Закон Ома. Формула Закона Ома
Закон Ома, основанный на опытах, представляет собой в электротехнике основной закон, который устанавливает связь силы электрического тока с сопротивлением и напряжением.
Появление смартфонов, гаджетов, бытовых приборов и прочей электротехники коренным образом изменило облик современного человека. Приложены огромные усилия, направленные на исследование физических закономерностей для улучшения старой и создания новой техники. Одной из таких зависимостей является закон Ома.
Георг Симон ОмЗакон Ома – полученный экспериментальным путём (эмпирический) закон, который устанавливает связь силы тока в проводнике с напряжением на концах проводника и его сопротивлением, был открыт в 1826 году немецким физиком-экспериментатором Георгом Омом.
Строгая формулировка закона Ома может быть записана так: сила тока в проводнике прямо пропорциональна напряжению на его концах (разности потенциалов) и обратно пропорциональна сопротивлению этого проводника.
Формула закона Ома записывается в следующем виде:
где
I – сила тока в проводнике, единица измерения силы тока — ампер [А];
U – электрическое напряжение (разность потенциалов), единица измерения напряжения- вольт [В];
R – электрическое сопротивление проводника, единица измерения электрического сопротивления — ом [Ом].
Согласно закону Ома, увеличение напряжения, например, в два раза при фиксированном сопротивлении проводника, приведёт к увеличению силы тока также в два раза
И напротив, уменьшение тока в два раза при фиксированном напряжении будет означать, что сопротивление увеличилось в два раза.
Рассмотрим простейший случай применения закона Ома. Пусть дан некоторый проводник сопротивлением 3 Ом под напряжением 12 В. Тогда, по определению закона Ома, по данному проводнику течет ток равный:
Существует мнемоническое правило для запоминания этого закона, которое можно назвать треугольник Ома. Изобразим все три характеристики (напряжение, сила тока и сопротивление) в виде треугольника. В вершине которого находится напряжение, в нижней левой части – сила тока, а в правой – сопротивление.
Правило работы такое: закрываем пальцем величину в треугольнике, которую нужно найти, тогда две оставшиеся дадут верную формулу для поиска закрытой.
Где и когда можно применять закон Ома?
Нужна помощь в написании работы?
Закон Ома в упомянутой форме справедлив в достаточно широких пределах для металлов. Он выполняется до тех пор, пока металл не начнет плавиться. Менее широкий диапазон применения у растворов (расплавов) электролитов и в сильно ионизированных газах (плазме).
Работая с электрическими схемами, иногда требуется определять падение напряжения на определенном элементе. Если это будет резистор с известной величиной сопротивления (она проставляется на корпусе), а также известен проходящий через него ток, узнать напряжение можно с помощью формулы Ома, не подключая вольтметр.
Значение Закона Ома
Закон Ома определяет силу тока в электрической цепи при заданном напряжении и известном сопротивлении.
Он позволяет рассчитать тепловые, химические и магнитные действия тока, так как они зависят от силы тока.
Закон Ома является чрезвычайно полезным в технике(электронной/электрической), поскольку он касается трех основных электрических величин: тока, напряжения и сопротивления. Он показывает, как эти три величины являются взаимозависимыми на макроскопическом уровне.
Если бы было можно охарактеризовать закон Ома простыми словами, то наглядно это выглядело бы так:
Из закона Ома вытекает, что замыкать обычную осветительную сеть проводником малого сопротивления опасно. Сила тока окажется настолько большой, что это может иметь тяжелые последствия.
Три закона Ома
Недавно мы выпустили переиздание книги Фрэнка Вильчека (Frank Wilczek)
Из третьей главы. Второй закон Ома
Второй закон Эйнштейна, m = E/c2, поднимает вопрос о том, может ли масса быть понята более глубоко — как энергия. Можем ли мы создать, как выразился Уилер, «массу без массы»?
Когда я ещё только собирался начать преподавать в Принстоне, мой друг и наставник Сэм Трейман позвал меня в свой кабинет. Он хотел поделиться со мной своей мудростью. Сэм вытащил из ящика стола потрёпанное руководство в мягкой обложке и сказал мне: «Во время Второй мировой войны ВМС приходилось в спешке обучать новобранцев налаживанию и использованию радиосвязи. Многие из этих новобранцев прибывали прямо с ферм, так что быстро ввести их в курс дела было очень трудно. С помощью той великолепной книги командованию военно-морского флота это удалось. Это шедевр педагогики. Особенно первая глава. Взгляни».
Он вручил мне книгу, открытую на первой главе. Она называлась «Три закона Ома». Я был знаком с одним законом Ома, известным соотношением V = IR, который связывает напряжение (V), силу тока (I) и сопротивление (R) в электрической цепи.
Это оказалось первым законом Ома.
Мне было очень интересно узнать, каковы два других закона Ома. Перевернув несколько хрупких пожелтевших страниц, я обнаружил второй закон Ома: I = V/R. Я предположил, что третий закон Ома формулируется как R = I/V, и оказался прав.
Открывать новые законы легко
Тем, кто знаком с элементарной алгеброй, так очевидно, что эти три закона эквивалентны друг другу, что данная история воспринимается как шутка. Однако в ней заключён глубокий смысл. (Кроме того, в ней есть и неглубокий смысл, который, как мне кажется, Сэм хотел до меня донести. При обучении начинающих вы должны несколько раз сказать одно и то же, но по-разному. Соотношения, которые бесспорны для профессионала, могут не быть таковыми для новичка. Студенты не будут возражать против объяснения очевидного. Очень немногие люди обижаются, когда вы позволяете им почувствовать себя умными.)
Глубокий смысл содержит заявление великого физика-теоретика Поля Дирака. Когда его спросили, как он открывает новые законы природы, Дирак ответил: «Я играю с уравнениями». Суть в том, что различные способы написания одного и того же уравнения могут говорить о совершенно разных вещах, даже если они являются логически эквивалентными.
Второй закон Эйнштейна
Второй закон Эйнштейна формулируется следующим образом:
m = E/c2.
Первый закон Эйнштейна — это, разумеется, E = mc2. Здорово, что первый закон предполагает возможность получения большого количества энергии из небольшого количества массы. Он наводит на мысль о ядерных реакторах и ядерных бомбах.
Второй закон Эйнштейна предполагает нечто совершенно иное.
Он предполагает возможность объяснения того, как масса возникает из энергии.
На самом деле этот закон неправильно называть «вторым».
В оригинальной работе Эйнштейна 1905 года вы не найдёте уравнения E = mc2. Вы встретите уравнение m = E/c2. (Поэтому, возможно, нам следует назвать его нулевым законом Эйнштейна.)
На самом деле в качестве названия этой статьи используется вопрос: «Зависит ли инерция тела от содержащейся в нем энергии?»
Другими словами, может ли некоторое количество массы тела возникать из энергии содержащегося в нем вещества? С самого начала Эйнштейн размышлял о концептуальных основах физики, а не о возможности создания бомб или реакторов.
Понятие энергии играет гораздо более важную роль в современной физике, чем понятие массы. Это проявляется во многих отношениях. Сохраняется именно энергия, а не масса. Именно энергия фигурирует в таких фундаментальных уравнениях, как уравнение Больцмана для статистической механики, уравнения Шрёдингера для квантовой механики и уравнение Эйнштейна для гравитации. Масса в более техническом смысле проявляется в качестве метки для неприводимых представлений группы Пуанкаре.
(Я даже не буду пытаться объяснить, что означает предыдущее утверждение, к счастью, суть заключается в самом факте утверждения.)
Таким образом, вопрос Эйнштейна бросает вызов. Если мы сможем объяснить массу в терминах энергии, мы улучшим наше описание мира. В этом случае в нашем рецепте нам потребуется меньшее количество ингредиентов. Второй закон Эйнштейна позволяет дать хороший ответ на вопрос, который мы задали ранее. Откуда берётся масса? Может быть, из энергии. На самом деле, как мы увидим далее, в основном так и есть.
Источник: https://22century.ru/popular-science-publications/tonkaya-fizika-massa-efir-i-obedinenie-vsemirnyh-sil?
для участка цепи, для полной цепи +ВИДЕО
Чтобы хоть немного разбираться в электрике, необходимо знать основополагающие законы. Один из них — закон Ома. С него начинают изучение электрики и не зря. Он иллюстрирует зависимость параметров электрической цепи друг от друга.
Содержание статьи
Как звучит закон Ома для участка цепи
Есть говорить об официальной формулировке, то закон Ома можно озвучить так:
Сила тока имеет прямую зависимость от напряжения и обратную от сопротивления. Это высказывание справедливо для участка цепи с каким-то определенным и стабильным сопротивлением.
Формула этой зависимости на рисунке. Тут I — это сила тока, U — напряжение, R — сопротивление.
Формула закона Ома
- Чем больше напряжение, тем больше ток.
- Чем больше сопротивление, тем ток меньше.
Не так легко представить себе смысл этого выражения. Ведь электричество нельзя увидеть. Мы только приблизительно знаем что это такое. Попытаемся уяснить себе смысл этого закона при помощи аналогий.
Разбираемся что такое ток и сопротивление
Начнем с понятия электрического тока. Если говорить коротко, электрический ток применительно к металлам — это направленное движение электронов — отрицательно заряженных частиц. Их обычно представляют в виде небольших кружочков. В спокойном состоянии они передвигаются хаотически, постоянно меняя свое направление. При определенных условиях — возникновении разницы потенциалов — эти частицы начинают определенное движение в какую-то сторону. Вот это движение и есть электрический ток.
Чтобы было понятнее, можно сравнить электроны с водой, разлитой на какой-то плоскости. Пока плоскость неподвижна, вода не движется. Но, как только появился наклон (возникла разница потенциалов), вода пришла в движение. С электронами примерно так же.
Примерно так можно себе представить электрический ток
Теперь надо понять, что такое сопротивление и почему с силой тока у них обратная связь: чем выше сопротивление, тем меньше ток. Как известно, электроны движутся по проводнику. Обычно это металлические провода, так как металлы обладают хорошей способностью проводить электрический ток. Мы знаем, что металл имеет плотную кристаллическую решетку: много частиц, которые расположены близко и связаны между собой. Электроны, пробираясь между атомами металла, на них наталкиваются, что затрудняет их движение. Это помогает проиллюстрировать сопротивление, которое оказывает проводник. Вот теперь становится понятным, почему, чем выше сопротивление, тем меньше сила тока — чем больше частиц, тем электронам сложнее преодолевать путь, делают они это медленнее. С этим, вроде, разобрались.
Если у вас есть желание проверить эту зависимость опытным путем, найдите переменный резистор, соедините последовательно резистор — амперметр — источник тока (батарейка). Еще желательно в цепь вставить выключатель — обычный тумблер.
Цепь для проверки зависимости силы тока от сопротивления
Крутя ручку резистора вы изменяете сопротивление. При этом показания на амперметре, который измеряет силу тока, тоже меняются. Причем чем больше сопротивление, тем меньше отклоняется стрелка — меньше ток. Чем сопротивление меньше — тем сильнее отклоняется стрелка — ток больше.
Вместо стрелочного прибора можно использовать цифровой мультиметр в режиме измерения постоянного тока. В этом случае отслеживаются показания на жидкокристаллическом цифровом табло.
Зависимость тока от сопротивления почти линейная, то есть на графике отражается почти прямой линией. Почему почти — об этом надо говорить отдельно, но это другая история.
Говорим о напряжении
Не менее важно понять что такое напряжение. Давайте сразу начнем с аналогии и снова используем воду. Пусть в воронке находится вода. Она просачивается через узкое горлышко, которое создает сопротивление. Если представить, что на воду уложили груз, движение воды ускорится. Этот груз — и есть напряжение. И теперь тоже понятно, почему чем выше напряжение, тем сильнее ток — чем сильнее давление, тем быстрее будет двигаться вода. То есть, зависимость прямая: больше напряжение — больше ток. И именно это положение отражает закон Ома — «давление» стоит в числителе (в верхней части дроби).
Можно попробовать представить напряжение по-другому. Есть все те же электроны, которые скопились на одном краю источника питания. На втором краю их мало. Так как каждый из электронов имеет какой-то заряд, там, где их много, суммарный заряд больше, где мало — меньше. Разница между зарядами и есть напряжение. Это тоже несложно представить. С точки зрения электричества — это более корректное представление, хоть и не точное.
На тему закона Ома есть немало забавных картинок, позволяющих чуть лучше понять все эти явления. Одна из них перед вами и иллюстрирует, как ток зависит от напряжения и сопротивления. Смотрите что получается: сопротивление старается уменьшить ток (обратная зависимость), а с ростом напряжения он увеличивается (прямая зависимость). Это и есть закон Ома, но переданный простыми словами.
Благодаря картинке просто понять зависимость тока от напряжения и сопротивления
Если вы хотите убедиться и в этой зависимости, тоже надо создать простенькую цепь. Но нужен будет либо регулируемый источник питания, либо несколько батареек, которые выдают разное напряжение. Или можно последовательно включать несколько батареек — тоже вариант. Но менять/подпаивать батарейки надо при разорванной цепи (выключенном тумблере).
В этой схеме используются два измерительных прибора: амперметр включается последовательно с нагрузкой (резистор на схеме ниже), вольтметр параллельно нагрузке.
Схема для иллюстрации закона Ома
Так как другие параметры цепи остаются в норме, при увеличении напряжения мы увидим увеличение силы тока. Чем больше напряжение подаем, тем больше отклоняются стрелки вольтметра и амперметра. Если задаться целью построить график, он будет в виде прямой. Если поставить другое сопротивление, график также будет в виде прямой, но угол наклона ее изменится.
Что изменится для полной цепи
В ситуации выше рассмотрен только некоторый участок цепи, обладающий каким-то фиксированным сопротивлением. Мы предполагаем, что при определенных условиях электроны начнут движение. Причина этого движения — тот самый груз на картинке. В реальных условиях это — источник тока. Это может быть батарейка, генератор постоянного тока, подключенный шнур блока питания и т.д. При подключении источника питания к проводнику в нем начинает протекать ток. Это мы тоже знаем и наблюдаем, когда включаем лампу в сеть, ставим заряжаться мобильный телефон и т.д.
Полная цепь включает в себя источник питания
Участок цепи имеет какое-то сопротивление. Это понятно. Но источник питания тоже имеет сопротивление. Его обычно обозначают маленько буквой r. Так как ток бежит по кругу, ему приходится преодолевать сопротивление провода и сопротивление источника тока. Вот это суммарное сопротивление цепи и источника питания — называют импеданс. Говорят еще что это комплексное сопротивление. В формуле Ома для полной цепи его отображают при помощи суммы. В знаменателе стоит сумма сопротивлений цепи и внутреннего сопротивления источника тока (R + r).
Всем, наверное, понятно, что именно источник тока создает нужные условия для движения электронов. Все благодаря тому, что он обладает ЭДС — электродвижущей силой. Эта величина обозначается обычно E. Чем больше эта сила, тем больше ток. Это тоже, вроде, понятно. Поэтому обозначение ЭДС — латинскую букву E — ставят в числитель. Таким образом, формулировка закона Ома для полной цепи звучит так:
Сила тока прямо пропорциональна ЭДС источника тока и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника тока.
Вроде не слишком сложно, но можно попробовать еще проще:
- Чем выше ЭДС источника тока, тем больше ток.
- Чем больше суммарное сопротивление, тем ток меньше.
Как найти сопротивление, напряжение
Зная формулу закона Ома для участка цепи, мы можем рассчитать напряжение и сопротивление. Напряжение находится как произведение силы тока и сопротивления.
Формула напряжения и сопротивления по закону Ома
Сопротивление можно найти, разделив напряжение на ток. Все действительно несложно. Если мы знаем, что к участку цепи было проложено определенное напряжение и знаем какой при этом был ток, мы можем рассчитать сопротивление. Для этого напряжение делим на ток. Получаем как раз величину сопротивления этого куска цепи.
С другой стороны, если мы знаем сопротивление и силу тока, которая должна быть, мы сможем рассчитать напряжение. Надо всего лишь перемножить силу тока и сопротивление. Это даст напряжение, которое необходимо подать на этот участок цепи чтобы получить требуемый ток.
Параллельное и последовательное соединение
В электрике элементы соединяются либо последовательно — один за другим, либо параллельно — это когда к одной точке подключены несколько входов, к другой — выходы от тех же элементов.
Закон Ома для параллельного и последовательного соединения
Последовательное соединение
Как работает закон Ома для этих случаев? При последовательном соединении сила тока, протекающая через цепочку элементов, будет одинаковой. Напряжение участка цепи с последовательно подключенными элементами считается как сумма напряжений на каждом участке. Как можно это объяснить? Протекание тока через элемент — это перенос части заряда с одной его части в другую. То есть, это определенная работа. Величина этой работы и есть напряжение. Это физический смысл напряжения. Если с этим понятно, двигаемся дальше.
Последовательное соединение и параметры этого участка цепи
При последовательном соединении приходится переносить заряд по очереди через каждый элемент. И на каждом элементе это определенный «объем» работы. А чтобы найти объем работы на всем участке цепи, надо работу на каждом элементе сложить. Вот и получается, что общее напряжение — это сумма напряжений на каждом из элементов.
Точно так же — при помощи сложения — находится и общее сопротивление участка цепи. Как можно это себе представить? Ток, протекая по цепочке элементов, последовательно преодолевает все сопротивления. Одно за другим. То есть чтобы найти сопротивление, которое он преодолел, надо сопротивления сложить. Примерно так. Математический вывод более сложен, а так понять механизм действия этого закона проще.
Параллельное соединение
Параллельное соединение — это когда начала проводников/элементов сходятся в одной точке, а в другой — соединены их концы. Постараемся объяснить законы, которые справедливы для соединений этого типа. Начнем с тока. Ток какой-то величины подается в точку соединения элементов. Он разделяется, протекая по всем проводникам. Отсюда делаем вывод, что общий ток на участке равен сумме тока на каждом из элементов: I = I1 + I2 + I3.
Теперь относительно напряжения. Если напряжение — это работа по перемещению заряда, тоо работа, которая необходима на перемещение одного заряда будет одинакова на любом элементе. То есть, напряжение на каждом параллельно подключенном элементе будет одинаковым. U = U1=U2=U3. Не так весело и наглядно, как в случае с объяснением закона Ома для участка цепи, но понять можно.
Законы для параллельного соединения
Для сопротивления все несколько сложнее. Давайте введем понятие проводимости. Это характеристика, которая показывает насколько легко или сложно заряду проходить по этому проводнику. Понятно, что чем меньше сопротивление, тем проще току будет проходить. Поэтому проводимость — G — вычисляется как величина обратная сопротивлению. В формуле это выглядит так: G = 1/R.
Для чего мы говорили о проводимости? Потому что общая проводимость участка с параллельным соединением элементов равна сумме проводимости для каждого из участков. G = G1 + G2 + G3 — понять несложно. Насколько легко току будет преодолеть этот узел из параллельных элементов, зависит от проводимости каждого из элементов. Вот и получается, что их надо складывать.
Теперь можем перейти к сопротивлению. Так как проводимость — обратная к сопротивлению величина, можем получить следующую формулу: 1/R = 1/R1 + 1/R2 + 1/R3.
Что нам дает параллельное и последовательное соединение?
Теоретические знания — это хорошо, но как их применить на практике? Параллельно и последовательно могут соединяться элементы любого типа. Но мы рассматривали только простейшие формулы, описывающие линейные элементы. Линейные элементы — это сопротивления, которые еще называют «резисторы». Итак, вот как можно использовать полученные знания:
- Если в наличии нет резистора большого номинала, но есть несколько более «мелких», нужное сопротивление можно получить соединив последовательно несколько резисторов. Как видите, это полезный прием.
- Для продления срока жизни батареек, их можно соединять параллельно. Напряжение при этом, согласно закону Ома, останется прежним (можно убедиться, измерив напряжение мультиметром). А «срок жизни» сдвоенного элемента питания будет значительно больше, нежели у двух элементов, которые сменят друг друга. Только обратите внимание: параллельно соединять можно только источники питания с одинаковым потенциалом. То есть, севшую и новую батарейки соединять нельзя. Если все-таки соединить, та батарейка которая имеет больший заряд, будет стремиться зарядить менее заряженную. В результате общий их заряд упадет до низкого значения.
Практическое применение закона Ома: можно создавать источники питания с нужным напряжением и силой тока
В общем, это наиболее распространенные варианты использования этих соединений.
Закон Ома
Закон Ома — физический закон, определяющий зависимость между электрическими величинами — напряжением, сопротивлением и током для проводников.
Впервые открыл и описал его в 1826 году немецкий физик Георг Ом, показавший (с помощью гальванометра) количественную связь между электродвижущей силой, электрическим током и свойствами проводника, как пропорциональную зависимость.
Впоследствии свойства проводника, способные противостоять электрическому току на основе этой зависимости,
стали называть электрическим сопротивлением (Resistance), обозначать в расчётах и на схемах буквой R и измерять в Омах в честь первооткрывателя.
Сам источник электрической энергии также обладает внутренним сопротивлением, которое принято обозначать буквой r.
Закон Ома для участка цепи
Со школьного курса физики всем хорошо известна классическая трактовка Закона Ома:
Сила тока в проводнике прямо пропорциональна напряжению на концах проводника и обратно пропорциональна его сопротивлению.
I = U/R
Это значит, если к концам проводника сопротивлением R = 1 Ом приложено напряжение U = 1 Вольт, тогда величина тока I в проводнике будет равна 1/1 = 1 Ампер.
Отсюда следуют ещё два полезных соотношения:
Если в проводнике, сопротивлением 1 Ом, протекает ток 1 Ампер, значит на концах проводника напряжение 1 Вольт (падение напряжения).
U = IR
Если на концах проводника есть напряжение 1 Вольт и по нему протекает ток 1 Ампер, значит сопротивление проводника равно 1 Ом.
R = U/I
Вышеописанные формулы в таком виде могут быть применимы для переменного тока лишь в том случае, если цепь состоит только из активного сопротивления R.
Кроме того, следует помнить, что Закон Ома справедлив только для линейных элементов цепи.
Предлагается простой Онлайн-калькулятор для практических расчётов.
Закон Ома. Расчёт напряжения, сопротивления, тока, мощности.
После сброса ввести два любых известных параметра.
I=U/R; U=IR; R=U/I; |
Закон Ома для замкнутой цепи
Если к источнику питания подключить внешнюю цепь сопротивлением R, в цепи пойдёт ток с учётом внутреннего сопротивления источника:
I — Сила тока в цепи.
— Электродвижущая сила (ЭДС) — величина напряжения источника питания не зависящая от внешней цепи (без нагрузки).
Характеризуется потенциальной энергией источника.
r — Внутреннее сопротивление источника питания.
Для электродвижущей силы внешнеее сопротивление R и внутреннее r соединены последовательно, значит величина тока в цепи определится значением ЭДС и суммой сопротивлений: I = /(R+r) .
Напряжение на выводах внешней цепи определится исходя из силы тока и сопротивления R соотношением, которое уже рассматривалось выше: U = IR.
Напряжение U, при подключении нагрузки R, всегда будет меньше чем ЭДС на величину произведения I*r, которую называют падением напряжения на внутреннем сопротивлении источника питания.
С этим явлением мы сталкиваемся достаточно часто, когда видим в работе частично разряженные батарейки или аккумуляторы.
По мере разряда, увеличивается их внутреннее сопротивление, следовательно, увеличивается падение напряжение внутри источника,
значит уменьшается внешнее напряжение U = — I*r.
Чем меньше ток и внутреннее сопротивление источника, тем ближе по значению его ЭДС и напряжение на его выводах U.
Если ток в цепи равен нулю, следовательно, = U. Цепь разомкнута, ЭДС источника равна напряжению на его выводах.
В случаях, когда внутренним сопротивлением источника можно пренебречь (r ≈ 0), напряжение на выводах источника будет равно ЭДС ( ≈ U )
независимо от сопротивления внешней цепи R.
Такой источник питания называют источником напряжения.
Закон Ома для переменного тока
При наличии индуктивности или ёмкости в цепи переменного тока необходимо учитывать их реактивное сопротивление.
В таком случае запись Закона Ома будет иметь вид:
I = U/Z
Здесь Z — полное (комплексное) сопротивление цепи — импеданс. В него входит активная R и реактивная X составляющие.
Реактивное сопротивление зависит от номиналов реактивных элементов, от частоты и формы тока в цепи.
Более подробно ознакомится с комплексным сопротивлением можно на страничке импеданс.
С учётом сдвига фаз φ, созданного реактивными элементами, для синусоидального переменного тока обычно записывают Закон Ома в комплексной форме:
— комплексная амплитуда тока. = Iampe jφ
— комплексная амплитуда напряжения. = Uampe jφ
— комплексное сопротивление. Импеданс.
φ — угол сдвига фаз между током и напряжением.
e — константа, основание натурального логарифма.
j — мнимая единица.
Iamp , Uamp — амплитудные значения синусоидального тока и напряжения.
Нелинейные элементы и цепи
Закон Ома не является фундаментальным законом природы и может быть применим в ограниченных случаях, например, для большинства проводников.
Его невозможно использовать для расчёта напряжения и тока в полупроводниковых или электровакуумных приборах, где эта зависимость не является пропорциональной и её можно определять только с помощью вольтамперной характеристики (ВАХ). К данной категории элементов относятся все полупроводниковые приборы (диоды, транзисторы, стабилитроны, тиристоры, варикапы и т.д.) и электронные лампы.
Такие элементы и цепи, в которых они используются, называют нелинейными.
Похожие статьи: Постоянный ток. Переменный ток.
Замечания и предложения принимаются и приветствуются!
Основные понятия
Для быстрого запоминания формулы Ома для участка цепи необходимо разобраться с входящими в ее состав физическими величинами. Первой среди них станет сила тока. Он представляет собой направленное движение заряженных элементарных частиц — электронов. Каждый из них обладает электрозарядом (e), равным -1,60217662 x 10-19 кулона.
В результате можно установить одну зависимость — через поверхность проводника за некоторый отрезок времени протекает электрозаряд, равный сумме зарядов всех частиц, прошедших через проводник. Силой тока называется величина, соответствующая отношению величины заряда к отрезку времени. Измеряется она в амперах (А).
Второй показатель, входящий в формулу для участка цепи, называется разностью потенциалов или напряжением. Именно благодаря ему электроны перемещаются, а в проводнике появляется электрический ток. Электропотенциал определяет способность электрополя выполнять определенную работу по перемещению зарядов из одной точки в иную.
Таким образом, напряжение представляет собой физическую величину, соответствующую по показателю работе, выполняемой электрополем для передвижения заряда. Она измеряется в вольтах (В). 1 В представляет собой напряжение, которое перемещает заряд, равный 1 Кл, выполняя для этого работу в 1 Дж. Сейчас известны две величины, входящие в состав формулы закона Ома:
- сила тока;
- напряжение.
Последней величиной, с которой необходимо познакомиться при изучении закона Ома, является сопротивление. При движении под воздействием электрополя электроны постоянно сталкиваются с атомами материала, из которого изготовлен проводник. Это приводит к его нагреву и последующим колебаниям атомов в кристаллической решетке.
В результате движение электронов еще сильнее затрудняется. Это явление и является сопротивлением. На его величину влияют следующие параметры:
- сечение провода;
- температура;
- материал проводника.
Сопротивление измеряется в омах (Ом).
Формулировка и объяснение
Человеком, который смог получить основной закон электротехники, стал ученый Георг Ом из Германии. Выведенный им постулат имеет довольно простое определение — сила тока на участке цепи обратно пропорциональна сопротивлению и прямо пропорциональна напряжению.
Выучив формулировку закона Ома для участка электрической цепи, формулу написать не составит труда: I = U / R. Зная два показателя из трех, последний можно определить математически без измерения, например, вывести формулу сопротивления участка цепи.
При этом она является самой простой и применяется для внешнего однородного участка цепи, на котором отсутствуют источники ЭДС. Говоря проще, в рассматриваемой электроцепи не должно находиться батарейки, иначе формула, выражающая закон, примет слегка измененный вид: I = E / (R + r). В ней E соответствует потенциальной энергии источника ЭДС, а r представляет собой его внутреннее сопротивление. Таким образом, появилось еще несколько новых понятий:
- однородный участок электроцепи;
- полная цепь;
- внешний и внутренний участок.
Полная электроцепь включает в себя 2 части — внутреннюю и внешнюю. Первая представляет собой источник питания, а вторая состоит из соединительных проводников, потребителей энергии и т. д. Однородным называется участок электрической цепи, на котором отсутствуют силы, способные вызвать появление ЭДС.
Зная простейшую формулу закона Ома, на экзамене можно легко дать его определение и решать несложные практические задачи. При дальнейшем изучении электротехники предстоит углубиться в тонкости этого предмета, например, познакомиться с понятиями реактивного и активного сопротивления, а также записать более сложную формулу.
Закон Ома | Все формулы
Закон Ома для полной цепи — физический закон, определяющий связь между Электродвижущей силой источника или напряжением с силой тока и сопротивлением проводника.
Закон Ома — сила тока в электрической цепи будет прямо пропорциональна напряжению приложенному к этой цепи, и обратно пропорциональна сумме внутреннего сопротивления источника электропитания и общему сопротивлению всей цепи.
Из закона Ома для полной цепи вытекают следующие следствия:
Следствие 1 : При r < < R Сила тока в цепи обратно пропорциональна её сопротивлению. А сам источник в ряде случаев может быть назван источником напряжения
Следствие 2 : При r > > R Сила тока от свойств внешней цепи (от величины нагрузки) не зависит. И источник может быть назван источником тока.
Электродвижущая сила в замкнутой цепи, по которой течёт ток равняется:
То есть сумма падений напряжения на внутреннем сопротивлении источника тока и на внешней цепи равна ЭДС источника. Последний член в этом равенстве специалисты называют «напряжением на зажимах», поскольку именно его показывает вольтметр, измеряющий напряжение источника между началом и концом присоединённой к нему замкнутой цепи. В таком случае оно всегда меньше ЭДС.
Так же изучите :
Закон Ома в дифференциальной форме :
Закон Ома для переменного тока :
В Формуле мы использовали :
— ЭДС источника напряжения
— Внутреннее сопротивление источника напряжения
— Сила тока в цепи
— Сопротивление
— Напряжение в цепи
— Вектор плотности тока
— Удельная проводимость
— Вектор напряжённости электрического поля
— Сопротивление
— Напряжение в цепи
Закон Ома — онлайн калькулятор
Чтобы посчитать Закон Ома воспользуйтесь нашим очень удобным онлайн калькулятором:
Закон Ома для участка цепи
Закон Ома для участка цепи гласит, что сила тока (I) на участке электрической цепи прямо пропорциональна напряжению (U) на концах участка цепи и обратно пропорциональна его сопротивлению (R).
Онлайн калькулятор
Найти силу тока
Формула
I = U/R
Пример
Если напряжение на концах участка цепи U = 12 В, а его электрическое сопротивление R = 2 Ом, то:
Сила тока на этом участке I = 12/2= 6 А
Найти напряжение
Формула
U = I ⋅ R
Пример
Если сила тока на участке цепи I = 6 А, а электрическое сопротивление этого участка R = 2 Ом, то:
Напряжение на этом участке U = 6⋅2 = 12 В
Найти сопротивление
Формула
R = U/I
Пример
Если напряжение на концах участка цепи U = 12 В, а сила тока на участке цепи I = 6 А, то:
Электрическое сопротивление на этом участке R = 12/6 = 2 Ом
Закон Ома для полной цепи
Закон Ома для полной цепи гласит, что сила тока в цепи пропорциональна действующей в цепи электродвижущей силе (ЭДС) и обратно пропорциональна сумме сопротивлений цепи и внутреннего сопротивления источника.
Онлайн калькулятор
Найти силу тока
Формула
I = ε/R+r
Пример
Если ЭДС источника напряжения ε = 12 В, сопротивление всех внешних элементов цепи R = 4 Ом, а внутреннее сопротивление источника напряжения r = 2 Ом, то:
Сила тока I = 12/4+2 = 2 А
Найти ЭДС
Формула
ε = I ⋅ (R+r)
Пример
Если сила тока в цепи I = 2A, сопротивление всех внешних элементов цепи R = 4 Ом, а внутреннее сопротивление источника напряжения r = 2 Ом, то:
ЭДС ε = 2 ⋅ (4+2) = 12 В
Найти внутреннее сопротивление источника напряжения
Формула
r = ε/I — R
Пример
Если сила тока в цепи I = 2A, сопротивление всех внешних элементов цепи R = 4 Ом, а ЭДС источника напряжения ε = 12 В, то:
Внутреннее сопротивление источника напряжения r = 12/2 — 4 = 2 Ом
Найти сопротивление всех внешних элементов цепи
Формула
R = ε/I — r
Пример
Если сила тока в цепи I = 2A, внутреннее сопротивление источника напряжения r = 2 Ом, а ЭДС источника напряжения ε = 12 В, то:
Сопротивление всех внешних элементов цепи: R = 12/2 — 2 = 4 Ом
См. также
Формула законаОм — определение и решенные примеры
- Классы
- Класс 1 — 3
- Класс 4 — 5
- Класс 6 — 10
- Класс 11 — 12
- КОНКУРСЫ
- BBS
- 000000000000 Книги
- NCERT Книги для 5 класса
- NCERT Книги Класс 6
- NCERT Книги для 7 класса
- NCERT Книги для 8 класса
- NCERT Книги для 9 класса
- NCERT Книги для 10 класса
- NCERT Книги для 11 класса
- NCERT Книги для 12-го класса
- NCERT Exemplar
- NCERT Exemplar Class 8
- NCERT Exemplar Class 9
- NCERT Exemplar Class 10
- NCERT Exemplar Class 11
- NCERT Exemplar Class 12 9000al Aggar
Agard Agard Agard Agard Agulis Class 12- Классы
- Решения RS Aggarwal класса 10
- Решения RS Aggarwal класса 11
- Решения RS Aggarwal класса 10 90 003 Решения RS Aggarwal Class 9
- Решения RS Aggarwal Class 8
- Решения RS Aggarwal Class 7
- Решения RS Aggarwal Class 6
- Решения RD Sharma
- Решения RD Sharma класса 9
- Решения RD Sharma Class 7 Решения RD Sharma Class 8
- Решения RD Sharma Class 9
- Решения RD Sharma Class 10
- Решения RD Sharma Class 11
- Решения RD Sharma Class 12
- ФИЗИКА
- Механика
- 000000 Электромагнетизм
- ХИМИЯ
- Органическая химия
- Неорганическая химия
- Периодическая таблица
- МАТС
- Теорема Пифагора
- Отношения и функции
- Последовательности и серии
- Таблицы умножения
- Детерминанты и матрицы
- Прибыль и убыток
- Полиномиальные уравнения
- Делительные дроби
- 000 ФОРМУЛЫ
- Математические формулы
- Алгебровые формулы
- Тригонометрические формулы
- Геометрические формулы
- КАЛЬКУЛЯТОРЫ
- Математические калькуляторы
- S000
- S0003
- Pегипс Класс 6
- Образцы документов CBSE для класса 7
- Образцы документов CBSE для класса 8
- Образцы документов CBSE для класса 9
- Образцы документов CBSE для класса 10
- Образцы документов CBSE для класса 11
- Образец образца CBSE pers for Class 12
- CBSE Документ с вопросами о предыдущем году
- CBSE Документы за предыдущий год Class 10
- CBSE Вопросы за предыдущий год Class 12
- HC Verma Solutions
- HC Verma Solutions Класс 11 Физика
- Решения HC Verma Class 12 Physics
- Решения Lakhmir Singh
- Решения Lakhmir Singh Class 9
- Решения Lakhmir Singh Class 10
- Решения Lakhmir Singh Class 8
- Примечания
- CBSE
- Notes
- CBSE Класс 7 Примечания CBSE
- Класс 8 Примечания CBSE
- Класс 9 Примечания CBSE
- Класс 10 Примечания CBSE
- Класс 11 Примечания CBSE
- Класс 12 Примечания CBSE
Какая формула для закона Ома?
Закон Ома гласит: «Ток, протекающий через проводник, прямо пропорционален разности потенциалов на его концах, при условии, что физическое состояние, такое как температура и т. Д. Проводника, остается постоянным». Формула для закона Ома «V = IR ».
Ом математически описывает взаимосвязь напряжения, тока и сопротивления в цепи. Он используется в эквивалентной форме в зависимости от того, какое количество вам нужно определить.В этом разделе вы изучите каждую из этих форм.
Соотношение между напряжением и током
Ом определено экспериментально, что, если напряжение на резисторе увеличивается, ток через резистор также увеличивается; и, аналогично, если напряжение уменьшается, ток уменьшается. Например, если напряжение удвоится, ток удвоится. Если напряжение уменьшается вдвое, ток также уменьшается вдвое.
В ∝ I
Соотношение между током и сопротивлением
Закон Ом также гласит, что, если напряжение поддерживается постоянным, меньшее сопротивление приводит к большему току, а также к большему сопротивлению при меньшем токе.Например, если сопротивление уменьшается вдвое, ток удваивается. Если сопротивление удваивается, ток уменьшается вдвое.
I ∝ 1 / R
Формула закона Ома
V = IR
Где R, коэффициент пропорциональности называется сопротивлением проводника. Значение сопротивления зависит от природы, размеров и физического состояния проводника. V — приложенное напряжение в вольтах, а I — ток в амперах.
уравнение
Уравнение (1) — это закон закона Ома, в котором «V» — это напряжение, «I» — это ток, а «R» — это сопротивление.
разница между омическими и неомическими проводниками
Проводники, которые подчиняются закону Ома, называются омическими проводниками, другими словами, материалы, сопротивление которых постоянное, называются омическими проводниками.
Примеры омических проводников
Металлы в основном являются омическими проводниками, их сопротивление остается постоянным при увеличении тока и температуры напряжения. Вольт-амперные графики этих материалов показывают прямую линию. Вот некоторые примеры омических проводников:
Это примеры омических проводников.
Неомные проводники
Проводники или материалы, которые не подчиняются закону Ома, называются неомическими проводниками или материалами. Или проводниками, сопротивление которых увеличивается или уменьшается при увеличении тока и температуры напряжения. Их график напряжение-ток показывает не прямую линию.
Примеры неомных проводников
- Лампа накаливания
- Терморезистор
- Полупроводниковые диоды
- LDR
- Транзисторы
- Осветительный разрядник
- Обогреватель
Ом проблемы юридической практики
В следующих примерах, в формуле I = V / R используется.Чтобы получить ток в амперах, необходимо выразить значение напряжения и значение сопротивления в омах.
Пример: Рассчитать ток на следующем рисунке. Решение
: На рисунке выше R = 10 кОм и V = 50 В, то по закону Ома:
В = IR
I = В / Р
I = 50 В / 10 кОм
I = 5 мА
Расчетное напряжение используя омический закон
Мы можем найти напряжение, используя соотношение закона Ома V = IR, если мы знаем ток и сопротивление цепи.
Пример: Найти напряжение, если ток 5 мА протекает через следующую цепь.
На рисунке выше R = 10 кОм, I = 5 мА, с использованием отношения ома V = IR:
В = (5 мА) (10 кОм)
В = 50 В
Давайте посмотрим видео о законе Ома.Оставайтесь с нами:
Закон Ома гласит, что в электрической цепи ток, проходящий через резистор между двумя точками, связан с разностью напряжений между двумя точками и связан с электрическое сопротивление между двумя точками.
- Пример) р знак равно В я {\ displaystyle R = {\ frac {V} {I}}}
Где I — ток в амперах, В, — это разность потенциалов в вольтах, а R — это постоянная, измеренная в омах, называемая сопротивлением.
Ток прямо пропорционален потере напряжения через резистор. То есть, если ток удваивается, то и напряжение увеличивается. Чтобы ток протекал через сопротивление, на этом сопротивлении должно быть напряжение. Закон Ома показывает взаимосвязь между напряжением (V), током (I) и сопротивлением (R). Это можно записать тремя способами:
- я знак равно В р или В знак равно я р или р знак равно В я {\ displaystyle I = {\ frac {V} {R}} \ quad {\ text {or}} \ quad V = IR \ quad {\ text {or}} \ quad R = {\ frac {V} {I }}} ,
Изложение закона Ома. Закон Ома гласит, что «ток, протекающий в проводнике, прямо пропорционален разности потенциалов, приложенной к его концам, при условии, что физические условия и температура проводника остаются постоянными».
Напряжение [изменить | изменить источник]
Напряжение — это количество энергии между двумя точками в цепи. Эти две точки имеют разные заряды, один выше, а другой ниже. Разница между этими двумя точками заряда заключается в том, как мы измеряем напряжение.Единицей «вольт» является имя итальянского физика Алессандро Вольта, который создал первую химическую батарею. Буква «V» обозначает напряжение.
Ток [изменить | изменить источник]
Ток — это скорость заряда. Чем выше заряд, тем быстрее ток. Ток связан с электронами, протекающими по цепи. Текущий измеряет, как быстро идут электроны. Единицей тока является «Ампер», и обычно человек записывает его как «Ампер». Буква «я» может представлять собой ток.
Сопротивление [изменить | изменить источник]
Сопротивление — это то, насколько цепь сопротивляется потоку заряда. Это гарантирует, что заряд не течет слишком быстро и не повредит компоненты. В цепи лампочка может быть резистором. Если электроны протекают через лампочку, лампочка загорится. Если сопротивление высокое, то лампа будет тусклее. Единицей сопротивления является «Ω», которая называется омега, и произносится как «ом», это имя изобретателя закона Ома.18 электронов. [2]
Например, ученый знает, что значение напряжения составляет 20 В. Сопротивление известно, что в лампочке, составляет 10 Ом. Теперь нам нужно найти другую неизвестную переменную, которая является текущей. Формула закона Ома может быть использована для ее решения. С двумя известными переменными, V (напряжение) и R (сопротивление), единственной переменной, которую нужно найти, является I (ток).
20 В = 10 Ом * I
I = 2A
В задаче ученый всегда получает достаточно информации для решения других ценностей, единственное, что ученый должен запомнить — это формула закона Ома.Затем он используется с тем, что дано для решения неизвестной части. В приведенном выше примере ток составляет 2 А.
[1]
- ↑ ссылка, Get; facebook; Twitter; Pinterest; Эл. адрес; Приложения, Другое. «Калькулятор закона Ома | Вычислить напряжение, сопротивление и силу тока». Получено 2019-08-21.
Ом
- Изучив этот раздел, вы сможете:
- Опишите закон Ома, касающийся металлических проводников:
- • Сопротивление, напряжение и ток.
- Определить:
- Ом, Ампер и Вольт.
Ом, Вольт и Ампер.
Сопротивление проводника измеряется в омах, и это единица, названная в честь немецкого физика Джорджа Саймона Ома (1787-1854), который первым показал связь между сопротивлением, током и напряжением.При этом он разработал свой закон, который показывает взаимосвязь между тремя основными электрическими свойствами сопротивления, напряжения и тока. Это демонстрирует одно из самых важных отношений в электротехнике и электронике.
Закон Ома гласит, что: «В металлических проводниках при постоянной температуре и в нулевом магнитном поле протекающий ток пропорционален напряжению на концах проводника и обратно пропорционален сопротивлению проводника.»
Проще говоря, при условии, что температура постоянна и электрическая цепь не подвержена влиянию магнитных полей, тогда:
• При использовании цепи постоянного сопротивления, чем больше напряжение, приложенное к цепи, тем больше будет течь ток.
• При постоянном напряжении, чем больше сопротивление цепи, тем меньше будет ток.
Обратите внимание, что закон Ома гласит: «В металлических проводниках». Это означает, что закон действует для большинства материалов, которые являются металлом, но не для всех.Например, вольфрам, используемый для светящихся ламп накаливания, имеет сопротивление, которое изменяется с температурой нити накала, поэтому в законе Ома указывается «при постоянной температуре». Есть также компоненты, используемые в электронике, которые имеют нелинейную связь между тремя электрическими свойствами напряжения, тока и сопротивления, но они могут быть описаны различными формулами. Для большинства цепей или компонентов, которые могут быть описаны законом Ома:
Вместо того, чтобы пытаться запомнить весь закон Ома, три электрических свойства напряжения, тока и сопротивления отдельными буквами:
Сопротивление обозначается буквой R и измеряется в единицах Ом, которые имеют символ Ω (греческая заглавная буква O).
Напряжение обозначается буквой V (или иногда E, сокращение от электродвижущей силы) и измеряется в единицах вольт, которые имеют символ V.
Ток обозначается буквой I (а не C, так как он используется для емкостного сопротивления) и измеряется в амперах (часто сокращается до ампер), которые имеют символ A.
Используя буквы V, I и R для выражения отношений, определенных в законе Ома, получаем три простые формулы:
Каждый из которых показывает, как найти значение любой из этих величин в цепи, при условии, что другие две известны.Например, чтобы найти напряжение V (в вольтах) на резисторе, просто умножьте ток I (в амперах) через резистор на значение резистора R (в омах).
Обратите внимание, что при использовании этих формул значения V I и R, записанные в формулу, должны указываться в ее ОСНОВНОЙ ЕДИНИЦЕ, то есть в вольтах (не в милливольтах) в омах (не в киломах) и в амперах (не в микроамперах) и т. Д.
Вкратце, 15 кОм (килограммы) вводится как 15 EXP 03, а 25 мА (миллиампер) вводится как 25 EXP -03 и т. Д. Это проще всего сделать с помощью научного калькулятора.
Как использовать калькулятор с инженерными обозначениями, широко используемыми в электронике, объясняется в нашей бесплатной брошюре под названием «Советы по математике». Загрузите его со страницы загрузки.
Определение Ом, Ампер и Вольт
1 ОМ
Может быть определено как «Величина сопротивления, которое создаст разность потенциалов (п.д.) или напряжение 1 В на нем, когда через него протекает ток 1 А».
1 ампер
Может быть определено как «Количество тока, которое при протекании через сопротивление 1 Ом будет создавать разность потенциалов в 1 Вольт по сопротивлению.»
(хотя есть более полезные определения ампер)
1 ВОЛЬТ
Можно определить как «Разность потенциалов (напряжений), создаваемых на сопротивлении 1 Ом, через которое протекает ток 1 А».
Эти определения соотносят Вольт, Ампер и Ом в пределах величин, описанных в Законе Ома, но могут также использоваться альтернативные определения, использующие другие величины.