Закрыть

1 и 2 законы кирхгофа – Закон Киргофа. 1 и 2 закон Кирхгофа. Определение, формула

Правила (законы) Кирхгофа простыми словами: формулировки и расчеты

На практике часто встречаются задачи по расчётам параметров токов и напряжений в различных разветвлённых цепях. В качестве инструмента для расчётов используют правила Кирхгофа (в некоторой литературе их называют еще законами, хотя это не совсем корректно) – одни из фундаментальных правил, которые совместно с законами Ома позволяет определять параметры независимых контуров в самых сложных цепях.

Учёный Густав Киргхоф сформулировал два правила [1], для понимания которых введено понятие узла, ветви, контура. В нашей ситуации ветвью будем называть участок, по которому протекает один и тот же ток. Точки соединения ветвей образуют узлы. Ветви вместе с узлами образуют контуры – замкнутые пути, по которым течёт ток.

Первое правило Кирхгофа

Первое правило Густава Кирхгофа сформулировано исходя из закона сохранения заряда. Физик понимал, что заряд не может задерживаться в узле, а распределяется по ветвям контура, образующим это соединение.

Кирхгоф предположил, а впоследствии обосновал на основании экспериментов, что количество зарядов зашедших в узел такое же, как и количество тока вытекающего из него.

На рисунке 1 изображена простая схема, состоящая из контуров. Точками A, B, C, D обозначены узлы контура в центре схемы.

Схема контураРис. 1. Схема контура

Ток I1 входит в узел A, образованный ветвями контура. На схеме электрический  заряд распределяется в двух направлениях – по ветвям AB и AD. Согласно правилу Кирхгофа, входящий ток равен сумме выходящих: I1 = I2 + I3.

На рисунке 2 представлен абстрактный узел, по ветвям которого течёт ток в разных направлениях. Если сложить векторы i1, i2, i3, i4 то, согласно первому правилу Кирхгофа, векторная сумма будет равняться 0: i1 + i2 + i3 + i4 = 0. Ветвей может быть сколько угодно много, но равенство всегда будет справедливым, с учётом направления векторов.

Абстрактный узелРис. 2. Абстрактный узел

Запишем наши выводы в алгебраической форме, для общего случая:

Формула сумма токов

Для использования этой формулы, требуется учитывать знаки. Для этого необходимо выбрать направление одного из векторов тока (не важно, какого) и обозначить его знаком «плюс». При этом знаки всех других величин определить, исходя от их направления, по отношению к выбранному вектору.

Чтобы избежать путаницы, ток, направленный в точку узла, принято считать положительным, а векторы, направленные от узла – отрицательными.

Изложим первое правило Кирхгофа, выраженное приведённой выше формулой: «Алгебраическая сумма сходящихся в определённом узле токов, равна нулю, если считать входящие токи положительными, а отходящими – отрицательными».

Первое правило дополняет второе правило, сформулированное Кирхгофом. Перейдём к его рассмотрению.

Второе правило Киргхофа

Из третьего уравнения Максвелла вытекает правило Кирхгофа для напряжений. Его ещё называют вторым законом.

Это правило гласит, что в замкнутом контуре, на резистивных элементах, алгебраическая сумма напряжений (включая внутренние), равна сумме ЭДС, присутствующих в этом же замкнутом контуре.

При этом токи и ЭДС, векторы которых совпадают с направлением (выбирается произвольно) обхода контура, считаются положительными, а встречные к обходу токи – отрицательными.

Иллюстрация второго правила КирхгофаРис. 4. Иллюстрация второго правила Кирхгофа

Формулы, которые изображены на рисунке применяются в частных случаях для вычисления параметров простых схем.

Формулировки уравнений общего характера:

Формулы для второго правила киргхофа

, где где Lk и Ck – это индуктивности и ёмкости, соответственно.

Линейные уравнения справедливы как для линейных, так и для нелинейных линеаризованных цепей. Они применяются при любом характере временных изменений токов и напряжений, для разных источников ЭДС. При этом законы Кирхгофа справедливы и для магнитных цепей. Это позволяет выполнять вычисления для поиска соответствующие параметров.

Закон Кирхгофа для магнитной цепи

Применение независимых уравнений возможно и при расчётах магнитных цепей. Сформулированные выше правила Кирхгофа справедливы и для вычисления параметров магнитных потоков и намагничивающих сил.

Магнитные контуры цепейРис. 4. Магнитные контуры цепей

В частности: ∑Ф=0.

То есть, для магнитных потоков первое правило Кирхгофа можно выразить словами: «Алгебраическая сумма всевозможных магнитных потоков относительно узла магнитной цепи равняется нулю.

Сформулируем второе правило для намагничивающих сил F: «В замкнутом магнитном контуре алгебраическая сумма намагничивающих сил приравнивается к сумме магнитных напряжений». Данное утверждение выражается формулой: ∑F=∑U или ∑Iω = ∑НL, где ω – количество витков, H – напряжённость магнитного поля, символ L обозначает длину средней линии магнитопровода. ( Условно принимается, что каждая точка этой линии совпадает с линиями магнитной индукции).

Второе правило, применяемое для вычисления магнитных цепей, есть не что иное, как альтернативная форма представления закона полного тока.

Примечание: Составляя уравнения с использованием формул, вытекающих из правил Кирхгофа, надо прежде определиться с положительным направлением потоков, функционирующих в ветвях, сопоставив их с направлением обходов существующих контуров.

При совпадении векторов магнитного потока с направлениями обхода (на некоторых участках), падение напряжения на этих ветвях берём со знаком « + », а встречные ему – со знаком « – ».

Примеры расчета цепей

Рассмотрим ещё раз рисунок 3. На нём изображено 4 разнонаправленных вектора: i1, i2, i3, i4. Из них –  два входящие ( i2, i3) и два исходящие из узла (i1, i4). Положительными будем считать те векторы, которые направлены в точку соединения ветвей, а остальные – отрицательными.

Тогда, по формуле Кирхгофа, составим уравнение и запишем его в следующем виде: – i1 + i2 + i3 – i4 = 0.

На практике такие узлы являются частью контуров, обходя которые можно составить ещё несколько линейных уравнений с этими же неизвестными. Количество уравнений всегда достаточно для решения задачи.

Рассмотрим алгоритм решения на примере рис. 5.

Пример для расчётаРис. 5. Пример для расчёта

Схема содержит 3 ветви и два узла, которые образуют три пары по два независимых контура:

  1. 1 и 2.
  2. 1 и 3.
  3. 2 и 3.

Запишем независимое уравнение, выполняющееся, например, в точке а. Из первого правила Кирхгофа вытекает: I1 +  I2 –  I3 = 0.

Воспользуемся вторым правилом Кирхгофа. Для составления уравнений можно выбрать любой из контуров, но нам необходимы контуры с узлом а, так как для него мы уже составили уравнение. Это будут контуры 1 и 2.

Пишем уравнения:

  • I1R1 +  I3 R3 = E1;
  • I2R2 +  I3R3 = E2.

Решаем систему уравнений:

Система уравнений

Так как значения R и E известны (см. рисунок 5), мы придём к системе уравнений:

Система уравнений

Решая эту систему, получим:

  1. I1 = 1,36 (значения в миллиамперах).
  2. I2 = 2,19 мА.;
  3. I3 = 3,55 мА.

Потенциал узла а равен: Ua = I3*R3 = 3,55 × 3 = 10,65 В. Чтобы убедиться в верности наших расчётов, проверим выполнение второго правила по отношению к контуру 3:

E1 – E2 + I1R1+ I2R2 = 12 – 15 + 1,36 – 4,38 = – 0,02 ≈ 0 (с учётом погрешностей, связанных с округлениями чисел при вычислениях).

Если проверка выполнения второго правила успешно завершена, то расчёты сделаны правильно, а полученные данные являются достоверными.

Применяя правила (законы) Кирхгофа можно вычислять параметры электрической энергии для магнитных цепей.

www.asutpp.ru

1.2. Законы Кирхгофа

Ранее были рассмотрены законы Ома для участка цепи и замкнутой цепи с одним источников э.д.с.

Сложная электрическая цепь, содержащая несколько источников э.д.с. и замкнутых контуров, не может быть рассчитана только с использованием законов Ома. Рассчитать и проанализировать сложную цепь можно с помощью двух законов Кирхгофа (сам Кирхгоф и некоторые современные специалисты называют эти законы «правилами», поскольку они являются следствием закона сохранения энергии применительно к электрическим цепям).

Для понимания формулировок и использования этих законов необходимо напомнить основные термины, относящиеся к электрическим цепям.

Электрическая цепь – это совокупность элементов, создающих пути для протекания электрических токов. Основными элементами электрической цепи являютсяисточники электроэнергии, преобразующие механическую, химическую и другие виды энергии в электрическую, и

приемники, преобразующие электрическую энергию в другие виды: тепловую (резисторы), механическую (электродвигатели), химическую (зарядка аккумуляторов) и др. Кроме источников и приемников, элементами электрической цепи являются соединительные провода, электроизмерительные приборы, коммутирующие (переключающие) устройства, аппаратура защиты, автоматики и др.

Электрический узел – это часть электрической цепи, в которой сходится не менее трех ветвей (токов).

Ветвьучасток цепи между двумя узлами, на всем протяжении которого ток один и тот же.

Контурзамкнутая часть схемы, которая представляет собой неразветвленную цепь, если отключить все не входящие в нее ветви.

Первый закон Кирхгофа

На рисунке 5 показан электрический узел, в котором сходятся n= 5 ветвей с токами, часть из которых направлены к узлу, а часть – от него.

Первый закон Кирхгофав первой редакции читается следующим образом:алгебраическая сумма токов в узле равна нулю, то есть

(8)

.

Вуравнении (8) токи, направленные к узлу, подставляют обычно со знаком «+», а от узла – со знаком «» (можно и наоборот).

Применительно к узлу, показанному на рисунке 5, равенство (8) записывается в свернутом виде:

или в развернутом:

.

Е

(9)

сли перенести в последнем равенстве отрицательные токи в правую часть, то получим:

.

Из равенства (9) вытекает вторая редакция первого закона Кирхгофа:

Сумма токов, входящих в узел, равна сумме токов, выходящих из узла.

Справедливость первого закона Кирхгофа можно подтвердить рассуждением «от противного». Если предположить, что в узел в каждый момент времени притекает больше зарядов, чем вытекает (или наоборот), то электрические потенциалы узлов все время будут изменяться, а, следовательно, будет изменяться и распределение токов в элементах схемы, что практически не наблюдается и противоречит здравому смыслу.

Второй закон Кирхгофа

На рисунке 6 показана часть сложной электрической цепи в виде замкнутого контура, состоящего из m= 5 ветвей и содержащегоn= 3 источников э.д.с.

Второй закон Кирхгофачитается следующим образом:в замкнутом электрическом контуре алгебраическая сумма напряжений равна нулю (первая редакция).

В этой формулировке следует различать напряжение как падение напряжения, создаваемое током Ik k-той ветви в сопротивлении Rk этой ветви, и напряжение источника ЭДС, которое равно величине этой ЭДС, но направлено (как разность электрических потенциалов внутри источника) от положительного зажима к отрицательному, то есть встречно с направлением ЭДС.

В показанном на рисунке 6 контуре токи ветвей создают падения напряженияIkRk, которые при заданном направлении обхода берутся со знаком «+», если направление токаIkсовпадает с направлением обхода, и со знаком «», если направление тока встречно с направлением обхода. Что касается напряжений (разностей потенциалов) на зажимах источников ЭДС Еk, то необходимо учитывать, что потенциал на положительном зажиме источника выше, чем на входном, а величина этихнапряжений(а непадений напряжений!) равна по абсолютному значению соответствующей э.д.с. Еk. С учетом этогонапряжение источникаберется со знаком «», если направление э.д.с. совпадает с направлением обхода, и со знаком «+», если направление обхода направлено встречно с направлением э.д.с.

Рис. 6

П

(10)

рименительно к контуру (рис. 6), согласно приведенной выше формулировке второго закона Кирхгофа, можно записать:

П

(10а)

еренесем напряжения источников э.д.с. в правую часть равенства (10):

В правой части равенства (10а) оказалась алгебраическая сумма э.д.с., а не напряжений источников. В результате получается вторая редакция второго закона Кирхгофа: в замкнутом контуре алгебраическая сумма э.д.с. равна алгебраической сумме падений напряжения в ветвях, образующих этот замкнутый контур, то есть:

(11)

Применительно к контуру (рс. 6) равенство (11) примет вид

(11а)

В такой формулировке, где напряжения источников заменены на э.д.с. источников, при обходе контура э.д.с. берется со знаком «+», если она совпадает с направлением обхода, и со знаком «-», если она действует встречно (как это следует из равенства (10а)).

Вторая формулировка закона Кирхгофа (10а) и (11) получила наибольшее применение на практике по сравнению с первой (10).

studfile.net

1 и 2 законы кирхгофа

Для формулировки законов Кирхгофа, в электрической цепи выделяются узлы — точки соединения трёх и более проводников и контуры — замкнутые пути из проводников. При этом каждый проводник может входить в несколько контуров.

В этом случае законы формулируются следующим образом.

[править]Первый закон

Первый закон Кирхгофа (Закон токов Кирхгофа, ЗТК) гласит, что алгебраическая сумма токов в любом узле любой цепи равна нулю (значения вытекающих токов берутся с обратным знаком):

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Данный закон следует из закона сохранения заряда. Если цепь содержит  узлов, то она описывается  уравнениями токов. Этот закон может применяться и для других физических явлений (к примеру, водяные трубы), где есть закон сохранения величины и поток этой величины.

[править]Второй закон

Второй закон Кирхгофа (Закон напряжений Кирхгофа, ЗНК) гласит, что алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю:

для постоянных напряжений

 

для переменных напряжений

 

Иными словами, при обходе цепи по контуру, потенциал, изменяясь, возвращается к исходному значению. Если цепь содержит ветвей, из которых содержат источники тока ветви в количестве , то она описывается  уравнениями напряжений. Частным случаем второго правила для цепи, состоящей из одного контура, является закон Ома для этой цепи.

Законы Кирхгофа справедливы для линейных и нелинейных цепей при любом характере изменения во времени токов и напряжений.

Пример

На этом рисунке для каждого проводника обозначен протекающий по нему ток (буквой «I») и напряжение между соединяемыми им узлами (буквой «U»)

Например, для приведённой на рисунке цепи, в соответствии с первым законом выполняются следующие соотношения:

Обратите внимание, что для каждого узла должно быть выбрано положительное направление, например здесь, токи, втекающие в узел, считаются положительными, а вытекающие — отрицательными.

В соответствии со вторым законом, справедливы соотношения:

studfile.net

Первый закон Кирхгофа - Основы электроники

В сложных схемах типа моста и Т-образных схемах токи можно определить с помощью первого закона Кирхгофа.

Первый закон Кирхгофа или закон токов Кирхгофа гласит: сумма токов, втекающих в узел, равна сумме токов, вытекающих из узла. Так как токи, которые вытекают из узла берутся с отрицательным знаком, то существует другая формулировка первого закона Кирхгофа: алгебраическая сумма токов в узле равна нулю.

Рассмотрим схему на рисунке 1.

Здесь ток I1- полный ток, притекающий к узлу А, а токи I2 и I3 — токи, вытекающие из узла А. Следовательно, можно записать:

I1 = I2 + I3

Аналогично для узла B

I3 = I4 + I5

Предположим, что I4 = 2 мА и I5 = 3 мА, получим

I3 = 2 + 3 = 5 мА

Приняв I2 = 1 мА, получим

I1 = I2 + I3 = 1+5 = 6 мА

Далее можно записать для узла C

I6 = I4 + I5 = 2+3 = 5 мА

и для узла D

I1 = I2 + I6 = 1+5 = 6 мА

ДРУГИЕ СТАТЬИ ПО ТЕМЕ:

Первый и второй законы Кирхгофа - статья в интернет-журнале ЭЛЕКТРОН, где подробно с примерами расчетов и моделирования на компьютере изложены эти основопологающие законы элеектротехники и в частности первый закон Кирхгофа

Видеоурок по расчету цепей с помощью первого и второго закона Кирхгофа.

 

Предлагаю посмотреть это видео для закрепления материала:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

 

Добавить комментарий

www.sxemotehnika.ru

Примеры решения задач на законы Кирхгофа

Рассмотрим на примерах как можно использовать законы Кирхгофа при решении задач.

Задача 1

Дана схема, и известны сопротивления резисторов и ЭДС источников. Требуется найти токи в ветвях, используя законы Кирхгофа.

 

Используя первый закон Кирхгофа, можно записать n-1 уравнений для цепи. В нашем случае количество узлов n=2, а значит нужно составить только одно уравнение.

Напомним, что по первому закону, сумма токов сходящихся в узле равна нулю. При этом, условно принято считать входящие токи в узел положительными, а выходящими отрицательными. Значит для нашей задачи 

Затем используя второй закон (сумма падений напряжения в независимом контуре равна сумме ЭДС в нем) составим уравнения для первого и второго контуров цепи. Направления обхода выбраны произвольными, при этом если направление тока через резистор совпадает с направлением обхода, берем со знаком плюс, и наоборот если не совпадает, то со знаком минус. Аналогично с источниками ЭДС.

На примере первого контура – ток I1 и I3 совпадают с направлением обхода контура (против часовой стрелки), ЭДС E1 также совпадает, поэтому берем их со знаком плюс.

Уравнения для первого и второго контуров по второму закону будут: 

Все эти три уравнения образуют систему

Подставив известные значения и решив данную линейную систему уравнений, найдем токи в ветвях (способ решения может быть любым). 

Проверку правильности решения можно осуществить разными способами, но самым надежным является проверка балансом мощностей.

Задача 2

Зная сопротивления резисторов и ЭДС трех источников найти ЭДС четвертого и токи в ветвях.

 

Как и в предыдущей задаче начнем решение с составления уравнений на основании первого закона Кирхгофа. Количество уравнений n-1= 2 

Затем составляем уравнения по второму закону для трех контуров. Учитываем направления обхода, как и в предыдущей задаче. 

На основании этих уравнений составляем систему с 5-ью неизвестными 

Решив эту систему любым удобным способом, найдем неизвестные величины 

Для этой задачи выполним проверку с помощью баланса мощностей, при этом сумма мощностей, отданная источниками, должна равняться сумме мощностей полученных приемниками. 

Баланс мощностей сошелся, а значит токи и ЭДС найдены верно. 

Читайте также - расчет простых цепей постоянного тока

  • Просмотров: 44905
  • electroandi.ru

    Второй закон Кирхгофа - Основы электроники

    Второй закон Кирхгофа или закон напряжений Кирхгофа формулируется так: полная ЭДС, действующая в замкнутом контуре, равна сумме падений напряжения на всех резисторах в этом контуре.

    Рассмотрим схему на рисунке. 1, состоящую из одного контура.

    Здесь полная ЭДС Е1 + Е2, действующая внутри контура, равна сумме падений напряжения на резисторах R1 и R2:

    E1 + E2 = UR1 + UR2

    Если изменить полярность Е2 на противоположную (рис. 2), то она будет иметь то же направление (против часовой стрелки), что и UR1 и UR2

    E1- Е2 = UR1 + UR2 или E1 = Е2 + UR1 + UR2

    Рассмотрим схему, имеющую несколько контуров (рис. 3).

    Для кон­тура ABEF можно записать

    E1= UR1 + UR2,

    а для контура ACDF

    E12 = UR1 + UR3

    Обходя контур BCDE, видим, что ЭДС Е2 имеет то же направление (про­тив часовой стрелки), что и UR3:

    Е2 + UR3 = UR2

    В цепи с одним контуром второй закон Кирхгофа является частным случаем закона Ома.

    ДРУГИЕ СТАТЬИ ПО ТЕМЕ:

    Первый и второй законы Кирхгофа - статья в интернет-журнале ЭЛЕКТРОН, где подробно с примерами расчетов и моделирования на компьютере изложены эти основопологающие законы элеектротехники.

    Видеоурок по расчету цепей с помощью первого и второго закона Кирхгофа.

     

    Хотите подробностей? Посмотрите это видео, поясняющее второй закон Кирхгофа:

    ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

    Похожие материалы:

     

    Добавить комментарий

    www.sxemotehnika.ru

    Законы Кирхгофа - это... Что такое Законы Кирхгофа?

    Зако́ны Кирхго́фа (или правила Кирхгофа) — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи. Правила Кирхгофа позволяют рассчитывать любые электрические цепи постоянного и квазистационарного тока.[1] Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения многих задач теории электрических цепей. Применение правил Кирхгофа к линейной цепи позволяет получить систему линейных уравнений относительно токов, и соответственно, найти значение токов на всех ветвях цепи. Сформулированы Густавом Кирхгофом в 1845 году.

    Формулировка

    Для формулировки законов Кирхгофа, в электрической цепи выделяются узлы — точки соединения трёх и более проводников и контуры — замкнутые пути из проводников. При этом каждый проводник может входить в несколько контуров.

    В этом случае законы формулируются следующим образом.

    Первый закон

    Первый закон Кирхгофа (Закон токов Кирхгофа, ЗТК) гласит, что алгебраическая сумма токов в любом узле любой цепи равна нулю (значения вытекающих токов берутся с обратным знаком):

    Иными словами, сколько тока втекает в узел, столько из него и вытекает. Данный закон следует из закона сохранения заряда. Если цепь содержит p узлов, то она описывается p − 1 уравнениями токов. Этот закон может применяться и для других физических явлений (к примеру, водяные трубы), где есть закон сохранения величины и поток этой величины.

    Второй закон

    Второй закон Кирхгофа (Закон напряжений Кирхгофа, ЗНК) гласит, что алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю:

    для постоянных напряжений
    для переменных напряжений

    Иными словами, при обходе цепи по контуру, потенциал, изменяясь, возвращается к исходному значению. Если цепь содержит ветвей, из которых содержат источники тока ветви в количестве , то она описывается уравнениями напряжений. Частным случаем второго правила для цепи, состоящей из одного контура, является закон Ома для этой цепи.

    Законы Кирхгофа справедливы для линейных и нелинейных цепей при любом характере изменения во времени токов и напряжений.

    Пример
    m-mi-(p-1)~ На этом рисунке для каждого проводника обозначен протекающий по нему ток (буквой «I») и напряжение между соединяемыми им узлами (буквой «U»)

    Например, для приведённой на рисунке цепи, в соответствии с первым законом выполняются следующие соотношения:

    Обратите внимание, что для каждого узла должно быть выбрано положительное направление, например здесь, токи, втекающие в узел, считаются положительными, а вытекающие — отрицательными.

    В соответствии со вторым законом, справедливы соотношения:

    Особенности составления уравнений для расчёта токов

    • Законы Кирхгофа, записанные для узлов и контуров цепи, дают полную систему линейных уравнений, которая позволяет найти все токи и напряжения.
    • Перед тем, как составить уравнения, нужно произвольно выбрать:
      • положительные направления токов в ветвях и обозначить их на схеме;
      • положительные направления обхода контуров для составления уравнений по второму закону.
    • С целью единообразия рекомендуется для всех контуров положительные направления обхода выбирать одинаковыми (напр.: по часовой стрелке)
    • Если направление тока совпадает с направлением обхода контура (которое выбирается произвольно), перепад напряжения считается положительным, в противном случае — отрицательным.
    • При записи линейно независимых уравнений по второму закону, стремятся, чтобы в каждый новый контур, для которого составляют уравнение, входила хотя бы одна новая ветвь, не вошедшая в предыдущие контуры, для которых уже записаны уравнения по второму закону (достаточное, но не необходимое условие)

    О значении для электротехники

    Правила Кирхгофа имеют прикладной характер и позволяют наряду и в сочетании с другими приёмами и способами (метод эквивалентного генератора, метод контурных токов, метод узловых напряжений, принцип суперпозиции, способ составления потенциальной диаграммы) решать задачи электротехники. Правила Кирхгофа нашли широкое применение благодаря простой формулировке уравнений и возможности их решения стандартными способами линейной алгебры (методом Крамера, методом Гаусса и др.).

    Существует мнение, согласно которому «Законы Кирхгофа» следует именовать «Правилами Кирхгофа», ибо они не отражают фундаментальных сущностей природы (и не являются обобщением большого количества опытных данных), а могут быть выведены из других положений и предположений.[источник не указан 912 дней]

    Закон излучения

    Закон излучения Кирхгофа — отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты для равновесного излучения и не зависит от их формы, химического состава и проч.

    Примечания

    Литература

    • Матвеев А. Н. Электричество и магнетизм — Учебное пособие. — М.: Высшая школа, 1983. — 463 с.
    • Калашников С. Г. Электричество — Учебное пособие. — М.: Физматлит, 2003. — 625 с.
    • Бессонов Л. А. Теоретические основы электротехники. Электрические цепи — 11-е издание. — М.: Гардарики, 2007.

    biograf.academic.ru

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *