Закрыть

Автомат пускатель – Контакторы и магнитные пускатели

Содержание

на 220В, 380В, с тепловым реле и кнопками управления

puskat 1 Магнитный пускатель наиболее часто используется для управления электродвигателями. Хотя есть у него и другие сферы применения: управление освещением, отоплением, коммутация мощных нагрузок. Их включение и отключение может выполняться как вручную, при помощи кнопок управления, так и с применением систем автоматики. О подключении кнопок управления к магнитному пускателю мы и поговорим.

Кнопки управления пускателей

В общем случае потребуется две кнопки: одна для включения и одна для отключения. Обратите внимание, что у них для управления пускателем используются разные по назначению контакты. У кнопки «Стоп» они нормально замкнуты, то есть, если кнопка не нажата, группа контактов замкнута, и размыкается при активации кнопки. У кнопки «Пуск» все наоборот.

Эти устройства могут содержать или только конкретный, нужный для работы элемент, либо быть универсальными, включая в себя и по одному замкнутому и разомкнутому контакту. В этом случае необходимо выбрать правильный.

Производители обычно снабжают свою продукцию символьными обозначениями, позволяющими определить назначение той или оной контактной группы. Стоповую кнопку обычно окрашивают в красный цвет. Цвет пусковой традиционно черный, то приветствуется зеленый, который соответствует сигналу «Включено» или «Включить». Такие кнопки используются, в основном, на дверях шкафов и панелях управления двигателями станков.

Для дистанционного управления используются кнопочные станции, содержащие две кнопки в одном корпусе. Станция соединяется с местом установки пускателя с помощью контрольного кабеля. В нем должно быть не менее трех жил, сечение которых может быть небольшим. pusk 4 Простейшая рабочая схема пускателя с тепловым реле

Магнитный пускатель

Теперь о том, на что следует обратить внимание, рассматривая сам пускатель перед его подключением. Самое важное – напряжение катушки управления, которое указано либо на ней самой, либо неподалеку. Если надпись гласит 220 В АС (или рядом с 220 стоит значок переменного тока), то для работы схемы управления потребуется фаза и ноль.

Интересное видео о работе магнитного пускателя смотрите ниже:

Если же это 380 В АС (того же переменного тока), то управлять пускателем будут две фазы. В процессе описания работы схемы управления будет понятно, в чем отличие.

При любых других значениях напряжения, наличии знака постоянного тока или букв DC подключить изделие к сети не получится. Оно предназначено для других цепей.

Еще нам потребуется использовать дополнительный контакт пускателя, называемый блок-контактом. У большинства аппаратов он маркируется цифрами 13НО (13NO, просто 13) и 14НО (14NO, 14).

Буквы НО означают «нормально открытый», то есть замыкается он только на притянутом пускателе, что при желании можно проверить мультиметром. Встречаются пускатели, имеющие нормально замкнутые дополнительные контакты, они не годятся для рассматриваемой схемы управления.

Силовые контакты предназначены для подключения нагрузки, которой они и управляют.

У разных производителей их маркировка отличается, но при их определении сложностей не возникает. Итак, крепим пускатель к поверхности или DIN-рейке в месте его постоянной дислокации, прокладываем силовые и контрольные кабели, начинаем подключение. puskat 2

Схема управления пускателем на 220 В

Один мудрец сказал: есть 44 схемы подключения кнопок к магнитному пускателю, из которых 3 работают, а остальные – нет. Но правильная – только одна. Про нее и поговорим (смотри схему ниже). 220 V Подключение силовых цепей лучше оставить на потом. Так будет проще доступ к винтам катушки, которые всегда перекрываются проводами основной цепи. Для питания цепей управления используем один из фазных контактов, от которой проводник отправляем на один из выводов кнопки «Стоп».

Это может быть или проводник, или жила кабеля.

От кнопки стоп пойдут уже два провода: один к кнопке «Пуск», второй – на блок-контакт пускателя.

Для этого между кнопками ставится перемычка, а к одной из них в месте ее подключения добавляется жила кабеля к пускателю. Со второго вывода кнопки «Пуск» тоже идут два провода: один на второй вывод блок-контакта, второй – к выводу «А1» катушки управления.

При подключении кнопок кабелем перемычка ставится уже на пускателе, к ней подключается третья жила. Второй вывод от катушки (А2) подключается к нулевой клемме. В принципе нет разницы, в каком порядке подключать вывода кнопок и блок-контакта. Желательно только именно вывод «А2» катушки управления соединить с нулевым проводником. Любой электрик ожидает, что нулевой потенциал будет только там.

Теперь можно подключить провода или кабели силовой цепи, не позабыв о том, что рядом с одним из них на входе присутствует провод на схему управления. И только с этой стороны на пускатель подается питание (традиционно – сверху). Попытка подключить кнопки на выход пускателя ни к чему не приведет.

Схема управления пускателем на 380 В

Все то же самое, но для того, чтобы катушка заработала, проводник от вывода «А2» надо подключить не к нулевой шинке, а к любой другой фазе, не использующейся до этого. Вся схема будет работать от двух фаз. 380 V

Подключение теплового реле в схему пускателя

Тепловое реле используется для защиты электродвигателя от перегрузки. Конечно, автоматическим выключателем он защищается при этом все равно, но его теплового элемента для этой цели недостаточно. И его нельзя настроить точно на номинальный ток мотора. Принцип работы теплового реле тот же, что и в автоматическом выключателе.

Ток проходит по греющим элементам, если его величина превысит заданную – отгибается биметаллическая пластинка и переключает контактики.

В этом есть еще одно отличие от автоматического выключателя: само тепловое реле ничего не отключает. Оно просто дает сигнал к отключению. Который нужно правильно использовать. tepl rele Силовые контакты теплового реле позволяют подключать его к пускателю напрямую, без проводов. Для этого каждый модельный ряд изделий взаимно дополняет друг друга. Например, ИЭК выпускает тепловые реле для своих пускателей, АВВ – своих. И так у каждого производителя. Но изделия разных фирм не стыкуются друг с другом.

Тепловые реле также могут иметь два независимых контакта: нормально замкнуты и нормально разомкнутый. Нам понадобится замкнутый – как в случае с кнопкой «Стоп». Тем более, что и функционально он будет работать так же, как эта кнопка: разрывать цепь питания катушки пускателя, чтобы он отпал.

Теперь потребуется врезать найденные контакты в схему управления. Теоретически это можно сделать почти в любом месте, но традиционно он подключается после катушки.

В описанном выше случае для этого потребуется от вывода «А2» отправить провод на контакт теплового реле, а от второго его контакта – уже туда, где до этого был подключен проводник. В случае с управлением от 220 В это – нулевая шинка, с 380 В – фаза на пускателе. Срабатывание теплового реле у большинства моделей никак не заметно.

Для возврата его в исходное состояние на панели прибора есть небольшая кнопочка, которая перекидывает контакты при нажатии. Но это нужно делать не сразу, а дать реле остыть, иначе контакты не зафиксируются. Перед включением в работу после монтажа кнопку лучше нажать, исключив возможное переключение контактной системы в ходе транспортировки из-за тряски и вибраций.

Ещё одно интересное видео о работе магнитного пускателя:

Проверка работоспособности схемы

Для того, чтобы понять, правильно собрана схема или нет, нагрузку к пускателю лучше не подключать, оставив его нижние силовые клеммы свободными. Так вы обезопасите коммутируемое оборудование от лишних проблем. Включаем автоматический выключатель, подающий напряжение на испытуемый объект.

Само собой разумеется, пока идет монтаж, он должен быть отключен. А также любым доступным способом предотвращено случайное его включение посторонними лицами. Если после подачи напряжения пускатель не включился самостоятельно – уже хорошо.

Нажимаем на кнопку «Пуск», пускатель должен включиться. Если нет – проверяем замкнутое положение контактов кнопки «Стоп» и состояние теплового реле.

При диагностике неисправности помогает однополюсный указатель напряжения, которым можно легко проверить прохождение фазы через кнопку «Стоп» до кнопки «Пуск». Если при отпускании кнопки «Пуск» пускатель не фиксируется, а отпадает – неправильно подключены блок-контакты.

Проверьте – они должны подключиться параллельно этой кнопке. Правильно подключенный пускатель должен фиксироваться во включенном положении при механическом нажатии на подвижную часть магнитопровода.

Теперь проверяем работу теплового реле. Включаем пускатель и аккуратно отсоединяем любой проводок от контактов реле. Пускатель должен отпасть.

pue8.ru

Контакторы, магнитные пускатели, автоматические выключатели

Контакторы, магнитные пускатели, автоматические выключатели

Контакторы — электрические аппараты, предназначенные для включения и отключения силовых цепей (цепей питания электродвигателей и других мощных потребителей электроэнергии) с помощью электромагнитов. Конструктивно контакторы сходны с сильноточными реле, но отличаются наличием мощных контактов и дугогасительных устройств. Различают контакторы постоянного и переменного токов. Устройство контактора постоянного тока показано на рис. 2.27. Главные контакты 1 и 3 замыкаются под действием пружины 5 в случае перемещения якоря 6 с рычагом 4 к ярму 8 при появлении тока возбужд

ения в обмотке 9. Размыкание контактов происходит под воздействием пружины 7. Для увеличения силы притяжения якоря к ярму предусмотрен полюсный наконечник на сердечнике 8. Для интенсивного гашения дуги при размыкании контактов применяется дугогасительная камера с решеткой из медных пластин 2, улучшающих теплоотвод от дуги и, следовательно, условия дугогашения.

Помимо силовых контактов в контакторах предусматриваются дополнительные, вспомогательные, блокировочные контакты.
Работу контактора переменного тока поясним на примере рассмотрения рис. 2.28. При включении катушки 1 в цепь управления возникает магнитный поток в магнитопроводе, состоящем из шихтованных ярма 2 и якоря 3. На якоре расположен короткозамкнутый виток (для устранения вибрации магнитной системы). Контактная группа — главные контакты 5, 6, вспомогательные контакты 7— 9— приводится в действие якорем J, с которым она соединена валом 4. Контакторы, магнитные пускатели, автоматические выключатели На рис. 2.28 изображен трехполюсный контактор для коммутации в трехфазной цепи. Здесь показана только одна дугогасительная камера 7/, чтобы было видно расположение силовых контактов {reklama}

5, б.

Контакторы, магнитные пускатели, автоматические выключатели Электромагнитные контакторы переменного тока широко используют в магнитных пускателях — устройствах для дистанционного управления (включить — выключить) и автоматической защиты от перегрузок асинхронных электродвигателей.
Для автоматического размыкания цепей постоянного и переменного токов при нарушении нормального режима работы (при случайных коротких замыканиях в цепи, длительном превышении нагрузки выше номинальной или уменьшении напряжения ниже нормы), а также для включения и отключения тех же цепей при нормальных условиях служат автоматические выключатели (например, автоматы типов АП25, АП50, A3100) (рис. 2.29). Автоматы представляют собой сочетание теплового реле, контактора, дугогасительного устройства и механизма расцепления контактов.

Контакторы, магнитные пускатели, автоматические выключатели На рис. 2.29 можно выделить основные элементы трехфазного автомата типа АП25 — дугогасительную камеру 7, контактную систему 2, электромагнитный расцепитель 5, кнопки ручного включения и отключения 4, возвратную пружину 5, катушку электромагнита 6, якорь электромагнита 7, механизм расцепления контактов 8, биметаллическую пластину теплового реле 9.
Основным узлом автомата является механизм расцепления контактов — система шарнирно связанных рычагов, который может приводиться в действие тепловым реле либо электромагнитом. Включение и выключение небольших автоматов производится вручную или дистанционно с помощью реле. Мощные автоматы требуют для включения и отключения больших усилий, которые производят мощные электромагниты, управляемые дистанционно.

Контакторы, магнитные пускатели, автоматические выключатели Работу механизма расцепления автомата максимального тока можно пояснить кинематической схемой рис. 2.30, а. Если ток в цепи превысит заданное максимально допустимое значение, то электромагнит 3притянет якорь 2, преодолевая сопротивление пружины 7. Защелка 4 освободит рычаг 5, который под действием пружины 6 разорвет контакты 7.
Кинематическая схема механизма расщепления автомата минимального тока (рис. 2.30, б) показывает, что при некотором минимально допустимом значении тока / электромагнит 7 уже не может удержать якорь 2. Под действием силы F противодействующей пружины J якорь передвигается в направлении стрелки и контакты 4 автомата размыкаются.
В заключение отметим, что все необходимые данные о токах, напряжениях, мощностях, времени срабатывания и других параметрах электрических аппаратов можно найти в электротехнических справочниках.

pue8.ru

Магнитный пускатель. Схемы подключения пускателей

Магнитный пускатель

Магнитный пускатель — коммутационный электрический аппарат, предназначенный для пуска, остановки и защиты трехфазных асинхронных электродвигателей с короткозамкнутым ротором непосредственным подключением обмоток статора к сети и разрывом тока в них без предварительного ввода в цепь дополнительных сопротивлений.

В соответствии с главной функцией магнитных пускателей, основным, а иногда и единственным элементом пускателя является трехполюсный электромагнитный контактор переменного тока, с которым связаны основные параметры пускателя: номинальное напряжение и номинальный ток коммутируемой цепи, коммутационная способность, коммутационная и механическая износостойкость. В соответствии с ГОСТ пускатели предназначаются для работы в категории применения АС.

Категории применения магнитных пускателей:
  • АС-1 – нагрузка пускателя активная или мало индуктивная.
  • АС-3 – режим прямого пуска электродвигателя с короткозамкнутым ротором, отключение вращающегося двигателя.
  • АС-4 – пуск электродвигателя с короткозамкнутым ротором, отключение неподвижных или медленно вращающихся двигателей, торможение противотоком.

Коммутационная износостойкость аппаратов в этих категориях проверяется в условиях, моделирующих включение и отключение асинхронного двигателя, соответствующего по параметрам номинальным данным пускателя, в режимах, определенных категорией применения пускателя. Как к элементу систем автоматического управления к пускателям предъявляются высокие требования по износостойкости. Пускатели выпускаются в трех классах коммутационной износостойкости (А, Б и В). Наивысшая износостойкость у аппаратов, относимых к классу А, наименьшая у аппаратов, относимых к классу В. Коммутационная и механическая износостойкость у аппаратов, относимых к разным классам, указывается в технических данных аппаратов конкретных типов.

Класс коммутационной износостойкости выбирается в зависимости от требуемого срока службы и предполагаемой частоты срабатывания в категории применения АС-3.

Режимы работы пускателей

Пускатели должны работать в одном или нескольких из следующих режимов: продолжительном, прерывисто-продолжительном (8-часовом), повторно-кратковременном, кратковременном. Продолжительность включения для повторно-кратковременного режима указывается в технических данных конкретных пускателей.

Пускатели выпускаются в исполнениях с разной степенью защиты от прикосновения и внешних воздействий ( IP OO , IP 20, IP 30, IP 40, IP 54).

Подключение магнитного пускателя

Чтобы подключить магнитный пускатель нужно понять его принцип действия, изучить конструктивные особенности. Тогда, несмотря на кажущуюся сложность схемы подключения вам не составит труда правильно подключить магнитный пускатель, даже если до этого вам никогда не приходилось иметь дело с ним.

Схема подключения нереверсивного магнитного пускателя

Схема состоит:

  • QF — автоматического выключателя
  • KM1 — магнитного пускателя
  • P — теплового реле
  • M — асинхронного двигателя
  • ПР — предохранителя
  • (С-стоп, Пуск) — кнопки управления

Рассмотрим работу схемы в динамике. Включаем питание QF — автоматическим выключателем, нажимаем кнопку «Пуск» своим нормально разомкнутым контактом подает напряжение на катушку КМ1 — магнитного пускателя. КМ1 – магнитный пускатель срабатывает и своими нормально разомкнутыми, силовыми контактами подает напряжение на двигатель. Для того чтобы не удерживать кнопку «Пуск», чтобы двигатель работал, нужно ее зашунтировать, нормально разомкнутым блок контактом КМ1 – магнитного пускателя. При срабатывании пускателя блок контакт замыкается и можно отпустить кнопку «Пуск» ток побежит через блок контакт на КМ1 — катушку.Такую схему называют схемой самоблокировки. Она обеспечивает так называемую нулевую защиту электродвигателя.

Если в процессе работы электродвигателя напряжение в сети исчезнет или значительно снизится (обычно более чем на 40% от номинального значения), то магнитный пускатель отключается и его вспомогательный контакт размыкается. После восстановления напряжения для включения электродвигателя необходимо повторно нажать кнопку «Пуск». Нулевая защита предотвращает непредвиденный, самопроизвольный пуск электродвигателя, который может привести к аварии. Аппараты ручного управления (рубильники, конечные выключатели) нулевой защитой не обладают, поэтому в системах управления станочным приводом обычно применяют управление с использованием магнитных пускателей. Для отключения электродвигателя достаточно нажать кнопку SB1 «Стоп». Это приводит к размыканию цепи самопитания и отключению катушки магнитного пускателя.

Отключаем двигатель, нажимаем кнопу «С – стоп», нормально замкнутый контакт размыкается и прекращается подача напряжение к КМ1 – катушке, сердечник пускателя под действием пружин возвращается в исходное положение, соответственно контакты возвращаются в нормальное состояние, отключая двигатель. При срабатывании теплового реле — «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.

Принцип работы схемы магнитного пускателя с катушкой на 220В тот же, что и с катушкой на 380В

Схема подключения реверсивного магнитного пускателя

Схема состоит аналогично, так же, как на не реверсивной схеме, единственно добавилась кнопка реверса и магнитный пускатель. Принцип работы схемы немного сложнее, рассмотрим в динамике. Что требуется от схемы, реверс двигателя за счет переворачивания местами двух фаз. При этом нужна блокировка, которая не давала бы включиться второму пускателю, если первый находится в работе и наоборот. Если включить два пускателя одновременно то произойдет КЗ – короткое замыкание на силовых контактах пускателя.

Включаем QF – автоматический выключатель, давим кнопку «Пуск [1]» подаем напряжение на КМ1 катушку пускателя, пускатель срабатывает. Силовыми контактами включает двигатель, при этом шунтируется пусковая кнопка «Пуск [1]». Блокировка второго пускателя — КМ2 осуществляется, нормально замкнутым КМ1 — блок контактом. При срабатывании КМ1 — пускателя, размыкается КМ1 — блок контакт тем самым размыкает подготовленную цепочку катушки второго КМ2 — магнитного пускателя.

Чтобы осуществить реверс двигателя, его необходимо отключить. Отключаем двигатель, нажатием кнопку «С — стоп», снимается напряжение с катушки, которая находилась в работе. Пускатель и блок контакты под действием пружин возвращаются в исходное положение. Схема готова к реверсу, нажимаем кнопку «Пуск [2]», подаем напряжение на катушку — КМ2, пускатель — КМ2 срабатывает и включает двигатель в противоположном вращение. Кнопка «Пуск [2]» шунтируется блок контактом — КМ2, а нормально замкнутый блок контакт КМ2 размыкается и блокирует готовность катушки магнитного пускателя — КМ1.

Для надежной работы схемы необходимо, чтобы главные контакты контактора КМ1 разомкнулись раньше, чем произойдет замыкание размыкающих вспомогательных контактов в цепи контактора КМ2. Это достигается соответствующей регулировкой положения вспомогательных контактов по ходу якоря.

При срабатывании теплового реле — «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.

В серийных магнитных пускателях часто применяют двойную блокировку по приведенным выше принципам. Кроме того, реверсивные магнитные пускатели могут иметь механическую блокировку с перекидным рычагом, препятствующим одновременному срабатыванию электромагнитов контакторов. В этом случае оба контактора должны быть установлены на общем основании.

Подключение электродвигателя по схеме звезда и треугольник

Применяются основные способы подключения к сети трёхфазных электродвигателей: «подключение звездой» и «подключение треугольником».

При соединении трёхфазного электродвигателя звездой, концы его статорных обмоток соединяются вместе, соединение происходят в одной точке, а на начала обмоток подаётся трехфазное напряжение (рис 1).

При соединении трёхфазного электродвигателя по схеме подключения «треугольником» обмотки статора электродвигателя соединяются последовательно таким образом что конец одной обмотки соединяется началом следующей и так далее (рис 2).

Клеммные колодки электродвигателей и схемы соединения обмоток:

Не вдаваясь в технические и подробные теоретические основы электротехники необходимо сказать, что электродвигатели у которого обмотками, соединенные звездой работают плавнее и мягче, чем электродвигатели с соединенные обмотками в треугольником, необходимо отметить, что при соединении обмоток звездой электродвигатель не может развить полную мощность. При соединении обмоток по схеме треугольник электродвигатель работает на полную паспортную мощность (что составляет в 1,5 раз больше по мощности, чем при соединении звездой), но при этом имеет очень большие значения пусковых токов.

В связи с этим целесообразно (особенно для электродвигателей с большей мощностью) подключение по схеме звезда — треугольник; первоначально запуск осуществляется по схеме звезда, после этого (когда электродвигатель «набрал обороты»), происходит автоматическое переключение по схеме треугольник.

Схема управления:

Подключение напряжения питания через контакт NC (нормально закрытый) реле времени К1 и контакт NC К2, в цепи катушки пускателя К3.

После включения пускателя К3, своими нормально-замкнутыми контактами размыкает цепи катушки пускателя К2 контактами К3 (блокировка случайного включения) и замыкает контакт К3, в цепи питания катушки магнитного пускателя К1, который совмещен с контактами реле времени.

При включении пускателя К1 происходит замыкание контактов К1 в цепи катушки магнитного пускателя К1 и одновременно включается реле времени, размыкается контакт реле времени К1 в цепи катушки пускателя К3, замыкает контакт реле времени К1 в цепи катушки пускателя К2.

Отключение обмотки пускателя К3, замыкается контакт К3 в цепи катушки магнитного пускателя К2. После включение пускателя К2, размыкает своими контактами К2 в цепи катушки питания пускателя К3.

   Схема управления

На начала обмоток U1, V1 и W1 через силовые контакты магнитного пускателя К1 подаётся трехфазное напряжение. При срабатывании магнитного пускателя К3 с помощью его контактов К3, происходит замыкание, соединяя концы обмоток U2, V2 и W2 между собой обмотки двигателя соединены звездой.

Через некоторое время срабатывает реле времени, совмещённое с пускателем К1, отключая магнитный пускатель К3 и одновременно включая К2, замыкаются силовые контакты К2 и происходит подача напряжение на концы обмоток электродвигателя U2, V2 и W2. Таким образом электродвигатель включается по схеме треугольник.

 

Смотрите также по этой теме:

   Реле промежуточное. Назначение, где применяются и как их выбирают?

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

powercoup.by

Пускатель ручной кнопочный VS контактор

Недавно мое внимание привлек пускатель ручной кнопочный серии ПРК32/ПРК80. В своих проектах я их еще не применял. Разберемся, в каких случаях можно применить данное электротехническое изделие и посмотрим, как это повлияет на общую стоимость защиты электродвигателя.

Вот эта картинка в каталоге ТДМ побудила написание данной статьи:

ПРК — цена

Для управления электродвигателями я чаще всего использую следующую схему управления:

Автоматический выключатель – пускатель (контактор + тепловое реле) – двигатель.

Пускатель устанавливается либо по месту управления, либо в силовом щите. В случае, если пускатель устанавливаем в щите, то для дистанционного управления нам понадобится еще кнопочный пост. Подробнее можно почитать в статье выбор электромагнитного пускателя, контактора.

Разберем достоинства пускателей ручных кнопочных ПРК32/ПРК80.

Внешний вид ПРК32/80

Пускатель ручной кнопочный представляет собой устройство для управления и  защиты электродвигателем. ПРК32/ПРК80 имеет защиту от токов короткого замыкания, перегрузки и выпадения фазы. Конструктивно ПРК – автоматический выключатель типа «D» + тепловое реле.

ПРК позволяют использовать такие дополнительные аксессуары как:

  • расцепитель минимального напряжения;
  • расцепитель независимый;
  • дополнительный контакт;
  • аварийный контакт;
  • защитная оболочка с кнопкой IP54.

Защитная оболочка ПРК

А теперь о недостатках.

Основным недостатком ПРК я бы назвал то, что это устройство для ручного управления. Для этого оно видимо и разрабатывалось конструкторами. В случае если вам требуется предусмотреть управление с нескольких мест, выполнить блокировку с другими устройствами, предусмотреть дистанционное управление, то пускатель ручной кнопочный вам не сможет заменить электромагнитный пускатель.

Проектные решения должны быть экономически обоснованы, поэтому посмотрим на стоимость электротехнических изделий, которые можно применить для защиты электродвигателей. В этой статье я не рассматриваю частотные преобразователи и другие специализированные устройства защиты и управления асинхронными двигателями.

Наименование изделия Цена, $
Автоматический выключатель 3Р, In=16А, тип «С» 3,4
Автоматический выключатель 3Р, In=16А, тип «D» 4,2
Контактор малогабаритный КМИ In=18А 8,64
Тепловое реле РТИ In=(12-18)А 6,38
Контактор малогабаритный КМИ в оболочке In=18А, IP54 28
Пост кнопочного управления IP54 с кнопками «ПУСК» и «СТОП» 5
Пускатель ручной кнопочный ПРК32 In=(13-18)А 19,16
Защитная оболочка с кнопкой «Стоп» IP54 13,44

Первое, что хотелось бы отметить, автоматические выключатели с характеристикой «С» дешевле и его проще купить, поэтому не стоит на все подряд электродвигатели устанавливать автоматы типа «D». Выбор типа электромагнитного расцепителя автоматического выключателя зависит от пусковых токов двигателя.

Для наглядности приведу пример. Пусть потребляемый ток двигателем In=10А. Мы выбираем автомат на 16А  тип «С», т.к. данный автомат выдержит пусковые токи 16*5/10=8In. В данном случае нет смысла ставить автоматический выключатель типа «D».

Рассмотрим две схемы управления электродвигателем с помощь ПРК и сравним их с аналогичными схемами, в которых применяют электромагнитные пускатели. Напомню, целью данной статьи является проверка насколько ПРК дешевле пускателя.

1 Управляющий элемент (пускатель, ПРК) устанавливается по месту, вне электрического щита.

В таком случае схема будет выглядеть так:

  • Автоматический выключатель – пускатель IP54 — двигатель.
  • Автоматический выключатель – ПРК32/80 + защитная оболочка — двигатель.

Автомат не учитываем, т.к. он присутствует в обеих схемах. Стоимость пускателя IP54 + тепловое реле 28+6,38=34,38$, ПРК32/80 + защитная оболочка — 19,16+13,44=32,6$

Вывод: применение ПРК32/80 и применение пускателя обойдется примерно одинаково. Разница в цене составит порядка 6%.

2 Управляющий элемент (пускатель, ПРК) устанавливается в электрическом щите.

Данная схема подойдет, если щит стоит в том же помещении, где нужно выполнить управление двигателем, я бы еще добавил для нечастных коммутаций и если управление двигателем будет удобно со щита.

  • Автоматический выключатель – пускатель IP20 – пост кнопочного управления IP54 — двигатель.
  • ПРК32/80 — двигатель.

В первом случае получим: 4,2+8,64+6,38+5=24,22$

ПРК32/80 стоит 19,16$

Разница в цене около 20% в пользу ПРК32/80.

Цитата из каталога (про ПРК):

Цена гораздо ниже, чем при покупке автоматического выключателя и теплового реле перегрузки в силу использования регулируемого теплового расцепителя в автоматических выключателях защиты двигателя.

Думаю, все это проделки маркетологов, которые сравнивали ПРК не с тем, чем следовало бы

Исходя из этого, можно сказать, что производители слегка приврали, т.к. выгода от применения ПРК в лучшем случае составит 20%, при этом в плане удобства управления, на мой взгляд, ПРК уступает электромагнитным пускателям (контакторам).

P.S. Я не в коем случае не против ПРК, я просто хочу быть объективным.  Возможно, в ближайшее время начну их применять в своих проектах.

Советую почитать:

220blog.ru

виды, принцип работы, характеристики, подключение :: SYL.ru

Электромагнитный пускатель 220 В позволяет осуществлять коммутацию в цепях переменного (и постоянного) тока. Обычно такие устройства используются при включении мощных потребителей – электродвигателей, нагревателей и т. д. Необходимость его оправдана в тех случаях, когда требуется часто включать и отключать нагрузку.

Применение магнитных пускателей

пускатель электромагнитный 220В

Чаще всего электромагнитные пускатели используется для запуска, остановки и реверса асинхронных электродвигателей. Но поскольку эти устройства очень неприхотливы, они могут использоваться для дистанционного управления освещением, в компрессорных установках, насосах, кран-балках, электрических печах, конвейерах, кондиционерах. Область применения магнитных пускателей очень широкая. Но в последнее время пускатели были вытеснены электромагнитными контакторами. Но, по сути, эти два прибора по конструкции и характеристикам мало чем отличаются. Даже схемы включения одинаковы.

Как работает пускатель?

Электромагнитный контактор работает по следующей схеме:

  1. На рабочую катушку электромагнитного пускателя подаётся напряжение.
  2. Вокруг этой катушки появляется магнитное поле.
  3. Сердечник из металла, который расположен рядом с катушкой, втягивается внутрь.
  4. К сердечнику произведено крепление силовых контактов.
  5. При втягивании сердечника замыкаются силовые контакты, на нагрузку поступает ток.

В самом простом случае магнитные пускатели управляются при помощи всего двух кнопок — «Пуск» и «Стоп». При необходимости можно осуществить реверс — делается это при помощи соединения двух магнитных пускателей с использованием специальной схемы.

Как устроен электромагнитный пускатель?

Всего имеется две основные части у этого устройства:

контактор электромагнитный

  1. Контактный блок.
  2. Непосредственно пускатель.

Контактный блок устанавливается поверх корпуса пускателя. Он предназначен для того, чтобы расширить функционал схемы управления. С помощью дополнительного блока можно:

  • Осуществить реверсивное движение электрического двигателя.
  • Запитать лампу, которая сигнализирует о работе мотора.
  • Включить дополнительное оборудование.
  • Но контактная приставка не всегда используется, в большинстве случаев достаточно одного пускателя.

Контактная приставка

степень защиты

Этот механизм включает в себя две пары нормально разомкнутых и столько же нормально замкнутых контактов. Сверху пускателя имеются полозья и зацепы, именно к ним и производится крепление приставки. В итоге эта система жёстко связана с силовыми контактами пускателя и работает одновременно с ними.

Нормально замкнутые контакты по умолчанию соединяют элементы цепи, а нормально разомкнутые разрывают. При включении магнитного пускателя, когда сердечник замыкает силовые элементы, нормально замкнутые контакты размыкаются, а нормально разомкнутые замыкаются.

Конструкция магнитного пускателя

В общем, можно выделить две части — верхнюю и нижнюю. Сверху располагается группа контактов, подвижная часть электромагнита, связанная с силовыми переключателями, а также дугогасительная камера. В нижней части расположены катушка и возвратная пружина, а также вторая половина электромагнита.

пускатель электромагнитный 220В на дин-рейку

При помощи пружины верхняя часть возвращается в изначальное положение после того, как прекратится подача напряжения на катушку. При этом силовые контакты размыкаются. Электромагнит собран из пластин Ш-образной формы, изготовленных из технической трансформаторной стали. Катушка наматывается медным проводом, причём количество витков зависит от того, на какое напряжение она рассчитана.

Секторы с обозначениями

Параметры находятся на пускателе, всего имеется три сектора:

  1. В первом указываются, где можно применять магнитный пускатель, а также общая информация о нём. А именно: частота переменного тока, номинальное значение тока, условный тепловой ток. Например, обозначение АС-1 говорит о том, что при помощи таких механизмов можно коммутировать цепи питания тэнов, ламп накаливания, других слабоиндуктивных нагрузок.
  2. Во втором секторе указывается, какая максимальная мощность нагрузки может коммутировать с силовыми контактами.
  3. В третьем секторе обычно обозначается схема устройства: в неё включены силовые и вспомогательные контакты, катушка электромагнита. В том случае, если по всем контактам на схеме от катушки идет пунктирная линия, то это означает, что они работают синхронно.

Контактные группы пускателей

Силовые контакты обозначаются следующим образом:

  • 1L1, 3L2, 5L3 — это входящие, на них подается питание от сети переменного или постоянного тока.
  • 2Т1, 4Т2, 6Т3 — выходящие силовые контакты, которые соединяются с нагрузкой.

На самом же деле совершенно неважно, куда вы подключите источник питания, а куда нагрузку. Просто такая схема является общепринятой, ее и необходимо использовать.

виды электромагнитных пускателей

Ведь если придется другому человеку проводить ремонт, он просто не сможет сразу разобраться в том, что было намудрено монтажником. Вспомогательная группа контактов 13НО–14НО предназначена для того, чтобы осуществить самоподхват. Другими словами, эту пару используют, чтобы во время включения электродвигателя не удерживать пусковую кнопку постоянно нажатой.

Кнопка остановки

Независимо от вида электромагнитного пускателя, используемого в конструкции, управление производится при помощи двух кнопок – «Пуск» и «Стоп». Может присутствовать включение реверса. Кнопка остановки отличается от других тем, что у нее красный окрас. Нормально замкнутые контакты механически соединены с кнопкой. Поэтому при работе устройств ток протекает через них беспрепятственно.

пускатель электромагнитный 220В нормально открытый

Если кнопку не нажимать, то металлическая планка под действием пружины замыкает два контакта. При необходимости остановки питания устройства нужно просто нажать на кнопку – контакты при этом разомкнутся. Но фиксации нет, как только вы отпустите кнопку, контакты вновь замкнутся.

Поэтому для управления работой электродвигателей используются специальные схемы включения электромагнитных пускателей 220В. На дин-рейку такие устройства устанавливаются без проблем, поэтому они могут использоваться даже в самых маленьких монтажных блоках.

Кнопка запуска

Она обычно имеет зеленый или черный цвет, механически соединяется с нормально разомкнутой группой контактов.

пускатель электромагнитный 220В 25А

Как только нажимаете на кнопку запуска, происходит замыкание цепи и по контактам протекает электрический ток. Отличие от кнопки остановки только в том, что по умолчанию контакты находятся в разомкнутом состоянии. Пружина удерживает контактную группу в разомкнутом положении и позволяет после запуска вернуть кнопку в начальное положение. Именно такой принцип работы электромагнитных пускателей 220В, используемых в схемах управления большими нагрузками.

Классическая схема включения

При реализации такой схемы выполняются следующие действия:

  1. При нажатии на кнопку «Пуск» происходит замыкание контактов и подача напряжения на нагрузку.
  2. При нажатии на кнопку «Стоп» контакты пускателя размыкаются и прекращается подача напряжения.

В качестве нагрузки можно подключать ТЭНы, электродвигатели, иные приборы. Нормально открытый электромагнитный пускатель 220В можно использовать для включения абсолютно любой нагрузки.

К силовой части схемы относятся:

  • Контакты для подключения трех фаз – «А», «В», «С».
  • Автоматический выключатель. Он устанавливается между источником питания и входом электромагнитного пускателя 220В 25А. Дело в том, что 380В – это межфазное напряжение, а если проводить замер между нулем и любой из фаз, оно будет равно 220В.
  • Нагрузка – мощный потребитель электроэнергии (двигатель, нагревательный элемент).

Вся цепь управления подключается к нулю и фазе «А». Цепь состоит из таких компонентов:

  • Кнопки запуска и остановки.
  • Катушки.
  • Вспомогательного контакта (включается параллельно кнопке запуска).

Работа классической схемы

Как только включается автоматический выключатель, на верхних контактах пускателя появляется три фазы, вся схема переводится в режим ожидания. Фаза под литерой «А» проходит по цепи:

  • Через замкнутые контакты кнопки остановки.
  • На контакт кнопки запуска.
  • На вспомогательную группу контактов.

При этом схема полностью подготовлена к работе. Как только замыкаются контакты под воздействием кнопки запуска, на катушке появляется напряжение и ее сердечник втягивается. При этом сердечник тянет за собой группу контактов, замыкая их.

пускатель электромагнитный 220В принцип работы

В нижней части магнитного пускателя находятся силовые контакты, на которых также появляется напряжение, которое далее идет к потребителю электроэнергии. После отпускания кнопки запуска силовые контакты будут замкнуты за счет реализации схемы с «подхватом». При этом фаза идет не через контакты кнопки запуска к электромагниту, а посредством вспомогательной группы.

Степень защиты

Лучше всего в работе показывают себя приборы со степенью защиты IP54. Их можно использовать во влажных и очень пыльных помещениях. Без проблем можно его установить на открытом месте. Но если монтаж производится внутри шкафа, то достаточно использовать устройства со степенью защиты IP20. Чем выше числовой индекс, тем в более жестких условиях может производиться эксплуатация прибора – это применимо к любому электрическому устройству. Обязательно нужно учитывать и такие факторы:

  • Наличие теплового реле, при помощи которого производится отключение нагрузки при превышении максимального тока потребления. Особенно актуально использование такого прибора при управлении электродвигателями.
  • Если имеется функция реверса, то в конструкции присутствует две катушки и шесть контактов. По сути, это пара пускателей, совмещенных в одном корпусе.
  • Обязательно нужно учитывать износостойкость прибора, особенно если очень часто включается и отключается нагрузка пускателем.

Не последнее место при эксплуатации любого устройства, в том числе и электромагнитного пускателя 220В, занимает человеческий фактор. Неквалифицированные работники способны сломать всю цепь управления, так как они не знают, как правильно работать на оборудовании. Если сработала тепловая защита, то включение производить сразу же нельзя. И нельзя заново запускать двигатель — сначала нужно проверить, не заклинил ли мотор, нет ли короткого замыкания в цепи питания.

www.syl.ru

Контактор и магнитный пускатель в автоматике



Магнитный пускатель (контактор) — это устройство, предназначенное для коммутации силовых электрических цепей. Чаще всего применяется для запуска/останова электродвигателей, но так же может использоваться для управления освещением и другими силовыми нагрузками.

Чем отличается контактор от магнитного пускателя?

Многих читателей могло покоробить от данного нами определения, в котором мы (сознательно) смешали понятия «магнитный пускатель» и «контактор», потому что в данной статье мы постараемся сделать упор на практику, нежели на строгую теорию. А на практике эти два понятия обычно сливаются в одно. Немногие инженеры смогут дать вразумительный ответ, чем же они действительно отличаются. Ответы различных специалистов могут в чём-то сходиться, а в чём-то противоречить друг другу. Представляем Вашему вниманию нашу версию ответа на этот вопрос.

Контактор — это законченное устройство, не предполагающее установки дополнительных модулей. Магнитный пускатель может быть оборудован дополнительными устройствами, например тепловым реле и дополнительными контактными группами. Магнитный пускателем может называться бокс с двумя кнопками «Пуск» и «Стоп». Внутри может находится один или два связанных между собой контактора (или пускателя), реализующими взаимную блокировку и реверс.

Магнитный пускатель предназначен для управления трёхфазным двигателем, поэтому всегда имеет три контакта для коммутации силовых линий. Контактор же в общем случае может иметь другое количество силовых контактов.

Устройства на этих рисунках правильнее называть магнитными пускателями. Устройство под  цифрой один предполагает возможность установку дополнительных модулей, например теплового реле (рисунок 2). На третьем рисунке блок «пуск-стоп» для управления двигателем с защитой от перегрева и схемой автоподхвата. Это блочное устройство — тоже называют магнитным пускателем.

А вот устройства на следующих рисунках правильнее называть контакторами:

Они не предполагают установку на них дополнительных модулей. Устройство под цифрой 1 имеет 4 силовых контакта, второе устройство имеет два силовых контакта, а третье -три.

В заключение скажем: обо всех названных выше отличиях контактора и магнитного пускателя полезно знать для общего развития и помнить на всякий случай, однако придётся привыкнуть к тому, что на практике эти устройства никто обычно не разделяет.

Устройство и принцип работы магнитного пускателя

Устройство контактора чем-то похоже на электромагнитное реле — оно так же имеет катушку и группу контактов. Однако контакты магнитного пускателя  — разные. Силовые контакты предназначены для коммутации той нагрузки, которой управляет этот контактор, они всегда нормально открытые. Существуют еще дополнительные контакты, предназначенные для реализации управления пускателем (об этом речь пойдёт ниже). Дополнительные контакты могут быть нормально открытыми (NO) и нормально закрытыми (NC).

В общем случае устройство магнитного пускателя выглядит так:

Когда на катушку пускателя подаётся управляющее напряжение (обычно контакты катушки обозначаются А1 и А2), подвижная часть якоря притягивается к неподвижной и это приводит к замыканию силовых контактов. Дополнительные контакты (при наличии) механически связаны с силовыми, поэтому в момент срабатывания контактора они также меняют своё состояние: нормально открытые — замыкаются, а нормально закрытые, наоборот, размыкаются.

Схема подключения магнитного пускателя

Так выглядит простейшая схема подключения двигателя через пускатель. Силовые контакты магнитного пускателя KM1 подключены к клеммам электродвигателя. Перед контактором установлен автоматический выключатель QF1 для защиты от перегрузки. Катушка реле (А1-А2) запитана через нормально разомкнутую кнопку «Пуск» и нормально замкнутую кнопку «Стоп». При нажатии кнопки «Пуск» на катушку приходит напряжение, контактор срабатывает, запуская электродвигатель. Для остановки двигателя нужно нажать «Стоп» — цепь катушки разорвётся и контактор «расцепит» силовые линии.

Эта схема будет работать только если кнопки «пуск» и «стоп» — с фиксацией.

Вместо кнопок может быть контакт другого реле или дискретный выход контроллера:

Контактор можно включить и выключить с помощью ПЛК. Один дискретный выход контроллера заменит кнопки «пуск» и «стоп» — они будут реализованы логикой контроллера.

Схема «самоподхвата» магнитного пускателя

Как уже было сказано, предыдущая схема с двумя кнопками работает только если кнопки с фиксацией. В реальной жизни её не используют из-за её неудобства и небезопасности. Вместо неё используют схему с автоподхватом (самоподхватом).

На этой схеме используется дополнительный нормально открытый контакт пускателя. При нажатии на кнопку «пуск» и сработки магнитного пускателя дополнительный контакт КМ1.1 замыкается одновременно с силовыми контактами. Теперь кнопку «пуск» можно отпустить — её «подхватит» контакт КМ1.1.

Нажатие кнопки «стоп» разорвёт цепь катушки и вместе с этим разомкнётся доп. контакт КМ1.1.

Подключение двигателя через пускатель с тепловым реле

На рисунке изображён магнитный пускатель с установленным на него тепловым реле. При нагревании электродвигатель начинает потреблять больший ток — его и фиксирует тепловое реле. На корпусе теплового реле можно задать значение тока, превышение которого вызовет сработку реле и замыкание его контактов.

Нормально закрытый контакт теплового реле использует в цепи питания катушки пускателя и рвёт её при сработке теплового реле, обеспечивая аварийное отключение двигателя. Нормально открытый контакт теплового реле может быть использован в сигнальной цепи, например для того, чтобы зажечь лампу «авария» при отключении электродвигателя по перегреву.

Реверсивный пускатель

Реверсивный магнитный пускатель — устройство, с помощью которого можно запускать вращение двигателя в прямом и обратном направлениях. Это достигается за счёт смены чередования фаз на клеммах электродвигателя. Устройство состоит из двух взаимоблокирующихся контакторов. Один из контакторов коммутирует фазы в порядке А-В-С, а другой, например, А-С-В.

Взаимная блокировка нужна, чтобы нельзя было случайно одновременно включить оба контактора и устроить межфазное замыкание.

Схема реверсивного магнитного пускателя выглядит так:

Реверсивный пускатель может изменить чередование фаз на двигателе, коммутируя питающее двигатель напряжение через контактор КМ1 или КМ2. Обратите внимание, что порядок следования фаз на этих контакторов различается.

При нажатии Кнопки «Прямой пуск» двигатель запускается через контактор КМ1. При этом размыкается дополнительный контакт этого пускателя КМ1.2. Он блокирует запуск второго контактора КМ2, поэтому нажатие кнопки «Реверсивный пуск» ни к чему не приведёт. Для того чтобы запустить двигатель в обратном (реверсивном) направлении, нужно сначала остановить его кнопкой «Стоп».

При нажатии кнопки «Реверсивный пуск» срабатывает контактор КМ2, а его дополнительный контакт КМ2.2 блокирует контактор КМ1.

Автоподхват контакторов КМ1 и КМ2 осуществляется с помощью нормально открытых контактов КМ1.1 и КМ2.1 соответственно (см. раздел «Схема самоподхвата магнитного пускателя»).




lazysmart.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о