Закрыть

555 таймер схемы реле времени: об устройстве и сборка своими руками

Содержание

об устройстве и сборка своими руками

Один из наиболее часто используемых компонентов электроники – таймер-генератор. Современный формат выпуска его конструкций организован в виде специализированных сборок, применяемых в миллионах различных устройств. Наиболее распространенный таймер такого типа, или, с другим названием, – реле времени, 555 серия микросхем, впервые выпущенная и разработанная компанией Signetic в 1971 году.

За неимением конкуренции на тот период, она получила очень высокое признание и распространение в схемах электрических приборов. Характеристики и выдаваемый сигнал серии таймеров NE555 (изначальное название) позволил применять их при разработке генераторов, модуляторов, систем задержки, различных фильтров, преобразователей напряжения. С развитием цифровой техники, микросхема не потеряла свою актуальность и применяется уже в качестве ее элемента.

Основная задача таймера 555 – создавать одиночные или множественные импульсы с точным разграничением временных интервалов между ними. Внешний вид микросхемы NE555

Особенности и характеристики

Простой генератор импульсов на основе 555

Наиболее известная особенность 555 серии микросхем, снижающей количество областей их применения – внутренний делитель напряжения. Он задает фиксированный уровень порога срабатывания обоих компараторов устройства, сменить который невозможно.

Питание таймера 555 серии осуществляется напряжением от 4,5 до 16 вольт. Ток потребления непосредственно зависит от этого параметра и составляет от 2 до 15 мА. Характеристики выходного сигнала отличаются у различных производителей. В основном, его ток не превышает 200 мА.

Температурные режимы также зависят от сборки. Обычные NE555 рассчитаны на эксплуатацию в промежутке от 0 до 70°С. Военные варианты таймера (исторически обозначенные серией SE) допускают более широкий диапазон – от -55 до 125°С.

В период активности таймера на выходе присутствует напряжение, оно равно приходящему на шине питания за вычетом 1,75В. В остальных случаях на этом контакте 0,25В, при общем напряжении +5В. Терминология описывает эти состояния, как высокий и низкий уровень сигнала.

Запуск таймера к генерации производится импульсным сигналом 1/3 вольт от питания устройства. Форма его любая – синусная или прямоугольная. Элементы схемы, определяющие временные параметры срабатывания

Время срабатывания изменения состояния устанавливается характеристиками внешнего конденсатора между контактом разряда и землей, а также сопротивлением двух резисторов. Первый расположен на шине питания и соединяет ее с входом останова работы микросхемы. Второй находится на линии между предыдущим и контактом разряда, но до описанной ранее емкости.

Достоинства и недостатки

Основное достоинство реле времени на 555 чипе –низкая цена и громадное количество разработанных и использующих его схем электрооборудования.

Существуют и недостатки, которые, впрочем, исправлены в выпусках микросхем с транзисторной базой на основе КМОП. При использовании биполярных, в момент изменения состояния генерирующего каскада в противоположный, на выводах могло возникнуть паразитное напряжение до 400 мА. Проблема решается установкой полярного конденсатора 0,1 мкФ, между управляющим контактом и общим проводом. Конденсатор, уменьшающий влияние помех на устройство

Можно повысить и помехоустойчивость микросхемы таймера. Для этого размещают неполярный конденсатор 1 мкФ на линию цепи питания.

Режимы работы устройства

Основные режимы использования микросхемы 555 серии – одновибратор, мультивибратор и триггер Шмитта.

Первый применяется для создания единовременного сигнала заданной длительности при подаче входного напряжения на стартовый контакт чипа.

Второй – для генерации множества автоколебательных импульсов прямоугольной формы.

Третий, благодаря эффекту памяти предыдущего сигнала и трех вариантов исходящих согласно внутренней логики, в системах задержки и цифровых устройствах.

Одновибратор

В этой схеме, при подаче сигнала любой формы на второй вход 555 серии, будет генерироваться импульс на третьем ее выходе. Его длительность зависит от характеристик сопротивления R и емкости C. Вычислить необходимое время действия исходящего сигнала можно по формуле t=1,1*C*R. Схема одновибратора

Мультивибратор

В отличие от предыдущей схемы, мультивибратору для начала постоянной генерации не нужна подача внешнего сигнала. Достаточно только произвести подключение питания. На выходе импульсы прямоугольной формы с изменением состояния в течение t2 и с периодом действия t1.

Их время рассчитываться от параметров R1 и R2 по формулам:

Период и частота:


Чтобы достичь времени импульса большего, чем время паузы, используют диод, соединяющий катодом 7 контакт микросхемы (разряд), с 6 (останов) через свой анод.

Мультивибратор

Прецизионный триггер Шмитта

Функциональность в рамках инвертирующего прецизионного переключателя в 555 серии обеспечивается наличием двух порогового компаратора и RS — триггера. Напряжение на входе разделяется на три части, при достижении пороговых значений которых и изменяется состояние выдачи сигнала устройством.

Разграничение делается по полярности, причем для переключения достаточно 1/3 общего вольтажа питания любого из полюсов. На выходе, при получении порогового сигнала на входе, возникает импульс, инвертированный полярно относительно изначального. Его уровень постоянен и длится он ровно то время, которое действует инициирующий импульс.

Проще говоря, триггер Шмитта — это инвертирующий одновибратор с памятью полярности предыдущего сигнала.

Используется подобная схема в системах, где требуется избавление от излишнего шума и приведение его последовательностей к необходимым пороговым значениям. Схема триггера Шмитта с графиком выравниваемых уровней сигнала

Область применения НЕ555

Возможности микросхемы дают широкий спектр техники, в которой она используется. Мультивибраторы на 555 серии встречаются практически во всех схемах генерации сигналов.

Примером служат различные звуковые и световые оповещающие устройства, детекторы металла, освещенности, влажности или касания. Таймер, заложенный в микросхему, позволяет создавать реле времени, для контроля работы различного оборудования по определенным человеком периодам.

Варианты исполнения в виде триггера Шмитта применяются как фильтрующие преобразователи зашумленных сигналов, для придания им правильной прямоугольной формы. Актуальность подобные схемы имеют и в цифровой технике, в которой используются только два вида импульсов – его наличие и отсутствие.

Отечественные и зарубежные производители

Микросхема-таймер 555 серии настолько популярна, что ее аналоги изготавливаются мощностями практически всех известных брендов микроэлектронной промышленности. Причем территориально расположенных не только в США, но и других странах мира. Среди них: Texas Instrument, Sanyo, RCA, Raytheon, NTE Silvania, National, Motorola, Maxim, Lithic Systems, Intersil, Harris, Fairchild, Exar ECG Phillips и множество других.

Зачастую номер серии от конкурентов содержит отсылку к оригинальной NE555. Встречается маркировки NE555N, НЕ555Р или им подобные. Российская КР1006ВИ1

Производится таймер и в России, с маркировкой микросхемы КР1006ВИ1 с биполярными транзисторами и КР1441ВИ1 по КМОП технологии. Национальный вариант немного отличается от классического 555 серии – в нем вход остановки обладает большим приоритетом, чем сигнал запуска.

Как сделать реле времени 555 своими руками

Одним из вариантов ознакомления с таймером 555 серии будет изготовление своими руками реле времени. Схема достаточно проста, считается классической и доступна к повторению специалистом любого уровня. Схема таймера отключения

Запуск производится нажатием тумблера SB1. Длительность подстраивается резистором R2. На представленной схеме среднее время работы находится в пределах 6 секунд. Для его увеличения, без изменения характеристик R2 повышают емкость C1.

Если требуется суточный цикл работы, то понадобится конденсатор на 1600 мкФ. Если устройство будет применяться в условиях, близких к реальности, – количество фарад меняют на более подходящее к нужному времени работы. Расчет производится согласно формуле: T=C1*R2, где C1 емкость соответствующего конденсатора на схеме, R2 среднее сопротивление мегаом подстроечного резистора.

Более точная калибровка времени действия будет устанавливаться в процессе использования переменным резистором R2.

Немного о нумерации используемых контактов микросхемы 555 серии, то есть ее распиновка:

  1. «Земля» (GND) – минус питания.
  2. «Запуск» (Trigger) – на контакт поступает импульс, начинающий работу таймера. Инициируется нажатием тумблера.
  3. «Выход» (Output) – пока таймер активен, на контакте генерируется исходящий сигнал. Его вольтаж равный Vпитания-1,7В, через ограничивающий резистор R3 позволяет открыть базу транзистора VT1. В свою очередь, полупроводниковый усилитель начинает пропускать напряжение на пусковое реле К1, которое уже коммутирует ток к потребителю. Диод VD1 в схеме предотвращает бросок паразитных токов в моменты активации.
  4. «Сброс» (Reset) – при подаче отрицательного сигнала таймер переводится в 0 и останавливается. Чтобы такого не произошло, в схеме сделан подвод положительного полюса питания через сопротивление к этому контакту.
  5. «Контроль» (Control Voltage) – для такого простого устройства, этот вход микросхемы соединяется массой через емкость. Подобная конструкция повышает помехоустойчивость всей сборки.
  6. «Остановка» (Threshold) – в схеме контакт просто присоединен к положительному полюсу питания. В более сложных системах, кратковременное его замыкание на минус остановит работу таймера.
  7. «Разряд» (Discharge) – контакт предназначен для соединения 555 микросхемы с задающей временный интервал емкостью.
  8. «Питание» (VCC) – плюс напряжения схемы.

Таймер на микросхеме NE555 (включения и выключения) (видео)

  Всю нашу жизнь мы отсчитываем промежутки времени, что друг за другом определяют определенные события нашей жизни. В целом без отсчета времени в нашей жизни не обойтись. Ведь именно по часам и минутам мы распределяем свой распорядок дня, а эти дни складываются в недели, месяцы и годы. Можно сказать, что без времени мы бы потеряли какой-то определенный смысл в наших действиях, а еще точнее, в нашу жизнь однозначно бы ворвался хаос. Я уж даже не буду рассказывать про деловых людей, кто каждый день ходит на совещание по часам…

  Однако в сегодняшней статье вовсе не о фантастических реалиях возможного отключения всех часов в мире, даже не о гипотетически невероятном, а все же о реально доступном! Ведь если нам надо, если то к чему мы привыкли так необходимо, так зачем же отрешаться от удобного!? Собственно речь пойдет как раз о таймере, который тоже в некотором роде участвует в распределении нашего времени. С помощью самодельного таймера не всегда удобно измерять время, ведь сегодня они доступны даже первоклашке! Прогресс шагнул так далеко, что многофункциональные часы можно купить в Китае за пару баксов. Однако это не всегда панацея.
 Скажем если необходимо запускать или отключать какое-то электронное устройство, то лучше всего это реализовать на электронном таймере. Именно он возьмет на себя обязанности по включению и выключению устройства, путем автоматической электронной коммутации управления устройствами. Именно о таком таймере на микросхеме NE 555 я и расскажу.

Схема таймера на микросхеме NE555

 Взгляните на рисунок. Как это может показаться банально, но микросхема NE555 именно в этой схеме работает в своем штатном режиме, то есть по прямому назначению. Хотя на самом деле может быть применяться как мультивибратор, как преобразователь аналогового сигнала в цифровой, как микросхема обеспечивающая питание нагрузки от датчика света, как генератор частоты, как модулятор для ШИМ. В общем чего только с ним не придумали за время его существования, которое уже перевалило за 45 лет. Ведь вышла микросхема впервые в далеком 1971…

Теперь все же давайте кратко еще раз пробежимся по подключению микросхемы и принципу работы схемы.

 После нажатия на кнопку «reset» мы обнуляем потенциал на входе микросхемы, так как по сути заземляем вход. При этом конденсатор на 150 мКФ оказывается разряжен.  Теперь в зависимости от емкости подключенной к ножке 6,7 и земле (150 мКФ), будет зависеть период задержки-выдержки таймера. Заметьте, что здесь также подключен и ряд резисторов 500 кОм и 2.2 мОм, то есть эти резисторы тоже участвуют в формировании задержки-выдержки.

Регулировать задержку можно с помощью переменного резистора 2.2 М (на схеме он постоянный, его можно заменить само собой на переменный). Также время можно менять путем замены конденсатора 150 мкФ.

Так при сопротивлении цепочки резисторов около 1 мОм, задержка будет около 5 мин. Соответственно если выкрутить резистор на максимум и сделать так, чтобы конденсатор заряжался максимально медленно, то можно достичь задержки в 10 минут. Здесь надо сказать, что при начале отсчета таймера загорается зеленый светодиод, когда же срабатывает таймер, то на выводе появляется минусовой потенциал и из-за этого зеленый светодиод гаснет, а загорается красный. То есть в зависимости от того, что вам надо, таймер на включение или выключение, вы можете воспользоваться соответствующим подключением, к красному или зеленому светодиоду. Схема простая и при правильном соединении всех элементов в настройке не нуждается. 

P/S Когда я нашел в интернете эту схему, то в ней было еще соединение между выводом 2 и 4, но при таком подключении схема не работала!!! Может это косяк конкретного экземпляра, может что-то не так во мне или луне на небе в ту ночь, но потом 4 разорвал, 2 вывод подключил к 6 контакту, такое заключение было сделано исходя из других аналогичных схем в интернете и все работало!!!

 В случае необходимости управления таймером силовой нагрузкой, можно использовать сигнал после резистора в 330 Ом. Эта о точка показана красным и зеленым крестиком. Используем обычный транзистор, скажем КТ815 и реле. Реле можно применить на 12 вольт. Пример такой реализации управления силовым питанием приведен в статье датчик свет, сморите ссылку выше. В этом случае можно будет выключать-включать мощную нагрузку. 

Datasheet ( Даташит) на таймер NE555

 В общем если вы хотите, то можете взглянуть на номинальные параметры и внутреннее устройства таймера, хотя бы в виде принципиальной схемы работы по блокам. Кстати даже в этом даташите будет приведена и схема подключения. Даташит от компании ST, это компания с именем, а значит думается о том, что характеристики здесь могут быть завышены. Если вы возьмете китайский аналог, то вполне возможно параметры будут несколько отличаться. Обратите внимание, что это микросхема может быть с индексом SA555 или SE555.

Подводя итог о таймере на микросхеме NE555

 Приведенная здесь схема хотя и работает от 9 вольт, но вполне допускает питание и на 12 вольт. Это значит, что такую схему можно использовать не только для домашних проектов, но и для машины, когда схему напрямую можно будет подключить к бортовой сети автомобиля. Хотя для верности лучше поставить LM 7508 или КРЕНку на 5-9 вольт.
 В этом случае такой таймер может быть применен для задержки включения камеры или ее выключения. Возможно применить таймер для «ленивых» указателей поворотов, для обогрева заднего стекла и т.д. Вариантов действительно много.

Остается лишь резюмировать, что время аналоговой техники все же проходит, ведь в данной таймере применены дорогостоящие конденсаторы, особенно это актуально для таймера со значительной задержкой, когда емкости будут большие. Это и деньги и габариты в устройстве таймера. Поэтому если вопрос будет стоять остро об объемах производства, о стабильности работы, то здесь, пожалуй, выиграет даже самый простой микроконтроллер.

Единственное препятствие, так это то, что микроконтроллеры все же надо уметь программировать и применять познание не только электрической части, соединений но и языков, способов программирования, это тоже чье то время, удобство и в конечном счете деньги. 

Видео о работе таймера на микросхеме NE555

Для тех кто не любит читать, далее есть маленькое видео.

Таймеры и реле времени, схемы самодельных устройств (Страница 10)


Схема таймера с задержкой от 0 до 5 минут Значение сопротивления резистора R* определяет временную задержку схемы, в которой используется полевой транзистор Q1 с двумя затворами типа RCA40841. Транзистор применяется для запуска тиристора Q2, причем тиристор сам служит для запуска сими-стора МТ1, который может переключать резистивные и…

0 2376 0

Схема таймера с задержкой от микросекунды до часа

Простая схема на КМОП-микросхемах может служить переключателем с временной задержкой или универсальным таймером. Управляемый генератор и триггер-защелка выполнены на микросхеме CD4001 (четыре логических элемента 2ИЛИ-НЕ) и 14-разрядном учетчике CD4020. Длительность выходного импульса Ton зависит…

0 2748 0

Простой таймер для включения и выключения нагрузки на NE555 Приведенная схема предполагает 2 варианта схемы подключения таймера 555, с целью включения или выключения нагрузки в конце временного интервала, длительность которого от 1 до 60 сек определяется с помощью потенциометра сопротивлением 5 МОм. Таймер запускается нажатием пусковой кнопки…

0 3520 0

Таймер с интервалом в 10 минут с цифро-знаковым индикатором Таймер времени идентификации радиолюбительской станции использует один цифровой знаковый индикатор тлеющего разряда для отображения прошедшего времени от начала передачи в минутах. После 9 мин цифра ”9” индикатора, прежде чем превратится в «0», мигает в течение 60 сек, как визуальное…

0 1958 0

Регистратор событий на основе таймера Сигналы на входе последовательного таймера позволяют получить на выходе цифровые сигналы, включающие устройства, которые остаются включенными до следующего назначенного события. Когда на любом из входов (INPUTS А—D) схемы присутствует низкий логический уровень, выход логического элемента 4И-НЕ…

0 1708 0

Схема последовательного таймера на микросхеме XR-2242 Второй таймер схемы с большой длительностью задаваемых временных интервалов на микросхеме XR-2242 (он расположен слева) производства компании Ехаr будет запускаться, если первый таймер закончит свой цикл, продолжительность которого равна 128RiC]. После поступления сигнала от триггера на выходе…

0 1987 0

Звуковой сигнализатор с оповещеннием через 90 сек для АМ-трансиверов Устройство разработано для АМ-приемопередатчиков и предназначено для ограничения длительности индивидуальной передачи и, таким образом, препятствует разъединению связи. Таймер на IC1 типа NE555 с подключенным конденсатором С1 и резистором R1 при запуске выдает тактовый импульс приблизительно в…

0 1724 0

Схема таймера для радиопередатчика Переключатель на 4 положения схемы позволяет выбирать интервалы от 0,5 до 5 мин для контроля прохождения передачи радиопередатчика до момента, пока не будет подан звуковой сигнал после срабатывания таймера. Схема содержит измерительный прибор напряженности поля и индикаторную лампу «На передаче»,…

0 1999 0

Таймер с выбором режима работы на один час Схема содержит таймер LM122 компании National с переключателем для осуществления управления запуском вручную, сброса и выхода из цикла одночасовой задержки. Схема запускается замыканием пусковой кнопки S1. Кнопка пуска S1 включается один раз и не оказывает влияния в дальнейшем. Если…

0 1767 0

Таймер с задержкой от милисекунды до 1 часа (3140, 555)

Если в схеме совместно с таймером использовать операционный усилитель на полевых транзисторах (3140), то диапазон тактовых импульсов таймера 555 может быть увеличен в 100 раз. Вывод 7 таймера 555 переключает приложенное напряжение временной определяющей цепи между V+ и заземлением. Выбранное…

0 2753 0


Радиодетали, электронные блоки и игрушки из китая:

схемы (микросхемы) на ne555, интегральный таймер

Современный рынок насыщен разнообразными устройствами, позволяющими реализовать практически любые потребности пользователей. При этом не возникает необходимости вникать в устройство используемого гаджета, и тем более, изучать принцип работы компонентов, из которых он изготовлен. Все давно привыкли к тому, что электрические часы, будильники, таймеры, кодовые замки  включаются и выключаются путем легкого прикосновения к сенсорной кнопке и исправно выполняют свои функции без участия потребителя.

В основу работы всех этих устройств положена микросхема NE555, которая была разработана почти 50 лет назад и до сих пор не утратила своей актуальности при создании электронных устройств, в основу действия которых положен триггер Шмидта, позволяющий управлять сигналами «включено» — «выключено» в самых различных вариациях.

Описание

Созданию микросхемы NE555, реализованному в 1970 году специалистами компании Signetics (США), предшествовали теоретические разработки Ганса Камензинда, который сумел доказать важность, не имевшего на тот момент времени аналогов, изобретения. Таймер NE555 явился первой и единственной «таймерной» микросхемой, доступной рядовым потребителям, которая позволяла собирать миниатюрные и недорогие устройства за счет плотной компановки элементов в кристалле микросхемы.

Основные параметры ИМС серии 555

Микросхема NE 555 состоит из пяти функциональных узлов:

  • делителя напряжения;
  • двух прецизионных компараторов;
  • триггера;
  • транзистора с открытым коллектором на выходе

РИСУНОК 1

Устройство микросхемы NE 555

Параметры работы микросхемы во многом определяются качеством сборки аналогов. Для таймера NE 555 диапазон рабочих температур составляет: 0° — 70° С, а для SE 555 он шире: от -55°С до +125°С.

Существенное влияние на точность работы схемы NE555оказывает вариант исполнения: гражданский или «военный». У последнего выше точность и продолжительнее ресурс работы. Корпус выполнен из керамики или металла.

Питание микросхем

Рекомендуемый интервал питания микросхем 555 и их аналогов лежит в интервале 4,5 V  — 16V. Для микросхемы с индексом SE может достигать 18V.

Потребляемый ток в норме составляет 2-5 мА, при пиковых значениях: 10-15 мА.

Выходной ток у китайских аналогов и отечественной микросхемы КР1006ВИ1 составляет не более 100 мА. У оригинальных импортных микросхем NE/SE 555 он около 200 мА.

Преимущества и недостатки микросхемы

У микросхемы 555 «таймерного» типа существует множество преимуществ. Именно поэтому она популярна столь долгое время.

Внутренний делитель задает верхний и нижний порог срабатывания для двух встроенных компараторов. Это одновременно является достоинством, та как не требуется вводить дополнительные элементы, одновременно это и недостаток: пороговым напряжением микросхемы нельзя управлять.

Кроме этого в процессе эксплуатации выявился и еще один недостаток: при каждом переключении возникает паразитный сквозной ток, достигающий в пиковых значениях силы в 400 мА. За счет этого увеличиваются тепловые потери. Микросхема нагревается.

Как избавиться от недостатков

Решение проблемы давно найдено. Оно заключается в установке между проводом вывода управления и общим проводом полярного конденсатора небольшой емкости (до 0,1 мкФ). Этот конденсатор стабилизирует работу микросхемы при запуске.

Помехоустойчивость работы микросхемы достигается установкой в цепь питания неполярного конденсатора емкостью 1 мкФ. Вариации микросхемы NE 555, собранные на КМОП-транзисторах, не несут в себе указанных недостатков. Для их стабильной работы нет необходимости устанавливать внешние конденсаторы.

Отечественные аналоги

К концу 70-х годов прошлого века в СССР была «разработана» собственная микросхема «таймерного» типа, получившая наименование КР1441ВИ1. В отличие от американской, в ней были использованы полевые транзисторы. Поскольку новых разработок в США не появлялось, и копировать было не с чего, то  КР1441ВИ1 так и осталась единственной и уникальной.

Особенностью советской/российской разработки является приоритет останова над входом запуска.

Области применения

Сложно найти направления в развитии электроприборов, в которой бы не нашел применение  таймер NE/SE 555. На нем успешно конструируют платы генераторов и реле времени, с возможностью управления интервалом от микросекунд до нескольких часов, используют при создании датчиков освещенности и контроля уровня жидкости, охранной сигнализации и кодовых замков.

Сигнализатор темноты

С устройствами, включающимися или выключающимися при изменении силы светового потока (освещенности), каждый вольно или невольно сталкивается каждый день:

  • на улицах с помощью таких устройств включаются фонари освещения;
  • в подъездах – дежурное освещение лестничных площадок;
  • в квартирах — различные устройства имеющий суточный ритм работы.

Принцип действия устройства, реагирующего на изменение освещенности, основан на том, что при изменении сопротивления фоторезистора, на входе NE555 меняется потенциал. Это влечет изменение напряжения на выходе и включает реле.

РИСУНОК 2

Принципиальная схема датчика света

Модуль сигнализации

Сигнализация, собранная с использованием микросхемы 555, использует ее как одновибратор, который, получив сигнал от датчика, генерирует управляющий сигнал включающий сирену. Продолжительность, тональность и громкость звучания регулируется введенными в схему переменными резисторами.

РИСУНОК 3

Принципиальная схема сигнализации

Метроном

 

Аналог механического прибора, задающего ритм определенной частоты и используемый музыкантами в процесс обучения и репетиций, имеет электронный аналог, собираемый с использованием таймера 555.

В данном случае микросхема работает в режиме мультивибратора, генерирующего периодические импульсы, которые регулируются  транзисторами Q1 и  Q2, обеспечивающими регулировку частоты импульсов. Непосредственно частота имульсов регулируется потенциометром Р1 . Для получения щелчка, схожего с щелчком механического метронома, в схему добавлен транзистор Q.

РИСУНОК 4

Принципиальная схема метронома

Таймер

Пример использования микросхемы по «прямому» назначению – отсчету интервала времени. Работа устройства основана на способности переключать режимы, выдавая сигналы на включение/выключение.

При разряженном конденсаторе потенциал на входе 555 обнулен. В процесс зарядки, требующей определенного времени, «отсчитывается» заданный интервал. После достижения заданного значения зарядки происходит разряд конденсатора, изменение потенциала. Таймер срабатывает на включение или выключение.

РИСУНОК 5

Принципиальная схема таймера

Точный генератор

Используется для регулирования параметров выходных импульсов в различных электронных устройствах. В частности – в высокочастотных преобразователях, входящих в блоки питания LED-лент.

РИСУНОК 6

Принципиальная схема таймера

Расположение и назначение выводов

Микросхема NE555 имеет восемь выходов. В настоящее время встречаются микросхемы в прямоугольных DIP-корпусах, хотя, изредка, можно встретить микросхему в круглом металлическом корпусе. От этого назначение выводов не меняется.

Расположение и нумерация показана на рисунке:

РИСУНОК 7

Расположение и назначение выводов NE555

Режимы работы NE555

У микросхемы возможны три режима работы. Каждый из них используется в различных электронных устройствах.

Одновибратор

В этом режиме микросхема формирует одиночные импульсы. Эта способность реализуется в охранной сигнализации, таймерах включения/выключения.

Мультивибратор

В режиме мультивибрации происходит генерация одинаковых по амплитуде и частоте  импульсов прямоугольной формы. Это свойство реализуется в электронных метрономах или в конструкциях блоков питания для светодиодных лент.

Прецизионный триггер Шмидта с RS триггером

Способность делить компаратором входное напряжение на три части, по достижении пикового значения каждой го из которых происходит очередное переключение. Это свойство реализуется в системах автоматического регулирования различных устройств.

3 наиболее популярные схемы на основе ne555

1. Одновибратор

Стабильное состояние микросхемы в этом режиме – выключена. Включается она только на то время, в течение которого на вход подается внешний импульс. Время, на которое  одновибратор на 555 переходит в активное состояние, определяется емкостью конденсатора и/или RC цепочкой.

Используется в приборах что-либо включающих или выключающих.

2. Мигание светодиодом на мультивибраторе

Светодиодная мигалка может найти применение при устройстве иллюминации, в новогодних гирляндах или в светооформительских целях. Непосредственно к микросхеме невозможно подключить светодиоды мощностью более 0,5Вт, поэтому, для управления более мощной светодиодной цепью (лентой) потребуется дополнительное реле.

3. Реле времени

Принцип работы реле времени уже был описан выше. В этом режиме как нельзя лучше реализуются свойства микросхемы NE555, которая собственно, и была создана для использования в устройствах, измеряющих временные интервалы.

Автоматическое уличное освещение с реле времени и фотодатчиком


На базе очень популярного таймера NE555 можно сделать огромное множество самоделок полезных в быту. Сама микросхема NE555 представляет собой таймер (схема образующяя импульсы). Корпус таймера имеет восемь выводов. К питанию NE555 не критична, можно запитать от 4,5 до 18 В. К выходу 3 микросхемы NE555 можно подводить нагрузку до 200 мА.

Существует много схем генераторов, реле времени, таймеров, ШИМ построенных с использованием данного таймера NE555.У меня стояла конкретная задача – сделать быстро и дешево автоматическое уличное освещение на дачу. Светодиодный прожектор должен быть включен на заданное время только когда в его зоне проходит человек и естественно работать только в темное время суток. Датчик движения у меня был фабричный от охранной сигнализации, остальные радиодетали наскреб по сусекам (хорошо что понемногу заказывал на Али).

Все схема состоит из реле времени и фотореле собранных на двух платах. Собственно реле времени и отдельно фотореле можно использовать как самостоятельные устройства, каждое по своему назначению.

Перечень инструментов и материалов.
— светодиоды -3 шт ;
— микросхемы NE555-2 шт;
-соединительные провода;
— реле промежуточное на 12 вольт-2 шт;
— макетная плата;
— монтажная плата;
— резисторы, конденсаторы;
— фоторезистор 1шт;
— диоды 1N4007 или любые аналогичные;
— клеммные разъемы;
— пластмассовая распредкоробка с крышкой ;
— пластиковый стаканчик ;
— винты;
— блок питания на 12 В;
— паяльник;
— тестер.


Шаг первый. Монтаж схемы на монтажной плате.

Схема реле времени использована типовая с небольшими изменениями. Так как к микросхеме NE555 можно подключать нагрузку до 200 мА, то исполнительное реле можно подключать напрямую без транзисторного ключа к выходу таймера (ножка 3 корпуса микросхемы). Если реле подключено к плюсу схемы то оно будет под напряжением до окончания заданного времени выдержки (режим реле времени). А если реле подключено к минусу схемы то оно включится по истечению заданного времени выдержки (режим таймера). Используя эти комбинации можно применить эту схему для разнообразных задач.


Сигнальный светодиод VD3 показывает что реле включено, светодиод VD2 включается по окончанию цикла выдержки. Подстроечником R1 выставляем время работы реле. При номинале С1 указанном на схеме у меня диапазон времени составил от 0,5 до 600секунд. Большую выдержку можно увеличить с увеличением емкости С1.

Схема начинает отсчет при подаче питания, сброс производится отключением питания. Включается будет реле времени от контактов датчика движения.

Реле времени собрано на макетной плате, клеммные разъемы служат для разводки проводов входа и нагрузки

Фотореле также собрано на таймере NE555. Это по сути так называемое «сумеречное реле»-при снижении освещенности на улице оно включит реле, чтобы днем уличное освещение не работало. Его, как сказано выше, можно еще использовать как самостоятельное устройство, подключив лампы освещения к выходному реле. В этом режиме свет будет гореть только ночью.

Можно фоторезисторы применить разных типов 5506-5539. Для подстройки по величине освещенности служит подстроечный резистор R1. Промежуточное реле включит нагрузку при затемнении фоторезистора.

В данном автомате уличного освещения это фотореле своими контактами подает общее питание ночью на реле времени и датчик движения. К реле времени подключен светодиодный прожектор.

Фотореле также собрано на отдельной макетной плате.



Сама плата помещается в пластмассовый прозрачный стаканчик и закрывается сверху колпачком от аэрозольного баллончика. На верхней крышке приклеена пластина с отверстием для крепления к стене. Фотореле надо устанавливать не в зоне светового потока прожектора (иначе будут автоколебания работы фотореле).

Шаг второй. Настройка «сумеречного реле».
Настройка очень простая — надо отрегулировать подстроечный резистор R1 при минимальной освещенности чтобы реле включалось( сделал это дома вечером в сумерках).

Осталось смонтировать все автоматическое устройство освещения на стене дома и подключить выход реле времени к существующему прожектору.

Вся конструкция была сделана за пару часов из подручных радиодеталей и материалов. Работает без сбоев уже месяц. Повторить ее можно каждому не имеющему особых навыков – лишь бы умел держать в руках паяльник.

Работу устройства можно посмотреть в видео


Спасибо всем за уделенное внимание к этой, не болейте и желаю Всем здоровья и благополучия. Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

555-й таймер. Часть 1. Как устроен и как работает таймер NE555. Расчёт схем на основе NE555

Эта статья посвящена микросхеме, сохраняющей популярность уже более 30 лет и имеющей множество клонов. Встречайте — таймер NE555 (он же — LM555, LC555, SE555, HA555, а также
множество других, есть даже советский аналог — КР1006ВИ1). Такую популярность этой микросхеме обеспечили простота, дешивизна, широкий диапазон напряжений питания (4,5-18В), высокая точность и стабильность (температурный дрейф 0,005% / oС, дрейф от напряжения питания — менее 0,1% / Вольт), ну и конечно же, самое главное, — широчайшие возможности применения.

Но, обо всём по порядку. Начнём мы с того, как эта микросхема устроена.

Итак, функциональная схема таймера показана на рисунке 1.

Ноги:

1. GND — земля/общий провод.

2. Trigger — инвертирующий вход компаратора, ответственного за установку триггера. Когда напряжение на этой ноге становится меньше 1/3 Vcc (то есть меньше, чем напряжение на неинвертирующем входе компаратора) — на вход SET триггера поступает логическая 1. Если при этом отсутствуют сигналы сброса на входах Reset, то триггер установится (на его выходе появится логический 0, так как выход инвертированный).

3. Output — выход таймера. На этом выводе присутствует инвертированный сигнал с выхода триггера, то есть когда триггер взведён (на его выходе ноль) — на выводе Output высокий уровень, когда триггер сброшен — на этом выводе низкий уровень.

4. Reset — сброс. Если этот вход подтянуть к низкому уровню, триггер сбрасывается (на его выходе устанавливается 1, а на выходе таймера низкий уровень).

5. Control — контроль/управление. Этот вывод позволяет изменять порог срабатывания компаратора, управляющего сбросом триггера. Если вывод 5 не задействован, то этот порог определяется внутренним делителем напряжения на резисторах и равен 2/3 Vcc. Вывод Control можно использовать, например, для организации обратной связи по току или напряжению (об этом я позднее расскажу).

6. Threshold — порог. Когда напряжение на этом выводе становится выше порогового (которое при незадействованном выводе 5, как вы помните, равно 2/3 Vcc) — происходит сброс триггера и на выходе таймера устанавливается низкий уровень.

7. Discharge — разряд. На этом выходе 555-й таймер имеет транзистор с открытым коллектором. Когда триггер сброшен — этот транзистор открыт и на выходе 7 присутствует низкий уровень, когда триггер установлен — транзистор закрыт и вывод 7 находится в Z-состоянии. (Почему эта нога называется «разряд» вы скоро поймёте.)

8. Vcc — напряжение питания.

Далее, давайте рассмотрим, в чём же основная идея использования этого таймера. Для этого добавим к нашей схеме пару элементов внешней обвязки (смотрим рисунок 2). 4-ю и 5-ю ноги мы пока не будем использовать, поэтому будем считать, что 4-я нога у нас гвоздём прибита к напряжению питания, а 5-я просто болтается в воздухе (с ней и так ничего не будет).

Итак, пусть изначально у нас на второй ноге присутствует высокий уровень. После включения наш триггер сброшен, на выходе триггера высокий уровень, на выходе таймера низкий уровень, на 7-й ноге тоже низкий уровень (транзистор внутри микрухи открыт).

Чтобы произошло переключение триггера — необходимо подать на вторую ногу уровень ниже 1/3 Vcc (тогда переключится компаратор и сформирует высокий уровень на входе Set нашего триггера). Пока уровень на 2-й ноге остаётся выше 1/3 Vcc — наш таймер находится в стабильном состоянии и никаких переключений не происходит.

Ну что ж, — давайте кратковременно подадим на 2-ю ногу низкий уровень (на землю её коротнём, да и всё) и посмотрим что будет происходить.

Как только уровень на 2-й ноге упадёт ниже 1/3 Vcc — у нас сработает компаратор, подключенный к устанавливающему входу триггера (S), что, соответственно, вызовет установку триггера.

На выходе триггера появится ноль (поскольку выход триггера инвертирован), при этом на выходе таймера (3-я нога) установится высокий уровень. Кроме этого транзистор на 7-й ноге закроется и 7-я нога перейдёт в Z-состояние.

При этом через резистор Rt начнёт заряжаться конденсатор Ct (поскольку он больше не замкнут на землю через 7-ю ногу микрухи).

Как только уровень на 6-й ноге поднимется выше 2/3 Vcc — сработает компаратор, подключенный ко входу R2 нашего триггера, что приведёт к сбросу триггера и возврату схемы в первоначальное состояние.

Вот мы и рассмотрели работу схемы, называемой одновибратором или моностабильным мультивибратором, короче говоря, устройства, формирующего единичный импульс.

Как нам теперь узнать длительность этого импульса? Очень просто, — для этого достаточно посчитать, за какое время конденсатор Ct зарядится от 0 до 2/3 Vcc через резистор Rt от постоянного напряжения Vcc.

Сначала решим эту задачку в общем виде. Пусть у нас конденсатор заряжается через резистор R напряжением Vп от начального уровня U0.

Вспоминаем, как связаны ток и напряжение на конденсаторе: i=C*dU/dt. Ток через резистор: i=(Vп-U)/R. Поскольку это один и тот же ток, который течёт через резистор и заряжает конденсатор, то мы можем составить простое дифференциальное уравнение, описывающее процесс заряда нашего конденсатора: C*dU/dt=(Vп-U)/R.

Преобразуем наше уравнение к виду: RC*dU/dt + U = Vп

Это дифференциальное уравнение имеет решение, вида: U=U0+(Vп-U0)*(1-e-t/RC) ( формула 1 )

Теперь вернёмся к нашей схеме. Зная, что U0=0, напряжение питания равно Vcc, а конечное напряжение равно 2/3 Vcc, найдём время заряда:

2/3 Vcc = Vcc*(1-e-t/RC)

2/3 = 1-e-t/RC

1-2/3 = e-t/RC

ln(1/3) = -t/RC

Отсюда получаем длительность импульса нашего одновибратора:

t = RC*(-ln(1/3)) ≈ 1,1*RC

А теперь мы нашу схему немного изменим. Добавим в неё ещё один резистор, и чуть изменим подключение ног (смотрим рисунок 3).

Так, что у нас получилось? На старте конденсатор Ct разряжен (напряжение на нём меньше 1/3 Vcc), значит сработает компаратор запуска и сформирует высокий уровень на входе S нашего триггера. Напряжение на 6-й ноге меньше 2/3 Vcc, значит компаратор, формирующий сигнал на входе R2, — выключен (на его выходе низкий уровень, то есть сигнала Reset нет).

Следовательно сразу после включения наш триггер установится, на его выходе появится логический 0, на выходе таймера установится высокий уровень, транзистор на 7-й ноге закроется и конденсатор Ct начнёт заряжаться через резисторы R1, R2. При этом напруга на 2-й и 6-й ногах начнёт расти.

Когда эта напруга вырастет до 1/3 Vcc — пропадёт сигнал Set (отключится компаратор установки триггера), но триггеру пофиг, на то он и триггер, — если уж он установился, то сбросить его можно только сигналом Reset.

Сигнал Reset сформируется верхним на нашем рисунке компаратором, когда напряжение на конденсаторе, а вместе с ним на 2-й и 6-й ногах, достигнет значения 2/3 Vcc (то есть как только напряжение на конденсаторе станет чуть больше — сразу сформируется Reset).

Этот сигнал (Reset) сбросит наш триггер и на его выходе установится высокий уровень. При этом на выходе таймера установится низкий уровень, транзистор на 7-й ноге откроется и конденсатор Ct начнёт разряжаться через резистор R2. Напряжение на 2-й и 6-й ногах начнёт падать. Как только оно станет чуть меньше 2/3 Vcc — верхний компаратор снова переключится и сигнал Reset пропадёт, но установить триггер теперь можно только сигналом Set, поэтому он так и останется в сброшенном состоянии.

Как только напряжение на Ct снизится до 1/3 Vcc (станет чуть ниже) — снова сработает нижний компаратор, формирующий сигнал Set, и триггер снова установится, на его выходе снова появится ноль, на выходе таймера — единица, транзистор на 7-й ноге закроется и снова начнётся заряд конденсатора.

Далее этот процесс так и будет продолжаться до бесконечности — заряд конденсатора через R1,R2 от 1/3 Vcc до 2/3 Vcc (на выходе таймера высокий уровень), потом разряд конденсатора от 2/3 Vcc до 1/3 Vcc через резистор R2 (на выходе таймера низкий уровень).

Таким образом наша схема теперь работает как генератор прямоугольных импульсов, то есть мультивибратор в автоколебательном режиме (когда импульсы сами возникают, без каких-либо внешних воздействий).

Осталось только посчитать длительности импульсов и пауз. Для этого снова воспользуемся формулой 1, которую мы вывели выше.

При заряде конденсатора напряжением Vcc через R1,R2 от 1/3 Vcc до 2/3 Vcc, имеем:

2/3 Vcc = 1/3 Vcc + (Vcc-1/3 Vcc)*(1-e-t/(R1+R2)C)

1/3 = 2/3*(1-e-t/(R1+R2)C)

1/2 = 1-e-t/(R1+R2)C

e-t/(R1+R2)C = 1/2

t/(R1+R2)C = -ln(1/2)

Отсюда получаем длительность импульса нашего мультивибратора:

tи = -ln(1/2)*(R1+R2)*C ≈ 0,693*(R1+R2)C

Аналогично находим длительность паузы, только теперь у нас начальный уровень 2/3 Vcc, конденсатор мы не заряжаем от Vcc, а разряжаем на землю (т.е. вместо Vп в формулу нужно подставить ноль, а не Vcc) и разряд идёт только через резистор R2:

1/3 Vcc = 2/3 Vcc + (0-2/3 Vcc)*(1-e-t/R2*C)

2/3*(1-e-t/R2*C) = 1/3

1-e-t/R2*C = 1/2

e-t/R2*C = 1/2

t/R2*C = -ln(1/2)

Отсюда получаем длительность паузы мультивибратора:

tп = -ln(1/2)*R2*C ≈ 0,693*R2*C

Ну и дальше уже несложно посчитать для нашего мультивибратора период импульса и частоту:

T = tи + tп = -ln(1/2)*(R1+2*R2)*C ≈ 0,693*(R1+2*R2)*C

f = 1/T

Продолжение: Генератор прямоугольных импульсов с регулируемой скважностью, на 555-м таймере.

datasheet на русском, описание и схема включения

3 наиболее популярные схемы на основе NE555

Одновибратор

Практический вариант схемы одновибратора на TTL NE555 приведен на рисунке. Схема питается однополярным напряжением от 5 до 15В. Времязадающими элементами здесь являются: резистор R1 – 200кОм-0,125Вт и электролитический конденсатор С1 – 4,7мкФ-16В. R2 поддерживает на входе высокий потенциал, пока некоторое внешнее устройство не сбросит его до низкого уровня (например, транзисторный ключ). Конденсатор С2 защищает схему от сквозных токов в моменты переключения.

Активизация одновибратора происходит в момент кратковременного замыкания на землю входного контакта. При этом на выходе формируется высокий уровень длительностью:

t=1,1*R1*C1=1,1*200000*0,0000047=1,03 c.

Таким образом, данная схема формирует задержку выходного сигнала относительно входного на 1 секунду.

Мигание светодиодом на мультивибраторе

Отталкиваясь от рассмотренной выше схемы мультивибратора можно собрать простую светодиодную мигалку. Для этого к выходу таймера последовательно с резистором подключают светодиод. Номинал резистора находят по формуле:

R=(UВЫХ-ULED)/ILED,

UВЫХ – амплитудное значение напряжения на выводе 3 таймера.

Количество подключаемых светодиодов зависит от типа применяемой микросхемы NE555, её нагрузочной способности (КМОП или ТТЛ). Если необходимо мигать светодиодом мощностью более 0,5 Вт, то схему дополняют транзистором, нагрузкой которого станет светодиод.

Реле времени

Схема регулируемого таймера (электронное реле времени) показана на рисунке. С её помощью можно вручную задавать длительность выходного сигнала от 1 до 25 секунд. Для этого последовательно с постоянным резистором в 10 кОм устанавливают переменный номиналом в 250 кОм. Ёмкость времязадающего конденсатора увеличивают до 100 мкФ.

Схема работает следующим образом. В исходном состоянии на выводе 2 присутствует высокий уровень (от источника питания), а на выводе 3 низкий уровень. Транзисторы VT1, VT2 закрыты. В момент подачи на базу VT1 положительного импульса по цепи (Vcc-R2-коллектор-эмиттер-общий провод) протекает ток. VT1 открывается и переводит NE555 в режим отсчета времени. Одновременно на выходе ИМС появляется положительный импульс, который открывает VT2. В результате ток эмиттера VT2 приводит к срабатыванию реле. Пользователь может в любой момент прервать выполнение задачи, кратковременно закоротив RESET на землю.

Рассмотреть все популярные схемы на основе NE555 в одной статье невозможно. Для этого существуют целые сборники, в которых собраны практические наработки за всё время существования таймера. Надеемся, что приведенная информация послужит ориентиром во время сборки схем, в том числе нагрузкой которых служат светодиоды.

Плюсы и минусы

   Плюсы: независимая от частоты регулировка скважности, SSTC никогда не уйдет в CW режим, если подгорит прерыватель.    Минусы: скважность нельзя увеличивать «бесконечно много», как например на UC3843, она ограничена емкостью конденсатора и скважностью самого генератора (не может быть больше скважности генератора)

Ток через конденсатор идет плавно

   Минусы: скважность нельзя увеличивать «бесконечно много», как например на UC3843, она ограничена емкостью конденсатора и скважностью самого генератора (не может быть больше скважности генератора). Ток через конденсатор идет плавно

   На последнее не знаю как драйвер реагирует (плавную зарядку). С одной стороны драйвер также плавно может открывать транзисторы и они будут сильнее греться. С другой стороны UCC27425 — цифровая микросхема. Для нее существует только лог. 0 и лог. 1. Значит пока напряжение выше порогового — UCC работает, как только опустилось ниже минимального — не работает. В этом случае все работает в штатном режиме, и транзисторы открываются полностью.

Структурная интегральная схема внутри чипа

Итак, процесс создания интегральной схемы начинается от монокристалла кремния, напоминающего по форме длинную сплошную трубу, «нарезанную» тонкими дисками — пластинами. Такие пластины размечаются на множество одинаковых квадратных или прямоугольных областей, каждая из которых представляет один кремниевый чип (микрочип). Пример внутренней структуры интегральной схемы, демонстрирующий возможности такой уникальной технологии интеграции полноценных электронных схемотехнических решений.

Затем на каждом таком чипе создаются тысячи, миллионы или даже миллиарды компонентов путём легирования различных участков поверхности — превращения в кремний N-типа или P-типа. Легирование осуществляется различными способами. Один из вариантов — распыление, когда ионами легирующего материала «бомбардируют» кремниевую пластину.

Другой вариант — осаждение из паровой фазы, включающий введение легирующего материала газовой фазой с последующей конденсацией. В результате такого ввода примесные атомы образуют тонкую пленку на поверхности кремниевой пластины. Самым точным вариантом осаждения считается молекулярно-лучевая эпитаксия.

Конечно, создание интегральных микросхем, когда упаковываются сотни, миллионы или миллиарды компонентов в кремниевый чип размером с ноготь, видится сложнейшим процессом. Можно представить, какой хаос принесёт даже небольшая крупинка в условиях работы в микроскопическом (наноскопическом) масштабе. Вот почему полупроводники производятся в лабораторных условиях безупречно чистых. Воздух лабораторных помещений тщательно фильтруется, а рабочие обязательно проходят защитные шлюзы и облачаются в защитную одежду.

Кто создал интегральную схему?

Разработка интегральной схемы приписывается двум физикам — Джеку Килби и Роберту Нойсу, как совместное изобретение. Однако фактически Килби и Нойс вынашивали идею интегральной схемы независимо друг от друга. Между учёными даже существовала своего рода конкуренция за права на изобретение.

Джек Килби трудился в «Texas Instruments», когда учёному удалось реализовать идею монолитного принципа размещения различных частей электронной схемы на кремниевом чипе. Учёный вручную создал первую в мире интегральную микросхему (1958 год), использовав чип на основе германия. Компания «Texas Instruments» спустя год подала заявку на патент.

Тем временем представитель другой компании «Fairchild Semiconductor» — Роберт Нойс, проводил эксперименты с миниатюрными цепями своего устройства. Благодаря серии фотографических и химических методов (планарный процесс), учёный всего лишь на год позже Килби создал практичную интегральную схему. Методика получения также была оформлена заявкой на патент.

Микросхемы на плате

Перейдем от теории к практике

Собирал генератор Тесла в корпус от АТХ. Конденсатор по питанию 1000 мкф 400в. Диодный мост из того же АТХ на 8А 600В. Перед мостом поставил резистор 10 Вт 4,7 Ом. Это обеспечивает плавный заряд конденсатора. Для питания драйвера поставил трансформатор 220-12В и еще стабилизатор с конденсатором 1800 мкФ.

Диодные мосты прикрутил на радиатор для удобства и для отвода тепла, хотя они почти не греются.

Прерыватель собрал почти навесом, взял кусок текстолита и канцелярским ножом вырезал дорожки.

Силовая была собрана на небольшом радиаторе с вентилятором, позже выяснилось, что этого радиатора вполне достаточно для охлаждения. Драйвер смонтировал над силовой через толстый кусок картона. Ниже фото почти собранной конструкции генератора Тесла, но находящейся на проверке, измерял температуру силовой при различных режимах (видно обычный комнатный термометр, прилепленный к силовой на термопласту).

Тороид катушки собран из гофрированной пластиковой трубы диаметром 50 мм и обклеенным алюминиевым скотчем. Сама вторичная обмотка намотана на 110 мм трубе высотой 20 см проводом 0,22 мм около 1000 витков. Первичная обмотка содержит аж 12 витков, сделал с запасом, дабы уменьшить ток через силовую часть. Делал с 6 витками в начале, результат почти одинаков, но думаю не стОит рисковать транзисторами ради пары лишних сантиметров разряда. Каркасом первички служит обычный цветочный горшок. С начала думал что не будет пробивать если вторичку обмотать скотчем, а первичку поверх скотча. Но увы, пробивало. В горшке конечно тоже пробивало, но здесь скотч помог решить проблему. В общем готовая конструкция выглядит так:

Ну и несколько фоток с разрядом

Теперь вроде бы все.

Схемы генераторов на 555

Тогда решил изменить принципиально схему и сделать независимую длительность на конденсаторе, диоде и резисторе. Возможно многие посчитают эту схему абсурдной и глупой, но это работает. Принцип такой: сигнал на драйвер идет до тех пор пока конденсатор не зарядится (с этим думаю никто не поспорит)

NE555 генерирует сигнал, он идет через резистор и конденсатор, при этом если сопротивление резистора 0 Ом, то идет только через конденсатор и длительность максимальна (на сколько хватает емкости) не зависимо от скважности генератора. Резистор ограничивает время заряда, т.е

чем больше сопротивление, тем меньшей времени будет идти импульс. На драйвер идет сигнал меньшей длительностью, но тоже частоты. Разряжается конденсатор быстро через резистор (который на массу идет 1к) и диод.

Пример №7 — Простой генератор прямоугольных импульсов на NE555

В момент включения схемы, конденсатор C1 разряжен и на выходе 3 таймера NE555 находится высокий уровень. Затем конденсатор C1 через резистор R1 начинает постепенно заряжаться.

В момент, когда потенциал на конденсаторе, и соответственно на выводе 6 (стоп) таймера, достигнет примерно 2/3 напряжения питания, сигнал на выводе 3 переключится на низкий уровень. Теперь конденсатор через сопротивление R1 начинает разряжаться. Когда уровень напряжения на входе 2 (запуск) упадет до 1/3 Uпит., на выходе снова будет высокий уровень. И процесс повторится снова.

Если к выходу добавить еще RC-цепь (выделено красным цветом), то выходной сигнал по форме будет приближен к синусоиде.

Проверка работоспособности

Для своих самоделок NE555 можно выпаять из старого, ненужного или уже неисправного оборудования. Она встречается в пультах управления, терморстатах, терморегуляторах, ёлочных гирляндах, светомузыкальных и различных устройствах с временной задержкой включения, автомобильных тахометрах и др. Если повезло и Вам удалось найти её, то перед использованием в своих электронных конструкциях, необходимо определить её на работоспособность.

Проверить мультиметром не получится. Поэтому для этих целей обычно используют простенький тестер – он же «мигалка на светодиодах». Если после подключения питания оба диода поочередно помигивают, то NE-шка рабочая. В противном случае – неисправна.

Схема импульсного источника питания на двух NE555

      На рис.2 показана схема импульсного источника питания с двумя таймерами NE555. Первая из этих микросхем (DD1) включена по схеме мультивибратора, на выходе которого проявляются короткие прямоугольные импульсы, снимаемые с ножки 3. Частота следования этих импульсов изменяется с помощью потенциометра R3.       Этим импульсы поступают на дифференцирующую цепочку C3R5 и параллельно подключенный к резистору R5 диод VD1. Поскольку катод диода подключен к шине питания, короткие положительные всплески продифференцированных импульсов (фронты) шунтируются малым прямым сопротивлением диода и имеют незначительную величину, а отрицательные всплески (спады), попадая на запертый диод VD1, свободно проходят на вход ждущего мультивибратора МС DD2 (ножка 2) и запускают его. Хотя на схеме VD1 указан как Д9И, в этой позиции желательно использовать маломощный диод Шотки, а, в крайнем случае, можно использовать кремниевый диод КД 522.

      Резистор R6 и конденсатор С6 определяют длительность выходного импульса ждущего мультивибратора (одновибратора) DD2, управляющего ключом VT1.       Как в предыдущей схеме импульсного источника питания ток через транзистор VT1 регулируется резистором R7, а нагрузкой служит дроссель из балласта экономичных ламп дневного света 3 мГн.       Поскольку частота генерации МС ниже, чем в первой схеме, то конденсатор выпрямителя с удвоением напряжения С7 имеет емкость 10 мкФ, а для уменьшения габаритов в этой позиции использован керамический SMD-конденсатор, но можно использовать и другие типы конденсаторов: К73, КБГИ, МБГЧ, МБМ или электролитические на подходящее напряжение.       Входные и выходные напряжения, потребляемый ток и частоты следования импульсов для схемы рис.2 приведены в табл.2.

Производители

Рассмотренный универсальный таймер, созданный американской компанией Signeticsв далеком 1971 г., до сих пор продолжают выпускать почти все известными мировые брэнды полупроводниковой промышленности. При этом маркировка её полных аналогов у различных компании может отличатся от оригинала, несмотря на полную функциональную и физическую идентичность. Например судя по datasheet NE555 P (она же LM555P) и NE555N являются одним и тем же устройством двух конкурентов: Texas Instruments и STMicroelectronics соответственно. NE555L является продуктом китайской Unisonic Technologies Co (UTC). Японская Motorolа когда то делала CMOS-версии с обозначением MC1455. В настоящее время продолжается процесс её совершенствования и модернизации под современные требования.

Режимы работы NE555

Таймер 555 серии работает в одном из трёх режимов, рассмотрим их более детально на примере микросхемы NE555.

Одновибратор

Принципиальная электрическая схема одновибратора приведена на рисунке. Для формирования одиночных импульсов, кроме микросхемы NE555, понадобится сопротивление и полярный конденсатор. Схема работает следующим образом. На вход таймера (2) подают одиночный импульс низкого уровня, который приводит к переключению микросхемы и появлению на выходе (3) высокого уровня сигнала. Продолжительность сигнала рассчитывается в секундах по формуле:

t=1,1*R*C.

По истечении заданного времени (t) на выходе формируется сигнал низкого уровня (исходное состояние). По умолчанию вывод 4 объединен с выводом 8, то есть имеет высокий потенциал.

Во время разработки схем нужно учесть 2 нюанса:

  1. Напряжение источника питания не влияет на длительность импульсов. Чем больше напряжение питания, тем выше скорость заряда времязадающего конденсатора и тем больше амплитуда выходного сигнала.
  2. Дополнительный импульс, который можно подать на вход после основного, не повлияет на работу таймера, пока не истечет время t.

На работу генератора одиночных импульсов можно влиять извне двумя способами:

  • подать на Reset сигнал низкого уровня, который переведёт таймер в исходное состояние;
  • пока на вход 2 поступает сигнал низкого уровня, на выходе будет оставаться высокий потенциал.

Таким образом, с помощью одиночных сигналов на входе и параметров времязадающей цепочки можно получать на выходе импульсы прямоугольной формы с чётко заданной длительностью.

Мультивибратор

Мультивибратор представляет собой генератор периодических импульсов прямоугольной формы с заданной амплитудой, длительностью или частотой, в зависимости от поставленной задачи. Его отличие от одновибратора состоит в отсутствии внешнего возмущающего воздействия для нормального функционирования устройства. Принципиальная схема мультивибратора на базе NE555 показана на рисунке.

В формировании повторяющихся импульсов участвуют резисторы R1, R2 и конденсатор С1

Время импульса (t1), время паузы(t2), период (T) и частоту (f) рассчитывают по нижеприведенным формулам: Из данных формул несложно заметить, что время паузы не сможет превысить время импульса, то есть достичь скважности (S=T/t1) более 2 единиц не удастся. Для решения проблемы в схему добавляют диод, катод которого соединяют с выводом 6, а анод с выводом 7

Схема работает следующим образом. В момент подачи питания конденсатор С1 разряжен, что переводит выход таймера в состояние высокого уровня. Затем С1 начинает заряжаться, набирая ёмкость до верхнего порогового значения 2/3 UПИТ. Достигнув порога ИМС переключается, и на выходе появляется низкий уровень сигнала. Начинается процесс разряда конденсатора (t1), который продолжается до нижнего порогового значения 1/3 UПИТ. По его достижении происходит обратное переключение, и на выходе таймера устанавливается высокий уровень сигнала. В результате схема переходит в автоколебательный режим.

Прецизионный триггер Шмитта с RS-триггером

Внутри таймера NE555 встроен двухпопроговый компаратор и RS-триггер, что позволяет реализовывать прецизионный триггер Шмитта с RS-триггером на аппаратном уровне. Входное напряжение делится компаратором на три части, при достижении каждой из которых происходит очередное переключение. При этом величина гистерезиса (обратного переключения) равна 1/3 UПИТ. Возможность применения NE555 в качестве прецизионного триггера востребована в построении систем автоматического регулирования.

Плюсы и минусы

Плюсы : независимая от частоты регулировка скважности, SSTC никогда не уйдет в CW режим, если подгорит прерыватель. Минусы : скважность нельзя увеличивать «бесконечно много», как например на UC3843, она ограничена емкостью конденсатора и скважностью самого генератора (не может быть больше скважности генератора)

Ток через конденсатор идет плавно

Минусы : скважность нельзя увеличивать «бесконечно много», как например на UC3843, она ограничена емкостью конденсатора и скважностью самого генератора (не может быть больше скважности генератора). Ток через конденсатор идет плавно

На последнее не знаю как драйвер реагирует (плавную зарядку). С одной стороны драйвер также плавно может открывать транзисторы и они будут сильнее греться. С другой стороны UCC27425 — цифровая микросхема. Для нее существует только лог. 0 и лог. 1. Значит пока напряжение выше порогового — UCC работает, как только опустилось ниже минимального — не работает. В этом случае все работает в штатном режиме, и транзисторы открываются полностью.

Серии микросхем

Аналоговые и цифровые микросхемы выпускаются сериями. Серия — это группа микросхем, имеющих единое конструктивно-технологическое исполнение и предназначенные для совместного применения. Микросхемы одной серии, как правило, имеют одинаковые напряжения источников питания, согласованы по входным и выходным сопротивлениям, уровням сигналов.

Корпуса


Корпуса интегральных микросхем, предназначенные для поверхностного монтажа

Основная статья: Типы корпусов микросхем

Микросборка с бескорпусной микросхемой, разваренной на печатной плате

Корпус микросхемы — это конструкция, предназначенная для защиты кристалла микросхемы от внешних воздействий, а также для удобства монтажа микросхемы в электронную схему. Содержит собственно корпус из диэлектрического материала (пластмасса, реже керамика), набор проводников для электрического соединения кристалла с внешними цепями посредством выводов, маркировку.

Существует множество вариантов корпусов микросхем, различающихся по количеству выводов микросхемы, методу монтажа, условиям эксплуатации. Для упрощения технологии монтажа производители микросхем стараются унифицировать корпуса, разрабатывая международные стандарты.

Иногда микросхемы выпускают в бескорпусном исполнении — то есть кристалл без защиты. Бескорпусные микросхемы обычно предназначены для монтажа в гибридную микросборку. Для массовых дешевых изделий возможен непосредственный монтаж на печатную плату.

Специфические названия


Фирма Intel первой изготовила микросхему, которая выполняла функции микропроцессора (англ. microproccessor) — Intel 4004. На базе усовершенствованных микропроцессоров и фирма IBM выпустила свои известные персональные компьютеры.

Микропроцессор формирует ядро вычислительной машины, дополнительные функции, типа связи с периферией выполнялись с помощью специально разработанных наборов микросхем (чипсет). Для первых ЭВМ число микросхем в наборах исчислялось десятками и сотнями, в современных системах это набор из одной-двух-трёх микросхем. В последнее время наблюдаются тенденции постепенного переноса функций чипсета (контроллер памяти, контроллер шины PCI Express) в процессор.

Микропроцессоры со встроенными ОЗУ и ПЗУ, контроллерами памяти и ввода-вывода, а также другими дополнительными функциями называют микроконтроллерами.

Типовые характеристики

NE555 не относится к биполярным ИС, КМОП или ТТЛ-схемам, однако совместима с ними. Рекомендуемое питание для неё находится в диапазоне от +4.5В до +16В. Если его значение составляет +5В, то выход таймера согласуется с ТТЛ-входами других ИС. Иначе надо применять дополнительные согласующие устройства для задания импульсам необходимого уровня.

Предельные допустимые

Рассмотрим типовые предельные эксплуатационные параметры NE555, характерные большинству её модификаций. Они могут незначительно отличаться между собой в  зависимости от компании-изготовителя, но в основном повторяются во всех технических описаниях:

  • напряжение источника питания от +4.5 до +18В;
  • мощность рассеивания до 600 мВт;
  • выходной ток до 200 мА;
  • максимальная рабочая частота  500 кГц;
  • температура: рабочая от 0 до 70ОС; хранения от -65 до +150ОС.

Аналоги

Чем можно заменить и какой подобрать аналог для ne555 ? В советские годы, примерно с 1975 года, полным аналогичным устройством являлась КР1006ВИ1. Сейчас её продолжают выпускать на Рижском заводе «Аlfa Rpar» в Латвии. Сохранилось производство и на белорусском предприятии «Интеграл», там её маркируют так — IN555.

Понятно, что данные на КР1006ВИ1 указаны на русском языке и почти полностью повторяют информацию представленную в англоязычном datasheet на 555. Поэтому многие радиолюбители предпочитают ознакамливаться именно с русскоязычной версией этого универсального таймера.

Но есть один нюанс, который стоит знать, особенно когда надо подобрать подходящую замену. Так, в нашей версии устройства имеется логический приоритет в работе выводов «останова» над «запуском», в то время как у оригинала все наоборот. И хотя в большинстве типовых схем данный функционал не используется, его все же необходимо учитывать в своих разработках.

Схема импульсного источника питания двухполярного напряжения

      Он собран на одной микросхеме NE555 (рис.1), которая служит задающим генератором прямоугольных импульсов. Генератор собран по классической схеме. Частота следования выходных импульсов генератора 6,474…6,37 кГц. Она изменяется в зависимости от напряжения питания, которое может быть 3,6 В (3 аккумулятора в кассете питания) и 4,8 В (при 4 аккумуляторах в кассете). В схеме импульсного источника питания были использованы аккумуляторы ENERGIZER типоразмера АА емкостью 2500 мА-ч.       Прямоугольные импульсы с выхода 3 МС 555 через ограничивающий резистор R5 подаются на базу транзисторного ключа VT1, нагрузкой которого является дроссель L1 индуктивностью 3 мГн. При резком запирании этого транзистора в дросселе L1 наводится большая ЭДС самоиндукции. Полученные таким образом высоковольтные импульсы поступают на два параллельных выпрямителя с удвоением напряжения, на выходах которых будут два разнополярных напряжения ±4,5…15 В.

      Эти напряжения можно регулировать, изменяя скважность выходных импульсов с помощью потенциометра R1.    Постоянное напряжение с движка R1 попадает на вывод 5 МС555 и меняет скважность, а следовательно, и выходные напряжение обоих выпрямителей. Выходные напряжения этого источника будут идеально равны только в том случае, когда скважность импульсов генератора будет равна 2 (длительность импульсов равна паузе между ними)

При другой скважности импульсов выходные напряжения источника в точках А и Б будут несколько разниться (до 1…2 В). Столь небольшая разница обеспечивается применением в схеме импульсного источника питания выпрямителей удвоения, конденсаторы которых заряжаются как положительными, так и отрицательными импульсами. Этот недостаток компенсируется простотой и дешевизной схемы.

      В этой схеме импульсного источника питания можно использовать дроссели от электронных балластов негодных экономичных ламп дневного света. Разбирая эти лампы, старайтесь не повредить спиральные или U-образные стеклянные трубки, так как они содержат ртуть. Делать это лучше на открытом воздухе.       На некоторых дросселях, особенно импортных, нанесена величина индуктивности в мГн (2.8, 2.2, 3.0, 3,6 и т.д.).       Входные и выходные напряжения, потребляемый ток и частоты следования импульсов для схемы рис.1 приведены в табл.1.

Генератор пилообразного напряжения на 555 таймере

Пилообразный сигнал может быть сформирован разными способами, одним из наиболее популярных способов является заряд конденсатора стабильным током. При этом напряжение на конденсаторе будет линейно нарастать, и если полностью разряжать конденсатор при достижении на нём максимального напряжения, то и будет сформирован пилообразный сигнал. По сути дела схема является обычным релаксационным генератором.

Обычно для реализации такого генератора используют тиристор или его аналог на биполярных транзисторах. Но можно использовать альтернативный способ, применив интегральный таймер 555 (КР1006ВИ1). Схема такого генератора пилообразного напряжения изображена на рисунке 1. Она состоит из , выполненного на транзисторе VT1 и стабилитроне D1, и узла управления разрядом, выполненным на микросхеме интегрального таймера 555 (КР1006ВИ1) и диоде D2.

Рис. 1. Принципиальная схема генератора пилообразного напряжения на 555 таймере (КР1006ВИ1).

Выход 3 таймера соединён со входом 5 через диод D2, что позволяет снизить напряжение на внутреннем делителе до нуля при наличии на выходе таймера сигнала низкого уровня. Такая конфигурация позволяет почти полностью разрядить конденсатор С1. Как только конденсатор разрядится до некоторого минимального напряжения, то таймер переключается и конденсатор начинает заряжаться от источника тока, и далее процесс циклично повторяется.

Частота колебаний генератора пилообразного напряжения зависит от ёмкости конденсатора С1 и сопротивления резистора R1. Частота определяется по формулеF=0,4/R1C1. При указанных на схеме номиналах она будет составлять примерно 4 кГц.

Ток, протекающий через резистор R1 должен быть небольшим, так как в процессе разряда конденсатора выход источника тока замыкается на землю. Этот ток рассчитывается по формулеI=(VD1-Vbe)/R1, где VD1 — это напряжение стабилизации стабилитрона D1 (в данном случае 4,7В) и Vbe — прямое напряжение на переходе база-эмиттер транзистора VT1 (0,7В). Для получения хорошей формы сигнала ток, протекающий через резистор R1 не должен превышать 20 мА.

В качестве транзистора VT1 можно использовать практически любой маломощный низкочастотный pnp транзистор, например, КТ502. Стабилитрон D1 — любой с напряжением стабилизации 4,7 вольт. Если применить стабилитрон на напряжение 2,7 вольт, то напряжение питания схемы можно будет снизить до 5В. Диод D2 — любой кремниевый, например, кд503, кд 509.

Схема генератора на микросхеме NE555

Представленная схема генератора на NE555 предназначена для генерации прямоугольных импульсов с частотами 0.1, 1, 10, 100Гц.Настройка осуществляется при помощи переключателя P, который подключается к конденсаторам разных номиналов. Комбинируя значения емкости конденсаторов, а также сопротивления R1, R2 можно получать любую частоту.

На выходе для световой индикации установлен светодиод, который мигает с той же частотой что и выходной сигнал. Для ограничения его от больших токов установлен резистор номиналом в 270 Ом. Схема питается от источника питания номиналом в 5В.

Данную схему генератора можно, к примеру использовать для запуска строчника.

Оцените статью:

555 Таймер

Продукты Elliott Sound Таймер 555

Род Эллиотт — Авторское право © 2015

Вершина
Указатель статей
Основной указатель

Содержание
Введение

Таймер 555 используется нами с 1972 года — это долгий срок для любой ИС, и тот факт, что он все еще используется в тысячах конструкций, свидетельствует о его полезности в широком спектре оборудования, как профессионального, так и любительского.Он может работать как генератор, таймер и даже как инвертирующий или неинвертирующий буфер. ИС может обеспечивать выходной ток до 200 мА (источник или приемник) и работает от напряжения питания от 4,5 В до 18 В. Версия CMOS (7555) имеет более низкий выходной ток, а также потребляет меньший ток питания и может работать от 2 В до 15 В.

Существует много разных производителей и много разных префиксов и суффиксов номеров деталей, и они доступны в двойной версии (556). У некоторых производителей есть и четырехъядерные версии.555 и его производные выпускаются в корпусах DIP (двухрядный корпус) и SMD (устройство для поверхностного монтажа). Я не собираюсь даже пытаться охватить все варианты, потому что их слишком много, но следующий материал основан на стандартном 8-контактном корпусе с одним таймером. Все номера контактов относятся к 8-контактной версии, и их необходимо будет изменить, если вы используете двух- или четырехконтактные типы или выбираете одну из версий SMD с другой распиновкой. Обратите внимание, что версия с четырьмя разъемами имеет только минимум контактов, напряжение сброса и управления разделяются всеми четырьмя таймерами, и у него нет отдельных контактов порога и разряда (они связаны между собой внутри и называются «синхронизацией»).

В 555 используются два компаратора, триггер установки-сброса (который включает в себя «главный» сброс), выходной буфер и транзистор разряда конденсатора. Многие функции запрограммированы заранее, но управляющий вход позволяет изменять пороговые напряжения компаратора, и возможно множество различных схемных реализаций. Блок-схема полезна, и на рисунке 1A показаны основные части внутренней части IC.


Рисунок 1A — Внутренняя схема таймера 555

На рисунке 1B показана полная принципиальная схема таймера 555, основанная на схеме, показанной в таблице данных ST Microelectronics.Схемы от других производителей могут немного отличаться, но принцип работы идентичен. На самом деле нет особого смысла подробно разбирать схему, но нужно отметить одну вещь, это делитель напряжения, который создает опорные напряжения, используемые внутри. Три резистора 5 кОм показаны синим, чтобы вы могли легко их найти, а основные секции показаны пунктирными линиями (и помечены), чтобы можно было идентифицировать каждую секцию.


Рисунок 1B — Схема таймера 555

Если у вас нет большого опыта в электронике и вы не можете следить за подробной схемой, такой как показанная, это, вероятно, не будет иметь большого значения для вас.Это интересно, и если бы вы построили схему с использованием транзисторов и резисторов, она должна была бы работать очень похоже на версию IC. Обратите внимание, что в микросхемах часто есть дополнительные транзисторы, потому что они дешевы в установке (по сути, бесплатны), некоторые из них являются паразитными, а производительность транзисторов NPN и PNP никогда не бывает равной. В большинстве случаев производство ИС оптимизировано для NPN, и устройства PNP почти всегда будут иметь сравнительно низкую производительность.

Стандартный комплект одиночного таймера имеет 8 контактов, и они следующие.Сокращения для различных функций, которые используются в этой статье, заключены в скобки.

Контакт 1 Общий / ‘земля’ (Gnd) Этот вывод соединяет схему таймера 555 с отрицательной шиной питания (0 В). Все напряжения измеряются относительно этого вывода.
Контакт 2 Триггер (Триггер) При подаче отрицательного импульса (напряжение менее 1/3 Vcc) срабатывает внутренний триггер через компаратор №2.Контакт 3 (выход) переключается с низкого уровня (близко к нулю вольт) до «высокого» (близко к Vcc). Выход остается в высоком состоянии, в то время как клемма триггера остается на низком напряжении, а триггер вход отменяет пороговый вход.
Контакт 3 Выход (Out) Выходная клемма может быть подключена к нагрузке двумя способами: либо между выходом и землей, либо между выходом и шиной питания (Vcc). Когда выход низкий, ток нагрузки (ток стока) течет от Vcc через нагрузку к выходному зажиму.Для источника тока нагрузка подключается между выходом и общим (0 В). Если нагрузка подключена между выходом и землей, когда выход большой, ток течет от выхода, через нагрузку и оттуда на землю.
Контакт 4 Сброс (Rst) Вывод сброса используется для сброса триггера, который определяет состояние выхода. Когда на этот вывод подается отрицательный импульс, на выходе становится низкий уровень. Эта булавка активный низкий и отменяет все остальные входы.Когда он не используется, он должен быть подключен к Vcc. Активация сброса включает разрядный транзистор.
Контакт 5 Управляющее напряжение (Ctrl) Этот вывод используется для управления уровнями запуска и порогового значения. Синхронизацию ИС можно изменить, подав напряжение на этот вывод, либо от активного цепи (например, операционного усилителя) или подключив ее к дворнику потенциометра, подключенного между Vcc и землей. Если этот вывод не используется, его следует подключить к земле. с конденсатором 10 нФ для предотвращения шумовых помех.
Контакт 6 Порог (Thr) Это неинвертирующий вход для компаратора №1, который контролирует напряжение на внешнем конденсаторе. Когда пороговое напряжение больше 2/3 Vcc, выход компаратора № 1 становится высоким, что сбрасывает триггер и выключает выход (ноль вольт).
Pin 7 Разряд (Dis) Этот вывод подключен внутри к коллектору разрядного транзистора, и конденсатор синхронизации часто подключается между этим выводом и землей.Когда выходной вывод становится низким, транзистор включается и разряжает конденсатор.
Контакт 8 Vcc Вывод питания, который подключен к источнику питания. Напряжение может находиться в диапазоне от +4,5 В до + 18 В относительно земли (вывод 1). Большинство CMOS-версий 555 (например, 7555 / TLC555) может работать до 2 или 3 В. Всегда необходимо использовать байпасный конденсатор, не менее 100 нФ, а желательно больше. Я предлагаю 10 мкФ для большинства приложений.

Как упоминалось выше, 555 можно использовать в качестве генератора или таймера, а также для выполнения некоторых менее обычных задач.Основные формы мультивибратора — нестабильный (нет стабильных состояний), моностабильный (одно стабильное состояние) или бистабильный (два стабильных состояния). К сожалению, работа в бистабильном режиме с 555 не очень полезна из-за внутренней организации. Однако это можно сделать, если вы примете некоторые ограничения. Схема 555, которая функционирует как бистабильная, описана в проекте 166, где 555 используется как выключатель для оборудования с питанием.

Время довольно стабильно при колебаниях температуры и напряжения питания.NE555 «коммерческого класса» рассчитан на типичную стабильность 50 ppm (частей на миллион) на градус C в моностабильном режиме и 150 ppm / ° C в нестабильном режиме. Это хуже как осциллятор (нестабильный), чем таймер (моностабильный), потому что осциллятор полагается на два компаратора, а таймер полагается только на один. Дрейф при напряжении питания около 0,3% / В.

Большинство схем, показанных ниже, включают светодиод с ограничивающим резистором. Это совершенно необязательно, но это помогает вам увидеть, что делает IC, когда у вас есть медленный нестабильный или таймер.В схемах также есть байпасный конденсатор емкостью 47 мкФ, который должен быть как можно ближе к ИС. Если колпачок не включен, вы можете получить некоторые странные эффекты, в том числе паразитные колебания выходного каскада при изменении его состояния.

Когда выходной сигнал высокий, он обычно будет на 1,2–1,7 В ниже, чем напряжение питания, в зависимости от тока, потребляемого с выходного контакта. Выходной каскад 555 не может подтянуть уровень до Vcc, потому что он использует схему Дарлингтона NPN, которая всегда будет терять некоторое напряжение, и напряжение будет падать с увеличением тока.Обычно это не ограничение, но вы должны знать об этом. Если это проблема, вы можете добавить подтягивающий резистор между «Out» и «Vcc» (1 кОм или около того), но это будет полезно только для легких нагрузок (менее 1 мА).

Следует пояснить, что 555 — это , а не — точное устройство, и это не было намерением с самого начала. У него много недостатков, но на самом деле они редко вызывают проблемы, если устройство используется по назначению. Иногда бывает необходимо убедиться, что он получает хороший сброс при включении, чтобы он находился в известном состоянии, но для большинства приложений в этом нет необходимости.Если вам действительно нужна точность, используйте что-нибудь другое (что будет значительно сложнее и дороже). Говорят, что Боб Пиз (из National Semiconductor, ныне TI), что ему не нравились 555, и он никогда не использовал их (см. Веб-сайт Electronic Design), но это не причина избегать их. Было бы глупо использовать 555 в критически важном приложении, где точность имеет первостепенное значение, но также можно использовать микроконтроллер с кварцевым генератором для выполнения основных функций синхронизации.

Генератор (или, если быть точным, нестабильный мультивибратор) — очень распространенное приложение, поэтому мы рассмотрим его в первую очередь.Обратите внимание, что все цепи ниже предполагается использовать источник постоянного тока 12 В, если не указано иное.


1 — Нестабильные схемы

Термин «нестабильный» буквально означает «нестабильный» — само определение осциллятора. Выход переключается с высокого на низкий и обратно, пока есть питание, а вывод сброса поддерживается на высоком уровне. Это обычное использование для цепей 555, и схема показана на рисунке 2. Частота повторения импульсов определяется значениями R1, R2 и C1.


Рисунок 2 — Стандартный нестабильный осциллятор

Формы сигналов на выходе и напряжение на C1 показаны ниже. Выходной сигнал становится высоким, когда напряжение конденсатора падает до 4 В (1/3 В постоянного тока от 12 В), и снова становится низким, когда напряжение конденсатора достигает 8 В (2/3 В постоянного тока). Осциллятор не имеет стабильного состояния — когда выходной сигнал высокий, он ожидает зарядки конденсатора, чтобы он мог снова стать низким, а когда он низкий, он ждет, пока конденсатор разряжается, , чтобы он мог стать высоким. Это продолжается до тех пор, пока вывод сброса удерживается в высоком состоянии.При нажатии на вывод сброса низкий уровень (менее 0,7 В) останавливает колебание.


Рисунок 2A — Формы сигналов стандартного нестабильного осциллятора

C1 заряжается через R1 и R2 последовательно и разряжается через R1. По умолчанию это означает, что выходной сигнал представляет собой импульсную форму волны, а не истинную прямоугольную волну. Выход будет положительным, с отрицательными импульсами. Если R2 сделать большим по сравнению с R1, вы можете приблизиться к выходу прямоугольной волны. Например, если R1 составляет 1 кОм, а R2 — 10 кОм, выходной сигнал будет близок к соотношению метка-пространство 1: 1 (на самом деле это 1.1: 1). Чтобы определить частоту, используйте следующую формулу …

f = 1,44 / ((R1 + (2 × R2)) × C1)

Для значений, показанных на рисунке 2, частота вычисляется как 686 Гц, а симулятор требует 671 Гц. Это может показаться большим несоответствием, но это вполне допустимо для стандартных компонентов и самой ИС. Также могут быть определены высокие и низкие времена …

t высокий = 0,69 × (R1 + R2) × C1
t низкий = 0,69 × R2 × C1

При значениях, приведенных на рисунке 2, t high составляет 759 мкс, а t low составляет 690 мкс.Симулятор (и реальная жизнь) будет немного отличаться. Отношение рабочего цикла / метки составляет 1,1: 1 и рассчитывается как отношение t high / t low . Высокое время в 1,1 раза больше низкого времени, что вполне логично, исходя из номиналов резистора. По мере уменьшения R1 отношение метки к пространству приближается к 1: 1, но вы должны убедиться, что оно не настолько низкое, чтобы разрядный транзистор не мог выдерживать ток. Максимальный ток разрядного вывода не должен превышать 10 мА, а желательно меньше.

Вы можете задаться вопросом, откуда взялись значения 1,44 и 0,69. Это константы (или, если хотите, «ложные факторы»), которые были определены математически и эмпирически для таймера 555. Они не идеальны, но достаточно близки для большинства расчетов. Если вам нужна схема 555 для генерации колебаний с точной частотой, вам необходимо включить подстроечный резистор, чтобы можно было настроить схему. Он по-прежнему не будет точным и будет дрейфовать — помните, что это , а не — точное устройство, и его нельзя использовать там, где точность критична.


Рисунок 3 — Астабильный осциллятор с увеличенным рабочим циклом

Добавление диода изменяет и упрощает работу. C1 теперь заряжается только через R1 и разряжается только через R2. Это устраняет взаимозависимость двух резисторов и позволяет схеме производить любой рабочий цикл, который вы хотите, — конечно, при условии, что он находится в пределах рабочих параметров 555. Импульсы теперь могут быть узкими положительными или отрицательными, и возможно точное соотношение между меткой и пространством 1: 1. Частота определяется…

f = 1,44 / ((R1 + R2)) × C1)

Если R1 больше R2, выход будет положительным с отрицательными импульсами. И наоборот, если R1 меньше R2, на выходе будет нулевое напряжение с положительными импульсами. Таким образом, длина импульса (положительного или отрицательного) определяется двумя резисторами, и каждый из них не зависит от другого. — это , небольшая ошибка, вызванная падением напряжения на диоде, но в большинстве случаев это не вызовет проблемы. (Идеальное) время максимума и минимума рассчитывается с помощью…

t высокий = 0,69 × R1 × C1
t низкий = 0,69 × R2 × C1

Наконец, существует схема, которую обычно называют нестабильной с минимальным количеством компонентов. Помимо основных поддерживающих частей, которые всегда необходимы (байпасный конденсатор и конденсатор от «Control» до земли), для этого требуется только один резистор и один конденсатор.


Рисунок 4 — Нестабильный осциллятор с минимальным количеством компонентов

Соотношение между меткой и пространством в этой цепи номинально составляет 1: 1 (прямоугольная волна), но на это может повлиять нагрузка.Если нагрузка подключается между выходом и землей, время высокого уровня будет немного больше, чем время низкого уровня, потому что нагрузка будет препятствовать достижению выходом напряжения питания. Если нагрузка подключается между выводом питания и выходом, время низкого уровня будет больше, потому что выход не достигнет нуля вольт. Частота рассчитывается от …

f = 0,72 / (R1 × C1)

При показанных значениях это будет 720 Гц. Вы можете видеть, что разрядный штифт (вывод 7) не используется.Конденсатор заряжается и разряжается через R1, поэтому при высоком выходе конденсатор заряжается, а при низком — разряжается. Разрядный вывод можно использовать как вспомогательный выход с открытым коллектором, но не подключайте его к напряжению питания выше Vcc и не пытайтесь использовать его для сильноточных нагрузок (максимум около 10 мА).

Все показанные схемы используют внутренний делитель напряжения (резисторы 3 × 5 кОм) для установки пороговых значений компаратора. Когда напряжение достигает порогового значения (2/3 Vcc), триггер сбрасывается, и на выходе устанавливается низкий уровень (близкий к нулю вольт).Когда напряжение триггера (вывод 2) падает ниже 1/3 Vcc, цепь срабатывает, и на выходе высокий уровень (близкий к Vcc).

Если сброс (вывод 4) в любой момент сбрасывается на низкий уровень, на выходе устанавливается низкий уровень и остается там до тех пор, пока на контакте сброса снова не появится высокий уровень. Пороговое напряжение входа сброса обычно составляет 0,7 В, поэтому этот вывод должен быть подключен непосредственно к земле с помощью транзистора или переключателя. Внешний резистор необходим между Vcc и сбросом, если вам нужно использовать функцию сброса, поскольку в ИС нет подтягивающего резистора.В общем можно использовать до 10к.


2 — Моностабильные схемы / схемы таймера

Моностабильная схема (также известная как «однократная» схема) имеет одно стабильное состояние. При срабатывании триггера он переходит в «нестабильное» состояние, и время, которое он там проводит, зависит от компонентов синхронизации. Моностабильный используется для создания импульса с заданным временем при его срабатывании. Чаще всего моностабильное устройство используется в качестве таймера. Когда триггер активирован, выходной сигнал становится высоким в течение заданного времени, а затем возвращается к нулю.Хотя мы склонны считать таймеры длительными (от нескольких секунд до нескольких минут), моностаблицы также используются с очень короткими временами — например, 1 мс или меньше. Это обычное приложение, когда схеме требуются импульсы с определенной и предсказуемой шириной и с быстрым нарастанием и спадом.


Рисунок 5 — Моностабильный мультивибратор

Триггерный сигнал должен быть на короче, чем время, установленное R1 и C1. Цепь запускается кратковременным низким напряжением (менее 1/3 В постоянного тока), и выход немедленно становится высоким и остается там до тех пор, пока C1 не зарядится через R1.Задержка рассчитывается по …

т = 1,1 × R1 × C1

При указанных значениях выходной сигнал будет высоким в течение 1,1 мс. Если бы C1 был 100 мкФ, время было бы 1,1 секунды. Как уже отмечалось, запускающий импульс должен быть короче времени задержки. Если в схеме, показанной на рисунке 5, триггер будет иметь длительность 5 мс, выход будет оставаться высоким в течение 5 мс, и таймер не будет работать. Помимо таймеров, моностабильные устройства обычно используются для получения импульса заданной ширины из входного сигнала, который является переменным или зашумленным.


Рисунок 5A — Формы сигналов моностабильного мультивибратора

Полезно видеть формы сигналов для моностабильной схемы. Особенно полезно увидеть взаимосвязь между сигналом на выводе триггера и напряжением конденсатора по отношению к выходу. Они показаны выше и могут быть проверены на осциллографе. Вам понадобится двойной осциллограф, чтобы можно было одновременно видеть две трассы. Как видите, отсчет времени начинается, когда напряжение срабатывания триггера падает до 4 В (использовалось питание 12 В, а 4 В — это & ​​frac13; Vcc).Когда крышка заряжается до 8 В (& frac23; Vcc), отсчет времени останавливается, и выходная мощность падает до нуля. Обратите внимание, что в этой конфигурации крышка заряжается от нуля вольт, потому что C1 полностью разряжается, когда цикл синхронизации заканчивается.

Чаще всего моностабильная схема 555 используется в качестве таймера. Триггером может быть кнопка, и при нажатии на нее выходной сигнал становится высоким в течение заданного времени, а затем снова падает. Существует бесчисленное множество приложений для простых таймеров, и я не буду утомлять читателя длинным списком примеров.

Компоненты синхронизации очень важны, так как они не должны быть настолько большими или такими маленькими, чтобы вызвать проблемы со схемой. Электролитические конденсаторы вызывают особые хлопоты, потому что их значение может меняться со временем, температурой и приложенным напряжением. По возможности используйте полиэфирные колпачки для C1, но не в том случае, если это означает, что сопротивление резистора (R1) должно быть больше нескольких МОм. Пороговый вывод может иметь утечку только 0,1 мкА или около того, но если R1 слишком велик, даже этот крошечный ток становится проблемой.Конденсатор всегда является ограничивающим фактором для длительных задержек, потому что вам почти наверняка придется использовать электролит. Если это так, по возможности используйте тот, который классифицируется как «с малой утечкой». Часто рекомендуют использовать танталовые крышки, но я никогда не рекомендую их, потому что они могут быть ненадежными.

Иногда нельзя быть уверенным, что входной импульс будет короче временного интервала, установленного R1 и C1. В этом случае вам понадобится простой дифференциатор, который заставит входной импульс быть достаточно коротким для обеспечения надежной работы.Дифференциаторы требуют, чтобы время нарастания и / или спада было намного быстрее, чем постоянная времени самого дифференциатора. Например, конденсатор 10 нФ с резистором 1 кОм имеет постоянную времени 10 мкс, поэтому время нарастания / спада входного импульса в идеале не должно превышать 2 мкс, иначе он может работать неправильно. Соотношение 5: 1 является ориентировочным, поэтому вам нужно проверить, что доступно из других схем. В идеале используйте соотношение 10: 1 или более, если это возможно (т.е. постоянная времени дифференциатора в 10 раз превышает время нарастания входного сигнала).


Рисунок 6 — Моностабильный мультивибратор с дифференциатором

R3, C3 и D1 образуют цепь дифференциатора. Когда импульс получен, колпачок может пройти только задний фронт, который должен быть как можно быстрее. Это передается на 555, и больше не имеет значения, как долго входной импульс запуска остается отрицательным, потому что короткая постоянная времени C3 и R2 (100 мкс) позволяет пройти только заднему фронту. D1 необходим, чтобы гарантировать, что контакт 2 не может быть более положительным, чем Vcc плюс одно падение диода (0.65 В), когда триггерный импульс возвращается к положительному источнику питания.

Если время спада входного триггерного импульса слишком велико, дифференциатор может не пропускать достаточно напряжения для срабатывания 555. В этом случае сигнал должен быть «предварительно подготовлен» внешней схемой, чтобы гарантировать падение напряжения. от Vcc до земли менее чем за 20 мкс (для указанных значений). Если этого не сделать, цепь может работать нестабильно или вообще не работать. Если импульс запуска положительный, вам придется инвертировать его, чтобы он стал отрицательным.555 запускается по спадающему фронту триггерного сигнала, что вызывает высокий уровень на выходе (Vcc).

Подсказка: Если вам понадобится таймер, который работает в течение длительного времени (от часов до недель), используйте схему переменного генератора 555, которая затем управляет счетчиком CMOS, таким как 4020 или аналогичный. Выходной сигнал генератора 555 может быть (скажем) осциллограммой 1 минута / цикл, которая может выступать в качестве тактового сигнала для счетчика. 4020 — это 14-битный двоичный счетчик, поэтому с помощью простой схемы вы можете легко получить задержку (используя 1-минутные часы) в 8192 минуты — более 136 часов или чуть более 5½ дней.Все еще недостаточно? Используйте два или более счетчиков 4020. Два позволят таймеру работать около 127 лет! Обратите внимание, что вам придется предоставить дополнительные схемы, чтобы выполнить любую из этих работ, и может быть трудно быть уверенным, что таймер на 127 лет работает должным образом.

Вот пример (но он не моностабильный), и в зависимости от выхода, выбранного из счетчика 4020, вы можете получить задержку до 20 минут. Если увеличить C1, задержка может быть намного больше. При значениях резисторов, указанных для схемы синхронизации, увеличение C1 до 100 мкФ увеличит максимальное время до 3.38 часов (3 часа 23 секунды), используя Q14 из U2 в качестве выхода. Если C1 представляет собой электрораспределитель с низкой утечкой, значения R1 и R2 можно увеличить, чтобы он проработал еще дольше. На рисунке также показано, сколько входных импульсов требуется, прежде чем соответствующие выходы станут высокими (Vcc / Vdd). Счетчик продвигается по отрицательному импульсу. Чтобы использовать временные резисторы большего номинала, рассмотрите возможность использования таймера CMOS (например, 7555).


Рисунок 7 — Таймер большой продолжительности

Как показано, минимальный период для 555 равен 20.83 мс (48 Гц) с VR1 при минимальном сопротивлении, а при максимальном сопротивлении — 145,7 мс (6,86 Гц). При подаче питания таймер будет работать в течение заданного периода времени, пока выходная мощность не станет высокой. Нажатие кнопки «Пуск» установит низкий уровень мощности, и отсчет времени начнется снова. Все выходы счетчика устанавливаются на низкий уровень при включении колпачком сброса (C3) и / или при нажатии кнопки «Пуск». 555 работает как нестабильный и продолжает пульсировать до тех пор, пока выбранный выход из U2 не станет высоким. Затем D1 устанавливает напряжение на C1 до 0.7V ниже Vcc и прекращает колебания. Следовательно, при нажатии кнопки «Пуск» на выходе устанавливается низкий уровень , и возвращается высокий уровень по истечении периода тайм-аута.

Дополнительная схема необходима, если вы не хотите, чтобы таймер срабатывал после включения питания, или если вы хотите, чтобы кнопка «Пуск» делала выходной сигнал высоким, падая до нуля по истечении тайм-аута. Я оставляю это в качестве упражнения для читателя. Вышеупомянутое — это просто пример — он не предназначен для схемы для какого-либо конкретного приложения.


3 — Разные приложения

Таймеры 555 можно использовать во многих случаях, помимо основных строительных блоков, показанных выше. Это статья, а не полная книга, поэтому будут рассмотрены лишь некоторые возможности. Они были выбраны на основе вещей, которые я считаю интересными или полезными, и если у вас есть любимый, который не включен, я боюсь, что это просто сложно.

Не ожидайте найти среди всего этого сирены, генераторы шума общего назначения или псевдослучайные «игры».Если вы хотите построить какую-либо из 555 популярных игрушек, в сети есть много чего.


3.1 — ШИМ-диммер / регулятор скорости

Это простой диммер с ШИМ (широтно-импульсной модуляцией) или регулятор скорости двигателя. Он основан на показанном ранее нестабильном «минимальном компоненте», но использует потенциометр и пару диодов для изменения соотношения между метками и пространством. Когда потенциометр находится в положении «Max», выходной сигнал преимущественно высокий, с узкими импульсами до нуля. При установке «Мин» выход в основном равен нулю с узкими положительными импульсами.


Рисунок 8 — ШИМ-диммер / регулятор скорости двигателя

Принцип его работы ничем не отличается от основного нестабильного, за исключением того, что величина сопротивления для заряда и разряда конденсатора изменяется с помощью потенциометра. Диоды (1N4148 или аналогичные) «управляют» выходным током, так что потенциометр может иметь различное сопротивление в зависимости от полярности сигнала. Например, когда горшок находится на «Максе», заряд C1 занимает гораздо больше времени, чем его разряд, поэтому выход должен проводить большую часть своего времени на Vcc.Обратное верно, когда банк установлен на «Мин». Максимальный и минимальный рабочий цикл можно изменить, изменив R1. При 1k, как показано, максимум составляет 11: 1 (или 1:11), но уменьшение или увеличение R1 может изменить это соотношение на любое желаемое (в пределах разумного). Я предлагаю 100 Ом — это практический минимум.

Чтобы быть полезным, выход 555 обычно будет управлять MOSFET, как показано, или, возможно, даже IGBT , в зависимости от тока нагрузки. Если он используется в качестве регулятора скорости двигателя, вы должны включить диод параллельно с двигателем, иначе он не будет работать должным образом.Диод должен быть «быстрым» или «сверхбыстрым» и рассчитан на тот же ток, что и двигатель. Диод не нужен, если схема используется в качестве диммера, но в любом случае рекомендуется использовать UF4004 или аналогичный быстрый диод. Электропитание двигателя может быть любым (только постоянным током), но 555 должен иметь источник питания 12-15 В, отдельно от основного, если это необходимо. См. Проект 126 для ознакомления с версией проекта регулятора яркости / скорости. Он не использует 555, но использует те же принципы ШИМ.


3.2 — Блок питания / усилитель ШИМ

A 555 может работать как усилитель с ШИМ (класс D). Это не очень хорошо, и выходная мощность очень ограничена, но вы можете получить до 100 мВт или около того при нагрузке 8 Ом. Это чисто образовательное упражнение больше, чем что-либо еще, потому что точность воспроизведения невысока из-за ограниченной производительности 555. Максимальная частота составляет 500 кГц или около того, но IC почти наверняка будет перегреваться при работе с максимальной частотой и выходным током.Я не буду утруждать себя демонстрацией практической схемы усилителя класса D с усилителем 555, потому что его характеристики очень плохие. Достаточно сказать, что если вы вводите синусоидальный или музыкальный сигнал на вывод «Ctrl», вы можете модулировать ширину импульса. Тот же трюк используется для многих сирен на базе 555, которые вы можете найти в других местах.

Управляющий вход часто упускается из виду, но его можно использовать в любое время, когда вам нужно создать генератор, управляемый напряжением. Помимо игрушечных сирен и других «несерьезных» приложений, эта способность может быть полезна для многих схем.То, что 555 — мусорный усилитель класса D, не означает, что следует игнорировать общие принципы. Одно приложение, довольно популярное в сети, использует 555 в качестве контроллера для простого регулируемого источника высокого напряжения. Рисунок ниже представляет собой измененную версию одного, который распространен по всей сети (настолько, что невозможно указать авторство, потому что я понятия не имею, кто опубликовал его первым).


Рисунок 9 — Преобразователь постоянного тока в постоянный

Показанная схема в основном концептуальна.Он будет работать, но не оптимизирован. Обратная связь, применяемая к управляющему входу, зависит от напряжений стабилитрона, а напряжение эмиттер-база транзистора имеет небольшое влияние. Существуют микросхемы, специально разработанные для измерения напряжения, которые используют делитель напряжения для установки выходного напряжения, и это позволяет легко изменить напряжение до точного значения, если это необходимо. Струна стабилитрона высокого напряжения обеспечит удивительно хорошую стабильность напряжения. Схема показана здесь просто для демонстрации использования управляющего входа для изменения работы 555.

Он сможет выдавать до 50 мА без особой нагрузки, но, как и в любом повышающем переключаемом преобразователе, пиковый входной ток может быть довольно высоким. При показанных значениях и выходе 20 мА пиковый ток будет около 2 А. Естественно, если выходной ток меньше 20 мА, входной ток уменьшается пропорционально. Пусковой ток будет намного выше рабочего тока. L1 (100 мкГн) должен иметь сопротивление не более 1/2 Ом. Выход 100 В при 20 мА составляет 2 Вт, поэтому разумно ожидать, что средняя входная мощность будет несколько больше.Общие потери почти наверняка будут близки к 1 Вт, поэтому средний входной ток будет около 250 мА при 12 В.

Существуют специализированные контроллеры SMPS, которые могут быть не дороже таймера 555, но это по-прежнему полезное приложение и означает, что вам не нужно искать непонятную часть. Его величайшим преимуществом является то, что он часто может быть построен из деталей, которые у вас уже есть в вашем мусорном ящике, с дополнительным преимуществом, заключающимся в том, что он не полагается на детали SMD и может быть построен на Veroboard.


3.3 — Инвертирующий буфер

Это полезная схема, и ее можно использовать для управления простыми преобразователями (небольшие динамики, лампы и т. Д.). Максимальный ток, который 555 может передавать или потреблять, составляет около 200 мА, поэтому нагрузки, потребляющие больше, чем это, вызовут перегрев ИС и выход из строя. Поскольку опорные компоненты вообще не требуются, это может быть очень экономично для места на печатной плате. Утверждается, что использование дискретной схемы с парой транзисторов дешевле, но это сомнительно, учитывая стоимость 555-го.Микросхема также занимает очень мало места на печатной плате, что часто намного дороже, чем несколько дешевых деталей, особенно если место в ней дорого.


Рисунок 10 — Инвертирующий буфер

Входной сигнал подвержен гистерезису. Это означает, что входное напряжение должно превысить 2/3 В постоянного тока, прежде чем выход переключится на низкий уровень, а затем входное напряжение должно упасть ниже 1/3 В постоянного тока, прежде чем выход переключится на высокий уровень. Это обеспечивает очень хорошую помехозащищенность и очень высокое входное сопротивление.Схема представляет собой инвертирующий триггер Шмитта.


3.4 — Неинвертирующий буфер

Это довольно необычное приложение. При использовании вывода сброса в качестве входа любое напряжение выше ~ 0,7 В определяется как высокое, а выход переключается на высокий уровень. Входное напряжение должно упасть ниже 0,7 В, чтобы выход снова переключился на низкий уровень. Здесь нет гистерезиса, и схема управления должна иметь возможность потреблять ток вывода сброса 555 примерно на 1 мА.


Рисунок 11 — Неинвертирующий буфер

Вы должны быть осторожны, чтобы убедиться, что входной сигнал на выводе 4 никогда не может превышать Vcc или становиться отрицательным, иначе ИС будет повреждена.Если возможны отклонения от допустимого диапазона, то входное напряжение должно быть ограничено диодом, стабилитроном или обоими способами, чтобы удерживать напряжение в допустимых пределах.


3.5 — Детектор отсутствующих импульсов

Таймеры 555 часто используются в качестве детектора пропущенных импульсов. Если вы ожидаете непрерывной последовательности импульсов от цепи, если один из них «пропал» по какой-либо причине, которая может указывать на проблему. Возможность определить, что импульс отсутствует или задерживается, может быть важной функцией безопасности, вызывая тревогу или отключая цепь до тех пор, пока неисправность не будет устранена.


Рисунок 12 — Детектор пропущенного импульса

Входные импульсы используются для включения Q1 и, следовательно, разряда C1. Пока импульсы продолжают поступать упорядоченно, выходной сигнал 555 остается высоким. Постоянная времени R1 и C1 должна быть выбрана таким образом, чтобы таймер никогда не мог истечь, пока входные импульсы продолжают поступать должным образом. Если время слишком мало, C1 будет заряжаться до 2/3 В постоянного тока до поступления следующего входа. Если он слишком длинный, ни один пропущенный импульс не будет обнаружен, и потребуется пропустить несколько импульсов подряд (или последовательность импульсов может полностью остановиться), прежде чем сработает таймер.Вам также может потребоваться принять меры предосторожности, чтобы гарантировать, что таймер всегда будет работать, , даже если входящая последовательность импульсов застревает на высоком уровне напряжения. Это потребует добавления дифференциатора, подобного показанному на рисунке 6.

Одно из применений детектора пропуска импульсов — обнаружение того, что вентилятор не работает должным образом. Некоторые вентиляторы имеют выходной сигнал, который пульсирует, когда вентилятор работает, или эту функцию можно добавить с помощью двух небольших магнитов и детектора эффекта Холла (необходимы два магнита, чтобы не нарушить баланс вентилятора).Детектор отсутствия импульсов может вызвать предупреждение, если вентилятор выходит из строя или работает слишком медленно.

Цепь также может использоваться как цепь «потери переменного тока», и она будет обнаруживать один пропущенный цикл или полупериод, в зависимости от используемого механизма обнаружения. Это позволяет быстро определять, что переменный ток был отключен, либо путем выключения, либо из-за сбоя в электросети, и может использоваться для управления реле подавления (например). В большинстве случаев нет необходимости быть настолько быстрым, но могут быть критические производственные процессы, в которых быстрое обнаружение всего лишь одного пропущенного полупериода может иметь решающее значение для предотвращения неисправности.Эта схема также будет хорошо работать для обеспечения очень быстрого переключения на ИБП (источник бесперебойного питания) в случаях, когда потеря переменного тока может вызвать серьезные проблемы.


3,6 — Приводные реле

Хотя 555 может управлять реле напрямую, он должен быть защищен от индуктивности катушки реле. Обратная ЭДС должна (теоретически) поглощаться, потому что на выходе есть транзисторы на стороне высокого и низкого уровня, но вместо этого это может привести к «блокировке» таймера и прекращению его работы до тех пор, пока не будет отключено питание.Это может произойти, когда один диод используется параллельно катушке реле. Используйте параллельный диод, но также управляйте катушкой реле через другой диод, который предотвращает любую неисправность. Выход никогда не должен подвергаться отрицательному напряжению — даже 0,6 В может вызвать проблемы.


Рисунок 13 — Драйвер реле

D2 выполняет обычную задачу по замыканию обратной ЭДС реле, а D1 полностью изолирует цепь реле от 555. Использование такой схемы предотвратит любую возможность неисправности из-за обратной ЭДС катушки реле, и такое же расположение следует использовать, когда управление любой индуктивной нагрузкой.


3,7 — 555 Цепь отключения звука реле

Таймер 555 может создать удобную схему отключения звука. Существует бесчисленное множество различных способов приглушения звука — см. Схемы приглушения звука для различных техник. Из всех них эстафета по-прежнему остается одной из лучших. Поскольку контактное сопротивление очень низкое, даже цепи с низким импедансом можно эффективно замкнуть на землю без слышимого прорыва. Все схемы ESP включают в себя резистор 100 Ом на выходе для предотвращения колебаний, и ни один общий операционный усилитель не может быть поврежден коротким замыканием на его выходе — с помощью резистора операционный усилитель в любом случае защищен от прямого короткого замыкания.


Рисунок 14 — Цепь отключения звука реле

Показанная схема может питаться от основного источника питания предусилителя или даже от мостового выпрямителя через источник питания нагревателя 6,3 В переменного тока с клапанным (ламповым) оборудованием. Если вы это сделаете, байпас C должен иметь температуру около 220 мкФ, и никакой другой колпачок фильтра не требуется. Вам нужно будет добавить резистор последовательно с катушкой, чтобы ограничить напряжение до 5 В. Светодиод будет гореть в течение периода отключения звука. Как обсуждалось выше, для релейного привода требуются два диода.Наиболее подходящие реле потребляют ток от 30 до 50 мА, что вполне соответствует возможностям реле 555.

Модель 555 получает сигнал триггера благодаря ограничению на входе триггера (C2), а R2 является подтягивающим резистором. C2 удерживает низкий уровень на входе триггера ровно достаточно долго, чтобы запустить процесс отсчета времени, поэтому на выходе высокий уровень, реле обесточено, а C1 начинает зарядку через R1. Когда напряжение на пороговом входе достигает 2/3 напряжения питания, выход становится низким, срабатывает реле и устраняет короткое замыкание на линиях аудиосигнала.

Реле остается под напряжением до тех пор, пока оборудование остается под напряжением. В идеале, питание таймера должно быть отключено как можно быстрее при отключении питания, чтобы не было «глупых» шумов, возникающих при выходе из строя источников питания. Некоторые операционные усилители могут издавать стук, писк или «свист», когда их напряжение питания падает ниже минимума, необходимого для нормальной работы.


Выводы

Таймер 555 очень универсален, но на самом деле он не подходит для очень длительных задержек, если вы не готовы платить серьезные деньги за большой временный конденсатор с малой утечкой.Если вам нужны большие задержки, проще использовать осциллятор 555, за которым следует двоичный счетчик. В большинстве приложений задержка может составлять всего несколько минут (рекомендованный максимум — 20–30 минут), и этого легко добиться. Количество возможных схем, использующих 555 таймеров, просто поразительно, и существует бесчисленное множество схем, примечаний к применению (от производителей ИС, любителей и других) и веб-страниц, посвященных этой ИС и ее производным.

Таймеры

555 используются во многих коммерческих продуктах, где требуется простая временная задержка.Я видел, как они используются в диммерах задней кромки и универсальных диммерах для ламп, и использовал их в нескольких продуктах, разработанных мной за эти годы. Популярность 555 не уменьшилась, несмотря на его возраст, и можно с уверенностью сказать, что количество приложений неуклонно растет, даже с использованием цифровых технологий, которые якобы делают аналоговый «устаревшим».

Вовсе нет ничего необычного в том, что таймер 555 используется в импульсном источнике питания (SMPS), а простые маломощные источники питания могут быть изготовлены с использованием микросхемы 555 IC, трансформатора и многого другого.Как и в случае любой ИС, существуют ограничения, и важно убедиться, что ИС должным образом обойдена, потому что они могут потреблять до 200 мА, когда выход совершает переход между высоким и низким или наоборот.

КМОП-версии

модели 555 (например, 7555) обладают некоторыми полезными преимуществами по сравнению с биполярным типом. В частности, они имеют гораздо более низкий ток питания и исключительно высокое входное сопротивление для компараторов. Чтобы получить максимальную отдачу от этих таймеров, используйте синхронизирующие резисторы высокого номинала и конденсаторы низкого номинала.Использование резисторов на 1 МОм и более нормально для длительных задержек. Будьте осторожны с синхронизирующими конденсаторами менее 1 нФ, потому что межконтурная емкость печатной платы может вызвать значительные временные ошибки. Типы CMOS не могут быть источником или потребителем высокого выходного тока, а выходной ток может быть асимметричным. Например, TLC555 может потреблять 100 мА, но может потреблять только 10 мА, поэтому это необходимо учитывать при разработке.

7555 обеспечивает большую гибкость (в некоторых отношениях), чем биполярные типы, но не всегда подходят.Они потребляют очень небольшой ток покоя, имеют чрезвычайно высокий входной импеданс и могут работать при напряжении питания всего 2 В. Однако, как отмечалось выше, они не могут обеспечить такой же выходной ток, как версии с биполярными транзисторами.

Необходимо соблюдать некоторые меры предосторожности. Входное напряжение никогда не должно превышать Vcc или падать ниже нуля (земля), иначе ИС может быть повреждена. Отсутствие адекватного обхода вблизи ИС может вызвать паразитные колебания в выходном каскаде (биполярного типа), которые могут быть интерпретированы логическими схемами как двойной (или множественный) импульс.

Выходной каскад обычно называют конструкцией «тотемного полюса», и оба транзистора могут быть включены одновременно (хотя и очень кратковременно) при изменении состояния с высокого на низкий или с низкого на высокий. Тип схемы отличается от выходного каскада затворов TTL, но эффект аналогичен. Использование байпасного конденсатора необходимо, чтобы он мог обеспечить кратковременный высокий ток, необходимый для переключения выхода.

При использовании в качестве генератора или когда вывод сброса используется для остановки и запуска колебаний, первый цикл занимает больше времени, чем остальные, потому что колпачок должен заряжаться от нуля вольт.Обычно напряжение на конденсаторе варьируется от 1/3 В до 2/3 В постоянного тока. Когда шапка должна заряжаться с нуля, это занимает немного больше времени. Это редко является проблемой, но вы должны знать об этом для некоторых критических процессов.


Список литературы

Существует бесчисленное количество веб-сайтов, которые исследуют таймер 555, и если вам нужна дополнительная информация или вы хотите использовать калькулятор (онлайн или загруженный), чтобы вычислить значения для вас, просто выполните поиск в Интернете. Основные ссылки, которые я использовал, показаны ниже.

  1. Поваренная книга таймера IC — Уолтер Юнг (Ховард Сэмс, 1977)
  2. NE555 Универсальные одинарные биполярные таймеры (техническое описание ST Microelectronics)
  3. TLC555 Таймер LinCMOS® (техническое описание Texas Instruments)
  4. Примечания по применению NE555 (AN170, Philips Semiconductors, декабрь 1988 г.)
  5. Signetics Analog Руководство по применению — 1979, Signetics Corporation (загрузка 31,8 МБ)

Поиск по запросу «555 схем приложения таймера» вернет более 480 000 результатов, так что есть из чего выбрать.Как всегда, не вся информация полезна или надежна, поэтому вы должны быть осторожны, прежде чем выбирать конкретную схему, поскольку многие из них не будут хорошо продуманы. Некоторая информация действительно очень хороша, но вам придется использовать свои собственные знания, чтобы отделить хорошее от остального.



Основной индекс
Указатель статей
Уведомление об авторских правах. Эта статья, включая, помимо прочего, весь текст и диаграммы, является интеллектуальной собственностью Рода Эллиотта и защищена авторским правом © 2015.Воспроизведение или переиздание любыми средствами, электронными, механическими или электромеханическими, строго запрещено международными законами об авторском праве. Автор (Род Эллиотт) предоставляет читателю право использовать эту информацию только для личного использования, а также разрешает сделать одну (1) копию для справки. Коммерческое использование запрещено без письменного разрешения Рода Эллиотта.

Страница создана и авторские права © Май 2015 г., все права защищены.


Использование микросхемы таймера 555 в особых или необычных схемах


Таймер 555 — это популярная биполярная ИС, которая специально разработана для генерации точных и стабильных периодов времени, определенных C-R, для использования в различных генераторах моностабильных «одноразовых» импульсов и нестабильных генераторах прямоугольных импульсов. 555 также очень универсален и может использоваться в различных специальных или необычных приложениях. Некоторые из них включают триггеры Шмитта, генераторы азбуки Морзе, электронные дверные зуммеры, тестеры непрерывности, инжекторы сигналов, метрономы, светодиодные мигалки и будильники, а также таймеры с длительным периодом действия.

ТРИГГЕРЫ SCHMITT

Модель 555 может использоваться в качестве триггера Шмитта путем замыкания контактов 2 (триггер) и 6 (порог) вместе и подачи входных сигналов непосредственно в эти точки, как показано на функциональной схеме и схеме на рис. 1 .

РИСУНОК 1. Функциональная блок-схема (внутри двойных линий) микросхемы таймера 555 с внешними соединениями для использования в качестве простого, но полезного триггера Шмитта.

Действие ИС таково, что (как показано на рис. 1 входных и выходных сигналов ), когда входное напряжение поднимается выше 2/3 В куб.см , выход ИС переключается на низкий уровень и остается на этом уровне до тех пор, пока входное напряжение не упадет ниже 1 / 3 V cc , в этот момент выход переключается на высокий уровень и остается там до тех пор, пока входной сигнал снова не превысит 2/3 V cc .Разница между этими двумя уровнями запуска называется значением гистерезиса и в данном случае равна 1/3 В см3 ; такое большое значение гистерезиса делает схему полезной в приложениях для преобразования сигналов с подавлением шума / пульсации.

РИСУНОК 2. Синусо-квадратный преобразователь Шмитта 555 с дополнительным подавлением радиопомех через C3.

На рис. 2 показана базовая схема Шмитта, модифицированная для использования в качестве высокопроизводительного преобразователя синус / квадрат, который можно использовать при входных частотах примерно до 150 кГц.Делитель потенциала R1-R2 смещает контакты 2 и 6 до значения покоя 1/2 V cc (т.е. посередине между верхним и нижним значениями запуска), и синусоидальный вход накладывается на эту точку через C1; Прямоугольные выходы берутся с контакта 3. R3 изолирует входной сигнал от эффектов переключения 555-го. На схеме показано, как дополнительное подавление RFI может быть получено через C3.

РИСУНОК 3. Релейный переключатель с минимальным люфтом в темноте.

На рис. 3 показан 555, используемый в качестве релейного переключателя с минимальным люфтом (нулевой гистерезис), активируемого темным светом, со светозависимым делителем напряжения RV1-LDR, подключенным к его входной клемме. Значения RV1 и LDR примерно равны на среднем уровне переключаемой освещенности. Эта схема действует как быстрый компаратор, а не как настоящий триггер Шмитта, так как вывод 6 связан с высоким уровнем через R1, а светочувствительный делитель потенциала RV1-LDR применяется только к выводу 2. Обратите внимание, что эта схема требует хорошей развязки питания, которая обеспечивается через C2.

РИСУНОК 4. Альтернативные входные цепи на Рисунке 3, чтобы активировать (a) светом , (b) при пониженной температуре и (c) при перегреве.

Вышеупомянутая схема может работать как световой (а не темный) переключатель, переставляя положения RV1 и LDR, как показано на Рисунке 4 (a), или может действовать как терморегулируемый переключатель, используя термистор NTC вместо LDR, как показано на рисунках , рис. 4 (b), и , 4 (c), ; во всех случаях LDR или термистор должны иметь сопротивление в диапазоне от 470R до 10K при требуемом уровне включения.

НАСТОЛЬНЫЕ ГАДЖЕТЫ

Нестабильный мультивибратор 555 очень универсален и может использоваться во многих приложениях, представляющих интерес как для любителей, так и для профессиональных пользователей. На рисунках 5 11 показаны примеры типичных 555 нестабильных устройств.

РИСУНОК 5. Осциллятор с регулируемым тоном и громкостью.

На рис. 5 показан тренировочный генератор кода Морзе с частотой, изменяемой от 300 Гц до 3 кГц с помощью регулятора TONE RV1.Громкость телефона регулируется с помощью RV2, и телефоны могут иметь любое сопротивление от нескольких Ом и выше. Схема потребляет нулевой ток покоя, когда ключ Морзе открыт.

РИСУНОК 6. Электронный дверной зуммер.

На рисунке 6 показан простой электронный «дверной зуммер», который подает монотонный сигнал в небольшой динамик (от 25R до 80R), когда SW1 закрыт; C1 имеет низкое сопротивление питающей сети и обеспечивает адекватную выходную мощность привода.

РИСУНОК 7. Тестер целостности цепи.

На рисунке 7 показан прибор для проверки целостности цепи, который выдает звуковой сигнал только в том случае, если сопротивление между измерительными щупами меньше нескольких Ом. Нестабильный срабатывает только в том случае, если контакт 4 смещен выше 700 мВ; обычно этот вывод заземлен через R2, поэтому нестабильность отключена; для работы в нестабильном режиме два щупа должны быть закорочены вместе, подключив R2 к выходу генератора опорного напряжения R3-ZD1 через RV2. При использовании RV2 подстраивается таким образом, чтобы при этом условии практически не могла работать нестабильная работа, и прекращается, если межзондовое сопротивление превышает несколько Ом.Обратите внимание, что цепь потребляет несколько мА всякий раз, когда SW1 замкнут, даже если датчики разомкнуты.

РИСУНОК 8. Форсунка сигнала.

На рис. 8 показан инжектор сигналов, который полезен для тестирования схем AF и RF. Нестабильный работает на базовой частоте в несколько сотен Гц, когда PB1 замкнут; квадратный выходной сигнал, однако, очень богат гармониками, и их можно обнаружить на частотах до 10 МГц на радиоприемнике.Уровень подачи сигнала регулируется через RV1.

РИСУНОК 9. Схема метронома.

На рисунке 9 показан метроном, в котором частота «тиков» изменяется от 30 до 120 ударов в минуту с помощью RV1, а громкость — с помощью RV2. Эта схема представляет собой модифицированную версию стандартной нестабильной схемы, в которой ее основная синхронизирующая сеть управляется выводом 3 микросхемы. Когда выход переключается на высокий уровень, C1 быстро заряжается через D1-R1, генерируя короткий (несколько мс) «тиковый» импульс.Когда выход снова переключается на низкий уровень, C1 разряжается через RV1-R2, создавая период «выключения» до 2 с (= 30 ударов в минуту). Выходные импульсы подаются на небольшой динамик через регулятор громкости RV2 и буфер Q1.

СВЕТОДИОДНЫЕ ПРОБЛЕМЫ и СИГНАЛИЗАЦИЯ

На рисунках 10 от до 12 показаны нестабильные устройства 555, используемые в светодиодных мигалках, в которых светодиоды имеют одинаковое время включения и выключения. С показанными значениями компонентов каждая схема работает примерно с одной вспышкой в ​​секунду.

РИСУНОК 10. Светодиодный указатель поворота с «несимметричным» выходом.

Схема Рис. 10 имеет «несимметричный» выход. Между выходом ИС и землей можно поместить один светодиод или цепочку последовательно соединенных светодиодов, при этом все светодиоды включаются или выключаются вместе; R3 устанавливает ток включения светодиодов. Большинство светодиодов при включении теряют около 2 В, поэтому несколько светодиодов могут быть подключены последовательно в цепь, которая питается от источника 15 В.

РИСУНОК 11. Светодиодный мигающий сигнал с «двусторонним» выходом.

Рис. 11 Модель аналогична предыдущей, но имеет «двустороннее» выходное соединение, в котором все «верхние» светодиоды горят, а «нижние» выключены, и наоборот. R3 устанавливает токи включения нижних светодиодов, а R4 — верхних.

РИСУНОК 12. Автоматический (темный) мигающий светодиод.

Рисунок 12 показывает базовую схему мигания Рисунок 10 , модифицированную для обеспечения автоматической работы в темноте.R4-R5-LDR-RV1 используются в качестве светочувствительного моста Уитстона, который используется для активации нестабильного усилителя 555 через балансный детектор Q1 и контакт 4 RESET на ИС. В ярких условиях LDR имеет низкое сопротивление, поэтому переход база-эмиттер Q1 имеет обратное смещение, и на выводе 4 появляется менее 700 мВ, поэтому нестабильность отключена. Но в темноте сопротивление LDR велико, и Q1 смещен, генерируя более 700 мВ на выводе 4 и включая нестабильный. LDR должен давать сопротивление в диапазоне от 470R до 10K на уровне темнового включения, а RV1 настраивается так, чтобы нестабильный резистор просто срабатывал при этом условии.

Вышеупомянутый метод обеспечивает прецизионное стробирование и может использоваться для автоматической активации множества других 555 нестабильных цепей, для создания различных звуковых сигналов тревоги и импульсных реле и т. Д. Путем изменения положения LDR и RV1 или замены LDR термистором NTC, эти цепи можно активировать автоматически, когда уровни освещенности или температуры выходят за установленные пределы. На рисунках 13, , , 15, показаны практические примеры таких схем.

РИСУНОК 13. Релейный импульсный генератор с активацией тепла / света.

Схема Рис. 13 обеспечивает автоматическую активацию тепловым или световым сигналом релейного генератора импульсов, который при активации включается и выключается с частотой один раз в секунду. Реле может быть любого типа на 12 В с сопротивлением катушки более 60 Ом, а его контакты могут использоваться для активации внешних устройств с электрическим питанием, таких как свет, сирены, сигнальные рожки и т. Д.

РИСУНОК 14. Монотонный (800 Гц) сигнал тревоги средней мощности, активируемый теплом / светом.

Рисунок 14 дает автоматическую активацию тепловым или световым сигналом генератора монотонного сигнала тревоги, который при активации генерирует сигнал тревоги 800 Гц при мощности в несколько ватт в динамике на восемь Ом. Обратите внимание, что высокий выходной ток схемы может вызвать модуляцию линии питания, поэтому D1 и C3 используются для защиты схемы от эффектов пульсации, а D2 и D3 ограничивают выбросы индуктивного переключения динамика и, таким образом, защищают выходной транзистор Q2 от повреждения.

РИСУНОК 15. Альтернативные схемы датчиков для использования с рисунками 13 или 14 для активации через (a) темный, (b) светлый, (c) при пониженной температуре или (d) при перегреве.

Рисунок 15 показывает альтернативную схему датчика, которая может использоваться для автоматической активации цепей Рисунок 13 или 14 . Для светочувствительной работы датчик должен быть LDR; для термочувствительной активации это должен быть термистор NTC; в любом случае чувствительный элемент должен иметь сопротивление в диапазоне от 470R до 10K при желаемом уровне срабатывания.

ДОЛГОПЕРИОДНЫЕ ТАЙМЕРЫ

Микросхема 555 IC может быть использована для создания превосходного таймера с ручным запуском реле при подключении в моностабильном режиме или в режиме генератора импульсов, но она не может дать точные временные интервалы, превышающие несколько минут, поскольку для этого потребуется использовать высокий емкостный электролитический синхронизирующий конденсатор, и они имеют очень широкие пределы допуска (обычно от -50% до + 100%) и большие и непредсказуемые токи утечки.

РИСУНОК 16. Метод получения 60-минутного периода синхронизации от 555 IC.

Превосходный способ получения очень длинных, но точных периодов времени показан (в виде блок-схемы) на рис. 16 , на котором представлена ​​конструкция 60-минутного таймера с релейным управлением. Здесь 555 подключен как нестабильный с частотой 2,28 Гц, который использует стабильный полиэфирный конденсатор синхронизации, и его выход подается на драйвер реле через 14-ступенчатый двоичный делитель, что дает общий коэффициент деления 16 384. Действие делителя таково, что (если его выходной регистр установлен в ноль в начале входного счета) его выход переключается на высокий уровень по прибытии 8192-го нестабильного импульса и снова становится на низкий уровень по прибытии 16,382-го импульса, таким образом завершая цикл счета.Таким образом, схема на Рисунке 16 работает следующим образом:

Временная последовательность запускается нажатием кнопочного переключателя PB1, таким образом подключая питание схемы, активируя нестабильное состояние и (через C2-R3) устанавливая счетчик на «нулевой счет», переводя его выход в низкий уровень и включая реле; когда реле включается, его контакты RLA / 1 замыкаются и обходят PB1, таким образом поддерживая подключение к источнику питания после отпускания PB1. Это состояние сохраняется до прихода 8192-го нестабильного импульса, после чего на выходе счетчика устанавливается высокий уровень и реле выключается, размыкая контакты RLA / 1 и прерывая питание схемы.На этом рабочий цикл завершен. Обратите внимание, что нестабильный режим работает с периодом, который составляет только 1/8192-й от последнего «временного» периода, то есть в данном случае 0,44 секунды, и что этот период можно легко получить без использования электролитического синхронизирующего конденсатора.

РИСУНОК 17. Двухдиапазонный (1-10 минут и 10-100 минут) таймер с релейным выходом.

На рис. 17 показан описанный выше метод, используемый для создания практического таймера с релейным выходом, который работает от одной минуты до 100 минут в двух перекрывающихся десятичных диапазонах.Здесь двухдиапазонный нестабильный модуль 555 с переменной частотой подает тактовые импульсы на 14-ступенчатый делитель 4020B, который, в свою очередь, активирует реле через транзистор Q1. В схеме используется источник питания 12 В, а реле может быть любого типа на 12 В с двумя или более наборами переключающих контактов и сопротивлением катушки 120 Ом или больше.

РИСУНОК 18. Таймер с релейным выходом со сверхдлительным периодом (от 100 минут до 20 часов).

Рисунок 18 показывает, как доступную временную задержку схемы можно дополнительно увеличить, подключив декадный делитель 4017B между выходом 555 и входом 4020B, чтобы получить общий коэффициент деления 81920, тем самым создавая задержки в диапазон от 100 минут до 20 часов, доступный для этого таймера с одним диапазоном.Обе ИС делителя автоматически сбрасываются (через C3-R3) в момент включения (замыкание PB1).

РИСУНОК 19. Таймер с широким диапазоном, который охватывает от одной минуты до 20 часов в трех декадных диапазонах.

Наконец, На рисунке 19 показана приведенная выше схема, модифицированная для создания универсального таймера с широким диапазоном, который охватывает от одной минуты до 20 часов в трех диапазонах, связанных с декадами; Каскад декадного делителя 4017B используется только в диапазоне «3». Переключение диапазонов осуществляется с помощью двухполюсного трехпозиционного переключателя SW1. NV

Как управлять реле таймера NE555 12 В / 5 В от источника постоянного тока 12 В и конденсатора

Попробуйте это: —

смоделировать эту схему — Схема создана с помощью CircuitLab

При включении зажигания Q1 включается и подключает отрицательное питание к модулю таймера. Q1 сначала включается через R2, C2 и R3, затем удерживается R4 после того, как C2 зарядился. Стабилитрон D2 ограничивает напряжение на C2 до 6,8 В, поэтому любые колебания напряжения батареи (вызванные, например,запуск двигателя), которые не опускают напряжение аккумуляторной батареи ниже ~ 7В, не должны иметь никакого эффекта.

При выключении зажигания входное напряжение быстро падает. Как только оно упадет ниже ~ 7 В, стабилитрон перестает сжиматься, и напряжение на C2 быстро упадет до нуля. Поскольку на C2 подается примерно 6,2 В, на другом конце подается примерно -6,2 В, что отключает Q1 и модуль таймера.

Затем

C2 медленно разряжается через R3 и R4, пока напряжение на базе Q1 не поднимется до 0,6 В, когда он снова включится.При повторном подключении питания модуль времени перезапускается и включает реле до завершения цикла отсчета времени или до разрядки C1, в зависимости от того, что наступит раньше.

Ноты:

  1. Я заменил ваш транзистор на диод, чтобы гарантировать, что C1 не сможет разряжаться обратно на вход питания. Поскольку Q1 выключается, как только зажигание выключается, модуль таймера не потребляет энергию, поэтому C1 хорошо держит свой заряд (по крайней мере, до тех пор, пока модуль таймера не будет повторно включен через 2 секунды. После этого…).

  2. Помимо того, что схема нечувствительна к колебаниям напряжения батареи, D2 также предотвращает падение базы Q1 ниже -7В. Это важно, потому что переход база-эмиттер транзистора выходит из строя при подаче напряжения более ~ -7,5 В, что нарушит синхронизацию, а также может повредить транзистор.

  3. R3 снижает чувствительность Q1 к небольшим выбросам отрицательного напряжения, которые могут пройти через D2.

  4. Время задержки выключения можно отрегулировать, изменив значение C2.

Эта схема хорошо работает при моделировании, но будет ли она надежно работать в жесткой электрической среде автомобиля — другой вопрос. Более сложная схема должна иметь защиту от всплесков и фильтрацию, чтобы гарантировать правильную синхронизацию даже при кратковременном падении напряжения питания.

Реле

— Будет ли моя схема таймера 555 работать так, как я хочу?

По сути, я пытаюсь внедрить систему безопасности для другого своего проекта.Я пропускаю очень большой ток через довольно большой соленоид и хочу убедиться, что отказ в его схеме управления не приведет к горячему и опасному беспорядку.

Я решил использовать таймер 555 в его моностабильной конфигурации, после того, как некоторое время рыскал по Интернету, я нашел схему, которая будет выводить заданную длину импульса, независимо от длительности триггера. (То есть, если длина триггера больше, чем выход, выход не будет удерживаться на высоком уровне в течение всего триггера, а если длина триггера короче, чем выход, выход будет оставаться высоким в течение продолжительности установленного выхода. длина.)

Триггер представляет собой всего лишь кнопку, и желаемая длина выходного сигнала составляет около 1 секунды (это как раз больше времени, необходимого для того, чтобы соленоид полностью выполнил свою функцию). Выход идет на резистор 150R, а затем на базу транзистора Bc337 NPN, который переключает реле для подачи питания на схему соленоидов. Хотя показано одно реле, я планирую реализовать одно для питания всей цепи, а другое — для прямого переключения питания на соленоид. Реле 893-896х2ЧД00112В постоянного тока, автомобильные реле от Mouser.

Короче говоря, моя схема будет поддерживать свою выходную длину в течение всего времени входной длины (в разумных пределах кнопка не будет удерживаться в течение нескольких минут подряд).

Подробнее

Исходная схема активировала соленоид при нажатии кнопки и толкала металлический стержень в печь для плавления. После того, как возникла проблема, когда кнопка была оставлена ​​включенной, полностью расплавив упомянутый соленоид, я счел важным добавить цепь безопасности. Был добавлен датчик, чтобы гарантировать, что схема работает только тогда, когда стержень надежно закреплен на своем месте.Таймер 555 предназначен для активации соленоида ровно на время, достаточное для впрыска стержня, при этом обеспечивая его полное впрыскивание. Короткая длительность импульса, отправляемая от 555, также помешала бы неисправности датчика или цепи удерживать соленоид включенным, тем самым предотвращая повторное расплавление соленоида.

Идея схемы заключалась в том, чтобы просто отключить питание с помощью реле, чтобы при нажатии кнопки и срабатывании датчика срабатывал соленоид. Схема датчика очень проста, и, отключив питание, я мог без особого труда управлять всеми соленоидами одновременно, а также имел возможность добавить больше соленоидов в будущем.

Поскольку устройство будет находиться в довольно грязной и жаркой мастерской, основными причинами неисправности, вызывающими беспокойство, будут: заблокированный датчик, ложное срабатывание (случайное нажатие), перегрев / плавление компонентов, застревание стержней и т. д. Я предполагаю, что моя схема таймера 555 решит большинство проблем, поскольку соленоиды никогда не будут включены достаточно долго, чтобы вызвать повреждение, что позволяет нам чтобы исправить / разблокировать проблемы без риска катастрофического сбоя, позволяя продолжить рабочий процесс.

Примечание:

  • Только одно реле должно быть рассчитано на высокий ток, но у меня уже есть несколько
  • Цепь соленоидов раньше запускалась кнопкой, а теперь срабатывает датчиком, поэтому дополнительная схема не доставляет неудобств
  • Мне нужно повторно запустить таймер после окончания выходного импульса
  • Неправильные характеристики NPN и реле на схеме
  • В реле уже встроен диод

Вот что я выбрал:

Все предложения приветствуются, включая полный редизайн, если они будут значительным улучшением.(желательно без микроконтроллера)

555 ИС таймера | Electronics Club

555 Микросхема таймера | Клуб электроники

Символ | Поставка | Входы | Выход | 556

См. Также эти 555 страниц таймера: Astable | Моностабильный | Бистабильный | Буфер

Введение

8-контактный таймер 555 должен быть одной из самых полезных микросхем, когда-либо созданных, и он используется во многих проекты. С помощью всего лишь нескольких внешних компонентов его можно использовать для создания множества схем, а не все они связаны со временем!

Популярной версией является NE555, и она подходит в большинстве случаев, когда таймер 555 указан.Версии с низким энергопотреблением, такие как ICM7555, доступны с то же расположение контактов, но их максимальный выходной ток намного ниже и их следует использовать только по назначению (для увеличения срока службы батареи).

Модель 555 может использоваться в нескольких цепях:

  • Astable — создание прямоугольной волны для мигания светодиодов, издавать звуки, ездить счетчики и т. д.
  • Моностабильный — выдача одиночного импульса при срабатывании триггера, может использоваться для измерения времени.
  • Bistable — простая память с двумя состояниями.
  • Buffer — инвертирующий буфер (НЕ вентиль).
555 ИС таймера

Rapid Electronics: Таймер NE555 (стандарт)

Rapid Electronics: ICM7555 (маломощный)


Рекомендуемая книга: IC 555 Проекты
Он подробно объясняет работу 555 и использует
со многими принципиальными схемами проектов, отлично
для новичков и полезный справочник для всех.


555 символ цепи

Контакты обозначения схемы расположены в соответствии со схемой: например, контакт 8 вверху для питания + Vs вывод 3 справа.

Обычно используются только номера контактов, и на них не указывается их функция.



Питание 555 (контакты 1 и 8)

Таймер 555 можно использовать с напряжением питания (Vs) в диапазоне от 4,5 В до 15 В (18 В — абсолютный максимум).

Контакт 1 подключается к 0 В.
Контакт 8 подключается к положительному источнику питания + Vs.

Помните, что 555 создает значительный «сбой» в питании при изменении его выхода. государственный. Это редко является проблемой в простых схемах без других ИС, но в более сложных схемах может потребоваться сглаживающий конденсатор.

Расположение контактов 555


Триггерный вход 555 (контакт 2)

Если меньше 1 / 3 Vs («активный низкий уровень»), это делает выход высоким (+ Vs). Он имеет высокое входное сопротивление не менее 2 МОм. Он контролирует разряд синхронизирующего конденсатора в нестабильной цепи.

Пороговый вход 555 (контакт 6)

Когда больше 2 / 3 Vs («активный высокий»), это делает выход низким (0V) *.Он имеет высокое входное сопротивление около 10 МОм. Он контролирует заряд синхронизирующего конденсатора в нестабильных и моностабильных цепях.
* при условии, что вход триггера больше, чем 1 / 3 Вс, в противном случае вход триггера переопределит вход порога и будет удерживать выход на высоком уровне (+ Vs).

555 вход сброса (контакт 4)

Когда меньше 0,7 В (активный низкий уровень), выходной сигнал становится низким (0 В), подавляя другие входы. Когда он не требуется, его следует подключить к + Vs.Он имеет входное сопротивление около 10 кОм.

Управляющий вход 555 (контакт 5)

Может использоваться для регулировки порогового напряжения (используется пороговым входом, контакт 6), которое устанавливается внутри быть 2 / 3 Вс. Обычно эта функция не требуется, и вход часто остается неподключенным. Если электрический шум может быть проблемой, конденсатор емкостью 0,01 мкФ может быть подключен между управляющим входом и 0 В для обеспечения некоторой защиты.

555 нагнетание (вывод 7)

Когда на выходе 555 (контакт 3) низкий уровень, разрядный контакт внутренне подключен к 0 В.Его функция — разрядить конденсатор синхронизации в нестабильных и моностабильных цепях.


Выход 555 (контакт 3)

Выход стандартного 555 может потреблять и истощать ток. Это означает, что к выходу могут быть подключены два устройства, так что одно будет включено, когда выход низкий, и другой горит, когда выходной сигнал высокий, на схеме показаны два подключенных таким образом светодиода.

Максимальный выходной ток составляет 200 мА , это больше, чем у большинства микросхем, и этого достаточно для поставлять множество выходных преобразователей напрямую, включая светодиоды (с последовательным резистором), слаботочные лампы, пьезопреобразователи, громкоговорители (с последовательным конденсатором), катушки реле (с диодной защитой) и некоторые небольшие двигатели (с диодной защитой).Выходное напряжение не совсем достигает 0 В и + В, особенно при большом ток течет.

Для переключения больших токов можно подключить транзистор.

Максимальный выходной ток маломощных версий 555 (например, ICM7555) намного нижний: около 20 мА при напряжении питания 9 В.

Подключение 555 к громкоговорителю

А громкоговоритель (минимальное сопротивление 64) может быть подключен к выходу нестабильной цепи 555, но конденсатор (около 100 мкФ) должны быть подключены последовательно.Нестабильный выход эквивалентен установившемуся постоянному току около ½Vs в сочетании с прямоугольным сигналом переменного тока (аудио). Конденсатор блокирует постоянный ток, но позволяет переменному току проходить, как описано в разделе «Конденсаторная связь».

Пьезоэлектрические преобразователи могут быть подключены непосредственно к выходу и не требуют последовательного подключения конденсатора.

Подключение 555 к катушкам реле и другим индуктивным нагрузкам

Как и все микросхемы, 555 должен быть защищен от кратковременных скачков напряжения. возникает при отключении индуктивной нагрузки, такой как катушка реле.Стандарт должен быть подключен защитный диод «назад» через катушку реле, как показано на схеме.

Однако, 555 требует подключения дополнительного диода последовательно с катушкой, чтобы гарантировать, что небольшой «сбой» не может быть передан обратно в ИС. Без этого дополнительного диода моностабильные схемы могут повторно сработать, когда катушка выключен! Ток катушки проходит через дополнительный диод, поэтому он должен быть 1N4001 или аналогичный выпрямительный диод, способный пропускать достаточный ток, сигнальный диод, такой как 1N4148 обычно не подходит .



556 ИС с двойным таймером

Модель 556 — это двойная версия таймера 555, размещенная в 14-выводном корпусе. два таймера (A и B) используют одни и те же контакты источника питания. На схемах на этом веб-сайте показан 555-й, но все они могут быть адаптированы для использования половины 556.

Модель 556 менее популярна и может стоить более двух таймеров 555, поэтому вы можете предпочесть использовать два таймера 555.

Rapid Electronics: Двойной таймер NE556


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию.Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно никому не будет передано. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация. Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации.Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2021 г.

Схема двойного регулируемого таймера

с использованием таймера 555 IC

Таймер

IC 555 — одна из наиболее универсальных и наиболее часто используемых микросхем, поскольку она имеет гораздо большее применение, например, усилитель ШИМ, таймер задержки, схема переключения, селектор рабочего цикла, генератор тактовых импульсов и т. Д.Это также может быть использовано в различных приложениях, таких как точная синхронизация, последовательная синхронизация, генерация временной задержки и т. Д. Проект регулируемой схемы двойного таймера с использованием микросхемы таймера 555 также является одним из приложений микросхемы таймера 555. Используя этот проект, можно переключать два разных прибора один за другим для регулируемого времени (от 1 минуты до 10 минут).

Применение: Этот проект можно использовать с другой схемой переключения, такой как детектор звука, детектор света, чтобы переключать устройство на регулируемое время.Эту схему также можно использовать в качестве схемы таймера на кухне. Дом, сад и др.

Описание схемы Схема двойного регулируемого таймера с использованием таймера 555 IC

Принципиальная схема

двойного таймера с использованием микросхемы таймера 555 показана на рисунке 1, построенная с использованием таймера IC 555, резисторов, конденсаторов, диодов и реле для безупречной работы. Оба таймера IC настроены в моностабильном режиме низкого триггера. Поговорим о выводе микросхемы таймера.

Положительный источник питания подключен к VCC (контакт 8), контакту сброса (контакт 4) и GND (контакт 1).Контакт триггера (контакт 2) подключен к GND через переключатель SW1, так как он настроен на низкий уровень триггера. Выходной контакт (контакт 3) используется для управления реле. Вывод сброса (вывод 4) также подключен к положительному источнику питания. Контакт управляющего напряжения (контакт 5) подключен к земле через керамический конденсатор, как показано на принципиальной схеме. Пороговый вывод (вывод 6) и вывод разряда (вывод 7) сортируются вместе и подключаются к одному концу резистора R (резистор между Vcc и выводом 7).

Конденсатор подключен между отсортированным контактом (контакты 6 и 7) и контактом GND, как показано на принципиальной схеме.Диод на выходе подключен для защиты схемы от обратного напряжения. К выходу IC1 подключается реле переключения со светодиодом. Триггерный контакт (контакт 2) IC2 также подключен к выходу IC1 (контакт 3), а остальная часть схемы такая же, как и у первого таймера.

Работа регулируемой схемы двойного таймера с использованием таймера 555 IC

При нажатии переключателя SW1 контакт 2 (триггерный контакт) сортируется с землей и срабатывает. В результате на выходе из контакта 3 появляется высокий уровень, и реле запитывается на заданное время.Этот временной интервал регулируется с помощью переменного резистора VR1.

Математический расчет выдержки времени

Временная задержка = 1,1 x R x C

Где R = резистор между Vcc и отсортированным выводом (выводы 6 и 7).

C = Конденсатор между закороченным контактом (контакты 6 и 7) и GND.

Из приведенной выше формулы мы можем изменить временной интервал увядания, изменив номинал резистора R и конденсатора C. Вместо того, чтобы менять конденсатор, мы меняем номинал резистора из-за его доступности, дешевизны и простоты использования.

В схеме ниже R = R1 + VR1. Минимальное значение R = 56K + 0 = 56K и максимальное значение R = 56K + 500K = 556K и C = C3 = 1000 мкФ.

Минимальный интервал времени (T1) = 1,1 x 56000 x 1000 x 10 -6 .

T1 = 61,6 сек = 1,026 мин.

Максимальный интервал времени (T2) = 1,1 x 556000 x 1000 x 10 -6

T2 = 611,6 сек. = 10,19 мин.

Таким образом, мы можем настроить временной интервал от 1 минуты до 10 минут, регулируя переменный резистор.

Выход используется для управления реле в течение этого временного интервала. Диод подключен к катушке реле, чтобы защитить цепь от обратного напряжения. Этот выход также подключен к контакту запуска IC2 через керамический конденсатор, как показано на принципиальной схеме. И когда выход IC1 становится низким, IC2 срабатывает, и остальная работа схемы такая же, как и у первой схемы таймера.

Рисунок 2: Автор прототипа схемы двойного таймера

Дизайн печатной платы:

Дизайн печатной платы

двойного таймера разработан с использованием Altium Designer 18.Сторона пайки и сторона компонента показаны на рисунках 3 и 4. Перемычка используется, как показано на стороне компонента, для создания общего заземления. Загрузите печатную плату в реальном размере со стороны пайки и со стороны компонентов в формате PDF по ссылке, указанной ниже.

Рисунок 3: Плата под пайку

Рисунок 4: Плата со стороны компонентов

Нажмите здесь, чтобы загрузить схему печатной платы

Список компонентов

Резистор (полностью-ватт, углерод ± 5%, если не указано иное)
R1, R3 = 10 кОм

R2, R4 = 56 кОм

R5, R6 = 1 кОм

VR1, VR2 = 500 кОм

Конденсатор
C1, C3, c5 = 10 нФ (керамический диск)

C2, C4 = 1000 мкФ / 16 В (электролитический конденсатор)

Полупроводник
U1, U2 = NE555

D1 — D4 = 1N4007

LED1, LED2 = 3 мм Светодиод

Разное
RL1, RL2 = 12 В SPDT 100 Ом реле

SW1 = нажимной выключатель

Блок питания 12В

Нравится:

Нравится Загрузка…

Цепи таймера

555 и 556

Цепи таймера 555 и 556 Главная | Карта | Проекты | Строительство | Пайка | Исследование | Компоненты | 555 | Символы | FAQ | Ссылки
Входы | Выход | Astable | Рабочий цикл | Моностабильный | Edge-trigger | Бистабильный | Буфер

Следующая страница: Счетные схемы
См. Также: ИС (микросхемы) | Емкость | AC, DC и электрические сигналы

Введение

Пример обозначения схемы (вверху)

Фактическое расположение контактов (внизу)

8-контактный таймер 555 должен быть одним из самых полезных микросхем, когда-либо созданных, и он используется во многих проекты.С помощью всего лишь нескольких внешних компонентов его можно использовать для создания множества схем, а не все они связаны со временем!

Популярной версией является NE555, и она подходит в большинстве случаев, когда таймер 555 указан. 556 — это двойная версия 555, размещенная в 14-выводном корпусе. два таймера (A и B) используют одни и те же контакты источника питания. Принципиальные схемы на этой странице показывают 555, но все они могут быть адаптированы для использования половины 556.

Выпускаются маломощные версии 555, такие как ICM7555, но они должны быть только используются, когда указано (для увеличения срока службы батареи), поскольку их максимальный выходной ток составляет около 20 мА (при напряжении питания 9 В) слишком мало для многих стандартных цепей 555.ICM7555 имеет такое же расположение штифтов, что и у стандартного 555.

Обозначение схемы для 555 (и 556) представляет собой коробку с контактами, расположенными в соответствии со схемой. схема: например, 555 контакт 8 вверху для питания + Vs, выход 555 контакт 3 справа. Обычно используются только номера контактов, и на них не указывается их функция.

Модели 555 и 556 могут использоваться с напряжением питания (Vs) в диапазоне от 4,5 до 15 В (18 В абсолютное максимум).

Стандартные микросхемы 555 и 556 создают значительный «сбой» в питании при изменении их выхода. государственный. Это редко является проблемой в простых схемах без других микросхем, но в более сложных схемах. сглаживающий конденсатор (например, 100 мкФ) должен быть подключен к источникам питания + Vs и 0V. около 555 или 556.

Функции входных и выходных контактов кратко описаны ниже, и есть более полные объяснения. охватывающие различные схемы:

  • Astable — создание прямоугольной волны
  • Моностабильный — выдача одиночного импульса при срабатывании триггера
  • Бистабильный — простая память, которая может быть установлена ​​и сброшена
  • Buffer — инвертирующий буфер (триггер Шмитта)
Таблицы данных доступны по адресу:

Входы 555/556

Триггерный вход: при < 1 / 3 Вс (‘активный низкий’) это делает выход высоким (+ Vs).Он контролирует разряд синхронизирующего конденсатора в нестабильной цепи. Он имеет высокое входное сопротивление> 2 МОм.

Пороговый вход: , когда> 2 / 3 Вс (‘активный высокий’) это делает выход низким (0 В) *. Он контролирует заряд синхронизирующего конденсатора в нестабильных и моностабильных цепях. Он имеет высокое входное сопротивление> 10 МОм.
* при условии, что вход триггера> 1 / 3 Вс, в противном случае вход триггера переопределит вход порога и будет удерживать выход на высоком уровне (+ Vs).

Вход сброса: , когда меньше 0,7 В (активный низкий уровень), это делает выход низким (0 В), переопределение других входов. Когда он не требуется, его следует подключить к + Vs. Он имеет входное сопротивление около 10 кОм.

Управляющий вход: может использоваться для регулировки порогового напряжения, которое устанавливается внутри быть 2 / 3 Вс. Обычно эта функция не требуется, и вход подключен к 0V с 0.Конденсатор 01 мкФ для устранения электрических помех. Его можно оставить неподключенным, если шум не является проблемой.

Разгрузочный штифт не является входом, но он указан здесь для удобства. Он подключен к 0 В, когда выход таймера низкий, и используется для разрядки таймера. конденсатор в нестабильных и моностабильных цепях.


Выход 555/556

Выход стандартной 555 или 556 может сток и источник до 200 мА.Это больше, чем у большинства микросхем, и этого достаточно для непосредственной поставки многих выходных преобразователей, в том числе светодиоды (с последовательно включенным резистором), слаботочные лампы, пьезопреобразователи, громкоговорители (с конденсатором последовательно), катушки реле (с диодной защитой) и некоторые двигатели (с диодом). защита). Выходное напряжение не совсем достигает 0 В и + В, особенно при большом ток течет.

Для переключения больших токов можно подключить транзистор.

Способность как потребителя, так и источника тока означает, что два устройства могут быть подключены к выход так, чтобы один был включен, когда выход низкий, а другой был включен, когда выход высокий.На верхней диаграмме показаны два подключенных таким образом светодиода. Это расположение используется в Проект «Железнодорожный переезд», чтобы красные светодиоды мигали попеременно.

Громкоговорители
Громкоговоритель (минимальное сопротивление 64) может быть подключен к выходу нестабильной цепи 555 или 556, но конденсатор (около 100 мкФ) должны быть подключены последовательно. Выходной сигнал эквивалентен установившемуся постоянному току около ½Vs в сочетании с прямоугольным сигналом переменного тока (аудио). Конденсатор блокирует постоянный ток, но позволяет переменному току проходить, как описано в разделе «Конденсаторная связь».

Пьезоэлектрические преобразователи могут быть подключены непосредственно к выходу и не требуют конденсатор последовательно.

Катушки реле и другие индуктивные нагрузки
Как и все микросхемы, 555 и 556 должны быть защищены от кратковременных скачков напряжения. возникает при отключении индуктивной нагрузки, такой как катушка реле. Стандарт должен быть подключен защитный диод «назад» через катушку реле, как показано на схеме.

Однако , 555 и 556 требуют подключения дополнительного диода . последовательно с катушкой, чтобы гарантировать, что небольшой «сбой» не может быть передан обратно в ИС.Без этого дополнительного диода моностабильные схемы могут повторно сработать, когда катушка выключен! Ток катушки проходит через дополнительный диод, поэтому он должен быть 1N4001 или аналогичный выпрямительный диод, способный пропускать ток, сигнальный диод типа 1N4148 обычно не подходит .


Начало страницы | Входы | Выход | Astable | Рабочий цикл | Моностабильный | Edge-trigger | Бистабильный | Буфер

555/556 Астабильный

555 нестабильный выход, прямоугольная волна
(Tm и Ts могут быть разными)
555 нестабильная схема
Нестабильная схема генерирует прямоугольную волну, это цифровая форма волны с резкими переходами. между низким (0 В) и высоким (+ Vs).Обратите внимание, что длительность низкого и высокого состояний может быть разные. Схема называется и стабильной, потому что она нестабильна ни в каком состоянии: выходной сигнал постоянно меняется между «низким» и «высоким».

Период времени (T) прямоугольной волны — это время одного полного цикла, но он Обычно лучше рассматривать частоту (f), которая представляет собой количество циклов в секунду.

T = 0,7 × (R1 + 2R2) × C1 и f = 1.4
(R1 + 2R2) × C1

T = период времени в секундах (с)
f = частота в герцах (Гц)
R1 = сопротивление в Ом ()
R2 = сопротивление в Ом ()
C1 = емкость в фарадах (Ф)

Временной период можно разделить на две части: T = Tm + Ts
Время метки (выходной высокий): Tm = 0,7 × (R1 + R2) × C1
Пространство-время (выходной низкий): Ts = 0.7 × R2 × C1

Многие схемы требуют, чтобы Tm и Ts были почти равны; это достигается, если R2 намного больше, чем R1.

Для стандартной нестабильной схемы Tm не может быть меньше Ts, но это не слишком ограничивает, потому что выход может как потреблять, так и исходить ток. Например, можно заставить светодиод кратковременно мигать длинные промежутки, подключив его (с его резистором) между + Vs и выходом. Таким образом горит светодиод во время Ts, поэтому короткие вспышки достигаются с R1 больше, чем R2, что делает Ts коротким, а Tm длинным.Если Tm должно быть меньше Ts, в схему можно добавить диод, как описано ниже. рабочий цикл ниже.

Выбор R1, R2 и C1
R1 и R2 должны быть в диапазоне 1k до 1М. Лучше всего сначала выбрать C1, потому что конденсаторы доступны всего в нескольких номиналах.
  • Выберите C1 в соответствии с требуемым диапазоном частот (используйте таблицу в качестве руководства).
  • Выберите R2 , чтобы указать требуемую частоту (f).Предположим, что R1 намного меньше R2. (так что Tm и Ts почти равны), тогда вы можете использовать:
    R2 = 0,7
    f × C1
  • Выберите R1 , чтобы он составлял примерно одну десятую R2 (1k мин.) если только вы не хотите, чтобы время метки Tm было значительно больше пространственного времени Ts.
  • Если вы хотите использовать переменный резистор , лучше всего сделать его R2.
  • Если R1 переменный, он должен иметь постоянный резистор не менее 1к в серии
    (это не требуется для R2, ​​если он переменный).

Нестабильная работа
При высоком уровне на выходе (+ Vs) конденсатор C1 заряжается током, протекающим через R1 и R2. Пороговые и триггерные входы контролируют напряжение конденсатора, и когда оно достигает 2 / 3 Вс (пороговое напряжение) выход становится низким, и разрядный вывод подключается к 0 В.

Конденсатор теперь разряжается с током, протекающим через R2 в разрядный вывод. Когда напряжение падает до 1 / 3 В (триггерное напряжение), выходной сигнал становится высоким. снова, и разрядный штифт отключается, позволяя конденсатору снова начать заряжаться.

Этот цикл повторяется непрерывно, если вход сброса не подключен к 0 В, что вызывает низкий уровень на выходе. при сбросе 0 В.

Нестабильный может использоваться для обеспечения тактового сигнала для таких схем, как счетчики.

Низкочастотный нестабильный (<10 Гц) может использоваться для включения и выключения светодиода, более частые вспышки слишком часты, чтобы их можно было отчетливо разглядеть. Вождение динамика или пьезо преобразователь с низкой частотой менее 20 Гц будет производить серию «щелчков» (по одному для каждого перехода от низкого к высокому уровню), и его можно использовать для создания простого метронома.

Звуковая частота нестабильная (от 20 Гц до 20 кГц) может использоваться для воспроизведения звука от громкоговоритель или пьезоэлектрический преобразователь.Звук подходит для гудков и гудков. Собственная (резонансная) частота большинства пьезопреобразователей составляет около 3 кГц, и это будет заставить их издавать особенно громкий звук.

Рабочий цикл
Рабочий цикл нестабильной схемы — это доля полного цикла, для которой выходной сигнал высокий (время отметки). Обычно указывается в процентах.

Для стандартной нестабильной схемы 555/556 время отметки (Tm) должно быть больше, чем пространство-время (Ts), поэтому скважность должна быть не менее 50%:

Рабочий цикл = ТМ = R1 + R2
Tm + Ts R1 + 2R2

555 нестабильная цепь с диодом на R2
Для достижения рабочего цикла менее 50% параллельно с R2 можно добавить диод, как показано на схеме.Это обходит R2 во время зарядная (отметка) часть цикла так, чтобы Tm зависела только от R1 и C1:

Tm = 0,7 × R1 × C1 (без учета 0,7 В на диоде)
Ts = 0,7 × R2 × C1 (без изменений)

Рабочий цикл с диодом = ТМ = R1
Tm + Ts R1 + R2

Используйте сигнальный диод, например 1N4148.


Примеры проектов с использованием нестабильного 555: Мигающий светодиод | Пустая сигнализация | Значок в форме сердца | «Случайный» мигалка
Начало страницы | Входы | Выход | Astable | Рабочий цикл | Моностабильный | Edge-trigger | Бистабильный | Буфер

555/556 Моностабильный

555 моностабильный выход, одиночный импульс
555 моностабильная схема с ручным запуском
Моностабильная схема при срабатывании выдает один выходной импульс.Это называется mono стабильный, потому что он стабилен только в одном состоянии : «низкий выход». Состояние «высокий выход» является временным.

Длительность импульса называется периодом времени (T) и определяется резистор R1 и конденсатор C1:

период времени, T = 1,1 × R1 × C1

T = период времени в секундах (с)
R1 = сопротивление в Ом ()
C1 = емкость в фарадах (Ф)
Максимальный надежный период времени составляет около 10 минут.

Почему 1.1? Конденсатор заряжается до 2 / 3 = 67%, поэтому он немного длиннее постоянной времени (R1 × C1) — время, необходимое для зарядки до 63%.

  • Сначала выберите C1 (доступно относительно мало значений).
  • Выберите R1 , чтобы указать необходимый вам период времени. R1 должен быть в пределах 1k до 1 МОм, поэтому используйте постоянный резистор на не менее 1k последовательно, если R1 переменный.
  • Остерегайтесь, , что значения электролитического конденсатора неточны, часто встречаются ошибки не менее 20%.
  • Остерегайтесь , что электролитические конденсаторы утекают заряд, что значительно увеличивает период времени если вы используете резистор высокого номинала — используйте формулу как очень приблизительный ориентир!
    Например, проект таймера должен иметь максимальный период времени. 266 с (около 4½ минут), но многие электролитические конденсаторы увеличивают это время примерно до 10 минут!

Моностабильный режим
Период синхронизации запускается (начинается), когда на входе
триггера (555 контакт 2) меньше, чем 1 / 3 Vs, это делает выход высоким (+ Vs) и конденсатор C1 запускается заряжать через резистор R1.После начала периода времени дальнейшие импульсы запуска игнорируются.

Пороговое значение (555 контакт 6) контролирует напряжение на C1, и когда оно достигает 2 / 3 Вс, период времени равен больше, и выход становится низким. При этом разряд (555 пин 7) стоит подключен к 0В, разряжая конденсатор, готовый к следующему триггеру.

Сброс , вход (555 контакт 4) отменяет все другие входы, и отсчет времени может быть отменен. в любое время, подключив сброс к 0 В, это мгновенно понижает выход и разряжает конденсатор.Если функция сброса не требуется, контакт сброса должен быть подключен к + Vs.

Сброс при включении или цепь запуска
Сброс при включении или триггер
Может быть полезно убедиться, что моностабильная схема сбрасывается или запускается автоматически, когда источник питания подключен или включен. Это достигается за счет использования конденсатора вместо (или в дополнение к) нажимному переключателю, как показано на схеме.

Конденсатору требуется короткое время для зарядки, кратковременно удерживая вход близким к 0 В, когда цепь включена. Переключатель может быть подключен параллельно конденсатору, если вручную операция тоже требуется.

Это расположение используется для триггера в проекте таймера.

Срабатывание по фронту
Схема запуска по фронту
Если вход триггера по-прежнему меньше 1 / 3 Вс в конце периода времени выходной сигнал будет оставаться высоким до тех пор, пока триггер не станет больше 1 / 3 Vs.Этот Ситуация может возникнуть, если входной сигнал поступает от двухпозиционного переключателя или датчика.

Моностабильный можно сделать запускаемым по фронту , реагируя только на изменения входного сигнала, путем подключения триггерного сигнала через конденсатор ко входу триггера. Конденсатор внезапно проходит изменяется (AC), но блокирует постоянный (DC) сигнал. Для получения дополнительной информации см. Страницу емкость. Схема срабатывает по отрицательному фронту, потому что она реагирует на внезапное падение входного сигнала.

Резистор между триггером (555 контакт 2) и + Vs обеспечивает нормальный высокий уровень триггера (+ Vs).


Примеры проектов, использующих моностабильный 555: Регулируемый таймер | Электронный замок | Светочувствительная сигнализация
Начало страницы | Входы | Выход | Astable | Рабочий цикл | Моностабильный | Edge-trigger | Бистабильный | Буфер

555/556 Bistable (flip-flop) — схема памяти

555 бистабильная схема
Схема называется стабильной bi , потому что она стабильна в двух состояниях : высоком уровне вывода и низком уровне вывода.Он также известен как «триггер».

Имеет два входа:

  • Триггер (555 контакт 2) устанавливает высокий выходной сигнал .
    Триггер — активный низкий уровень, он работает, когда < 1 / 3 Vs.
  • Reset (555 pin 4) устанавливает низкий уровень на выходе .
    Сброс — это «активный низкий уровень», он сбрасывается при <0,7 В.
Цепи сброса по включению, триггера по включению и триггера по фронту могут использоваться, как описано выше для моностабильного.

Примеры проектов, использующих 555 бистаблей: Викторина | Модель железнодорожного сигнала


Начало страницы | Входы | Выход | Astable | Рабочий цикл | Моностабильный | Edge-trigger | Бистабильный | Буфер

555/556 Инвертирующий буфер (триггер Шмитта) или НЕ вентиль

555 инвертирующая буферная схема
(вентиль НЕ)
символ НЕ вентиль
Вход буферной схемы имеет очень высокий импеданс (около 1 МОм). поэтому для него требуется всего несколько мкА, но выход может потреблять или отдавать до 200 мА.Это позволяет источнику сигнала с высоким сопротивлением (например, LDR) переключать выходной преобразователь с низким сопротивлением (например, лампу).

Это инвертирующий буфер или НЕ вентиль, потому что Логическое состояние выхода (низкий / высокий) является обратным состоянию входа:

  • Входной низкий (< 1 / 3 Vs) делает выходным высоким , + Vs
  • Входной высокий (> 2 / 3 Вс): Выходной низкий , 0 В
Когда входное напряжение находится в диапазоне от 1 / 3 до 2 / 3 Вс, выходное напряжение остается в нынешнем состоянии.Эта промежуточная область ввода является мертвым пространством, где нет ответа, свойство, называемое гистерезисом , похоже на люфт в механической связи. Этот тип схемы называется триггером Шмитта .

Добавить комментарий

Ваш адрес email не будет опубликован.