Закон Ома. Формула Закона Ома
Закон Ома, основанный на опытах, представляет собой в электротехнике основной закон, который устанавливает связь силы электрического тока с сопротивлением и напряжением.
Появление смартфонов, гаджетов, бытовых приборов и прочей электротехники коренным образом изменило облик современного человека. Приложены огромные усилия, направленные на исследование физических закономерностей для улучшения старой и создания новой техники. Одной из таких зависимостей является закон Ома.
Георг Симон ОмЗакон Ома – полученный экспериментальным путём (эмпирический) закон, который устанавливает связь силы тока в проводнике с напряжением на концах проводника и его сопротивлением, был открыт в 1826 году немецким физиком-экспериментатором Георгом Омом.
Строгая формулировка закона Ома может быть записана так: сила тока в проводнике прямо пропорциональна напряжению на его концах (разности потенциалов) и обратно пропорциональна сопротивлению этого проводника.
где
I – сила тока в проводнике, единица измерения силы тока — ампер [А];
U – электрическое напряжение (разность потенциалов), единица измерения напряжения- вольт [В];
R – электрическое сопротивление проводника, единица измерения электрического сопротивления — ом [Ом].
Согласно закону Ома, увеличение напряжения, например, в два раза при фиксированном сопротивлении проводника, приведёт к увеличению силы тока также в два раза
И напротив, уменьшение тока в два раза при фиксированном напряжении будет означать, что сопротивление увеличилось в два раза.
Рассмотрим простейший случай применения закона Ома. Пусть дан некоторый проводник сопротивлением 3 Ом под напряжением 12 В. Тогда, по определению закона Ома, по данному проводнику течет ток равный:
Существует мнемоническое правило для запоминания этого закона, которое можно назвать треугольник Ома. Изобразим все три характеристики (напряжение, сила тока и сопротивление) в виде треугольника. В вершине которого находится напряжение, в нижней левой части – сила тока, а в правой – сопротивление.
Правило работы такое: закрываем пальцем величину в треугольнике, которую нужно найти, тогда две оставшиеся дадут верную формулу для поиска закрытой.
Где и когда можно применять закон Ома?
Нужна помощь в написании работы?
Закон Ома в упомянутой форме справедлив в достаточно широких пределах для металлов. Он выполняется до тех пор, пока металл не начнет плавиться. Менее широкий диапазон применения у растворов (расплавов) электролитов и в сильно ионизированных газах (плазме).
Работая с электрическими схемами, иногда требуется определять падение напряжения на определенном элементе. Если это будет резистор с известной величиной сопротивления (она проставляется на корпусе), а также известен проходящий через него ток, узнать напряжение можно с помощью формулы Ома, не подключая вольтметр.
Значение Закона Ома
Закон Ома определяет силу тока в электрической цепи при заданном напряжении и известном сопротивлении.
Он позволяет рассчитать тепловые, химические и магнитные действия тока, так как они зависят от силы тока.
Закон Ома является чрезвычайно полезным в технике(электронной/электрической), поскольку он касается трех основных электрических величин: тока, напряжения и сопротивления. Он показывает, как эти три величины являются взаимозависимыми на макроскопическом уровне.
Если бы было можно охарактеризовать закон Ома простыми словами, то наглядно это выглядело бы так:
Из закона Ома вытекает, что замыкать обычную осветительную сеть проводником малого сопротивления опасно. Сила тока окажется настолько большой, что это может иметь тяжелые последствия.
Три закона Ома. Отрывок из книги «Тонкая физика. Масса, эфир и объединение всемирных сил»
Недавно в издательстве «Питер» вышла на русском языке книга Фрэнка Вильчека (Frank Wilczek) «Тонкая физика. Масса, эфир и объединение всемирных сил». Автор, лауреат Нобелевской премии по физике, излагает современные взгляды на нашу невероятную Вселенную и прогнозирует новый золотой век фундаментальной физической науки. Мы уже публиковали один отрывок из этой замечательной книги, сегодня публикуем второй — о том, почему эквивалентные равенства могут поведать нам о разных явлениях.
Из третьей главы. Второй закон Ома
Второй закон Эйнштейна, m = E/c2, поднимает вопрос о том, может ли масса быть понята более глубоко — как энергия. Можем ли мы создать, как выразился Уилер, «массу без массы»?
Когда я ещё только собирался начать преподавать в Принстоне, мой друг и наставник Сэм Трейман позвал меня в свой кабинет. Он хотел поделиться со мной своей мудростью. Сэм вытащил из ящика стола потрёпанное руководство в мягкой обложке и сказал мне: «Во время Второй мировой войны ВМС приходилось в спешке обучать новобранцев налаживанию и использованию радиосвязи. Многие из этих новобранцев прибывали прямо с ферм, так что быстро ввести их в курс дела было очень трудно. С помощью той великолепной книги командованию военно-морского флота это удалось. Это шедевр педагогики. Особенно первая глава. Взгляни».
Он вручил мне книгу, открытую на первой главе. Она называлась «Три закона Ома». Я был знаком с одним законом Ома, известным соотношением V = IR, который связывает напряжение (V), силу тока (I) и сопротивление (R) в электрической цепи.
Это оказалось первым законом Ома.
Мне было очень интересно узнать, каковы два других закона Ома. Перевернув несколько хрупких пожелтевших страниц, я обнаружил второй закон Ома: I = V/R. Я предположил, что третий закон Ома формулируется как R = I/V, и оказался прав.
Открывать новые законы легко
Тем, кто знаком с элементарной алгеброй, так очевидно, что эти три закона эквивалентны друг другу, что данная история воспринимается как шутка. Однако в ней заключён глубокий смысл. (Кроме того, в ней есть и неглубокий смысл, который, как мне кажется, Сэм хотел до меня донести. При обучении начинающих вы должны несколько раз сказать одно и то же, но по-разному. Соотношения, которые бесспорны для профессионала, могут не быть таковыми для новичка. Студенты не будут возражать против объяснения очевидного. Очень немногие люди обижаются, когда вы позволяете им почувствовать себя умными.)
Глубокий смысл содержит заявление великого физика-теоретика Поля Дирака. Когда его спросили, как он открывает новые законы природы, Дирак ответил: «Я играю с уравнениями». Суть в том, что различные способы написания одного и того же уравнения могут говорить о совершенно разных вещах, даже если они являются логически эквивалентными.
Второй закон Эйнштейна
Второй закон Эйнштейна формулируется следующим образом:
m = E/c2.
Первый закон Эйнштейна — это, разумеется, E = mc2. Здорово, что первый закон предполагает возможность получения большого количества энергии из небольшого количества массы. Он наводит на мысль о ядерных реакторах и ядерных бомбах.
Второй закон Эйнштейна предполагает нечто совершенно иное.
Он предполагает возможность объяснения того, как масса возникает из энергии.
На самом деле этот закон неправильно называть «вторым».
В оригинальной работе Эйнштейна 1905 года вы не найдёте уравнения E = mc2. Вы встретите уравнение m = E/c2. (Поэтому, возможно, нам следует назвать его нулевым законом Эйнштейна.)
На самом деле в качестве названия этой статьи используется вопрос: «Зависит ли инерция тела от содержащейся в нем энергии?»
Другими словами, может ли некоторое количество массы тела возникать из энергии содержащегося в нем вещества? С самого начала Эйнштейн размышлял о концептуальных основах физики, а не о возможности создания бомб или реакторов.
Понятие энергии играет гораздо более важную роль в современной физике, чем понятие массы. Это проявляется во многих отношениях. Сохраняется именно энергия, а не масса. Именно энергия фигурирует в таких фундаментальных уравнениях, как уравнение Больцмана для статистической механики, уравнения Шрёдингера для квантовой механики и уравнение Эйнштейна для гравитации. Масса в более техническом смысле проявляется в качестве метки для неприводимых представлений группы Пуанкаре.
(Я даже не буду пытаться объяснить, что означает предыдущее утверждение, к счастью, суть заключается в самом факте утверждения.)
Таким образом, вопрос Эйнштейна бросает вызов. Если мы сможем объяснить массу в терминах энергии, мы улучшим наше описание мира. В этом случае в нашем рецепте нам потребуется меньшее количество ингредиентов. Второй закон Эйнштейна позволяет дать хороший ответ на вопрос, который мы задали ранее. Откуда берётся масса? Может быть, из энергии. На самом деле, как мы увидим далее, в основном так и есть.
Закон Ома для участка цепи и полной цепи: формулы и объяснение
Для электрика и электронщика одним из основных законов является Закон Ома. Каждый день работа ставит перед специалистом новые задачи, и зачастую нужно подобрать замену сгоревшему резистору или группе элементов. Электрику часто приходится менять кабеля, чтобы выбрать правильный нужно «прикинуть» ток в нагрузке, так приходится использовать простейшие физические законы и соотношения в повседневной жизни. Значение Закона Ома в электротехники колоссально, к слову большинство дипломных работ электротехнических специальностей рассчитываются на 70-90% по одной формуле.
Историческая справка
Год открытия Закон Ома – 1826 немецким ученым Георгом Омом. Он эмпирически определил и описал закон о соотношении силы тока, напряжения и типа проводника. Позже выяснилось, что третья составляющая – это не что иное, как сопротивление. Впоследствии этот закон назвали в честь открывателя, но законом дело не ограничилось, его фамилией и назвали физическую величину, как дань уважения его работам.
Величина, в которой измеряют сопротивление, названа в честь Георга Ома. Например, резисторы имеют две основные характеристики: мощность в ваттах и сопротивление – единица измерения в Омах, килоомах, мегаомах и т.д.
Закон Ома для участка цепи
Для описания электрической цепи не содержащего ЭДС можно использовать закон Ома для участка цепи. Это наиболее простая форма записи. Он выглядит так:
I=U/R
Где I – это ток, измеряется в Амперах, U – напряжение в вольтах, R – сопротивление в Омах.
Такая формула нам говорит, что ток прямопропорционален напряжению и обратнопропорционален сопротивлению – это точная формулировка Закона Ома. Физический смысл этой формулы – это описать зависимость тока через участок цепи при известном его сопротивлении и напряжении.
Внимание! Эта формула справедлива для постоянного тока, для переменного тока она имеет небольшие отличия, к этому вернемся позже.
Кроме соотношения электрических величин данная форма нам говорит о том, что график зависимости тока от напряжения в сопротивлении линеен и выполняется уравнение функции:
f(x) = ky или f(u) = IR или f(u)=(1/R)*I
Закон Ома для участка цепи применяют для расчетов сопротивления резистора на участке схемы или для определения тока через него при известном напряжении и сопротивлении. Например, у нас есть резистор R сопротивлением в 6 Ом, к его выводам приложено напряжение 12 В. Необходимо узнать, какой ток будет протекать через него. Рассчитаем:
I=12 В/6 Ом=2 А
Идеальный проводник не имеет сопротивления, однако из-за структуры молекул вещества, из которого он состоит, любое проводящее тело обладает сопротивлением. Например, это стало причиной перехода с алюминиевых проводов на медные в домашних электросетях. Удельное сопротивление меди (Ом на 1 метр длины) меньше чем алюминия. Соответственно медные провода меньше греются, выдерживают большие токи, значит можно использовать провод меньшего сечения.
Еще один пример – спирали нагревательных приборов и резисторов обладают большим удельным сопротивлением, т.к. изготавливаются из разных высокоомных металлов, типа нихрома, кантала и пр. Когда носители заряда движутся через проводник, они сталкиваются с частицами в кристаллической решетке, вследствие этого выделяется энергия в виде тепла и проводник нагревается. Чем больше ток – тем больше столкновений – тем больше нагрев.
Чтобы снизить нагрев проводник нужно либо укоротить, либо увеличить его толщину (площадь поперечного сечения). Эту информацию можно записать в виде формулы:
Rпровод=ρ(L/S)
Где ρ – удельное сопротивление в Ом*мм2/м, L – длина в м, S – площадь поперечного сечения.
Закон Ома для параллельной и последовательной цепи
В зависимости от типа соединения наблюдается разный характер протекания тока и распределения напряжений. Для участка цепи последовательного соединения элементов напряжение, ток и сопротивление находятся по формуле:
I=I1=I2
U=U1+U2
R=R1+R2
Это значит, что в цепи из произвольного количества последовательно соединенных элементов протекает один и тот же ток. При этом напряжение, приложенное ко всем элементам (сумма падений напряжения), равно выходному напряжению источника питания. К каждому элементу в отдельности приложена своя величина напряжений и зависит от силы тока и сопротивления конкретного:
Uэл=I*Rэлемента
Сопротивление участка цепи для параллельно соединённых элементов рассчитывается по формуле:
I=I1+I2
U=U1=U2
1/R=1/R1+1/R2
Для смешанного соединения нужно приводить цепь к эквивалентному виду. Например, если один резистор соединен с двумя параллельно соединенными резисторами – то сперва посчитайте сопротивление параллельно соединенных. Вы получите общее сопротивление двух резисторов и вам остаётся сложить его с третьим, который с ними соединен последовательно.
Закон Ома для полной цепи
Полная цепь предполагает наличие источника питания. Идеальный источник питания – это прибор, который имеет единственную характеристику:
- напряжение, если это источник ЭДС;
- силу тока, если это источник тока;
Такой источник питания способен выдать любую мощность при неизменных выходных параметрах. В реальном же источнике питания есть еще и такие параметры как мощность и внутреннее сопротивление. По сути, внутреннее сопротивление – это мнимый резистор, установленный последовательно с источником ЭДС.
Формула Закона Ома для полной цепи выглядит похоже, но добавляется внутренне сопротивление ИП. Для полной цепи записывается формулой:
I=ε/(R+r)
Где ε – ЭДС в Вольтах, R – сопротивление нагрузки, r – внутреннее сопротивление источника питания.
На практике внутреннее сопротивление является долями Ома, а для гальванических источников оно существенно возрастает. Вы это наблюдали, когда на двух батарейках (новой и севшей) одинаковое напряжение, но одна выдает нужный ток и работает исправно, а вторая не работает, т.к. проседает при малейшей нагрузке.
Закон Ома в дифференциальной и интегральной форме
Для однородного участка цепи приведенные выше формулы справедливы, для неоднородного проводника необходимо его разбить на максимально короткие отрезки, чтобы изменения его размеров были минимизированы в пределах этого отрезка. Это называется Закон Ома в дифференциальной форме.
Иначе говоря: плотность тока прямо пропорциональной напряжённости и удельной проводимости для бесконечно малого участка проводника.
В интегральной форме:
Закон Ома для переменного тока
При расчете цепей переменного тока вместо понятия сопротивления вводят понятие «импеданс». Импеданс обозначают буквой Z, в него входит активное сопротивление нагрузки Ra и реактивное сопротивление X (или Rr). Это связано с формой синусоидального тока (и токов любых других форм) и параметрами индуктивных элементов, а также законов коммутации:
- Ток в цепи с индуктивностью не может измениться мгновенно.
- Напряжение в цепи с ёмкостью не может измениться мгновенно.
Таким образом, ток начинает отставать или опережать напряжение, и полная мощность разделяется на активную и реактивную.
U=I*Z
XL и XC – это реактивные составляющие нагрузки.
В связи с этим вводится величина cosФ:
Здесь – Q – реактивная мощность, обусловленная переменным током и индуктивно-емкостными составляющими, P – активная мощность (выделяется на активных составляющих), S – полная мощность, cosФ – коэффициент мощности.
Возможно, вы заметили, что формула и её представление пересекается с теоремой Пифагора. Это действительно так и угол Ф зависит от того, насколько велика реактивная составляющая нагрузки – чем её больше, тем он больше. На практике это приводит к тому, что реально протекающий в сети ток больше чем тот, что учитывается бытовым счетчиком, предприятия же платят за полную мощность.
При этом сопротивление представляют в комплексной форме:
Здесь j – это мнимая единица, что характерно для комплексного вида уравнений. Реже обозначается как i, но в электротехнике также обозначается и действующее значение переменного тока, поэтому, чтобы не путаться, лучше использовать j.
Мнимая единица равняется √-1. Логично, что нет такого числа при возведении в квадрат, которого может получиться отрицательный результат «-1».
Как запомнить закон Ома
Чтобы запомнить Закон Ома – можно заучить формулировку простыми словами типа:
Чем больше напряжение – тем больше ток, чем больше сопротивление – тем меньше ток.
Или воспользоваться мнемоническими картинками и правилами. Первая это представление закона Ома в виде пирамиды – кратко и понятно.
Мнемоническое правило – это упрощенный вид какого-либо понятия, для простого и легкого его понимания и изучения. Может быть либо в словесной форме, либо в графической. Чтобы правильно найти нужную формулу – закройте пальцем искомую величину и получите ответ в виде произведения или частного. Вот как это работает:
Вторая – это карикатурное представление. Здесь показано: чем больше старается Ом, тем труднее проходит Ампер, а чем больше Вольт – тем легче проходит Ампер.
Напоследок рекомендуем просмотреть полезное видео, в котором простыми словами объясняется Закон Ома и его применение:
Закон Ома – один из основополагающих в электротехнике, без его знания невозможна бОльшая часть расчетов. И в повседневной работе часто приходится переводить амперы в киловатты или по сопротивлению определять ток. Совершенно не обязательно понимать его вывод и происхождение всех величин – но конечные формулы обязательны к освоению. В заключении хочется отметить, что есть старая шуточная пословица у электриков: «Не знаешь Ома – сиди дома». И если в каждой шутке есть доля правды, то здесь эта доля правды – 100%. Изучайте теоретические основы, если хотите стать профессионалом на практике, а в этом вам помогут другие статьи из нашего сайта.
Закон Ома для участка цепи
Скажу сразу, что закон Ома – основной закон электротехники и применяется для расчета таких величин, как: ток, напряжение и сопротивление в цепи.
Рассмотрим электрическую цепь, приведенную на рисунке 1.
Рисунок 1. Простейшая цепь, поясняющея закон Ома.
Мы знаем, что электрический ток, то есть поток электронов, возникает в цепи между двумя точками (на рисунке А и Б) с разными потенциалами. Тогда следует считать, что чем больше разность потенциалов, тем большее количество электронов переместятся из точки с низким потенциалом (Б) в точку с высоким потенциалом (А). Количественно ток выражается суммой зарядов прошедших через заданную точку и увеличение разности потенциалов, то есть приложенного напряжения к резистору R, приведет к увеличению тока через резистор.
С другой стороны сопротивление резистора противодействует электрическому току. Тогда следует сказать, что чем больше сопротивление резистора, тем меньше будет средняя скорость электронов в цепи, а это ведет к уменьшению тока через резистор.
Совокупность двух этих зависимостей (тока от напряжения и сопротивления) известна как закон Ома для участка цепи и записывается в следующем виде:
I=U/R
Это выражение читается следующим образом: сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.
Следует знать что:
I – величина тока, протекающего через участок цепи;
U – величина приложенного напряжения к участку цепи;
R – величина сопротивления рассматриваемого участка цепи.
При помощи закона Ома для участка цепи можно вычислить приложенное напряжение к участку цепи (рисунок 1), либо напряжение на входных зажимах цепи (рисунок 2).
Рисунок 2. Последовательная цепь, поясняющая расчет напряжения на зажимах цепи.
В этом случае формула (1) примет следующий вид:
U = I *R
Но при этом необходимо знать ток и сопротивление участка цепи.
Третий вариант закона Ома для участка цепи, позволяющий рассчитать сопротивление участка цепи по известным значениям тока и напряжения имеет следующий вид:
R =U/I
Как запомнить закон Ома: маленькая хитрость!
Для того, что бы быстро переводить соотношение, которое называется закон Ома, не путаться, когда необходимо делить, а когда умножать входящие в формулу закона Ома величины, поступайте следующим образом. Напишите на листе бумаги величины, которые входят в закон Ома, так как показано на рисунке 3.
Рисунок 3. Как запомнить закон Ома.
Теперь закройте пальцем, ту величину, которую необходимо найти. Тогда относительное расположение оставшихся незакрытыми величин подскажет, какое действие необходимо совершить для вычисления неизвестной величины.
Подробнее можно узнать в мультимедийном учебнике по основам электротехники и электроники.
ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!
Похожие материалы:
Добавить комментарий
Формула закона Ома в физике
Содержание:
Определение и формула закона Ома
Определение
Закон был получен Омом опытным путем. Построив вольт – амперную характеристику для проводника можно увидеть, что сила тока (I), текущего через проводник пропорциональна напряжению (U) на нем $(I \sim U)$.
Закон Ома для участка цепи
Если на рассматриваемом участке цепи, содержащей проводник, источников ЭДС нет $\left(U_{21}=\varphi_{1}-\varphi_{2}\right)$, то формула закона Ома является предельно простой:
$$I=\frac{U}{R}=\frac{\varphi_{1}-\varphi_{2}}{R}(1)$$где R – сопротивление проводника (совокупности проводников, участка цепи).
Если источник тока в участок цепи включен и характеризуется при помощи ЭДС ($\varepsilon$), то формула закона Ома преобразуется к виду:
$$I=\frac{U}{R}=\frac{\varphi_{1}-\varphi_{2}+\varepsilon}{R}(2)$$Закон Ома для замкнутой цепи
В том случае, если цепь является замкнутой, закон Ома принимает вид:
$$I=\frac{\varepsilon}{R}(3)$$где под R=Rvnesh+rist понимают полное сопротивление цепи, которое включает так называемое внешнее сопротивление (Rvnesh) и сопротивление источника ЭДС (rist).
Формула закона Ома в дифференциальной форме
Все выше приведенные формулы закона Ома были представлены в интегральной форме. Этот закон можно записать в дифференциальной форме, которая характеризует электрическое состояние в точке.
$$\bar{j}=\sigma \bar{E}(4)$$где $\sigma=\frac{1}{\rho}$ – удельная проводимость, $\rho$ – удельное сопротивление, $\bar{j}$ – вектор плотности тока, $\bar{E}$ – вектор напряженности электрического поля. Векторы $\bar{j}$ и $\bar{E}$ характеризуют одну точку проводящей среды. В том случае, если среда изотропна, то $\bar{j} \uparrow \uparrow \bar{E}$.
Примеры решения задач
Пример
Задание. Пространство между пластинами плоского конденсатора заполняет неоднородное плохо проводящее вещество, удельная проводимость которого изменяется в соответствии с линейным законом: $\sigma(r)=\sigma_{1}+\frac{\sigma_{2}-\sigma_{1}}{d} r$ в направлении перпендикулярном пластинам. d – расстояние между пластинами, S – площадь пластин конденсатора.{d} \frac{1}{\left(\sigma_{1}+\frac{\sigma_{2}-\sigma_{1}}{d}\right.} r\right) \frac{d r}{S}=\frac{d}{S\left(\sigma_{2}-\sigma_{1}\right)}\left[\ln \left(d \sigma_{2}\right)-\ln \left(d \sigma_{1}\right)\right]= \\ =\frac{d}{S\left(\sigma_{2}-\sigma_{1}\right)} \ln \left(\frac{\sigma_{2}}{\sigma_{1}}\right)(1.2) \end{array} $$
Подставим найденное в (1.2) сопротивление в (1.1), получим искомую силу тока:
$I=\frac{U}{\frac{d}{S\left(\sigma_{2}-\sigma_{1}\right)} \ln \left(\frac{\sigma_{2}}{\sigma_{1}}\right)}=\frac{U S\left(\sigma_{2}-\sigma_{1}\right)}{d \cdot \ln \left(\frac{\sigma_{2}}{\sigma_{1}}\right)}$Ответ. $I=\frac{U S\left(\sigma_{2}-\sigma_{1}\right)}{d \cdot \ln \left(\frac{\sigma_{2}}{\sigma_{1}}\right)}$
Слишком сложно?
Формула закона Ома не по зубам? Тебе ответит эксперт через 10 минут!
Пример
Задание. Какой будет плотность тока в металлическом проводнике (удельное сопротивление считать равным $\rho$) постоянного сечения, имеющем длину l, если напряжение, которое приложено к проводу равно U?
Решение. Плотность тока для проводника, который имеет постоянное сечение S можно найти как:
$$j=\frac{I}{S}(2.1)$$Силу тока можно вычислить, если использовать формулу Закона Ома для участка цепи не имеющего ЭДС:
$$I=\frac{U}{R}(2.2)$$Сопротивление провода найдем, применяя формулу:
$$R=\rho \frac{l}{S}(2.3)$$Подставим, необходимые величины в (2.1), получим:
$$j=\frac{U}{S R}=\frac{U S}{S \rho l}$$Ответ. $j=\frac{U S}{S \rho l}$
Читать дальше: Формула мощности тока.
Закон Ома для участка цепи простым языком для чайников
Вся прикладная электротехника базируется на одном догмате — это закон Ома для участка цепи. Без понимания принципа этого закона невозможно приступать к практике, поскольку это приводит к многочисленным ошибкам. Имеет смысл освежить эти знания, в статье мы напомним трактовку закона, составленного Омом, для однородного и неоднородного участка и полной цепи.
Диаграмма, упрощающая запоминаниеКлассическая формулировка
Этот простой вариант трактовки, известный нам со школы.
Однородный открытый участок электроцепиФормула в интегральной форме будет иметь следующий вид:
Формула в интегральной формеТо есть, поднимая напряжение, мы тем самым увеличиваем ток. В то время, как увеличение такого параметра, как «R», ведет к снижению «I». Естественно, что на рисунке сопротивление цепи показано одним элементом, хотя это может быть последовательное, параллельное (вплоть до произвольного)соединение нескольких проводников.
В дифференциальной форме закон мы приводить не будем, поскольку в таком виде он применяется, как правило, только в физике.
Принятые единицы измерения
Необходимо учитывать, что все расчеты должны проводиться в следующих единицах измерения:
- напряжение – в вольтах;
- ток в амперах
- сопротивление в омах.
Если вам встречаются другие величины, то их необходимо будет перевести к общепринятым.
Формулировка для полной цепи
Трактовка для полной цепи будет несколько иной, чем для участка, поскольку в законе, составленном Омом, еще учитывает параметр «r», это сопротивление источника ЭДС. На рисунке ниже проиллюстрирована подобная схема.
Схема с подключенным с источникомУчитывая «r» ЭДС, формула предстанет в следующем виде:
Заметим, если «R» сделать равным 0, то появляется возможность рассчитать «I», возникающий во время короткого замыкания.
Напряжение будет меньше ЭДС, определить его можно по формуле:
Собственно, падение напряжения характеризуется параметром «I*r». Это свойство характерно многим гальваническим источникам питания.
Неоднородный участок цепи постоянного тока
Под таким типом подразумевается участок, где помимо электрического заряда производится воздействие других сил. Изображение такого участка показано на рисунке ниже.
Схема неоднородного участкаФормула для такого участка (обобщенный закон) будет иметь следующий вид:
Формула для неоднородного участка цепиПеременный ток
Если в схема, подключенная к переменному току снабжена емкостью и/или индуктивностью (катушкой), расчет производится с учетом величин их реактивных сопротивлений. Упрощенный вид закона будет выглядеть следующим образом:
Где «Z» представляет собой импеданс, это комплексная величина, состоящая из активного (R) и пассивного (Х) сопротивлений.
Практическое использование
Видео: Закон Ома для участка цепи — практика расчета цепей.
Собственно, к любому участку цепи можно применить этот закон. Пример приведен на рисунке.
Применяем закон к любому участку цепиИспользуя такой план, можно вычислить все необходимые характеристики для неразветвленного участка. Рассмотрим более детальные примеры.
Находим силу тока
Рассмотрим теперь более определенный пример, допустим, возникла необходимость узнать ток, протекающий через лампу накаливания. Условия:
- Напряжение – 220 В;
- R нити накала – 500 Ом.
Решение задачи будет выглядеть следующим образом: 220В/500Ом=0,44 А.
Рассмотрим еще одну задачу со следующими условиями:
В этом случае, в первую очередь, потребуется выполнить преобразование: 0,2 МОм = 200000 Ом,после чего можно приступать к решению: 400 В/200000 Ом=0,002 А (2 мА).
Вычисление напряжения
Для решения мы также воспользуемся законом, составленным Омом. Итак задача:
Преобразуем исходные данные:
- 20 кОм = 20000 Ом;
- 10 мА=0,01 А.
Решение: 20000 Ом х 0,01 А = 200 В.
Незабываем преобразовывать значения, поскольку довольно часто ток может быть указан в миллиамперах.
Сопротивление.
Несмотря на то, что общий вид способа для расчета параметра «R» напоминает нахождение значения «I», между этими вариантами существуют принципиальные различия. Если ток может меняться в зависимости от двух других параметров, то R (на практике) имеет постоянное значение. То есть по своей сути оно представляется в виде неизменной константы.
Если через два разных участка проходит одинаковый ток (I), в то время как приложенное напряжение (U) различается, то, опираясь на рассматриваемый нами закон, можно с уверенностью сказать, что там где низкое напряжение «R» будет наименьшим.
Рассмотрим случай когда разные токи и одинаковое напряжение на несвязанных между собой участках. Согласно закону, составленному Омом, большая сила тока будет характерна небольшому параметру «R».
Рассмотрим несколько примеров.
Допустим, имеется цепь, к которой подведено напряжение U=50 В, а потребляемый ток I=100 мА. Чтобы найти недостающий параметр, следует 50 В / 0,1 А (100 мА), в итоге решением будет – 500 Ом.
Вольтамперная характеристика позволяет наглядно продемонстрировать пропорциональную (линейную) зависимость закона. На рисунке ниже составлен график для участка с сопротивлением равным одному Ому (почти как математическое представление закона Ома).
Изображение вольт-амперной характеристики, где R=1 Ом
Изображение вольт-амперной характеристикиВертикальная ось графика отображает ток I (A), горизонтальная – напряжение U(В). Сам график представлен в виде прямой линии, которая наглядно отображает зависимость от сопротивления, которое остается неизменным. Например, при 12 В и 12 А «R» будет равно одному Ому (12 В/12 А).
Обратите внимание, что на приведенной вольтамперной характеристике отображены только положительные значения. Это указывает, что цепь рассчитана на протекание тока в одном направлении. Там где допускается обратное направление, график будет продолжен на отрицательные значения.
Заметим, что оборудование, вольт-амперная характеристика которого отображена в виде прямой линии, именуется — линейным. Этот же термин используется для обозначения и других параметров.
Помимо линейного оборудования, есть различные приборы, параметр «R» которых может меняться в зависимости от силы тока или приложенного напряжения. В этом случая для расчета зависимости нельзя использовать закон Ома. Оборудование такого типа называется нелинейным, соответственно, его вольт-амперные характеристики не будут отображены в виде прямых линий.
Вывод
Как уже упоминалось в начале статьи, вся прикладная электротехника базируется на законе, составленном Омом. Незнание этого базового догмата может привести к неправильному расчету, который, в свою очередь, станет причиной аварии.
Подготовка электриков как специалистов начинается с изучения теоретических основ электротехники. И первое, что они должны запомнить – это закон составленный Омом, поскольку на его основе производятся практически все расчеты параметров электрических цепей различного назначения.
Понимание основного закона электротехники поможет лучше разбираться в работе электрооборудования и его основных компонентов. Это положительно отразится на техническом обслуживании в процессе эксплуатации.
Самостоятельная проверка, разработка, а также опытное изучение узлов оборудования – все это существенно упрощается, если использовать закон Ома для участка цепи. При этом не требуется проводить всех измерений, достаточно снять некоторые параметры и, проведя несложные расчеты, получить необходимые значения.
ЭДС. Закон Ома для полной цепи
Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев
Темы кодификатора ЕГЭ: электродвижущая сила, внутреннее сопротивление источника тока, закон Ома для полной электрической цепи.До сих пор при изучении электрического тока мы рассматривали направленное движение свободных зарядов во внешней цепи, то есть в проводниках, подсоединённых к клеммам источника тока.
Как мы знаем, положительный заряд :
• уходит во внешнюю цепь с положительной клеммы источника;
• перемещается во внешней цепи под действием стационарного электрического поля, создаваемого другими движущимися зарядами;
• приходит на отрицательную клемму источника, завершая свой путь во внешней цепи.
Теперь нашему положительному заряду нужно замкнуть свою траекторию и вернуться на положительную клемму. Для этого ему требуется преодолеть заключительный отрезок пути — внутри источника тока от отрицательной клеммы к положительной. Но вдумайтесь: идти туда ему совсем не хочется! Отрицательная клемма притягивает его к себе, положительная клемма его от себя отталкивает, и в результате на наш заряд внутри источника действует электрическая сила , направленная против движения заряда (т.е. против направления тока).
Сторонняя сила
Тем не менее, ток по цепи идёт; стало быть, имеется сила, «протаскивающая» заряд сквозь источник вопреки противодействию электрического поля клемм (рис. 1).
Рис. 1. Сторонняя сила
Эта сила называется сторонней силой; именно благодаря ей и функционирует источник тока. Сторонняя сила не имеет отношения к стационарному электрическому полю — у неё, как говорят, неэлектрическое происхождение; в батарейках, например, она возникает благодаря протеканию соответствующих химических реакций.
Обозначим через работу сторонней силы по перемещению положительного заряда q внутри источника тока от отрицательной клеммы к положительной. Эта работа положительна, так как направление сторонней силы совпадает с направлением перемещения заряда. Работа сторонней силы называется также работой источника тока.
Во внешней цепи сторонняя сила отсутствует, так что работа сторонней силы по перемещению заряда во внешней цепи равна нулю. Поэтому работа сторонней силы по перемещению заряда вокруг всей цепи сводится к работе по перемещению этого заряда только лишь внутри источника тока. Таким образом, — это также работа сторонней силы по перемещению заряда по всей цепи.
Мы видим, что сторонняя сила является непотенциальной — её работа при перемещении заряда по замкнутому пути не равна нулю. Именно эта непотенциальность и обеспечивает циркулирование электрического тока; потенциальное электрическое поле, как мы уже говорили ранее, не может поддерживать постоянный ток.
Опыт показывает, что работа прямо пропорциональна перемещаемому заряду . Поэтому отношение уже не зависит от заряда и является количественной характеристикой источника тока. Это отношение обозначается :
(1)
Данная величина называется электродвижущей силой (ЭДС) источника тока. Как видим, ЭДС измеряется в вольтах (В), поэтому название «электродвижущая сила» является крайне неудачным. Но оно давно укоренилось, так что приходится смириться.
Когда вы видите надпись на батарейке: «1,5 В», то знайте, что это именно ЭДС. Равна ли эта величина напряжению, которое создаёт батарейка во внешней цепи? Оказывается, нет! Сейчас мы поймём, почему.
Закон Ома для полной цепи
Любой источник тока обладает своим сопротивлением , которое называется внутренним сопротивлением этого источника. Таким образом, источник тока имеет две важных характеристики: ЭДС и внутреннее сопротивление.
Пусть источник тока с ЭДС, равной , и внутренним сопротивлением подключён к резистору (который в данном случае называется внешним резистором, или внешней нагрузкой, или полезной нагрузкой). Всё это вместе называется полной цепью (рис. 2).
Рис. 2. Полная цепь
Наша задача — найти силу тока в цепи и напряжение на резисторе .
За время по цепи проходит заряд . Согласно формуле (1) источник тока совершает при этом работу:
(2)
Так как сила тока постоянна, работа источника целиком превращается в теплоту, которая выделяется на сопротивлениях и . Данное количество теплоты определяется законом Джоуля–Ленца:
(3)
Итак, , и мы приравниваем правые части формул (2) и (3):
После сокращения на получаем:
Вот мы и нашли ток в цепи:
(4)
Формула (4) называется законом Ома для полной цепи.
Если соединить клеммы источника проводом пренебрежимо малого сопротивления , то получится короткое замыкание. Через источник при этом потечёт максимальный ток — ток короткого замыкания:
Из-за малости внутреннего сопротивления ток короткого замыкания может быть весьма большим. Например, пальчиковая батарейка разогревается при этом так, что обжигает руки.
Зная силу тока (формула (4)), мы можем найти напряжение на резисторе с помощью закона Ома для участка цепи:
(5)
Это напряжение является разностью потенциалов между точками и (рис. 2). Потенциал точки равен потенциалу положительной клеммы источника; потенциал точки равен потенциалу отрицательной клеммы. Поэтому напряжение (5) называется также напряжением на клеммах источника.
Мы видим из формулы (5), что в реальной цепи будет — ведь умножается на дробь, меньшую единицы. Но есть два случая, когда .
1. Идеальный источник тока. Так называется источник с нулевым внутренним сопротивлением. При формула (5) даёт .
2. Разомкнутая цепь. Рассмотрим источник тока сам по себе, вне электрической цепи. В этом случае можно считать, что внешнее сопротивление бесконечно велико: . Тогда величина неотличима от , и формула (5) снова даёт нам .
Смысл этого результата прост: если источник не подключён к цепи, то вольтметр, подсоединённый к полюсам источника, покажет его ЭДС.
КПД электрической цепи
Нетрудно понять, почему резистор называется полезной нагрузкой. Представьте себе, что это лампочка. Теплота, выделяющаяся на лампочке, является полезной, так как благодаря этой теплоте лампочка выполняет своё предназначение — даёт свет.
Количество теплоты, выделяющееся на полезной нагрузке за время , обозначим .
Если сила тока в цепи равна , то
Некоторое количество теплоты выделяется также на источнике тока:
Полное количество теплоты, которое выделяется в цепи, равно:
КПД электрической цепи — это отношение полезного тепла к полному:
КПД цепи равен единице лишь в том случае, если источник тока идеальный .
Закон Ома для неоднородного участка
Простой закон Ома справедлив для так называемого однородного участка цепи — то есть участка, на котором нет источников тока. Сейчас мы получим более общие соотношения, из которых следует как закон Ома для однородного участка, так и полученный выше закон Ома для полной цепи.
Участок цепи называется неоднородным, если на нём имеется источник тока. Иными словами, неоднородный участок — это участок с ЭДС.
На рис. 3показан неоднородный участок, содержащий резистор и источник тока. ЭДС источника равна , его внутреннее сопротивление считаем равным нулю (усли внутреннее сопротивление источника равно , можно просто заменить резистор на резистор ).
Рис. 3. ЭДС «помогает» току:
Сила тока на участке равна , ток течёт от точки к точке . Этот ток не обязательно вызван одним лишь источником . Рассматриваемый участок, как правило, входит в состав некоторой цепи (не изображённой на рисунке), а в этой цепи могут присутствовать и другие источники тока. Поэтому ток является результатом совокупного действия всех источников, имеющихся в цепи.
Пусть потенциалы точек и равны соответственно и . Подчеркнём ещё раз, что речь идёт о потенциале стационарного электрического поля, порождённого действием всех источников цепи — не только источника, принадлежащего данному участку, но и, возможно, имеющихся вне этого участка.
Напряжение на нашем участке равно: . За время через участок проходит заряд , при этом стационарное электрическое поле совершает работу:
Кроме того, положительную работу совершает источник тока (ведь заряд прошёл сквозь него!):
Сила тока постоянна, поэтому суммарная работа по продвижению заряда , совершаемая на участке стационарным элетрическим полем и сторонними силами источника, целиком превращается в тепло: .
Подставляем сюда выражения для , и закон Джоуля–Ленца:
Сокращая на , получаем закон Ома для неоднородного участка цепи:
(6)
или, что то же самое:
(7)
Обратите внимание: перед стоит знак «плюс». Причину этого мы уже указывали — источник тока в данном случае совершает положительную работу, «протаскивая» внутри себя заряд от отрицательной клеммы к положительной. Попросту говоря, источник «помогает» току протекать от точки к точке .
Отметим два следствия выведенных формул (6) и (7).
1. Если участок однородный, то . Тогда из формулы (6) получаем — закон Ома для однородного участка цепи.
2. Предположим, что источник тока обладает внутренним сопротивлением . Это, как мы уже упоминали, равносильно замене на :
Теперь замкнём наш участок, соединив точки и . Получим рассмотренную выше полную цепь. При этом окажется, что и предыдущая формула превратится в закон Ома для полной цепи:
Таким образом, закон Ома для однородного участка и закон Ома для полной цепи оба вытекают из закона Ома для неоднородного участка.
Может быть и другой случай подключения, когда источник «мешает» току идти по участку. Такая ситуация изображена на рис. 4. Здесь ток, идущий от к , направлен против действия сторонних сил источника.
Рис. 4. ЭДС «мешает» току:
Как такое возможно? Очень просто: другие источники, имеющиеся в цепи вне рассматриваемого участка, «пересиливают» источник на участке и вынуждают ток течь против . Именно так происходит, когда вы ставите телефон на зарядку: подключённый к розетке адаптер вызывает движение зарядов против действия сторонних сил аккумулятора телефона, и аккумулятор тем самым заряжается!
Что изменится теперь в выводе наших формул? Только одно — работа сторонних сил станет отрицательной:
Тогда закон Ома для неоднородного участка примет вид:
(8)
или:
где по-прежнему — напряжение на участке.
Давайте соберём вместе формулы (7) и (8) и запишем закон Ома для участка с ЭДС следующим образом:
Ток при этом течёт от точки к точке . Если направление тока совпадает с направлением сторонних сил, то перед ставится «плюс»; если же эти направления противоположны, то ставится «минус».
ЗаконОма | Клуб электроники
Закон Ома | Клуб электроникиСледующая страница: Power and Energy
См. Также: Напряжение и ток | Сопротивление
Закон Ома показывает взаимосвязь между напряжением, током и сопротивлением
Чтобы ток протекал через сопротивление, на этом сопротивлении должно быть напряжение. Закон Ома показывает взаимосвязь между тремя величинами: напряжением, током и сопротивлением.
Закон Ома можно записать в виде словарного уравнения :
напряжение = ток × сопротивление |
Или используя символы для обозначения величин напряжения (В), тока (I) и сопротивления (R):
На самом деле его можно записать тремя способами, и вы можете выбрать версию, которая лучше всего подходит для ваших целей:
Треугольник ВИР — способ запомнить закон Ома
Вы можете использовать треугольник ВИР, чтобы помочь вам запомнить три версии закона Ома.
- Для расчета напряжения, В : поместите палец на В, это оставляет I R, поэтому уравнение V = I × R
- Чтобы рассчитать ток , I : положите палец на I, это оставляет V над R, поэтому уравнение I = V / R
- Чтобы рассчитать сопротивление , R : положите палец на R, это оставляет V над I, поэтому уравнение R = V / I
Расчет по закону Ома
Используйте этот метод для проведения расчетов:
- Запишите значения , при необходимости конвертируя единицы.
- Выберите необходимое Equation (используйте треугольник VIR).
- Введите числа в уравнение и вычислите ответ.
Должно быть V ery E asy N ow! См. Примеры ниже:
Пример 3:
Резистор 1,2 кОм пропускает ток 0,2 А, какое напряжение на нем?
Пример 4:
9 В подается на резистор 15 кОм, какой ток?
- V значения: V = 9V, I =?, R = 15k
- E предложение: I = V / R
- N umbers: Ток, I = 9 / 15 = 0.6 мА
(использование k для сопротивления означает, что расчет дает ток в мА)
Следующая страница: Энергетика | Исследование
Политика конфиденциальности и файлы cookie
Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден.Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.
клуб электроники.инфо © Джон Хьюс 2021
Закон
Ом- Изучив этот раздел, вы должны уметь:
- Опишите закон Ома для металлических проводников:
- • Сопротивление, напряжение и ток.
- Определить:
- Ом, Ампер и Вольт.
Ом, вольт и ампер.
Сопротивление проводника измеряется в Омах, а Ом — это единица измерения, названная в честь немецкого физика Джорджа Симона Ома (1787–1854), который первым показал взаимосвязь между сопротивлением, током и напряжением.Поступая так, он разработал свой закон, который показывает взаимосвязь между тремя основными электрическими свойствами сопротивления, напряжения и тока. Он демонстрирует одну из самых важных взаимосвязей в электротехнике и электронной технике.
Закон Ома гласит: «В металлических проводниках при постоянной температуре и нулевом магнитном поле протекающий ток пропорционален напряжению на концах проводника и обратно пропорционален сопротивлению проводника.»
Проще говоря, при условии, что температура постоянна и электрическая цепь не подвержена влиянию магнитных полей, тогда:
• В цепи с постоянным сопротивлением, чем больше напряжение, приложенное к цепи, тем больше будет протекать ток.
• При подаче постоянного напряжения, чем больше сопротивление цепи, тем меньше будет протекать ток.
Обратите внимание, что закон Ома гласит: «В металлических проводниках». Это означает, что закон применим для большинства металлических материалов, но не для всех.Например, вольфрам, используемый для накаливания накала лампочек, имеет сопротивление, которое изменяется в зависимости от температуры нити, отсюда в законе Ома ссылка на «при постоянной температуре». В электронике также используются компоненты, которые имеют нелинейную зависимость между тремя электрическими свойствами: напряжением, током и сопротивлением, но их можно описать разными формулами. Для большинства схем или компонентов, которые можно описать законом Ома:
Вместо того, чтобы запоминать весь закон Ома, три электрических свойства напряжения, тока и сопротивления отдельными буквами:
Сопротивление обозначается буквой R и измеряется в единицах Ом, которые имеют символ Ω (греческая заглавная буква O).
Напряжение обозначается буквой V (или иногда E, сокращением от Electromotive Force) и измеряется в вольтах, которые имеют символ V.
Ток обозначается буквой I (не C, поскольку он используется для обозначения емкости) и измеряется в единицах ампер (часто сокращается до ампер), которые имеют символ A.
Используя буквы V, I и R для выражения отношений, определенных в Законе Ома, дает три простые формулы:
Каждый из них показывает, как найти значение любой из этих величин в цепи, если известны две другие.Например, чтобы найти напряжение V (в вольтах) на резисторе, просто умножьте ток I (в амперах) через резистор на значение резистора R (в омах).
Обратите внимание, что при использовании этих формул значения V I и R, записанные в формулу, должны быть в БАЗОВЫХ ЕДИНИЦАХ, то есть в ВОЛЬТАХ (не в милливольтах) в Омах (не в киломах) и в АМПЕРАХ (не в микроамперах) и т. Д.
Вкратце 15 кОм (килоом) вводится как 15 EXP 03, а 25 мА (миллиампер) вводится как 25 EXP -03 и т. Д. Это проще всего сделать с помощью научного калькулятора.
Как пользоваться калькулятором с инженерными обозначениями, широко используемыми в электронике, объясняется в нашем бесплатном буклете под названием «Подсказки по математике». Загрузите его со страницы загрузки.
Определение сопротивления, ампера и напряжения
1 Ом
Может быть определено как «Величина сопротивления, которая создает разность потенциалов (p.d.) или напряжение в 1 вольт на нем, когда через него протекает ток в 1 ампер».
1 АМПЕР
Может быть определено как «величина тока, которая при прохождении через сопротивление 1 Ом создает разность потенциалов на сопротивлении 1 Вольт.«
(Хотя доступны более полезные определения ампера)
1 ВОЛТ
Может быть определено как «Разность потенциалов (напряжений), возникающая на сопротивлении 1 Ом, через которое протекает ток в 1 Ампер».
Эти определения относятся к Вольтам, Амперам и Ом в пределах величин, описанных в Законе Ома, но также могут использоваться альтернативные определения с использованием других величин.
ПОПРОБУЙТЕ ПРОСТЫЕ РАСЧЕТЫ, ИСПОЛЬЗУЯ Закон Ома.
Закон Ома
ЗаконОма показывает линейную зависимость между напряжением и током в электрической цепи.
Падение напряжения и сопротивление резистора определяют протекание постоянного тока через резистор.
Используя аналогию с потоком воды, мы можем представить электрический ток как ток воды через трубу, резистор как тонкую трубу, которая ограничивает поток воды, напряжение как разница высот воды, которая обеспечивает течение воды.
Формула закона Ома
Ток I резистора в амперах (A) равен току резистора напряжение V в вольтах (В), деленное на сопротивление R в омах (Ом):
В — падение напряжения на резисторе, измеренное в вольтах (В).В некоторых случаях в законе Ома для обозначения напряжения используется буква E . E обозначает электродвижущую силу.
I — электрический ток, протекающий через резистор, измеренный в амперах (A)
R — сопротивление резистора, измеренное в Ом (Ом)
Расчет напряжения
Зная ток и сопротивление, мы можем рассчитать напряжение.
Напряжение V в вольтах (В) равно току I в амперах (А), умноженному на сопротивление R в омах (Ом):
Расчет сопротивления
Зная напряжение и ток, мы можем рассчитать сопротивление.
Сопротивление R в омах (Ом) равно напряжению V в вольтах (В), деленному на ток I в амперах (A):
Поскольку ток задается значениями напряжения и сопротивления, формула закона Ома может показать, что:
- Если увеличивать напряжение, ток увеличится.
- Если мы увеличим сопротивление, ток уменьшится.
Пример # 1
Найдите ток электрической цепи с сопротивлением 50 Ом и напряжением питания 5 Вольт.
Решение:
В = 5 В
R = 50 Ом
I = В / R = 5 В / 50 Ом = 0,1 А = 100 мА
Пример # 2
Найдите сопротивление электрической цепи, имеющей напряжение питания 10 В и ток 5 мА.
Решение:
В = 10 В
I = 5 мА = 0,005 А
R = В / I = 10 В / 0,005 A = 2000 Ом = 2 кОм
Закон Ома для цепи переменного тока
Ток нагрузки I в амперах (A) равен напряжению нагрузки V Z = V в вольтах (В), деленному на полное сопротивление Z в омах (Ом):
В — падение напряжения на нагрузке, измеренное в вольтах (В)
I — электрический ток, измеренный в амперах (A)
Z — полное сопротивление нагрузки, измеренное в Ом (Ом)
Пример # 3
Найдите ток в цепи переменного тока с напряжением питания 110 В ± 70 ° и нагрузкой 0.5кОм∟20 °.
Решение:
В = 110 В 70 °
Z = 0,5 кОм∟20 ° = 500 Ом∟20 °
I = В / Z = 110 В 70 ° / 500 Ом 20 ° = (110 В / 500 Ом) ∟ (70 ° -20 °) = 0,22 А 50 °
Калькулятор закона Ома (краткая форма)
Калькулятор законаОма: вычисляет соотношение между напряжением, током и сопротивлением.
Введите 2 значений, чтобы получить третье значение, и нажмите кнопку Рассчитать :
Калькулятор закона Ома II ►
См. Также
ЗаконОма
Закон Ома гласит, что
«ток через проводник между двумя точками прямо пропорционален разности потенциалов или напряжению между двумя точками, и обратно пропорционален сопротивлению между ними».
Закон Ома может быть выражен как
I = U / R (1)
где
I = ток (ампер, А)
U = электрический потенциал (вольт, В)
R = сопротивление (Ом, Ом )
Пример — закон Ома
A 12-вольтная батарея обеспечивает питание до сопротивления 18 Ом . Ток в электрической цепи можно рассчитать как
I = (12 вольт) / (18 Ом)
= 0.67 ампер
Эквивалентные выражения закона Ома
Закон Ома (1) также можно выразить как
U = RI (2)
или
или
I (3)Скачайте и распечатайте диаграмму закона Ома!
Пример — сопротивление электрической цепи
Ток 1 ампер протекает через электрическую цепь 230 В, .На приведенной выше диаграмме это означает сопротивление
R ≈ 220 Ом
Его можно также рассчитать по закону Ома
R = (230 В) / (1 А)
= 230 Ом
Пример — Закон Ома и кратные и подмножители
Токи, напряжения и сопротивления в электрических цепях часто могут быть очень маленькими или очень большими, поэтому часто используются кратные и подмножители.
Требуемое напряжение, подаваемое на 3.Резистор 3 кОм для создания тока 20 мА можно рассчитать как
U = (3,3 кОм) (1000 Ом / кОм) (20 мА) (10 -3 А / мА)
= 66 В
Номограмма электрического сопротивления
Загрузите и распечатайте номограмму зависимости электрического сопротивления от вольт и ампер!
Значения по умолчанию на номограмме выше: 230 вольт , сопротивление 24 Ом и ток 10 ампер .
Мощность
Электрическая мощность может быть выражена как
P = UI
= RI 2
= U 2 / R (4)
215
P = электрическая мощность (Вт, Вт)
Пример — потребляемая мощность
Мощность, потребляемая в указанной выше электрической цепи 12 В , может быть рассчитана как
P = (12 вольт) 2 / ( 18 Ом)
= 8 Вт
Пример — мощность и электрическое сопротивление
Электрическая лампочка 100 Вт подключена к источнику питания 230 В .Текущий ток можно рассчитать путем преобразования (4) в
I = P / U
= (100 Вт) / (230 В)
= 0,43 ампера
Сопротивление может быть вычислено путем реорганизации (4) в
R = U 2 / P
= (230 В) 2 / (100 Вт)
= 529 Ом
Номограмма электрической мощности
Эта номограмма может использоваться для оценки зависимости мощности отнапряжение и ампер.
Скачайте и распечатайте номограмму зависимости электрической мощности от вольт и ампер!
Значения по умолчанию на номограмме выше: 240 вольт, , сопротивление 10 ампер и мощность 2,4 кВт, для постоянного или однофазного переменного тока и 4 кВт, для трехфазного переменного тока.
Примеры закона Ома— Сборка электронных схем
Обычно я не использую много математики при работе с электроникой, но закон Ома чрезвычайно полезен!
Закон был найден Георгом Омом и основан на том, как связаны напряжение, ток и сопротивление:
Посмотрите на рисунок выше и убедитесь, что для вас это имеет смысл:
- Если вы увеличите напряжение в цепи при неизменном сопротивлении, вы получите больший ток.
- Если вы увеличите сопротивление в цепи при неизменном напряжении, вы получите меньший ток.
Закон Ома — это способ описания взаимосвязи между напряжением, сопротивлением и током с использованием математики:
В = RI
- В — обозначение напряжения.
- I — обозначение тока.
- R — символ сопротивления.
ОЧЕНЬ часто пользуюсь. Это формула электроники.
Вы можете переключить его и получить R = V / I или I = V / R.Если у вас есть две переменные, вы можете рассчитать последнюю.
Треугольник закона Ома
Вы можете использовать этот треугольник, чтобы запомнить закон Ома:
Как использовать:
Накройте рукой письмо, которое хотите найти. Если оставшиеся буквы лежат друг на друге, значит, верхнюю разделите на нижнюю. Если они рядом, значит, умножаются одно на другое.
Пример: напряжение
Найдем формулу для напряжения:
Положите руку на V в треугольнике, затем посмотрите на R и I.Я и R находятся рядом друг с другом, поэтому нужно умножать. Это означает, что вы получите:
В = I * R
Пример: сопротивление
Найдем формулу сопротивления:
Положите руку на R. Тогда вы увидите, что V находится над I. Это означает, что вам нужно разделить V на I:
R = V / I
Пример: Текущий
Найдем формулу для тока:
Положите руку на I. Затем вы увидите букву V над R, что означает разделение V на R:
I = V / R
Как запомнить закон Ома
Самый простой способ запомнить что-то — создать с ним глупую ассоциацию, чтобы вы запомнили это, потому что это так глупо.
Итак, чтобы помочь вам запомнить закон Ома, позвольте мне представить VRIIIIIIII! правило.
Представьте, что вы ведете машину очень быстро, а затем внезапно резко нажимаете на тормоза. Какой звук вы слышите?
«ВРИИИИИИИИИИИИ!»
И так можно запомнить V = RI;)
Практический пример
Лучший способ научить пользоваться им — это на собственном примере.
Ниже представлена очень простая схема с батареей и резистором. Батарея представляет собой батарею на 12 вольт, а сопротивление резистора составляет 600 Ом.Сколько тока течет по цепи?
Чтобы найти величину тока, вы можете использовать треугольник выше к формуле для тока: I = V / R. Теперь вы можете рассчитать ток, используя напряжение и сопротивление:
I = 12 В / 600 Ом
I = 0,02 A = 20 мА (миллиампер)
Значит ток в цепи 20 мА.
Если вы не любите вычислять самостоятельно, воспользуйтесь этим калькулятором закона Ома.
Другой пример
Попробуем другой пример.
Ниже мы снова видим схему с резистором и батареей. Но на этот раз мы не знаем напряжение батареи. Вместо этого мы представляем, что измерили ток в цепи и обнаружили, что он составляет 3 мА (миллиампер).
Сопротивление резистора 600 Ом. Какое напряжение у аккумулятора?
Вспоминая «VRIIII!» правило, вы получаете:
В = RI
В = 600 Ом * 3 мА
В = 1,8 В
Значит, напряжение АКБ должно быть 1.8 В.
Возврат от закона Ома к электронным схемам
ЗаконОма: определение и взаимосвязь между напряжением, током и сопротивлением — Видео и стенограмма урока
Закон Ома
Взаимосвязь между напряжением, током и сопротивлением описывается законом Ома . Это уравнение, i = v / r , говорит нам, что ток, i , протекающий через цепь, прямо пропорционален напряжению, v , и обратно пропорционален сопротивлению, r .Другими словами, если мы увеличим напряжение, то увеличится и ток. Но, если увеличить сопротивление, то ток уменьшится. Мы увидели эти концепции в действии с садовым шлангом. Увеличение давления привело к увеличению потока, но изгиб шланга увеличил сопротивление, что привело к уменьшению потока.
Как написано здесь уравнение, было бы легко использовать закон Ома, чтобы вычислить ток, если бы мы знали напряжение и сопротивление.Но что, если бы мы вместо этого захотели вычислить напряжение или сопротивление? Один из способов сделать это — переставить члены уравнения для решения других параметров, но есть более простой способ. Приведенная выше диаграмма даст нам соответствующее уравнение для решения любого неизвестного параметра без использования алгебры. Чтобы использовать эту диаграмму, мы просто закрываем параметр, который пытаемся найти, чтобы получить правильное уравнение. Это станет более понятным, когда мы начнем его использовать, поэтому давайте рассмотрим несколько примеров.
Закон Ома в действии
Ниже представлена простая электрическая схема, которую мы будем использовать для выполнения наших примеров. Наш источник напряжения — это аккумулятор, подключенный к лампочке, которая обеспечивает сопротивление электрическому току. Для начала предположим, что наша батарея имеет напряжение 10 вольт, электрическая лампочка имеет сопротивление 20 Ом, и нам нужно вычислить ток, протекающий по цепи. Используя нашу диаграмму, мы закрываем параметр, который мы пытаемся найти, то есть ток, или i , и это оставляет нам напряжение v над сопротивлением r .Другими словами, чтобы найти ток, нам нужно разделить напряжение на сопротивление. Делая математику, 10 вольт, разделенные на 20 Ом, дают половину ампера тока, протекающего в цепи.
Теперь давайте увеличим напряжение, чтобы посмотреть, что происходит с током. Мы будем использовать ту же лампочку, но перейдем на 20-вольтовую батарею.Используя то же уравнение, что и раньше, мы разделим 20 вольт на 20 Ом, и мы получим 1 ампер тока. Как мы видим, удвоение напряжения привело к удвоению и тока. Это имеет смысл, когда мы думаем о садовом шланге. Если бы мы увеличили давление в шланге, можно было бы ожидать, что поток воды также увеличится. Всегда полезно перепроверить свою работу, спросив, соответствуют ли результаты тому, что вы ожидали.
Если бы мы увеличили сопротивление лампочки, что бы вы ожидали, что произойдет с током? Чтобы выяснить это, давайте поменяем существующую лампочку на другую с сопротивлением 40 Ом.Поскольку мы все еще ищем ток, мы используем то же уравнение, что и раньше. Разделив 20 вольт на 40 Ом, мы получим половину ампера тока. Этот результат говорит нам, что удвоение сопротивления уменьшило ток вдвое. Вы этого ожидали? Если вернуться к нашему шлангу, логично предположить, что перегиб в шланге уменьшит поток воды, точно так же, как увеличение сопротивления в цепи уменьшит ток.
До сих пор мы только рассчитали ток в цепи, но что, если бы кто-то поменял нашу лампочку, когда мы не смотрели, и нам нужно было вычислить сопротивление новой? Что ж, мы знаем, что напряжение нашей батареи составляет 20 вольт, и мы можем измерить ток в цепи с помощью инструмента, называемого амперметром, поэтому все, что нам осталось, — это выполнить некоторые вычисления.Используя нашу диаграмму, мы закрываем параметр, который мы пытаемся найти, а именно сопротивление, r . Схема теперь показывает нам, что нам нужно разделить напряжение на ток. Если наш амперметр измерил ток в 5 ампер, протекающий по цепи, то сопротивление будет равно 20 вольт, разделенным на 5 ампер, что составляет 4 Ом
Наконец, представьте, что кто-то заменил нашу батарею, и нам нужно выяснить ее напряжение.Процесс почти такой же. Мы знаем, что наша новая лампочка имеет сопротивление 4 Ом, и мы можем измерить ток в цепи с помощью амперметра. Используя диаграмму, мы покрываем напряжение v , которое говорит нам, что нам нужно умножить ток на сопротивление. Если бы амперметр измерил ток в 3 ампера, тогда напряжение было бы 3 ампера, умноженным на 4 Ом, что составляет 12 вольт. Вот и все. Зная любые два из трех параметров, мы всегда можем вычислить третий, используя закон Ома.
Резюме урока
Закон Ома определяет соотношение между напряжением, током и сопротивлением в электрической цепи: i = v / r . Ток прямо пропорционален напряжению и обратно пропорционален сопротивлению. Это означает, что увеличение напряжения приведет к увеличению тока, а увеличение сопротивления приведет к уменьшению тока. Зная любые два из трех параметров, мы можем вычислить третий, неизвестный параметр.Мы можем сделать это, переставив члены в уравнении закона Ома или используя диаграмму, приведенную выше в уроке. Скрытие параметра, который мы пытаемся найти, показывает нам соответствующее уравнение с использованием двух известных параметров.
Результаты обучения
По завершении этого урока вы сможете:
- Описывать взаимосвязь между напряжением, током и сопротивлением, используя закон Ома
- Напишите уравнение закона Ома
- Объясните, как можно найти любую из трех переменных в уравнении закона Ома, если вы знаете две другие.
- Рассчитайте любую из трех переменных, используя уравнение закона Ома.
L3: Закон Ома — Физические вычисления
Содержание
- Закон Ома
- Связь закона Ома с нашими аналогами с водой
- Почему \ (I \), а не \ (C \)?
- Обязательно используйте базовые единицы
- Общие префиксы СИ
- Конвертирующие единицы
- Давайте проанализируем некоторые схемы!
- Пример 1: Решить для тока
- Шаг 1: Определить известные
- Шаг 2: Применить известные
- Шаг 3: Решить для тока I
- Пример 2: Решить для тока снова (но с другим сопротивлением)
- Пример 3: Найти напряжение
- Пример 4: Найти сопротивление
- Пример 1: Решить для тока
- Упражнение: Использование симулятора цепей
- Краткое содержание урока
- Ресурсы
- Следующий урок
В этом уроке мы узнаем о законе Ома , один из наиболее важных эмпирических законов в электрических цепях, который описывает, как связаны между собой ток , , напряжение , и сопротивление , .Хотя закон Ома невероятно полезен для анализа и понимания того, как работают схемы, как и многие «законы», он не всегда соблюдается (особенно для так называемых «неомических» устройств, таких как светодиоды или другие диоды). Но мы к этому еще вернемся.
А теперь перейдем к закону Георга Ома!
Закон Ома
В 1827 году, после многих лет экспериментов, немецкий физик Георг Симон Ом опубликовал « Гальваническая цепь, исследованная математически, », которая стала основой закона Ома.Закон Ома гласит, что ток (\ (I \) в амперах) в проводнике прямо пропорционален приложенному напряжению (\ (V \) в вольтах) против сопротивления проводника (\ (R \) в омах) :
\ [I = \ frac {V} {R} \]Таким образом, если мы удвоим напряжение в нашей цепи, например, соединив две батареи последовательно, то мы также удвоим ток. Закон Ома имеет большое значение для построения и использования схем с микроконтроллерами, включая делители напряжения и резистивные датчики.
Важно отметить, что вы увидите и будете использовать закон Ома во всех трех эквивалентных воплощениях (которые могут быть получены с помощью простой алгебры):
Если вы хотите найти ток в вашей схеме, вы используете: \ (I = \ frac {V} {R} \)
Чтобы решить для напряжения , используйте: \ (V = I * R \)
Чтобы найти сопротивления , используйте: \ (R = \ frac {V} {I } \)
Обратите внимание, как эти уравнения соотносятся с концепциями, которые мы объясняли в нашем первом уроке по напряжению, току и сопротивлению, к которым вы, возможно, захотите вернуться.Например, \ (I = \ frac {V} {R} \) ясно демонстрирует, что для увеличения тока мы можем либо увеличить напряжение , либо уменьшить сопротивление .
Связь закона Ома с нашими аналогами с водой
Опять же, опираясь на наши гидравлические и электрические аналогии (которые мы подробно использовали в предыдущих уроках), мы можем выделить еще одно сходство. В 1840-х годах Пуазейль эмпирически показал, что скорость потока воды через трубу равна падению давления в трубе, деленному на сопротивление трубы — это называется закон Пуазейля .И это концептуально имеет смысл: большая разница давлений между двумя концами трубы создает большую силу, а меньшее сопротивление позволяет большему потоку воды.
Вам знакомо это уравнение? Должно. Это в точности закон Ома! Ток в цепи прямо пропорционален падению напряжения в цепи, деленному на ее сопротивление. См. Изображение ниже.
Рисунок. Закон Пуазейля для плавного течения жидкости и закон Ома для электрического тока аналогичны.Изображение основано на HyperPhysics в штате Джорджия и создано в PowerPoint. Изображения Пуазейля и Ома взяты из Википедии.
ПРИМЕЧАНИЕ:
Уравнение закона Пуазейля справедливо только для плавного (ламинарного, а не турбулентного) течения ньютоновской жидкости, такой как вода. Но такое условие не имеет отношения к электрическому току.
Почему \ (I \), а не \ (C \)?
Вы можете спросить: «Если \ (R \) — это сопротивление r в омах (Ом), а V — напряжение v в вольтах (В), то почему \ (I \) используется для обозначения c Ток в амперах (A), а не в \ (C \)? » Две причины: во-первых, \ (C \) уже зарезервирован для единицы СИ, состоящей из столбцов (C), которая используется в самом определении ампер (напомним, что \ (1 \ A = 1 \ C / s \)) и таким образом, можно запутаться! Во-вторых, ампер назван в честь Андре-Мари Ампера, считающегося отцом электромагнетизма, который называл силу тока « i ntensité du courant» или « i ntensity of current».Итак, ток равен \ (I \), а не \ (C \).
Обязательно используйте базовые блоки
Распространенная проблема при применении закона Ома — или анализе схем в целом — это испорченные базовые блоки. В цифровых схемах мы часто имеем дело с кОм (кОм), , что составляет 1000 Ом, миллиампер (ма), , что составляет \ (\ frac {1} {1000} \) (0,001) усилителя — или даже микроампер (мкА), что составляет одну миллионную (\ (\ frac {1} {1,000,000} \) или 0,000001) усилителя, и так далее. Нам необходимо преобразовать эти единицы в базовые единицы , в вольтах (В), омах (Ом) и амперах (А) для выполнения нашего анализа.
Например, если схема содержит резистор 2,2 кОм с батареей 9 В, для расчета тока не следует ошибочно писать \ (I = \ frac {9V} {2,2Ω} A \), а вместо этого \ (I = \ frac {9V} {2200Ω} A \). Первый даст вам 4,1 А (большая сила тока и неправильный!), А второй дает правильное значение 0,0041 А, что составляет 4,1 мА.
Итак, всегда проверяйте свои устройства дважды!
Общие префиксы SI
Ниже мы написали несколько общих префиксов SI, большинство из которых должно быть вам знакомо по другим измеряемым величинам.{-12} \)
Таблица Эта диаграмма основана на веб-странице метрических префиксов СИ NIST и рисунке 2.2 в книге Бартлетта.
Преобразование единиц
Для преобразования между префиксной единицей и базовой единицей мы умножаем на коэффициент преобразования. Чтобы преобразовать базовую единицу в единицу с префиксом, мы делим на коэффициент преобразования.
Так, например, чтобы преобразовать 2.{-6}} = 37 мкА \).
Разберем схемы!
Уф, хорошо, теперь мы готовы приступить к анализу некоторых схем. Мы начнем с простой схемы и перейдем к ней. Анализируя (или даже готовясь к созданию) схем, всегда полезно взять карандаш и бумагу. Итак, сделайте это сейчас.
Кроме того, полезно иметь способ проверить нашу работу, что мы можем сделать в симуляторе схем. Мне нравится использовать CircuitJS, но я также использовал EveryCircuit и CircuitLab — последнее стоит денег.
Прежде чем мы начнем, давайте посмотрим это видео, в котором я строю простую резистивную схему в CircuitJS и вычисляю ее ток с учетом источника напряжения и резистора.
Видео Видео было создано с помощью симулятора CircuitJS. Прямая ссылка здесь.
Пример 1: Решить относительно тока
Представьте себе схему с батарейным питанием и одним резистором (базовым, да, но педагогически мощным!). Если нам заданы напряжение \ (9 В \) и сопротивление (\ (100 Ом \)), можем ли мы решить для тока \ (I \)?
Рисунок. Простая схема с питанием 9 В и одним резистором \ (100 Ом \). Можете ли вы, используя закон Ома, вычислить ток \ (I \)? Изображения сделаны в Fritzing и PowerPoint.
Шаг 1. Определите знающих
Чтобы начать анализ, вам нужно определить все, что вы знаете об этой цепи.
Обратите внимание на то, что все провода, соприкасающиеся с положительной клеммой батареи , имеют одинаковый электрический потенциал (\ (9 В \)), который мы теперь отметили красным, и все провода, соприкасающиеся с отрицательной клеммой батареи , имеют одинаковый электрический потенциал. (\ (0V \)) — который мы отметили черным.Обратите внимание, что даже несмотря на то, что медные провода имеют некоторое сопротивление, оно настолько мало (особенно для длин в цифровой цепи), что мы можем смоделировать его как \ (0Ω \) (действительно, провода всегда предполагаются \ (0Ω \) в этом виде схемотехнического анализа).
И поскольку мы решаем для тока, нам нужно использовать формулировку закона Ома: \ (I = \ frac {V} {R} \). В частности, поскольку напряжение всегда относительно — разность электрических потенциалов — мы используем \ (I = \ frac {V_1 — V_2} {R} \)
Рис. Все провода, соприкасающиеся с плюсовой клеммой аккумулятора, имеют одинаковое напряжение (9 В). Точно так же все провода, соприкасающиеся с отрицательной клеммой аккумулятора, имеют одинаковое напряжение (0 В). Изображения сделаны в Fritzing и PowerPoint.
Шаг 2: Применить знания
Установив, что все провода в верхней части схемы (те, которые непосредственно подключены к положительной клемме) имеют одинаковый электрический потенциал, мы можем отметить ее как один узел \ (V_1 \ ) . Точно так же все провода, соприкасающиеся с отрицательной клеммой аккумулятора, можно назвать узлом \ (В_2 \) .
Теперь мы можем заменить \ (9V \) на \ (V_1 \) и \ (0V \) на \ (V_2 \). И мы также знаем, что \ (R = 100Ω \), что дает нам полное уравнение: \ (I = \ frac {9V — 0V} {100Ω} \)
Рис. Мы можем назвать все провода, соприкасающиеся с положительным клеммным узлом батареи \ (V_1 \), и все провода, соприкасающиеся с отрицательным клеммным узлом \ (V_2 \). Используя эту информацию, мы можем заменить \ (9V \) на \ (V_1 \) и \ (0V \) на \ (V_2 \). Изображения сделаны в Fritzing и PowerPoint.
Шаг 3: Решите для тока I
Наконец, мы готовы решить для тока \ (I = \ frac {9V — 0V} {100Ω} \ Rightarrow 0.09A \ Rightarrow 90mA \)
Сделали. Мы успешно применили закон Ома для определения тока!
Пример 2. Снова вычислить для тока (но с другим сопротивлением)
Давайте попробуем снова вычислить для тока с помощью аналогичной схемы. На этот раз сопротивление увеличено с \ (100 Ом \) до \ (4,7 кОм \).
Прежде чем делать что-либо еще: полезно подумать о концептуально , что произойдет?
Ток уменьшается, верно? И делает это пропорционально.
Действительно, ток изменяется от \ (90 мА \) с \ (100 Ом \) до \ (I = \ frac {9V} {4700 Ом} \ Rightarrow 0.0019𝐴 \ Rightarrow 1.9𝑚𝐴 \), что не очень много!
Рисунок. Как и ожидалось, ток \ (I \) снижается, когда сопротивление \ (R \) увеличивается.
Пример 3: Найти напряжение
Как отмечалось выше, мы можем использовать три различных формулировки закона Ома (\ (I = \ frac {V} {R} \), \ (V = I * R \), и \ (R = \ frac {V} {I} \)), чтобы помочь нам проанализировать различные неизвестные в схеме.
В этом случае давайте воспользуемся законом Ома, чтобы найти неизвестный источник напряжения . Предположим, что схема аналогична предыдущей: один источник напряжения (но неизвестного напряжения) с одним резистором размером \ (100 Ом \) и током \ (I = 50 мА \).
Поскольку мы вычисляем напряжение, мы должны использовать формулу \ (V = I * R \). Первое, что нам нужно сделать, это убедиться, что все наши измерения находятся в базовых единицах . Сила тока нет, поэтому измените его на силу тока (а не в миллиампер): \ (I = 50 мА \ Rightarrow 0.05А \).
Теперь мы можем легко найти \ (V = 0,05A * 100Ω = 5V \). Батарея является источником напряжения \ (5В \).
Рисунок. Используя формулировку \ (V = I * R \) закона Ома, мы можем найти напряжение при известном токе \ (I \) и известном сопротивлении \ (R \). Изображения сделаны в Fritzing и PowerPoint.
Пример 4: Решите для сопротивления
Готов поспорить, вы уже поняли это!
Наконец, вы можете использовать \ (R = \ frac {V} {I} \) для определения сопротивления, если известны \ (V \) и \ (I \).В этом случае давайте вернемся к нашей батарее \ (9 В \) и предположим, что у нас есть ток \ (1,32 мА \). Какой номинал резистора \ (R \)?
Опять же, первое, что нужно сделать, это преобразовать все единицы в базовые. Итак, \ (1.32mA \ Rightarrow 0.00132A \).
Теперь мы можем найти \ (R = \ frac {9V} {0.00132A} \ Rightarrow 6818.2Ω \ Rightarrow 6.8kΩ \)
Рис. Используя формулировку \ (R = \ frac {V} {I} \) закона Ома, мы можем найти сопротивление \ (R \) при известном напряжении \ (V \) и известном токе \ (I \ ).Изображения сделаны в Fritzing и PowerPoint.
Упражнение: Использование симулятора схем
Теперь, когда мы получили начальное понимание закона Ома, пора построить и поиграть с некоторыми схемами в симуляторе схем.
Используя CircuitJS, постройте и проанализируйте пять различных типов резистивных цепей. Вы можете создавать любые схемы с некоторыми требованиями:
- Все схемы должны иметь только один источник питания
- Вы должны использовать только резисторы
- Вы можете использовать столько резисторов на схему, сколько хотите, но дважды щелкните по провода для отображения тока / напряжения
- Для каждой схемы сделайте снимок экрана и поместите его в журнал прототипирования вместе с кратким отражением того, что вы наблюдали / узнали.
Вы можете сохранить свои схемы одним из двух способов: (1) загрузить их локально (Файл -> Сохранить как) или (2) экспортировать их как общую ссылку (Файл -> Экспортировать как ссылку) — используйте последний вариант. для ваших журналов по прототипированию.
В свои журналы прототипирования включите снимок экрана каждой схемы CircuitJS вместе с кратким описанием того, что вы наблюдали, и прямой ссылкой на созданную вами схему CircuitJS.
Краткое содержание урока
В этом уроке мы узнали:
- Что существует эмпирический закон, называемый законом Ома, который описывает линейную зависимость между напряжением, током и сопротивлением
- В частности, закон Ома утверждает, что ток в цепь — это полное напряжение, деленное на полное сопротивление (\ (I = \ frac {V} {R} \)).Этот закон основан на концепциях и интуиции, которые мы развили в первом уроке этой серии.
- Мы также узнали, как применить закон Ома к некоторым простым схемам, чтобы найти неизвестные токи, напряжения и сопротивления для новичков забывает преобразовать измерения в базовые единицы.