Закрыть

40 ампер это сколько киловатт: Сколько киловатт выдержит автомат на 16, 25, 32 и 40 Ампер

Содержание

Автомат на 40 ампер сколько киловатт выдержит

Выбор защитных автоматических выключателей производится не только в ходе установки новой электрической сети, но и при модернизации электрощита, а также при включении в цепь дополнительных мощных приборов, повышающих нагрузку до такого уровня, с которым старые устройства аварийного отключения не справляются. И в этой статье речь пойдет о том, как правильно производить подбор автомата по мощности, что следует учитывать в ходе этого процесса и каковы его особенности.

Непонимание важности этой задачи может привести к очень серьезным проблемам. Ведь зачастую пользователи не утруждают себя, производя выбор автоматического выключателя по мощности, и берут в магазине первое попавшееся устройство, пользуясь одним из двух принципов – «подешевле» или «помощнее». Такой подход, связанный с неумением или нежеланием рассчитать суммарную мощность устройств, включенных в электросеть, и в соответствии с ней подобрать защитный автомат, зачастую становится причиной выхода дорогостоящей техники из строя при коротком замыкании или даже пожара.

Для чего нужны защитные автоматы и как они работают?

Современные АВ имеют две степени защиты: тепловую и электромагнитную. Это позволяет обезопасить линию от повреждения в результате длительного превышения протекающим током номинальной величины, а также короткого замыкания.

Основным элементом теплового расцепителя является пластина из двух металлов, которая так и называется – биметаллической. Если на нее в течение достаточно длительного времени воздействует ток повышенной мощности, она становится гибкой и, воздействуя на отключающий элемент, вызывает срабатывание автомата.

Наличием электромагнитного расцепителя обусловлена отключающая способность автоматического выключателя при воздействии на цепь сверхтоков короткого замыкания, выдержать которые она не сможет.

Расцепитель электромагнитного типа представляет собой соленоид с сердечником, который при прохождении сквозь него тока высокой мощности моментально сдвигается в сторону отключающего элемента, выключая защитное устройство и обесточивая сеть.

Это позволяет обеспечить защиту провода и приборов от потока электронов, величина которого намного выше расчетной для кабеля конкретного сечения.

Чем опасно несоответствие кабеля сетевой нагрузке?

Правильный подбор защитного автомата по мощности – очень важная задача. Неверно выбранное устройство не защитит линию от внезапного возрастания силы тока.

Но не менее важно правильно подобрать по сечению кабель электропроводки. В противном случае, если суммарная мощность превысит номинальную величину, которую способен выдерживать проводник, это приведет к значительному росту температуры последнего. В итоге изоляционный слой начнет плавиться, что может привести к возгоранию.

Чтобы более наглядно представить, чем грозит несоответствие сечения проводки суммарной мощности включенных в сеть устройств, рассмотрим такой пример.

Новые хозяева, купив квартиру в старом доме, устанавливают в ней несколько современных бытовых приборов, дающих суммарную нагрузку на цепь, равную 5 кВт.

Токовый эквивалент в этом случае будет составлять около 23 А. В соответствии с этим в цепь включается защитный автомат на 25 А. Казалось бы, выбор автомата по мощности сделан верно, и сеть готова к эксплуатации. Но через некоторое время после включения приборов в доме появляется задымление с характерным запахом горелой изоляции, а через некоторое время возникает пламя. Автоматический выключатель при этом не будет отключать сеть от питания – ведь номинал тока не превышает допустимого.

Если хозяина в этот момент не окажется поблизости, расплавленная изоляция через некоторое время вызовет короткое замыкание, которое, наконец, спровоцирует срабатывание автомата, но пламя от проводки может уже распространиться по всему дому.

Причина в том, что хотя расчет автомата по мощности был сделан правильно, кабель проводки сечением 1,5 мм² был рассчитан на 19 А и не мог выдержать имеющейся нагрузки.

Чтобы вам не пришлось браться за калькулятор и самостоятельно высчитывать сечение электропроводки по формулам, приведем типовую таблицу, в которой легко найти нужное значение.

Защита слабого звена электроцепи

Итак, мы убедились, что расчет автоматического выключателя должен производиться, исходя не только из суммарной мощности включенных в цепь устройств (независимо от их количества), но и из сечения проводов. Если этот показатель неодинаков на протяжении электрической линии, то выбираем участок с наименьшим сечением и производим расчет автомата, исходя из этого значения.

Требования ПУЭ гласят, что выбранный автоматический выключатель должен обеспечивать защиту наиболее слабого участка электроцепи, или иметь номинал тока, который будет соответствовать аналогичному параметру включенных в сеть установок. Это также означает, что для подключения должны использоваться провода, поперечное сечение которых позволит выдержать суммарную мощность подключенных устройств.

Как выполняется выбор сечения провода и номинала автоматического выключателя – на следующем видео:

Если нерадивый хозяин проигнорирует это правило, то в случае аварийной ситуации, возникшей из-за недостаточной защиты наиболее слабого участка проводки, ему не стоит винить выбранное устройство и ругать производителя – виновником сложившейся ситуации будет только он сам.

Как рассчитать номинал автоматического выключателя?

Допустим, что мы учли все вышесказанное и подобрали новый кабель, соответствующий современным требованиям и имеющий нужное сечение. Теперь электропроводка гарантированно выдержит нагрузку от включенных бытовых приборов, даже если их достаточно много. Теперь переходим непосредственно к выбору автоматического выключателя по номиналу тока. Вспоминаем школьный курс физики и определяем расчетный ток нагрузки, подставляя в формулу соответствующие значения: I=P/U.

Здесь I – величина номинального тока, P – суммарная мощность включенных в цепь установок (с учетом всех потребителей электричества, в том числе и лампочек), а U – напряжение сети.

Чтобы упростить выбор защитного автомата и избавить вас от необходимости браться за калькулятор, приведем таблицу, в которой указаны номиналы АВ, которые включаются в однофазные и трехфазные сети, и соответствующие им мощности суммарной нагрузки.

Эта таблица позволит легко определить, сколько киловатт нагрузки какому номинальному току защитного устройства соответствуют. Как мы видим, автомату 25 Ампер в сети с однофазным подключением и напряжением 220 В соответствует мощность 5,5 кВт, для АВ на 32 Ампера в аналогичной сети – 7,0 кВт (в таблице это значение выделено красным цветом). В то же время для электрической сети с трехфазным подключением «треугольник» и номинальным напряжением 380 В автомату на 10 Ампер соответствует мощность суммарной нагрузки 11,4 кВт.

Наглядно про подбор автоматических выключателей на видео:

Заключение

В представленном материале мы рассказали о том, для чего нужны и как работают устройства защиты электрической цепи. Кроме того, учитывая изложенную информацию и приведенные табличные данные, у вас не вызовет затруднения вопрос, как выбрать автоматический выключатель.

При выборе автоматов постоянно допускается одна и та же ошибка — не учитывается температура окружающей среды. Номинальный ток автомата назначается по ПУЭ при температуре в + 30 градусов Цельсия,а номинальный ток кабеля или провода назначается по ПУЭ при температуре в + 25 ,а эксплуатироваться автомат и кабель будут при комнатной температуре,допустим в + 18 градусов Цельсия.Если номинальный ток двухжильного или трехжильного, с защитным проводником, кабель — провода сечением 2.5 миллиметра квадратного по меди в однофазной сети равно 25 ампер ( 27 ампер это для кабелей с дополнительной изоляцией в виде ПЭТ ленты или композитного стекломиканита или стеклоленты,заполнением пространства под общей оболочкой мелованной резиной и т. д.),то при + 18 градусов Цельсия это уже номинальный ток в 27 ампер,а номинальный ток автомата на 16 ампер уже фактически равен 18.3 ампера,если учесть что при токах в 1.13 номинального тока автомат не отключается гарантированного в течении более одного часа,то реальный предельный рабочий ток провода уже 20.7 амер,то есть автомат на 16 ампер превращается уже в автомат на 20 ампер,при этом ,согласно DIN стандарту на модульные автоматы ,изготовленные по этому стандарту,номинальный ток кабеля или провода должен быть в полтора раза больше номинального тока автомата или 20. 2.

Электромонтажные работы проводимые нами всегда качественные и доступные.
Мы сможем помочь в расчете мощности автоматов (автоматических выключателей) и в их монтаже.
Как выбрать автомат?

Что нужно учитывать?

  • первое, при выборе автомата его мощность,

определяется суммарная мощность подключаемых на постоянной основе к защищаемой автоматом проводке/сети нагрузок. Полученная суммарная мощность увеличивается на коэффициент потребления, определяющий возможное временное превышение потребляемой мощности за счет подключения других, первоначально неучтенных электроприборов.

Пример того как можно просчитать нагрузку в кухни

  • электрочайник (1,5кВт),
  • микроволновки (1кВт),
  • холодильника (500 Ватт),
  • вытяжки (100 ватт).

Суммарная потребляемая мощность составит 3,1 кВт. Для защиты такой цепи можно применить автомат 16А с номинальной мощностью 3,5кВт. Теперь представим, что на кухню поставили кофе машину (1,5 кВт) и подключили к этой же электропроводке.


Суммарная мощность снимаемая с проводки при подключении всех указанных электроприборов в этом случае составит 4,6кВт, что больше мощности 16 Амперного авто выключателя, который, при включении всех приборов просто отключится по превышению мощности и оставит все приборы без электропитания, Включая холодильник.

Выбор автоматов по мощности и подключению

Вид подключенияОднофазноеОднофазн. вводныйТрехфзн. треуг-омТрехфазн. звездой
Полюсность автоматаОднополюсный автоматДвухполюсный автоматТрехполюсный автоматЧетырех-сный автомат
Напряжение питания220 Вольт220 Вольт380 Вольт220 Вольт
VVVV
Автомат 1А0. 2 кВт0.2 кВт1.1 кВт0.7 кВт
Автомат 2А0.4 кВт0.4 кВт2.3 кВт1.3 кВт
Автомат 3А0.7 кВт0.7 кВт3.4 кВт2.0 кВт
Автомат 6А1.3 кВт1.3 кВт6.8 кВт4.0 кВт
Автомат 10А2.2 кВт2.2 кВт11.4 кВт6.6 кВт
Автомат 16А3.5 кВт3.5 кВт18.2 кВт10.6 кВт
Автомат 20А4.4 кВт4.4 кВт22.8 кВт13.2 кВт
Автомат 25А5.5 кВт5.5 кВт28.5 кВт16.5 кВт
Автомат 32А7. 0 кВт7.0 кВт36.5 кВт21.1 кВт
Автомат 40А8.8 кВт8.8 кВт45.6 кВт26.4 кВт
Автомат 50А11 кВт11 кВт57 кВт33 кВт
Автомат 63А13.9 кВт13.9 кВт71.8 кВт41.6 кВт

Лучше обратится к специалистам чем допустить ошибку

На все виды услуг мы предоставляем гарантию.

Вызов электрика в городе Черкассы, все виды электромонтажа.

тел. (067)473-66-78

тел. (093)251-57-61

тел. (0472)50-19-75

Станьте нашим клиентом и вы убедитесь в качестве наших услуг.

Для расчета мощности номинала трехфазного автомата необходимо суммировать всю мощность электроприборов, которые будут подключены через него. Например, нагрузка по фазам одинакова:

L1 5000 W + L2 5000 kW + L3 5000W = 15000 W

Полученные ваты переводим в киловатты:

15000 W / 1000 = 15 kW

Полученное число умножаем на 1,52 и получаем рабочий ток А.

15 kW * 1,52 = 22,8 А.

Номинальный ток автомата должен быть больше рабочего. В нашем случае рабочий ток 22,8 А, поэтому мы выбираем автомат 25 А.

Номинал автоматов по току: 6, 10, 16, 20, 25, 32, 40, 50, 63, 80, 100.

Уточняем сечение жил кабеля на соответствие нагрузке здесь.

Данная формула справедлива при одинаковой нагрузке по трем фазам. Если потребление по одной из фаз значительно больше, то номинал автомата подбирается по мощности этой фазы:

Например, нагрузка по фазам: L1 5000 W; L2 4000 W; L3 6000 W.

Ваты переводим в киловатты для чего 6000 W / 1000 = 6 kW.

Теперь определяем рабочий ток по этой фазе 6 kW * 4,55 = 27,3 А.

Номинальный ток автомата должен быть больше рабочего в нашем случае рабочий ток 27,3 А мы выбираем автомат 32 А.

В приведенных формулах 1,52 и 4,55 – коэффициенты пропорциональности для напряжений 380 и 220 В.

Материалы, близкие по теме:

Сколько киловатт выдержит автомат на 16, 25, 32 и 40 Ампер

Разделы статьи:

Сколько киловатт выдержит автомат на 16, 25, 32 и 40 Ампер

При монтаже электропроводки или подключении устройств, работающих от электричества, очень важно знать, какой провод прокладывать. Не менее важно понимать, насколько должен быть автомат в данном случае, чтобы защита действительно работала и защищала электропроводку.

Если автомат будет большего номинала чем нужно, а сечение проводников меньше, то все это приведёт к короткому замыканию вследствие перегрузок. Сколько киловатт выдержит автомат на 16, 25, 32 или 40 Ампер? Что нужно знать при расчете нагрузок на автоматические выключатели?

Сколько киловатт выдержит автомат на 16, 25, 32 и 40 Ампер

Автоматические выключатели используются на вводе электроэнергии в дом, а также на отдельные потребители электричества. Рекомендуется устанавливать отдельные автоматы на группу розеток и освещения, а также электроустройства повышенной мощности: электрокотлы, ТЭНы и т. д.

Чтобы правильно выбрать автомат, нужно обратиться к сечению проводника, который будет к нему подключаться. Сам же проводник — необходимо выбирать с учетом потребляемой мощности электроприбора или группы устройств, которые будут подключаться нему.

Например, розетка на 16 Ампер выдержит суммарную нагрузку в 3,5 кВт. При её подключении необходимо использовать медный кабель на 1,5 кВт, но лучше с небольшим запасом, на 2,5 кВт учитывая нынешнее качество кабелей.

Следовательно, для защиты такой розетки и проводников, к которым она подключена, необходим автомат на 16 Ампер. Таким вот простым образом можно рассчитать, сколько киловатт выдержит автомат на 16, 25, 32 и 40 Ампер.

Для быстроты и удобства расчетов можно воспользоваться и таблицей:

  • Автомат на 10А выдержит нагрузку в 2,2 кВт;
  • Автомат на 16А выдержит нагрузку в 3,5 кВт;
  • Автомат на 20А выдержит нагрузку в 4,4 кВт;
  • Автомат на 25А выдержит нагрузку в 5,5 кВт;
  • Автомат на 32А выдержит нагрузку в 7 кВт;
  • Автомат на 40А выдержит нагрузку в 8,8 кВт.

Следует знать, что можно встретить китайские автоматические выключатели, которые вообще не держат заявленной нагрузки.

Приведённые выше расчеты действительны для нормальных автоматов, или тех, которые были выпущены в Советском Союзе.

Какие автоматические выключатели выбрать, чтобы они были качественные

Лучшими автоматическими выключателями на сегодняшний день, считаются:

  • ABB;
  • Legrand;
  • Schneider Electric;
  • Moeller;
  • EKF.

Часто выбор падает именно на продукцию зарубежных компаний в плане выбора автоматических выключателей, и это не просто так. Зарубежные автоматы для защиты электрики, более качественные и долговечные, а продукция производителей из США и Европы пользуется огромной популярностью.

Поэтому при выборе, чтобы действительно получить хорошую защиту, нужно учитывать не только, сколько киловатт выдержит автомат на 16, 25, 32 и 40 Ампер, но также и качество. Поддельные автоматы или низкого качества будут выключаться при перегрузке. Также во многих дешевых моделей автоматических выключателей нет теплового расцепителя, который реагирует на перегрев проводников.

Поделиться статьей в социальных сетях

40 Ампер в Киловатты — Перевести 40 Ампер в кВт

40 Ампер в Киловатт — Перевести 40 Ампер в кВт

Онлайн-калькуляторы > Электрические калькуляторы > 40 Ампер в Киловатт

40 Ампер в Киловатты калькулятор для перевода 40 Ампер в кВт. Чтобы рассчитать, сколько кВт в 40 амперах, умножьте на вольты, а затем разделите на 1000.

Текущий тип DC/постоянный токAC/переменный ток-одна фазаAC/переменный ток-три фазы
Ток в амперах: А
Тип напряжения: Напряжение между линиями Напряжение между линиями и нейтралью Напряжение
Напряжение в вольтах: В
Коэффициент мощности
Киловатт:
Ампер кВт Вольт
40 кВт 4,8 А 120 вольт
40,01 кВт 4,8012 ампер 120 вольт
40,02 кВт 4,8024 ампер 120 вольт
40,03 кВт 4,8036 ампер 120 вольт
40,04 кВт 4,8048 ампер 120 вольт
40,05 кВт 4,806 ампер 120 вольт
40,06 кВт 4,8072 ампер 120 вольт
40,07 кВт 4,8084 ампер 120 вольт
40,08 кВт 4,8096 ампер 120 вольт
40,09 кВт 4,8108 ампер 120 вольт
40,1 кВт 4,812 А 120 вольт
40,11 кВт 4,8132 ампер 120 вольт
40,12 кВт 4,8144 ампер 120 вольт
40,13 кВт 4,8156 ампер 120 вольт
40,14 кВт 4,8168 ампер 120 вольт
40,15 кВт 4,818 ампер 120 вольт
40,16 кВт 4,8192 ампер 120 вольт
40,17 кВт 4,8204 ампер 120 вольт
40,18 кВт 4,8216 ампер 120 вольт
40,19 кВт 4,8228 ампер 120 вольт
40,2 кВт 4,824 А 120 вольт
40,21 кВт 4,8252 А 120 вольт
40,22 кВт 4,8264 ампер 120 вольт
40,23 кВт 4,8276 ампер 120 вольт
40,24 кВт 4,8288 ампер 120 вольт
40,25 кВт 4,83 А 120 вольт
40,26 кВт 4,8312 ампер 120 вольт
40,27 кВт 4,8324 ампер 120 вольт
40,28 кВт 4,8336 ампер 120 вольт
40,29 кВт 4,8348 ампер 120 вольт
40,3 кВт 4,836 ампер 120 вольт
40,31 кВт 4,8372 ампер 120 вольт
40,32 кВт 4,8384 ампер 120 вольт
40,33 кВт 4,8396 ампер 120 вольт
40,34 кВт 4,8408 ампер 120 вольт
40,35 кВт 4,842 А 120 вольт
40,36 кВт 4,8432 ампер 120 вольт
40,37 кВт 4,8444 ампер 120 вольт
40,38 кВт 4,8456 ампер 120 вольт
40,39 кВт 4,8468 ампер 120 вольт
40,4 кВт 4,848 ампер 120 вольт
40,41 кВт 4,8492 ампер 120 вольт
40,42 кВт 4,8504 ампер 120 вольт
40,43 кВт 4,8516 ампер 120 вольт
40,44 кВт 4,8528 ампер 120 вольт
40,45 кВт 4,854 А 120 вольт
40,46 кВт 4,8552 А 120 вольт
40,47 кВт 4,8564 ампер 120 вольт
40,48 кВт 4,8576 ампер 120 вольт
40,49 кВт 4,8588 ампер 120 вольт
40,5 кВт 4,86 ​​А 120 вольт
40,51 кВт 4,8612 ампер 120 вольт
40,52 кВт 4,8624 ампер 120 вольт
40,53 кВт 4,8636 ампер 120 вольт
40,54 кВт 4,8648 ампер 120 вольт
40,55 кВт 4,866 ампер 120 вольт
40,56 кВт 4,8672 ампер 120 вольт
40,57 кВт 4,8684 ампер 120 вольт
40,58 кВт 4,8696 ампер 120 вольт
40,59 кВт 4,8708 ампер 120 вольт
40,6 кВт 4,872 А 120 вольт
40,61 кВт 4,8732 А 120 вольт
40,62 кВт 4,8744 ампер 120 вольт
40,63 кВт 4,8756 ампер 120 вольт
40,64 кВт 4,8768 ампер 120 вольт
40,65 кВт 4,878 ампер 120 вольт
40,66 кВт 4,8792 ампер 120 вольт
40,67 кВт 4,8804 ампер 120 вольт
40,68 кВт 4,8816 ампер 120 вольт
40,69 кВт 4,8828 ампер 120 вольт
40,7 кВт 4,884 ампер 120 вольт
40,71 кВт 4,8852 ампер 120 вольт
40,72 кВт 4,8864 ампер 120 вольт
40,73 кВт 4,8876 ампер 120 вольт
40,74 кВт 4,8888 ампер 120 вольт
40,75 кВт 4,89 ампер 120 вольт
40,76 кВт 4,8912 ампер 120 вольт
40,77 кВт 4,8924 ампер 120 вольт
40,78 кВт 4,8936 ампер 120 вольт
40,79 кВт 4,8948 ампер 120 вольт
40,8 кВт 4,896 ампер 120 вольт
40,81 кВт 4,8972 ампер 120 вольт
40,82 кВт 4,8984 ампер 120 вольт
40,83 кВт 4,8996 ампер 120 вольт
40,84 кВт 4,9008 ампер 120 вольт
40,85 кВт 4,902 А 120 вольт
40,86 кВт 4,9032 А 120 вольт
40,87 кВт 4,9044 ампер 120 вольт
40,88 кВт 4,9056 ампер 120 вольт
40,89 кВт 4,9068 ампер 120 вольт
40,9 кВт 4,908 А 120 вольт
40,91 кВт 4,9092 ампер 120 вольт
40,92 кВт 4,9104 ампер 120 вольт
40,93 кВт 4,9116 ампер 120 вольт
40,94 кВт 4,9128 ампер 120 вольт
40,95 кВт 4,914 ампер 120 вольт
40,96 кВт 4,9152 ампер 120 вольт
40,97 кВт 4,9164 ампер 120 вольт
40,98 кВт 4,9176 ампер 120 вольт
40,99 кВт 4,9188 ампер 120 вольт
41 кВт 4,92 А 120 вольт
41 ампер в кВт
Электрические калькуляторы
Калькуляторы недвижимости
Бухгалтерские калькуляторы
Бизнес-калькуляторы
Строительные калькуляторы
Спортивные калькуляторы
Генераторы случайных чисел

Финансовые калькуляторы
Калькулятор сложных процентов
Ипотечный калькулятор
Сколько дома я могу себе позволить
Калькулятор кредитования
Акционно -калькулятор
Инвестиционный калькулятор
Пенсионный калькулятор
401K Калькулятор
Калькулятор платы за eBay
Калькулятор платы за плату PayPal
Etsy Calculator
Калькулятор Markup
. Калькуляторы
Преобразование смешанных чисел в десятичные дроби
Упрощение отношений
Калькулятор процентов

Калькуляторы здоровья
Калькулятор ИМТ
Калькулятор потери веса

Преобразование
CM в футы и дюймы
MM в дюймы

Другие
Сколько мне лет
Средство выбора случайных имен
Генератор случайных чисел

Таблица преобразования

кВА генератора в силу тока Чем выше рейтинг KVA, тем больше мощности производит генератор. Для обеспечения достаточной мощности вашего оборудования вам понадобится генератор с соответствующей мощностью кВА. Наша диаграмма номинала кВА генератора в силе тока поможет вам определить правильное преобразование кВА в кВт или амперы, которое соответствует вашим потребностям в мощности. Учитывая различные факторы, влияющие на силу тока, обратите внимание, что эта таблица предназначена для использования в качестве оценки, а не для точного расчета ваших потребностей в силе тока.

Таблица преобразования номинальной мощности генератора в силу тока 80% КОЭФФИЦИЕНТ МОЩНОСТИ
кВ•А кВт 208В 220 В 240 В 380В 440 В 480В 600В 2400В 3300В 4160В
6,3 5 17,5 16,5 15,2 9,6 8,3 7,6 6.1      
9,4 7,5 26,1 24,7 22,6 14,3 12,3 11,3 9.1      
12,5 10 34,7 33 30,1 19,2 16,6 15,1 12      
18,7 15 52 49,5 45 28,8 24,9 22,5 18      
25 20 69,5 66 60,2 38,4 33,2 30,1 24 6 4,4 3,5
31,3 25 87 82,5 75,5 48 41,5 37,8 30 7,5 5,5 4,4
37,5 30 104 99 90,3 57,6 49,8 45,2 36 9. 1 6,6 5,2
50 40 139 132 120 77 66,5 60 48 12.1 8,8 7
62,5 50 173 165 152 96 83 76 61 15,1 10,9 8,7
75 60 208 198 181 115 99,5 91 72 18,1 13,1 10,5
93,8 75 261 247 226 143 123 113 90 22,6 16,4 13
100 80 278 264 240 154 133 120 96 24,1 17,6 13,9
125 100 347 330 301 192 166 150 120 30 21,8 17,5
156 125 433 413 375 240 208 188 150 38 27,3 22
187 150 520 495 450 288 249 225 180 45 33 26
219 175 608 577 527 335 289 264 211 53 38 31
250 200 694 660 601 384 332 301 241 60 44 35
312 250 866 825 751 480 415 376 300 75 55 43
375 300 1040 990 903 576 498 451 361 90 66 52
438 350 1220 1155 1053 672 581 527 422 105 77 61
500 400 1390 1320 1203 770 665 602 481 120 88 69
625 500 1735 1650 1504 960 830 752 602 150 109 87
750 600 2080 1980 1803 1150 996 902 721 180 131 104
875 700 2430 2310 2104 1344 1274 1052 842 210 153 121
1000 800 2780 2640 2405 1540 1330 1203 962 241 176 139
1125 900 3120 2970 2709 1730 1495 1354 1082 271 197 156
1250 1000 3470 3300 3009 1920 1660 1504 1202 301 218 174
1563 1250 4350 4130 3740 2400 2080 1885 1503 376 273 218
1875 1500 5205 4950 4520 2880 2490 2260 1805 452 327 261
2188 1750     5280 3350 2890 2640 2106 528 380 304
2500 2000     6020 3840 3320 3015 2405 602 436 348
2812 2250     6780 4320 3735 3400 2710 678 491 392
3125 2500     7520 4800 4160 3740 3005 752 546 435
3750 3000     9040 5760 4980 4525 3610 904 654 522
4375 3500     10550 6700 5780 5285 4220 1055 760 610
5000 4000     12040 7680 6640 6035 4810 1204 872 695

 

Запросить цену   Промышленные продукты   Подписаться на электронную почту

Один кВА равен 1000 вольт-ампер и рассчитывается путем умножения напряжения и силы тока. KVA конвертируются в AMP. Наша диаграмма КВА в амперы позволяет вам точно увидеть, в какие кВт или напряжение преобразуется заданное значение кВА, чтобы вы могли безопасно и адекватно питать свой генератор, не беспокоясь о перегрузке по мощности, которая потенциально может повредить ваш генератор и подключенное к нему оборудование.

Поскольку генераторы бывают разных размеров и выходной мощности, KVA будут различаться по мощности, которую они обеспечивают. Используйте нашу удобную для чтения диаграмму силы тока генератора, чтобы помочь вам оценить, сколько энергии вам нужно для вашего оборудования. Имейте в виду, что наша таблица преобразования силы тока представляет собой коэффициент мощности 80% по сравнению с полной мощностью. Это означает, что 80% поступающей мощности совершает полезную работу.

 

Lex Products™ предлагает решения по распределению электроэнергии, необходимые для всех портативных источников питания. От военного до развлекательного и всего, что между ними, Lex Products™ обладает знаниями, опытом, высококачественной продукцией и таблицами преобразования, которые помогут вам выполнить работу правильно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *