Закрыть

3 закон кирхгофа определение: 3. Законы Кирхгофа для электрических цепей.

Законы Кирхгофа простыми словами ⋆ diodov.net

20.08.2018

HomeШкола электроникиЗаконы Кирхгофа простыми словами

By Дмитрий Забарило Школа электроники  8 комментариев

Два закона Кирхгофа вместе с законом Ома составляют тройку законов, с помощью которых можно определить параметры электрической цепи любой сложности. Законы Кирхгофа мы будем проверять на примерах простейших электрических схем, собрать которые не составит никакого труда. Для этого понадобится несколько резисторов, пара источников питания, в качестве которых подойдут гальванические элементы (батарейки) и мультиметр.

Первый закон Кирхгофа

Первый закон Кирхгофа говорит, что сумма токов в любом узле электрической цепи равна нулю. Существует и другая, аналогичная по смыслу формулировка: сумма значений токов, входящих в узел, равна сумме значений токов, выходящих из узла.

Давайте разберем сказанное более подробно. Узлом называют место соединения трех и более проводников.

Ток, который втекает в узел, обозначается стрелкой, направленной в сторону узла, а выходящий из узла ток – стрелкой, направленной в сторону от узла.

Согласно первому закону Кирхгофа

Условно присвоили знак «+» всем входящим токам, а «-» ‑ все выходящим. Хотя это не принципиально.

1 закон Кирхгофа согласуется с законом сохранения энергии, поскольку электрические заряды не могут накапливаться в узлах, поэтому, поступающие к узлу заряды покидают его.

Убедиться в справедливости 1-го закона Кирхгофа нам поможет простая схема, состоящая из источника питания, напряжением 3 В (две последовательно соединенные батарейки по 1,5 В), три резистора разного номинала: 1 кОм, 2 кОм, 3,2 кОм (можно применять резисторы любых других номиналов). Токи будем измерять мультиметром в местах, обозначенных амперметром.

Если сложить показания трех амперметров с учетом знаков, то, согласно первому закону Кирхгофа, мы должны получить ноль:

I1 — I2 — I3 = 0.

Или показания первого амперметра А1 будет равняться сумме показаний второго А2 и третьего А3 амперметров.

Второй закон Кирхгофа

Второй закон Кирхгофа воспринимается начинающими радиолюбителями гораздо сложнее, нежели первый. Однако сейчас вы убедитесь, что он достаточно прост и понятен, если объяснять его нормальными словами, а не заумными терминами.

Упрощенно 2 закон Кирхгофа говорит: сумма ЭДС в замкнутом контуре равна сумме падений напряжений

ΣE = ΣIR

Самый простой случай данного закона разберем на примере батарейки 1,5 В и одного резистора.

Поскольку резистор всего один и одна батарейка, то ЭДС батарейки 1,5 В будет равна падению напряжения на резисторе.

Если мы возьмем два резистора одинакового номинала и подключим к батарейке, то 1,5 В распределятся поровну на резисторах, то есть по 0,75 В.

Если возьмем три резистора снова одинакового номинала, например по 1 кОм, то падение напряжения на них будет по 0,5 В.

Формулой это будет записано следующим образом:

Рассмотрим условно более сложный пример. Добавим в последнюю схему еще один источник питания E2, напряжением 4,5 В.

Обратите внимание, что оба источника соединены последовательно и согласно, то есть плюс одной батарейки соединяется с минусом другой батарейки или наоборот. При таком способе соединения гальванических элементов их электродвижущие силы складываются: E1 + E2 = 1,5 + 4,5 = 6 В, а падение напряжения на каждом сопротивлении составляет по 2 В. Формулой это описывается так:



И последний отличительный вариант, который мы рассмотрим в данной статье, предполагает последовательное встречное соединение гальванических элементов. При таком соединении источников питания из большей ЭДС отнимается значение меньшей ЭДС. Следовательно к резисторам R1…R3 будет приложена разница E1 – E2, то есть 4,5 – 1,5 = 3 В, — по одному вольту на каждый резистор.

Второй закон Кирхгофа работает не зависимо от количества источников питания и нагрузок, а также независимо от места их расположения в контуре схемы. Полезно будет собрать рассмотренные схемы и выполнить соответствующие измерения с помощью мультиметра.

Законы Кирхгофа действуют как для постоянного, так и для переменного тока.

Третий закон кирхгофа для электрических цепей

Законы Кирхгофа устанавливают соотношения между токами и напряжениями в разветвленных электрических цепях произвольного типа. Законы Кирхгофа имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения любых электротехнических задач. Законы Кирхгофа справедливы для линейных и нелинейных цепей при постоянных и переменных напряжениях и токах.

Первый закон Кирхгофа вытекает из закона сохранения заряда. Он состоит в том, что алгебраическая сумма токов, сходящихся в любом узле, равна нулю.

где – число токов, сходящихся в данном узле. Например, для узла электрической цепи (рис. 1) уравнение по первому закону Кирхгофа можно записать в виде I1 — I2 + I3 — I4 + I5 = 0

В этом уравнении токи, направленные к узлу, приняты положительными.

Физически первый закон Кирхгофа – это закон непрерывности электрического тока.

Второй закон Кирхгофа: алгебраическая сумма падений напряжений на отдельных участках замкнутого контура, произвольно выделенного в сложной разветвленной цепи, равна алгебраической сумме ЭДС в этом контуре

где k – число источников ЭДС; m – число ветвей в замкнутом контуре; Ii , Ri – ток и сопротивление i -й ветви.

Так, для замкнутого контура схемы (рис. 2 ) Е1 — Е2 + Е3 = I1R1 — I2R2 + I3R3 — I4R4

Замечание о знаках полученного уравнения:

1) ЭДС положительна, если ее направление совпадает с направлением произвольно выбранного обхода контура;

2) падение напряжения на резисторе положительно, если направление тока в нем совпадает с направлением обхода.

Физически второй закон Кирхгофа характеризует равновесие напряжений в любом контуре цепи.

Расчет разветвленной электрической цепи с помощью законов Кирхгофа

Метод законов Кирхгофа заключается в решении системы уравнений, составленных по первому и второму законам Кирхгофа.

Метод заключается в составлении уравнений по первому и второму законам Кирхгофа для узлов и контуров электрической цепи и решении этих уравнений с целью определения неизвестных токов в ветвях и по ним – напряжений. Поэтому число неизвестных равно числу ветвей b , следовательно, столько же независимых уравнений необходимо составить по первому и второму законам Кирхгофа.

Число уравнений, которые можно составить на основании первого закона, равно числу узлов цепи, причем только ( y – 1) уравнений являются независимыми друг от друга.

Независимость уравнений обеспечивается выбором узлов. Узлы обычно выбирают так, чтобы каждый последующий узел отличался от смежных узлов хотя бы одной ветвью. Остальные уравнения составляются по второму закону Кирхгофа для независимых контуров, т.е. число уравнений b — (y — 1) = b — y +1 .

Контур называется независимым, если он содержит хотя бы одну ветвь, не входящую в другие контуры.

Составим систему уравнений Кирхгофа для электрической цепи (рис. 3 ). Схема содержит четыре узла и шесть ветвей.

Поэтому по первому закону Кирхгофа составим y — 1 = 4 — 1 = 3 уравнения, а по второму b — y + 1 = 6 — 4 + 1 = 3 , также три уравнения.

Произвольно выберем положительные направления токов во всех ветвях (рис. 4 ). Направление обхода контуров выбираем по часовой стрелке.

Составляем необходимое число уравнений по первому и второму законам Кирхгофа

Полученная система уравнений решается относительно токов. Если при расчете ток в ветви получился с минусом, то его направление противоположно принятому направлению.
Потенциальная диаграмма – это графическое изображение второго закона Кирхгофа, которая применяется для проверки правильности расчетов в линейных резистивных цепях. Потенциальная диаграмма строится для контура без источников тока, причем потенциалы точек начала и конца диаграммы должны получиться одинаковыми.

Рассмотрим контур abcda схемы, изображенной на рис. 4. В ветке ab между резистором R1 и ЭДС E1 обозначим дополнительную точку k.

Рис. 4. Контур для построения потенциальной диаграммы

Потенциал любого узла принимаем равным нулю (например, ?а= 0), выбираем обход контура и определяем потенциалы точек контура: ?а = 0, ?к = ?а — I1R1 , ? b = ? к + Е1, ?с = ? b — I2R2 , ? d = ?c — Е2, ? a = ?d + I3R3 = 0

При построении потенциальной диаграммы необходимо учитывать, что сопротивление ЭДС равно нулю (рис. 5 ).

Рис. 5. Потенциальная диаграмма

Законы Кирхгофа в комплексной форме

Для цепей синусоидального тока законы Кирхгофа формулируются так же, как и для цепей постоянного тока, но только для комплексных значений токов и напряжений.

Первый закон Кирхгофа : «алгебраическая сумма комплексов тока в узле электрической цепи равна нулю»

Второй закон Кирхгофа : «в любом замкнутом контуре электрической цепи алгебраическая сумма комплексных ЭДС равна алгебраической сумме комплексных напряжений на всех пассивных элементах этого контура».

Первый закон Кирхгофа

Алгебраическая сумма токов, сходящихся в любом узле электрической цепи равна нулю. При этом токи, текущие к узлу считаются положительными, а от узла — отрицательными. Другая формулировка: сумма токов, подходящих к узлу, равна сумме токов, отходящих от узла.

Первый закон Кирхгофа по сути является законом баланса токов в узлах цепи.

Второй закон Кирхгофа

В любом замкнутом контуре электрической цепи алгебраическая сумма падений напряжений на элементах, входящих в контур, равна алгебраической сумме ЭДС.

Второй закон Кирхгофа по сути является законом баланса напряжений в контурах электрических цепей.

Для составления уравнения по 2-му закону Кирхгофа выбирается произвольное направление обхода контура. Тогда, если направление тока в цепи совпадает с направлением обхода, то соответствующее слагаемое берется со знаком «+», а если не совпадает, то со знаком «-«. Аналогичное правило расстановки знаков справедливо и для ЭДС.

Уравнение по 2-му закону Кирхгофа может быть записано и для контура, имеющего разрыв цепи, однако при этом необходимо в уравнении учитывать напряжение между точками разрыва.

В сложных электрических цепях, то есть где имеется несколько разнообразных ответвлений и несколько источников ЭДС имеет место и сложное распределение токов. Однако при известных величинах всех ЭДС и сопротивлений резистивных элементов в цепи мы можем вычистить значения этих токов и их направление в любом контуре цепи с помощью первого и второго закона Кирхгофа. Суть законов Кирхгофа я довольно кратко изложил в своем учебнике по электронике, на страницах сайта http://www.sxemotehnika.ru.

Пример сложной электрической цепи вы можете посмотреть на рисунке 1.

Рисунок 1. Сложная электрическая цепь.

Иногда законы Кирхгофа называют правилами Кирхгофа, особенно в старой литературе.

Итак, для начала напомню все-таки суть первого и второго закона Кирхгофа, а далее рассмотрим примеры расчета токов, напряжений в электрических цепях, с практическими примерами и ответами на вопросы, которые задавались мне в комментариях на сайте.

Первый закон Кирхгофа

Формулировка №1: Сумма всех токов, втекающих в узел, равна сумме всех токов, вытекающих из узла.

Формулировка №2: Алгебраическая сумма всех токов в узле равна нулю.

Поясню первый закон Кирхгофа на примере рисунка 2.

Рисунок 2. Узел электрической цепи.

Здесь ток I1— ток, втекающий в узел , а токи I2 и I3 — токи, вытекающие из узла. Тогда применяя формулировку №1, можно записать:

Что бы подтвердить справедливость формулировки №2, перенесем токи I2 и I 3 в левую часть выражения (1), тем самым получим:

Знаки «минус» в выражении (2) и означают, что токи вытекают из узла.

Знаки для втекающих и вытекающих токов можно брать произвольно, однако в основном всегда втекающие токи берут со знаком «+», а вытекающие со знаком «-» (например как получилось в выражении (2)).

Можно посмотреть отдельный видеоурок по первому закону Кирхофа в разделе ВИДЕОУРОКИ.

Второй закон Кирхгофа.

Формулировка: Алгебраическая сумма ЭДС, действующих в замкнутом контуре, равна алгебраической сумме падений напряжения на всех резистивных элементах в этом контуре.

Здесь термин «алгебраическая сумма» означает, что как величина ЭДС так и величина падения напряжения на элементах может быть как со знаком «+» так и со знаком «-». При этом определить знак можно по следующему алгоритму:

1. Выбираем направление обхода контура (два варианта либо по часовой, либо против).

2. Произвольно выбираем направление токов через элементы цепи.

3. Расставляем знаки для ЭДС и напряжений, падающих на элементах по правилам:

— ЭДС, создающие ток в контуре, направление которого совпадает с направление обхода контура записываются со знаком «+», в противном случае ЭДС записываются со знаком «-».

— напряжения, падающие на элементах цепи записываются со знаком «+», если ток, протекающий через эти элементы совпадает по направлению с обходом контура, в противном случае напряжения записываются со знаком «-».

Например, рассмотрим цепь, представленную на рисунке 3, и запишем выражение согласно второму закону Кирхгофа, обходя контур по часовой стрелке, и выбрав направление токов через резисторы, как показано на рисунке.

Рисунок 3. Электрическая цепь, для пояснения второго закона Кирхгофа.

Предлагаю посмотреть отдельный видеоурок по второму закону Кирхогфа (теория).

Расчеты электрических цепей с помощью законов Кирхгофа.

Теперь давайте рассмотрим вариант сложной цепи, и я вам расскажу, как на практике применять законы Кирхгофа.

Итак, на рисунке 4 имеется сложная цепь с двумя источниками ЭДС величиной E1=12 в и E2=5 в , с внутренним сопротивлением источников r1=r2=0,1 Ом, работающих на общую нагрузку R = 2 Ома. Как же будут распределены токи в этой цепи, и какие они имеют значения, нам предстоит выяснить.

Рисунок 4. Пример расчета сложной электрической цепи.

Теперь согласно первому закону Кирхгофа для узла А составляем такое выражение:

так как I1 и I 2 втекают в узел А , а ток I вытекает из него.

Используя второй закон Кирхгофа, запишем еще два выражения для внешнего контура и внутреннего левого контура, выбрав направление обхода по часовой стрелке.

Для внешнего контура:

Для внутреннего левого контура:

Итак, у нас получилась система их трех уравнений с тремя неизвестными:

Теперь подставим в эту систему известные нам величины напряжений и сопротивлений:

12 = 0,1I1 +2I.

Далее из первого и второго уравнения выразим ток I2

12 = 0,1I1 + 2I.

Следующим шагом приравняем первое и второе уравнение и получим систему из двух уравнений:

12 = 0,1I1 + 2I.

Выражаем из первого уравнения значение I

I = 2I1– 70;

И подставляем его значение во второе уравнение

Решаем полученное уравнение

12 = 0,1I1 + 4I1 – 140.

12 + 140= 4,1I1

Теперь в выражение I = 2I1– 70 подставим значение

I1=37,073 (А) и получим:

I = 2*37,073 – 70 = 4,146 А

Ну, а согласно первому закона Кирхгофа ток I2=I — I1

I2=4,146 — 37,073 = -32,927

Знак «минус» для тока I2 означает, то что мы не правильно выбрали направление тока, то есть в нашем случае ток I 2 вытекает из узла А .

Теперь полученные данные можно проверить на практике или смоделировать данную схему например в программе Multisim.

Скриншот моделирования схемы для проверки законов Кирхгофа вы можете посмотреть на рисунке 5.

Рисунок 5. Сравнение результатов расчета и моделирования работы цепи.

Для закрепления результатата предлагаю посмотреть подготовленное мной видео:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Закон Кирхгофа, виды и его применение

Введение

Чтобы иметь правильное представление об электрической цепи, необходимо изучить законы электричества. Одним из наиболее важных законов для решения электрических цепей является закон Кирхгофа. С помощью закона Кирхгофа становится очень легко решать схемы быстро и легко. Соответственно, Кирхгоф дал два закона: закон тока Кирхгофа и закон напряжения Кирхгофа. Законы Кирхгофа помогают анализировать цепь.

Теперь возникает вопрос, кем был Кирхгоф? Густав Роберт Кирхгоф, немецкий физик, родился 12 марта 1824 года в Кенигсберге, Пруссия. Первоначально он начал свои исследования проводимости электричества. Это исследование привело его к формулировке двух законов замкнутых электрических цепей в 1845 году, то есть закона тока Кирхгофа и закона напряжения Кирхгофа.

Что такое закон Кирхгофа?

В 1845 году Густав Роберт Кирхгоф, немецкий физик, вывел законы, объясняющие сохранение энергии и тока в электрической цепи. Эти законы помогают анализировать и рассчитывать электрический импеданс и сопротивление сложной цепи переменного тока. Давайте теперь разберемся с этой концепцией в деталях. Есть два закона Кирхгофа:

Текущий закон Кирхгофа — это первый закон Кирхгофа или правило пересечения Кирхгофа. Согласно правилу соединения, в электрической цепи полный ток в соединении равен сумме токов вне соединения.

Закон напряжения Кирхгофа также известен как второй закон Кирхгофа или правило петли Кирхгофа. Согласно правилу петли сумма напряжений вокруг замкнутой электрической цепи равна нулю.

Текущий закон Кирхгофа  

Текущий закон Кирхгофа гласит: «Ток, втекающий в узел или соединение, должен быть равен току, вытекающему из него». 

Другими словами, Он утверждает, что алгебраическая сумма всех токов в данной электрической цепи равна нулю.

Таким образом, этот закон указывает на сохранение заряда. В физике заряд является сохраняющейся величиной, т. е. количество входящего заряда равно количеству выходящего из него заряда.

Теперь рассмотрим эту концепцию на нескольких примерах:

Рассмотрим схему, в которой в узле O токи I1, I2, I3 являются входящими токами, а токи I4, I5 — исходящими токами. Теперь, согласно правилу соединения, сумма входящих токов равна исходящим токам; следовательно,

i1+i2+i3 = i4+i5

i1+i2+i3+(-i4)+(-i5) = 0

Предположим, в узле A есть четыре входящих тока i1, i2, i3, i4 и three отходящие токи I5, I6, I7.

I1= 5, I2= 10, I3= 4, I4= 7, I5=6, I6 = 12, I7 = ? Вычислите I7.

Согласно действующему закону Кирхгофа,

 I1 + I2 + I3 + I4 = I5 + I6 + I7

 I1 + I2 + I3 + I4 – I5 – I6 – I7 = 0 6 – 12 = I7

I7 = 8

Из приведенных выше примеров очень ясно, что соглашение о знаках является неотъемлемой частью решения электрической цепи. Здесь мы считаем входящий ток положительным, а исходящий ток отрицательным.

Пример 1: Определить электрический ток, протекающий в цепи, в которой есть 2 батареи по 12 вольт и 3 резистора по 1,2 и 6 Ом

Решение:

будет таким же, как направление вращения по часовой стрелке.

– I – 6I + 12 – 2I + 12 = 0

-9I + 24 = 0

-9I = -24

I = 24 / 9

I = 8 / 3 А

напряжение по закону Кирха

Закон напряжения Кирхгофа гласит, что в любом замкнутом контуре электрической цепи сумма всех напряжений на компонентах, обеспечивающих электроэнергию, должна быть равна сумме всех напряжений на других элементах того же контура.

Другими словами, алгебраическая сумма всех напряжений в контуре равна 0,

Чтобы получить правильный результат, важно сохранять направление по часовой или против часовой стрелки.

Этот закон указывает на закон сохранения энергии.

Работа выполняется электрическими зарядами или электрическими зарядами за счет электрических сил внутри электрического компонента.

Суммарная работа, совершаемая носителями заряда над остальным компонентом, равна полной работе, совершаемой над носителями заряда за счет электрических сил. Таким образом, это означает, что разность потенциалов на элементе должна быть 0,

Процедура решения проблемы:

Алгебраическая сумма напряжений вблизи замкнутого контура должна быть равна нулю.

Нарисуйте направление тока и обозначьте направление напряжения. Помните, что напряжение на источнике напряжения всегда положительно к отрицательному концу.

В качестве направления падения напряжения укажите направление по часовой стрелке или против часовой стрелки. Как только направление определено, в каждом цикле используется одно и то же соглашение — знак + для напряжения в направлении тока и — в противном случае.

Применить КВЛ.

Применение законов КИРХГОФФА

Этот закон анализирует работу источников тока и напряжения в электрической цепи.

Применение в повседневной жизни:

  • В пустынях дни очень жаркие, так как песок неровный; следовательно, это хороший поглотитель тепла. Согласно законам Кирхгофа, хороший поглотитель — это хороший излучатель. Соответственно, ночи будут прохладными. Вот почему в пустынях дни жаркие, а ночи холодные.
  • Этот закон используется для расчета неизвестных значений тока и напряжения в цепи.
  • Закон Кирхгофа был первым законом, который помог анализу и расчету сложных цепей стать управляемым и простым.
  • Мост Уитстона является важным применением законов Кирхгофа. Он также используется при анализе сетки и узлов.

Заключение

Таким образом, закон Кирхгофа является фундаментальным электрическим законом, который помогает быстро решить и проанализировать электрическую цепь. Расчет неизвестных тока и напряжения в электрической цепи становится проще. Первый закон Кирхгофа основан на сохранении зарядов, а второй закон Кирхгофа основан на сохранении энергии. Густав Роберт Кирхгоф описал его в 1845 г.

Первый закон Кирхгофа — это правило перехода или закон тока, а второй закон Кирхгофа — это правило петли или закон напряжения. Это важный и основной закон электричества.

Электричество | Определение, факты и типы

электрическая сила между двумя зарядами

Смотреть все СМИ

Ключевые люди:
Томас Эдисон Рукс Эвелин Белл Кромптон Эдвард Уэстон Чарльз Фрэнсис Браш Флиминг Дженкин
Похожие темы:
биоэлектричество термоэлектричество электрический потенциал электролиз электрофорез

Просмотреть весь связанный контент →

Резюме

Прочтите краткий обзор этой темы

электричество , явление, связанное с неподвижными или движущимися электрическими зарядами. Электрический заряд является фундаментальным свойством материи и переносится элементарными частицами. В электричестве задействованной частицей является электрон, несущий заряд, условно обозначаемый как отрицательный. Таким образом, различные проявления электричества являются результатом накопления или движения множества электронов.

Электростатика — это изучение электромагнитных явлений, происходящих при отсутствии движущихся зарядов, т. е. после установления статического равновесия. Заряды быстро достигают своего положения равновесия, потому что электрическая сила чрезвычайно велика. Математические методы электростатики позволяют рассчитывать распределения электрического поля и электрического потенциала по известной конфигурации зарядов, проводников и изоляторов. И наоборот, по набору проводников с известными потенциалами можно рассчитать электрические поля в областях между проводниками и определить распределение заряда на поверхности проводников. Электрическую энергию набора зарядов в состоянии покоя можно рассматривать с точки зрения работы, необходимой для сборки зарядов; в качестве альтернативы можно также считать, что энергия находится в электрическом поле, создаваемом этим набором зарядов.

Наконец, энергию можно хранить в конденсаторе; энергия, необходимая для зарядки такого устройства, запасается в нем в виде электростатической энергии электрического поля.

Изучите, что происходит с электронами двух нейтральных тел, потертых друг о друга в сухой среде

Просмотреть все видео к этой статье

Статическое электричество — это известное электрическое явление, при котором заряженные частицы переходят от одного тела к другому. Например, если два предмета потереть друг о друга, особенно если эти предметы являются изоляторами, а окружающий воздух сухой, предметы приобретают равные и противоположные заряды, и между ними возникает сила притяжения. Объект, потерявший электроны, становится положительно заряженным, а другой — отрицательно заряженным. Сила — это просто притяжение между зарядами противоположного знака. Свойства этой силы были описаны выше; они включены в математическое соотношение, известное как закон Кулона. Электрическая сила на заряде Q 1 при этих условиях, за счет заряда Q 2 на расстоянии r , дается законом Кулона,

Жирные буквы в уравнении указывают на векторный характер силы, а единичный вектор

— это вектор размера 1, который указывает от заряда Q 2 до заряда Q 1 . Константа пропорциональности k равна 10 −7 c 2 , где c — скорость света в вакууме; k имеет числовое значение 8,99 × 10 9 ньютонов-квадратный метр на кулон в квадрате (Нм 2 /C 2 ). На рис. 1 показано усилие на Q 1 из-за Q 2 . Числовой пример поможет проиллюстрировать эту силу. Оба Q 1 и Q 2 выбраны произвольно как положительные заряды, каждый с величиной 10 −6 кулона. Заряд Q 1 расположен по координатам
x
, y , z со значениями 0,03, 0, 0 соответственно, а Q 2 имеет координаты все. координаты даны в метрах. Таким образом, расстояние между Q 1 и Q 2 составляет 0,05 метра.

Britannica Quiz

Электричество: короткие замыкания и постоянные токи

Величина силы F на заряде Q 1 , рассчитанная по уравнению (1), составляет 3,6 ньютона; его направление показано на рис. 1. Сила, действующая на Q 2 из-за Q 1 , равна − F , которая также имеет величину 3,6 ньютона; однако его направление противоположно направлению F . Сила F может быть выражена через ее компоненты вдоль x

и y , так как вектор силы лежит в плоскости x y . Это делается с помощью элементарной тригонометрии из геометрии рисунка 1, а результаты показаны на рисунке 2. Таким образом, в ньютонах. Закон Кулона математически описывает свойства электрического взаимодействия между покоящимися зарядами. Если бы заряды имели противоположные знаки, сила была бы притягивающей; притяжение будет указано в уравнении (1) отрицательным коэффициентом единичного вектора р̂. Таким образом, электрическая сила, действующая на Q 1 , будет иметь направление, противоположное единичному вектору , и будет указывать от Q 1 до 9015 Q .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *