществления максимальной токовой защиты применяются различные схемы подключения трансформаторов тока (ТТ). Какая из схем будет использоваться, зависит от того, где именно применяются ТТ. Так например, в городских сетях может использоваться схема «полной звезды», а в сельских – «неполной звезды». В дифференциальных и других защитах трансформаторы могут включать в треугольник, а реле — в звезду.
Полная звезда
Схема подключения трансформаторов тока «полная звезда» (рис.1), при которой ТТ устанавливают во всех трёх фазах, а нулевые точки вторичных обмоток последовательно соединены одним нулевым проводником. При таком подключении в реле тока (обозначены на рисунке I, II и III) протекают токи равные токам проходящие через первичные обмоток ТТ, делённые на коэффициент трансформации nT. В нулевом же проводе протекает геометрическая сумма всех токов Iн.п., которая в случае равенства этих трёх токов равна нулю.
Коэффициент схемы Ксх, представляющий собой отношение тока в реле к току в фазе, равен 1, поскольку ток в каждом из трёх реле равен току в соответствующей фазе.
Неполная звезда
На рис. 2 показана схема «неполная звезда». Отличием данной схемы от предыдущей является то, что ТТ установлены только на дух фазах из трех. В остальном же схема аналогична: обмотки реле (I и III) и вторичные обмотки ТТ установлены так же, как в полной звезде. В нулевом проводе протекает геометрическая сумма токов тех двух фаз, к которым подключены трансформаторы.
Также, как и для предыдущей схемы коэффициент Ксх = 1.
Треугольник
На рис. 3 показана схема подключения устройств максимальной токовой защиты в «треугольник». При такой схеме подключения вторичные обмотки ТТ соединены последовательно с противоположными выводами, образуя треугольник. Таким образом, в каждом из реле протекает ток, равный геометрической разнице тока в соответствующей фазе и тока в фазе, следующей за ней:
При этом Ксх = , поскольку ток в каждом из реле в раз больше, чем ток соответствующей фазе.
«Восьмёрка» («неполный треугольник»)
На рис. 4 показано подключение ТТ по схеме «восьмёрка» (неполный треугольник). В данной схеме трансформаторы установлены только в двух фазах, а вторичные обмотки соединены друг с другом противоположными выводами. Ток в реле равен разнице токов двух фаз, в которых установлены трансформаторы. При такой схеме подключения Ксх = 2.
Последовательное и параллельное включение трансформаторов тока
На рис.5 представлена схема последовательного соединения трансформаторов тока. При таком соединении вторичных обмоток ТТ с одинаковым коэффициентом трансформации сила тока такая же, как при включении в цепь только одного из трансформаторов, при этом нагрузка распределяется поровну по двум. Такая схема может применяться при использовании трансформаторов малой мощности.
При соединении трансформаторов тока по схеме указанной на рисунке 6 ток в реле равен сумме токов во вторичных обмотках каждого из трансформаторов. Обычно, данная схема используется для получения нестандартных коэффициентов трансформации.
Устройство трансформатора тока | Полезные статьи
Понравилось видео? Подписывайтесь на наш канал!На промышленных предприятиях часто возникает необходимость производить замеры параметров электросети (напряжение, ток, активная и реактивная мощность). Но из-за больших нагрузок подключать измерительные приборы напрямую нельзя. В таких случаях в помощь инженерам приходят измерительные трансформаторы тока, которые устанавливают в электросеть для уменьшения ее параметров. Итак, в данной статье мы рассмотрим устройство и принцип работы трансформатора, предназначенного для измерения параметров электрической сети.
Конструкция трансформатора тока
В начале расскажем об устройстве измерительного трансформатора. Итак, трансформатор подобного типа включает следующие части:
• корпус, выполненный из самозатухающего трудногорючего материала;
• магнитопровод (сердечник), изготовленный из пластин электротехнической стали;
• вторичная обмотка, представленная в виде эмальпровода, намотанного на сердечник. От количества намотанных витков зависит коэффициент трансформации;
• клеммы «И1» и «И2», на которые выведены концы вторичной обмотки;
• первичная обмотка, выполненная в виде покрытой изоляцией прямолинейной шины. В некоторых моделях вместо шины используют проходное отверстие, через которое пропускают изолированный провод в один или несколько витков. Также применяется гибкая или жесткая изолированная или же неизолированная шина.
Принцип работы измерительного трансформатора тока
Рассмотрим, как работает измерительный трансформатор (ТТ). При подаче питания ток I1 начинает протекать по шине, преодолевая сопротивление (активное, индуктивное, емкостное), тем самым создавая магнитный поток Ф1. Расположенный перпендикулярно сердечник улавливает этот магнитный поток и преобразовывает электрическую энергию в магнитную. При этом преобразование происходит с минимальными потерями.
Магнитный поток, образованный в магнитопроводе, проходит поперек перпендикулярно расположенных витков эмалированного провода вторичной обмотки. Это приводит к возникновению ЭДС Е2 (электродвижущей силы), а она в свою очередь способствует возникновению тока I2 в эмальпроводе. При протекании ток таким же образом преодолевает активно-индуктивное и емкостное сопротивление (полное) вторичной обмотки Z2, а также сопротивление нагрузки Zн измерительного прибора (это может быть, к примеру, амперметр). На измерительном же приборе отображается ток первичной обмотки, который уменьшен на коэффициент трансформации.
Опасные факторы при работе трансформатора тока
Существует два условия, несоблюдение которых может привести к электрическим травмам обслуживающего персонала:
1. Обязательное заземление вторичной обмотки трансформатора. Данное требование применяется в связи с тем, что магнитопровод, выполненный из технической электропроводящей стали, является связующим звеном и обеспечивает соединение первичной и вторичной обмоток магнитным путем. При повреждении изоляции эмалированного провода, из которого выполнена вторичная обмотка, возникает опасность получения электрических травм обслуживающим персоналом и (или) повреждения оборудования. Чтобы избежать таких ситуаций, необходимо выполнить заземление любого вывода (клемма «И1» или «И2») вторичной обмотки ТТ, чтобы обеспечить стекание через него высоковольтного потенциала во время аварийных ситуаций.
2. Обязательное закорачивание вторичных обмоток трансформатора, если не подключен измерительный прибор. Данное требование применяется в связи с тем, что если по первичной обмотке протекает ток, то на клеммах «И1» и «И2», на которые выведены концы вторичной обмотки, возникает потенциал, порой достигающий нескольких тысяч Вольт. Это также привести к электрическим травмам.
Мы рассказали, как устроен измерительный трансформатор тока, а также о том, в чем заключается работа трансформатора. Вы также можете посмотреть наше видео, в котором детально показан трансформатор тока, его конструкция и принцип работы.
Подключение счетчика через трансформаторы тока
Добрый день, уважаемые читатели сайта «Заметки электрика».
Решил написать подробную статью на тему подключения счетчиков электроэнергии через трансформаторы тока (ТТ) и трансформаторы напряжения (ТН).
В статье про схемы подключения электросчетчиков прямого включения мы познакомились с подключением однофазных и трехфазных электросчетчиков прямого, или его еще называют, непосредственного включения в сеть. В той же статье я упоминал, что существует способ подключения электросчетчиков и через трансформаторы тока и напряжения.
Давайте рассмотрим на примере трехфазных счетчиков самые распространенные схемы.
Счетчики необходимы для учета электроэнергии потребителями в трехпроводных и четырехпроводных сетях переменного тока с частотой 50 (Гц).
Трехфазные счетчики электрической энергии выпускаются на напряжение 3х57,7/100 (В) или 3х230/400 (В).
Подключение счетчиков электрической энергии к вышеперечисленным сетям осуществляется через измерительные трансформаторы тока (ТТ) со вторичным током 5 (А) и трансформаторы напряжения (ТН) со вторичным напряжением 100 (В).
При подключении счетчика необходимо строго следить за полярностью начала и конца обмоток трансформаторов тока, как первичной (Л1 и Л2), так и вторичной (И1 и И2). Также необходимо соблюдать полярность обмоток трансформатора напряжения (подробнее об этом Вы можете почитать в статье про трансформатор напряжения НТМИ-10).
Все схемы подключения электросчетчиков в данной статье относятся, как к индукционным счетчикам, так и к электронным.
О том, как правильно выбрать трансформаторы тока и трансформаторы напряжения я расскажу Вам в следующей статье. Чтобы не пропустить выходы новых статей на сайте — подпишитесь на рассылку новостей.
Итак, приступим.
Схема подключения счетчика к трехфазной трехпроводной или четырехпроводной сети с помощью 3 трансформаторов тока и 3 трансформаторов напряжения
ТН1 — ТН3 — трансформаторы напряжения, ТТ1 — ТТ3 — трансформаторы тока.
Пунктиром на схеме показано соединение, которое может отсутствовать.
Общая точка вторичных обмоток трансформаторов тока и напряжения должна быть заземлена с целью безопасности.
Схема подключения счетчика к трехфазной трехпроводной или четырехпроводной сети с помощью 3 трансформаторов тока
ТТ1 — ТТ3 — трансформаторы тока.
Пунктиром на схеме показано соединение, которое может отсутствовать.
Эта схема подключения счетчика аналогична схеме выше, но без использования трансформаторов напряжения. Примером такого подключения является счетчик ЦЭ6803В 3х220/380 (В), 1-7,5 (А).
Более подробно и наглядно по этой схеме подключения Вы можете узнать из моей статьи про схему подключения трехфазного счетчика ПСЧ-4ТМ.05.04 в четырехпроводную сеть напряжением 380/220 (В) с помощью 3 трансформаторов тока.
Схема подключения счетчика к трехфазной трехпроводной сети с помощью 2 трансформаторов тока
ТТ1 — ТТ2 — трансформаторы тока. Трансформаторы напряжение отсутствуют.
Схема подключения счетчика к трехфазной трехпроводной сети с помощью 2 трансформаторов тока и 3 трансформаторов напряжения
ТН1 — ТН3 — трансформаторы напряжения, ТТ1 — ТТ2 — трансформаторы тока.
Более подробно и наглядно по этой схеме подключения Вы можете узнать из моих следующих статей:
Схема подключения счетчика к трехфазной трехпроводной сети с помощью 2 трансформаторов тока и 2 трансформаторов напряжения
ТН1 — ТН2 — трансформаторы напряжения, ТТ1 — ТТ2 — трансформаторы тока.
Подключение счетчика через трансформаторы тока. Выводы
В завершении статьи о подключении счетчика через трансформаторы тока и напряжения, хочу напомнить Вам, что практически у любого счетчика на крышке от клеммных зажимов изображена схема его подключения с маркировкой и нумерацией выводов. А также имеется паспорт, где все подробно описано.
Однако, лучше все таки заранее знать тип счетчика, место установки, класс напряжения и соответственно схему его подключения.
Электромонтаж токовых цепей и цепей напряжения должен проводиться строго по ПУЭ. Требования ПУЭ к сечению проводов токовых цепей — не меньше 2,5 кв. мм, а цепей напряжения — не меньше 1,5 кв.мм. Все сечения указаны только для медного провода.
Рекомендую Вам при подключении счетчиков электроэнергии обязательно применять цифровую и буквенную маркировку проводов вторичных цепей, чтобы облегчить Вам и Вашим коллегам дальнейшую эксплуатацию и обслуживание.
P.S. В данной статье размещены не все схемы подключения электросчетчиков, а только самые распространенные и востребованные. Если Вас интересуют и Вы знаете другие схемы, то с удовольствием обсудим их в комментариях.
Чтобы облегчить восприятие материала этой статьи по подключению счетчика через трансформаторы тока и напряжения, я приведу Вам наглядные примеры на каждую из вышеперечисленных схем, используя фото- и видео-ролики, созданные лично мною.
Следите за обновлениями или подпишитесь на новости сайта.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
Установка трансформаторов тока — Janitza electronics
Клеммы S1 / S2 (k / l)
Подключения первичной обмотки обозначены «K» и «L» или «P1» и «P2», а подключения вторичной обмотки обозначены «k» и « l »или« S1 »и« S2 ». Полярность должна быть установлена так, чтобы «направление потока энергии» проходило от K до L.
Случайное переключение клемм S1 / S2 приводит к ошибочным результатам измерения, а также может вызвать неправильное управление с системами Emax и PFC.
Длина и сечение линии
Потребляемая мощность (в Вт), вызванная потерями в линии, рассчитывается следующим образом:
- удельное сопротивление
для CU: 0,0175 Ом * мм2 / м для AI: 0,0278 Ом * мм2 / м
L = длина линии в м (наружная и обратная линия) I = ток в амперах
A = поперечное сечение линии в мм2
Работа с параллельным / суммирующим трансформатором тока
Если измерение тока выполняется с помощью двух трансформаторов тока, общий коэффициент трансформации трансформаторов тока должен быть запрограммирован в измерительном устройстве.
Пример: оба трансформатора тока имеют коэффициент трансформации 1000 / 5A. Суммарное измерение выполняется с помощью суммирующего трансформатора тока 5 + 5/5 A.
Затем необходимо настроить UMG следующим образом:
Первичный ток: 1000 A + 1000 A = 2000 A
Вторичный ток: 5 A
Заземление трансформаторов тока
Согласно VDE 0414 трансформаторы тока и напряжения должны быть заземлены вторично от последовательного напряжения 3,6 кВ. При низком напряжении можно обойтись без заземления, если трансформаторы тока не имеют больших металлических контактных поверхностей.Однако распространенной практикой является заземление трансформаторов низкого напряжения. Обычное основано на S1. Однако заземление также может выполняться на клеммах S1 (k) или S2 (k). Важно: всегда заземляйте с одной и той же стороны!
Использование защитных трансформаторов тока
В случае дооснащения измерительного прибора и исключительной доступности защитного сердечника мы рекомендуем использовать трансформатор тока обмотки 5/5 для развязки защитного сердечника.
Понимание соотношения, полярности и класса
Когда переменный ток проходит через электрический проводник, такой как кабель или шина, он создает магнитное поле под прямым углом к току.Фото: Викимедиа.
Основная функция трансформатора тока — обеспечивать управляемый уровень напряжения и тока, пропорциональный току, протекающему через его первичную обмотку, для работы измерительных или защитных устройств.
В своей основной форме трансформатор тока состоит из многослойного стального сердечника, вторичной обмотки вокруг сердечника и изоляционного материала, окружающего обмотки.
Когда переменный ток проходит через электрический проводник, такой как кабель или шина, он создает магнитное поле под прямым углом к току.
Если этот ток проходит через первичную обмотку трансформатора тока, железный сердечник внутри становится намагниченным, что вызывает напряжение во вторичных обмотках. Если вторичный контур замкнут, ток, пропорциональный коэффициенту трансформатора тока, будет проходить через вторичный.
ТТ разомкнутой цепи
ОПАСНО: Трансформаторы тока должны оставаться закороченными до тех пор, пока не будут подключены к вторичной цепи. Трансформаторы тока обычно подключаются к клеммной колодке, где можно установить закорачивающие винты, чтобы связать изолированные точки вместе.
Важно, чтобы к трансформатору тока всегда была подключена нагрузка или нагрузка, когда он не используется, в противном случае на клеммах вторичной обмотки может возникнуть опасно высокое вторичное напряжение.
Типы трансформаторов тока
Существует четыре типичных типа трансформаторов тока: оконные, оконные, проходные, стержневые и обмотанные . Первичная обмотка может состоять просто из первичного проводника тока, проходящего один раз через отверстие в сердечнике трансформатора тока (оконного или стержневого типа), или она может состоять из двух или более витков, намотанных на сердечник вместе с вторичной обмоткой (намотанной тип).
Оконные и линейные трансформаторыявляются наиболее распространенными трансформаторами тока, встречающимися в полевых условиях. Фото: ABB
1. Окно CT
Оконные трансформаторы токаимеют конструкцию без первичной обмотки и могут иметь сплошной или разъемный сердечник. Эти трансформаторы тока устанавливаются вокруг проводника и являются наиболее распространенным типом трансформаторов тока в полевых условиях.
При установке оконных трансформаторов с твердым сердечником необходимо отключить первичный провод. Трансформаторные трансформаторы тока с разделенным сердечником и окном можно устанавливать без предварительного отключения первичного проводника и обычно используются в приложениях для мониторинга и измерения мощности.
ТТ нулевой последовательности — это тип оконного ТТ, который обычно используется для обнаружения замыкания на землю в цепи путем суммирования тока по всем проводникам одновременно. В нормальном режиме работы эти токи будут векторно равны нулю.
Оконный трансформатор тока нулевой последовательности
Когда происходит замыкание на землю, поскольку часть тока идет на землю и не возвращается на другие фазы или нейтраль, трансформатор тока обнаруживает этот дисбаланс и отправляет сигнал вторичного тока на реле.ТТ нулевой последовательности устраняют необходимость использования ТТ с несколькими окнами, выходы которых суммируются, за счет использования одного ТТ, окружающего все проводники.
2. Стержневой ТТ
Трансформаторы тока типаработают по тому же принципу, что и оконные трансформаторы тока, но имеют постоянную шину, установленную в качестве первичного проводника. Доступны типы стержней с более высоким уровнем изоляции и обычно крепятся болтами непосредственно к текущему устройству ухода.
Трансформатор тока стержневого типа
3.Втулка CT
Трансформаторы тока проходного изоляционного типав основном представляют собой оконные трансформаторы тока, которые специально разработаны для установки вокруг высоковольтного ввода. Обычно к этим трансформаторам тока нет прямого доступа, и их паспортные таблички находятся на шкафу управления трансформатором или выключателем.
SF6 вводные трансформаторы тока 110 кВ. Фото: Викимедиа
4. Рана CT
Трансформаторы тока с обмоткой имеют первичную обмотку и вторичную обмотку , как и обычный трансформатор. Эти трансформаторы тока встречаются редко и обычно используются при очень низких коэффициентах передачи и токах, как правило, во вторичных цепях трансформаторов тока для компенсации малых токов, согласования различных коэффициентов передачи трансформаторов тока в суммирующих приложениях или для изоляции различных цепей трансформатора тока.
Этот тип трансформаторов тока имеет очень высокую нагрузку , поэтому при использовании трансформаторов тока с обмоткой следует уделять особое внимание нагрузке на ТТ источника.
CT Класс напряжения
Класс напряжения ТТ определяет максимальное напряжение , с которым ТТ может вступать в прямой контакт. Например, оконный трансформатор тока 600 В не может быть установлен на оголенном проводе 2400 В или вокруг него, однако оконный трансформатор тока на 600 В может быть установлен вокруг кабеля 2400 В, если трансформатор тока установлен вокруг изолированной части кабеля и изоляция рассчитана правильно.
Коэффициент ТТ
Коэффициент трансформации трансформатора тока — это отношение входного первичного тока к выходному вторичному току при полной нагрузке. Например, трансформатор тока с соотношением 300: 5 рассчитан на 300 ампер первичной обмотки при полной нагрузке и будет производить 5 ампер вторичного тока , когда через первичную обмотку протекает 300 ампер.
Если первичный ток изменится, вторичный ток на выходе изменится соответствующим образом. Например, если через первичную обмотку номиналом 300 А протекает 150 А, вторичный ток будет равен 2.5 ампер.
Коэффициент трансформации трансформатора тока эквивалентен коэффициенту напряжения трансформаторов напряжения. Фото: TestGuy.
В прошлом для измерения тока обычно использовались два основных значения вторичного тока. В Соединенных Штатах инженеры обычно используют выход на 5 ампер . Другие страны приняли выход 1-ампер .
С появлением микропроцессорных счетчиков и реле в промышленности наблюдается замена вторичной обмотки на 5 или 1 ампер на вторичную обмотку мА .Обычно устройства с мА-выходом называются «датчиками тока », в отличие от трансформаторов тока.
Примечание. Коэффициенты CT выражают номинальный ток CT, а не просто отношение первичного тока к вторичному. Например, ТТ 100/5 не будет выполнять функцию ТТ 20/1 или 10 / 0,5.
CT Полярность
Полярность трансформатора тока определяется направлением, в котором катушки намотаны вокруг сердечника ТТ (по часовой стрелке или против часовой стрелки), и тем, каким образом вторичные выводы выводятся из корпуса трансформатора.
Все трансформаторы тока имеют вычитающую полярность и имеют следующие обозначения для правильной установки:
- h2 — Первичный ток, направление линии
- h3 — Первичный ток, направление нагрузки
- X1 — Вторичный ток (многоскоростные трансформаторы тока имеют дополнительные вторичные клеммы)
ТТ с разъемным сердечником, рассчитанный на 200 А. Обратите внимание на маркировку полярности в центре сердечника, указывающую направление источника.Фото: Continental Control Systems, LLC
В трансформаторах с вычитающей полярностью первичный провод h2 и вторичный провод X1 находятся на одной стороне трансформатора. Полярность ТТ иногда указывается стрелкой, эти ТТ следует устанавливать так, чтобы стрелка указывала в направлении протекания тока.
Очень важно соблюдать правильную полярность при установке и подключении трансформаторов тока к реле измерения мощности и защитных реле.
Условные обозначения на электрическом чертеже полярности CT
Обозначение полярности на электрических чертежах и схемах трансформаторов тока может быть выполнено несколькими различными способами. Три наиболее распространенных условных обозначения схем — это точки, sq
6 объяснение электрических испытаний трансформаторов тока
Важно регулярно проверять и тестировать трансформаторы тока и подключенные к ним приборы. Фото: ABB
Трансформаторы тока играют важную роль в мониторинге и защите электроэнергетических систем.ТТ — это измерительные трансформаторы, используемые для преобразования первичного тока в пониженный вторичный ток для использования с счетчиками, реле, контрольным оборудованием и другими приборами.
Часто недооценивают важность испытаний измерительных трансформаторов. Трансформаторы тока для измерительных целей должны иметь высокую степень точности, чтобы гарантировать точное выставление счетов, в то время как трансформаторы, используемые для защиты, должны быстро и правильно реагировать в случае неисправности.
Риски, такие как путаница измерительных трансформаторов для измерения и защиты или путаница в соединениях, могут быть значительно уменьшены путем тестирования перед первым использованием.В то же время электрические изменения в трансформаторе тока, вызванные, например, старением изоляции, можно определить на ранней стадии.
По этим и другим причинам важно регулярно проверять и калибровать трансформаторы тока и подключенные к ним приборы. Для обеспечения точности и оптимальной надежности обслуживания необходимо провести 6 электрических испытаний трансформаторов тока:
1. Тест соотношения
КоэффициентCT описывается как отношение входного первичного тока к выходному вторичному току при полной нагрузке.Например, трансформатор тока с соотношением 300: 5 будет производить 5 ампер вторичного тока, когда 300 ампер протекает через первичную обмотку.
Если первичный ток изменится, вторичный ток на выходе изменится соответствующим образом. Например, если 150 ампер протекает через первичную обмотку 300 ампер , вторичный выходной ток будет 2,5 ампера .
(300: 5 = 60: 1) (150: 300 = 2,5: 5)
В отличие от трансформатора напряжения или силового трансформатора, трансформатор тока состоит только из одного или нескольких витков в качестве первичной обмотки.Эта первичная обмотка может быть либо с одним плоским витком, либо с катушкой из сверхпрочного провода, намотанной вокруг сердечника, либо просто проводником или шиной, проходящей через центральное отверстие.
Проверка коэффициента трансформации трансформатора тока может выполняться путем подачи первичного тока и измерения выходного тока или путем подачи вторичного напряжения и измерения наведенного первичного напряжения. Фото: TestGuy.
Тест соотношения проводится для подтверждения того, что соотношение ТТ соответствует указанному, и для проверки правильности передаточного отношения на разных отводах многоотводного ТТ.Коэффициент передачи эквивалентен коэффициенту напряжения трансформаторов напряжения и может быть выражен следующим образом:
N2 / N1 = V2 / V1
- N2 и N1 — это количество витков вторичной и первичной обмоток
- V2 и V1 — вторичная и первичная стороны. показания напряжения .
Испытания коэффициента передачи выполняются путем подачи подходящего напряжения (ниже насыщения) на вторичную обмотку тестируемого ТТ, в то время как напряжение первичной стороны измеряется для вычисления коэффициента передачи по приведенному выше выражению.
ОПАСНО: Соблюдайте осторожность при проведении проверки коэффициента трансформации трансформатора тока, и НЕ ПРИМЕНЯЙТЕ подавать достаточно высокое напряжение, которое могло бы вызвать насыщение трансформатора. Применение напряжения насыщения приведет к неточным показаниям.
2. Проверка полярности
Полярность трансформатора тока определяется направлением намотки катушек вокруг сердечника трансформатора (по часовой стрелке или против часовой стрелки) и тем, как выводы выводятся из корпуса трансформатора.Все трансформаторы тока имеют вычитающую полярность и должны иметь следующие обозначения для визуальной идентификации направления тока:
- h2 — первичный ток, линия обращенная к направлению
- h3 первичный ток, нагрузка направление облицовки
- X1 — вторичный ток
Предполагается, что испытуемый ТТ имеет правильную полярность, если направления мгновенного тока для первичного и вторичного тока противоположны друг другу.Фото: TestGuy.
Знаки полярности на трансформаторе тока обозначают относительные мгновенные направления токов. Проверка полярности подтверждает, что прогнозируемое направление вторичного тока ТТ (уходящий) является правильным для данного направления первичного тока (входящего).
При установке и подключении трансформатора тока к реле измерения мощности и защитных реле важно соблюдать полярность. В тот же момент, когда первичный ток поступает на первичный вывод, соответствующий вторичный ток должен покидать вторичный вывод, помеченный аналогичным образом.
Предполагается, что испытуемый ТТ имеет правильную полярность, если направления мгновенного тока для первичного и вторичного тока противоположны друг другу. Полярность ТТ критична, когда ТТ используются вместе в однофазных или трехфазных приложениях.
Самое современное испытательное оборудование ТТ способно автоматически выполнять проверку соотношения с использованием упрощенной настройки измерительных проводов и отображать полярность как правильную или неправильную. Полярность трансформатора тока проверяется вручную с помощью батареи 9 В и аналогового вольтметра с помощью следующей процедуры проверки:
Маркировка трансформаторов тока иногда неправильно наносилась на заводе.Вы можете проверить полярность трансформатора тока в полевых условиях с батареей 9 В. Фото: TestGuy.
Процедура проверки полярности CT
- Отключите все питание перед проверкой и подключите аналоговый вольтметр к вторичной клемме проверяемого ТТ. Положительная клемма измерителя подключена к клемме X1 трансформатора тока, а отрицательная клемма — к X2.
- Пропустите кусок провода через верхнюю сторону окна ТТ и на короткое время коснитесь положительного конца 9-вольтовой батареи на стороне h2 (иногда отмеченной точкой) и отрицательного конца к стороне h3.Важно избегать постоянного контакта, который может привести к короткому замыканию аккумулятора.
- Если полярность правильная, мгновенный контакт вызывает небольшое отклонение аналогового измерителя в положительном направлении. Если отклонение отрицательное, полярность трансформатора тока меняется на обратную. Клеммы X1 и X2 необходимо поменять местами, и можно проводить тест.
Примечание: Полярность не важна при подключении к амперметрам и вольтметрам.Полярность важна только при подключении к ваттметрам, ваттметрам, варметрам и реле индукционного типа. Для сохранения полярности сторона h2 трансформатора тока должна быть обращена к источнику питания; тогда вторичная клемма X1 соответствует полярности.
3. Испытание на возбуждение (насыщение)
Когда ТТ «насыщен», магнитный путь внутри ТТ действует как короткое замыкание в линии передачи. Почти вся энергия, подаваемая первичной обмоткой, отводится от вторичной обмотки и используется для создания магнитного поля внутри трансформатора тока.
Испытание на насыщение трансформатора тока определяет номинальную точку перегиба в соответствии со стандартами IEEE или IEC, точку, при которой трансформатор больше не может выводить ток, пропорциональный своему заданному коэффициенту.
Испытания возбуждения выполняются путем подачи переменного напряжения на вторичную обмотку ТТ и постепенного увеличения напряжения до тех пор, пока ТТ не перейдет в режим насыщения.