Закрыть

Автоматический выключатель устройство и принцип действия: Устройство и принцип работы автоматического выключателя | Полезные статьи

Содержание

Принцип действия автоматического выключателя

В наше время в быту уже не встретишь плавких предохранителей – это вчерашний день. Сегодня на смену «пробкам» пришли автоматические выключатели модульного исполнения, которые обеспечивают надежную защиту электропроводки квартиры. Наверняка многие задавались вопросом о том, как работает автоматический выключатель. С другой стороны знание принципа работы автоматического выключателя помогут правильно определить причину его отключения и соответствующую проблему, которая привела к его отключению. Ниже кратко охарактеризуем данный электрический аппарат и рассмотрим его принцип действия. Для начала определимся с понятием автоматический выключатель. Это коммутационный аппарат, который предназначен для включения и отключения в цепях тока нагрузки в обычном, нормальном режиме, а также для автоматического отключения (разрыва цепи) при протекании через него тока перегрузки или тока короткого замыкания. Функции отключения аппарата выполняют так называемые расцепители.
Модульный автоматический выключатель, как правило, имеет независимый, тепловой и электромагнитный расцепители. Независимый расцепитель или механизм свободного расцепления предназначен для отключения аппарата вручную. Кроме того, данный механизм отключает автомат при воздействии на него теплового или электромагнитного расцепителей.

Устройство автоматического выключателя

Устройство автоматического выключателя. Тепловой расцепитель предназначен для автоматического отключения выключателя при протекании по нему тока, значение которого больше номинального. Основной конструктивный элемент данного типа расцепителя – биметаллическая пластина, которая деформируется в результате нагрева при протекании определенного значения тока. При достижении заданного положения пластина воздействует на механизм свободного расцепления, чем обеспечивается автоматическое отключение аппарата. Время, в течение которого происходит отключение автоматического выключателя, обратно пропорционально величине протекаемого через него тока.
То есть чем больше ток, протекающий через данный автоматический выключатель, тем быстрее произойдет его автоматическое отключение. Например, автоматический выключатель, рассчитанный на номинальный ток в 16 А при протекании через него тока величиной в 19 А отключится в течении 40-45 мин. А при значении тока 32 А отключиться за 5-10 мин. Следует отметить, что на скорость срабатывания теплового расцепителя оказывает влияние температура окружающей среды. Таким образом, летом, при температуре 450 номинальный ток 16-ти амперного аппарата составляет 15 А. В то время как зимой, при температуре -200 величина предельно допустимого тока для данного аппарата увеличивается до 21 А. Благодаря тепловому расцепителю, автоматический выключатель осуществляет защиту конструктивных элементов электропроводки квартиры от перегрузки, которая возникает при включении в бытовую сеть электроприборов, мощность которых больше максимально допустимой для электропроводки. Следующий тип расцепителя – электромагнитный.
Он предназначен для отключения автоматического выключателя при протекании через него большого значения тока – тока короткого замыкания. Такой режим работы имеет место при повреждении электропроводки или включенного в сеть бытового электроприбора. Рассмотрим принцип работы электромагнитного расцепителя. Электромагнитный расцепитель конструктивно представляет собой электромагнит с якорем, включенный в цепь последовательно. При протекании через автоматический выключатель номинального тока сердечник электромагнита находится в неподвижном состоянии. Если через электромагнит будет протекать большое значение тока (выше тока уставки), то он втянет сердечник с якорем и воздействует на механизм расцепления автоматического выключателя. То есть при протекании тока короткого замыкания автомат отключится автоматически действием электромагнитного расцепителя. При этом время отключения автоматического выключателя составляет доли секунды. Ток, при котором происходит срабатывание электромагнитного расцепителя можно определить по классу автоматического выключателя.
Например, электромагнитный расцепитель аппарата класса В отключается при протекании через него 3-5 номинальных значений тока. Автомат класса С отключится при протекании через него 6-10 номиналов. Данная особенность учитывается при выборе автоматических выключателей для защиты электропроводки. Это связано с тем, что некоторые потребители электрической энергии, в частности электродвигатели, характеризуются большим значением пускового тока. То есть если пусковой ток больше тока срабатывания электромагнитного расцепителя, то данный электродвигатель не запустится по причине отключения автоматического выключателя. Решением проблемы в данном случае является установка автоматического выключателя следующего класса (например, замена аппарата с классом В на аналогичный по номинальному току теплового расцепителя аппарата с классом С).

Устройство и принцип работы автоматических выключателей в различных ситуациях

Для обеспечения защиты электрических сетей используют автоматические выключатели. Подобное оборудование успело завоевать популярность благодаря легкому монтажу и ремонту, а также компактным габаритам.

Внешне данное устройство выглядит как короб из пластика, который обладает сопротивлением высоким температурам. Передняя панель оснащается рукояткой для включения и отключения оборудования. Задняя панель оснащена специальным фиксатором для закрепления выключателя, а верхние и нижние крышки оснащаются клеммами особой формы. В этой статье мы рассмотрим типы данных устройств, их конструкцию, а также принцип работы дифференциального автоматического выключателя.

Вернуться к содержанию

Виды автоматических выключателей

Подобные устройства делятся на несколько типов:

  • установочные автоматы – оснащаются пластиковым коробом, благодаря чему данные устройства можно монтировать в жилых помещениях без риска получения повреждений током;
  • универсальные автоматы – не оснащаются защитным корпусом, а потому их можно монтировать только в специальном распределительном оборудовании;
  • быстродействующие автоматы – особенность заключается в том, что время реагирования составляет менее 5 миллисекунд;
  • автоматы замедленного действия – в таких моделях время срабатывания колеблется в диапазоне от 10 до 100 миллисекунд;
  • селективные – подобное оборудование можно настроить на определенное время выключения в области тока короткого замыкания;
  • электрооборудование обратного тока – техника срабатывает исключительно при смене направления тока в определенном участке;
  • поляризованные устройства – обесточивают участок цепи при условии значительного скачка силы тока;
  • неполяризованные – работают так же, как и предыдущие только во всех направлениях тока.

Разные виды автоматических выключателей

Скорость отключения напрямую зависит от принципа действия устройства. Также скорость отключения зависит от наличия условий для моментального обесточивания определенного участка цепи. Данные условия созданы в электрооборудовании, которые работают по методу токоограничения.

Вернуться к содержанию

Конструкция автоматического выключателя

Методы работы, а также конструктивные особенности подобных устройств зависят от области применения и задачами, возложенными на устройство. Запуск и выключение оборудования может происходить в ручном режиме или посредством электромагнитного и электродвигательного привода.

Ручная схема отключения присутствует в защитных устройствах, которые рассчитаны на силу тока, не превышающую 1000 ампер. Главной особенностью подобной техники является предельная коммутационная способность, которая не связана со скоростью движения рукояти. Это значит, что операция должна быть проведена до конца, чтобы изменения возымели эффект.

В некоторых случаях возникает необходимость самостоятельного ремонта выключателей, рекомендуем прочитать данную статью с пошаговой инструкцией. О том, как правильно обустроить заземление в доме можно узнать, перейдя по ссылке http://vse-postroim-sami.ru/engineering-systems/electrician/433_kak-sdelat-zazemlenie-v-dome/ Для разведения проводки придется провести такую операцию, как штробление стен.

Электродвигательный или электромагнитные элементы запитаны от электрического тока. Такие схемы должны быть оснащены защитой от произвольного повторного запуска. Также процесс включения устройства должен останавливаться при условии повышения или понижения напряжения в защищаемом участке цепи от 85 до 110 % от нормального.

Во время перегрузки сети или короткого замыкания прекращение работы автомата происходит в независимости от положения рукояти, отвечающей за запуск/отключение оборудования.

Конструкция автоматического выключателя с электромагнитным расцепителем

Одним из самых важных компонентов автоматических выключателей можно считать расцепитель. Данная деталь контролирует определенную характеристику участка сети и во время аварийной ситуации воздействует на специальный элемент, который выключает оборудование. Помимо этого, расцепитель необходим для удаленного выключения автомата. Самыми распространенными на современном рынке являются нижеперечисленные виды:

  • электромагнитные – осуществляют защиту проводки от коротких замыканий;
  • термические – нужны для осуществления защиты от скачков силы тока;
  • смешанные;
  • полупроводниковые – данный тип отличается легкостью регулировки и значительной стабильностью настроек отключения.

В отдельных случаях, когда требуется осуществить соединения цепи без электрического тока, могут использовать защитное электрооборудование, не оснащенные расцепителями.

В современном мире производится огромное количество защитного электрооборудования, которое можно использовать в разных климатических условиях и размещать в разных помещениях. Также разные серии устройств рассчитаны на установку в сложных условиях и характеризуются различной степенью сопротивления агрессивным воздействиям внешних факторов.

Вся необходимая информация, с которой следует ознакомиться до покупки подобного оборудования, находится в нормативно-технической документации. В большинстве случаев она представлена ТУ производителя. В редких случаях для обобщения товаров, которые имеют используются в различных сферах и изготавливаются одновременно большим числом компаний, уровень документации может быть повышен, причем, в некоторых случаях до Госстандарта.

Разные фиды расцепителей

Конструкция данного оборудования включает в себя следующие компоненты:

  • система автоматического расцепления;
  • система контроля;
  • система контактов;
  • решетка гашения дуги;
  • расцепители.

Контактная система представлена некоторым количеством статичных контактов, которые установлены в корпусе, а также несколькими динамичными контактами. Последние закрепляются на полуоси рукояти управления при помощи шарниров. Система предназначена для одинарного разрыва участка электрической сети.

Механизм погашения дуги монтируется в обоих полюсах автомата и необходим для захвата дуги в и ее охлаждение до полного исчезновения. Механизм, по сути, является камерой для гашения дуги, в которой установлена деионная решетка из металлических пластинок. Иногда механизм может оснащаться специальными искрогасителями в виде фибровых пластинок.

Система автоматического расцепления является шарнирным устройством на три или четыре звена. Данная система используется для мгновенного расцепления и выключения системы контактов. Может использоваться и в ручных устройствах, и в автоматических.

Электромагнитный расцепитель является обычным электромагнитом с крюком. Обрудование предназначено для выключения всей системы в автоматическом режиме при коротком замыкании. Некоторые расцепители дополнительно оснащаются системой гидравлического замедления.

Тепловой расцепитель в автоматах представлен специальной металлической пластинкой. При значительном повышении напряжения данная пластинка деформируется, после чего осуществляется автоматическое выключение. Время выдержки сокращается по мере повышения напряжения.

Схема автоматического выключателя с тепловой защитой

Полупроводниковый элемент представлен измерительным устройством, магнитом и блоком реле. Магнит оказывает воздействие на систему автоматического расцепления автоматического выключателя.

Измерительный элемент в данном случае представлен трансформатором электричества или магнитным усилителем. Первый используется для переменного тока, а второй для постоянного.

В большинстве защитного электрооборудования используются совмещенные расцепители, которые используют термоэлементы для защиты от повышения силы тока и магнитные катушки для защиты от коротких замыканий.

В конструкции защитного устройства присутствуют некоторые компоненты, которые монтируются внутрь или снаружи автомата. Данные элементы могут быть различного рода расцепителями, дополнительными контактами, приводами для удаленного контроля, сигнализацией автоматического выключения.

Вернуться к содержанию

Принцип работы автоматического выключателя

В обычном рабочем режиме через автоматический выключатель проходит ток, сила которого должна быть меньшей и равной нормальному значению. Электричество, которое используется для запитки устройства, подается на клемму в верхней части устройства, которая соединена со статичным контактом. С этого контакта ток идет на динамичный контакт, после чего проходит через металлический проводник и попадает на катушку соленоида.

После прохождения через катушку электричество идет по термическому расцепителю, и только после этого ток приходит на клемму в нижней части защитного электрооборудования.

Во время значительного повышения напряжения или риска короткого замыкания защитное электрооборудование отключает сеть. Это происходит с помощью системы автоматического расцепления, которая запускается посредством термического или электромагнитного расцепителя.

Принцип работы автоматического выключателя

Вернуться к содержанию

Принцип работы автомата во время перегруза цепи

Главное назначение автоматических выключателей заключается в обеспечении защиты участка сети во время перегруза или короткого замыкания. Перегруз сети означает, что сила тока в определенном участке перевалила через максимальное значение для данного защитного электрооборудования. Слишком сильный ток проходит по тепловому расцепителю, вызывая его деформацию. В зависимости от разницы действующей силы тока и обычного значения деформация достигает определенного уровня, результатом которой может стать отключение автомата.

Тепловая защита автомата срабатывает не моментально, поскольку для деформации металлической пластинки необходимо достаточно нагреть ее. Время на отключение напрямую зависит от избыточной силы тока в защищаемом участке и может составлять как несколько секунд, так и час.

Подобная задержка необходима, чтобы автомат не срабатывал постоянно при небольших или непродолжительных скачках силы тока в определенном участке сети. В большинстве своем, такие скачки происходят во время включения электрооборудования с высокими стартовыми токами.

Сила тока, при которой срабатывает термический элемент в защитном электрооборудовании, выставляется посредством регулировочной детали еще на заводе-производителе. Как правило, данное значение должно превышать нормальное число в 1.1 – 1.5 раза.

Также следует знать, что в помещениях с высокой температурой автомат может работать некорректно, поскольку термический элемент может деформироваться быстрее, чем нужно. В свою очередь в помещениях с низкой температурой автомат сработает позже необходимого времени.

Принцип работы устройства во время перегруза цепи

Перегрузка электрической сети возникает в случае подключения большого количества приборов, общая мощность потребления которых, превышает нормальную мощность. Включение нескольких мощных электроприборов скорее всего вызовет срабатывание термического элемента.

Если такое произошло, следует до включения автомата определиться с тем, какие приборы следует отключить, произвести отключение и немного подождать. Это время необходимо, чтобы термический элемент в защитном электрооборудовании остыл и встал в начальное положение.

Вернуться к содержанию

Принцип работы автоматического выключателя во время короткого замыкания

Устройство автоматических выключателей позволяет защищать электрическую цепь не только от перегруза, но и от коротких замыканий. Во время таких аварийных ситуаций ток повышается настолько, что может расплавиться изоляция проводки. Для предотвращения такой неприятности следует моментально отключить сеть. Эта задача возложена на электромагнитный расцепитель.

Данный элемент состоит из катушки соленоида и стального сердечника, который фиксируется специальной пружиной. Моментальный скачок силы тока в обмотке катушки ведет к пропорциональному повышению магнитной индукции, вследствие чего сердечник плотнее прилегает к пружине. По мере нарастания магнитной индукции стальной сердечник преодолевает воздействие пружины и прижимает выключатель.

После этого моментально размыкаются контакты, и подача электричества в защищаемый участок прекращается. Электромагнитный элемент включается моментально и предотвращает воспламенение изоляции.

Во время отключения контактов при аварийной ситуации между ним возникает так называемая дуга, максимальная температура которой составляет 3000 градусов. Само собой разумеется, что элементы защитного электрооборудования следует защитить от настолько высоких температур. Для этих целей автоматы оснащаются специальными системами гашения дуги. Это устройство внешне похоже на коробку, которая состоит из нескольких пластинок из металла.

Разные дугогасительные камеры

Высокотемпературная дуга появляется в месте отключения контактов. После этого один край дуги движется по динамичному контакту, а другой проходит по статичному элементу, переходит на металлический проводник, а затем доходит до задней грани системы гашения дуги. Попадая на решетку из пластинок, дуга делится на части, теряет температуру и в итоге гаснет. Снизу автоматического выключателя находятся специальные отверстия для вывода образующихся в момент гашения дуги газов.

Если защитное электрооборудование сработало из-за короткого замыкания, то у вас не получится включить электричество, пока вы не обнаружите саму причину возникновения поломки. В большинстве случаев проблема кроется в выходе из строя какого-либо электрооборудования.

Для повторного запуска устройства следует отсоединить электрооборудование и попытаться запустить выключатель. Если сделать это получилось и оборудование не выбило в ближайшее время, значит, проблема заключается в поломке техники. Останется только опытным путем выяснить, какое именно устройство вышло из строя. Если автоматический выключатель срабатывает после отключения всех приборов, значит, проблема в нарушении изоляции проводки. Для устранения подобной неисправности придется вызывать специалистов, которые смогут обнаружить и устранить поломку.

Если вы столкнулись с такой проблемой, как постоянные отключения защитного электрооборудования, то не стоит устанавливать новое устройство с более высоким номинальным значением силы тока – эти действия проблему не разрешат. Данное оборудование монтируется с учетом площади поперечного сечения провода, а значит, слишком высокий ток попросту не сможет возникнуть в проводке. Выяснить причину неисправности и устранить ее помогут соответствующие специалисты, самостоятельные действия крайне рискованны.

Вернуться к содержанию

Видео

Полезно? Сохраните себе на стену! Спасибо за лайк!

Автоматические выключатели — устройство, принцип работы, классификация

Автоматические выключатели (могущие также именоваться автоматами) — приборы, используемые для коммутации электросети, а также для защиты проводки от таких явлений как замыкание и излишняя нагрузка. Данный прибор объединяет в себе сразу две основные функции: управленческую и защитную. Выполнение защитной функции достигается путем отключения того сегмента электроцепи за который отвечает автомат при возникновении значительной перегрузки или коротком замыкании.

Виды автоматических выключателей

Автоматы подразделяются в зависимости от мощности цепей, для которых они предназначены. Всего выделяются три основных вида данных устройств:

  1. Модульные выключатели, которые наиболее распространены в повседневной жизни и используются в стандартных электросетях. Модульность их конструкции обусловлена стандартной шириной выключателя, зависящей от числа полюсов устройства и кратной 17,5 мм.  
  2. Автоматы, выполненные в литом корпусе, могут применяться в самых разных электрических цепях, где сила тока варьируется от шестнадцати до тысячи ампер. 
  3. Выключатели воздушного типа используются в электросетях большой мощности с силой тока превышающей тысячу ампер. Такие аппараты применяются преимущественно в производственной сфере. 

Конструкция автоматических выключателей

Корпус автомата выполнен из диэлектрика. Конструктивно данное устройство состоит из нескольких основных элементов:

  • Рукояти управления, которая позволяет включать либо отключать аппарат;
  • Теплового расцепителя, выполненного из биметалла, который позволяет отключать прибор от электроцепи в случае когда сила тока превышает безопасное значение. Это достигается путем придания расцепителю формы пластины, которая под воздействием температуры от избыточной силы тока выгибается и производит выключение автомата;
  • Электромагнитного расцепителя, выполненного в форме катушки с проволокой, намотанной на нее. Внутри катушки располагается сердечник с пружиной. Электромагнитный расцепитель предназначен для защиты от коротких замыканий. Это достигается генерированием в катушке электромагнитного поля, возникающего из-за резкого возрастания силы тока при замыкании, которое, преодолевая сопротивление пружины, перемещает сердечник вниз и отключает устройство;
  • Двух контактов (подвижного и неподвижного) которые дают возможность включать и выключать устройство;
  • Двух клемм, а также фиксатора для крепления автомата на DIN-рейку.
    Более подробно читайте про конструкцию автоматических выключателей

При нормальном функционировании прибора электроток попадает в автомат через провод, имеющий подключение к клемме, расположенной в верхней части аппарата. Затем, проходя через пластину теплового и катушку электромагнитного расцепителей, а также через неподвижный и подвижный контакты (во включенном положении замыкающих цепь), электроток достигает клеммы, расположенной внизу выключателя, и покидает устройство.

Посмотрите также: промышленные автоматические выключатель серии А3700

Работа автоматического выключателя при перегрузке электросети

При возникновении перегрузки пластина теплового расцепителя выгибается, что ведет к выключению устройства. При этом время, которое необходимо пластине для изгибания, находится в зависимости от уровня перегрузки и может варьироваться от нескольких секунд до часа. Так как данный аппарат является аналоговым устройством то минимальное значение перегрузки, способное вызвать срабатывание автоматического выключателя, варьируется от тринадцати до сорока пяти процентов от номинального мощности устройства. Однако на температуру биметаллической пластины оказывает влияние и окружающая среда, что может привести к уменьшению силы тока, необходимой для срабатывания выключателя в нагретом помещении и увеличению избыточной нагрузки, требующейся для отключения устройства при пониженной температуре среды. Поэтому для расчета точных параметров автоматического выключателя необходимо учитывать коэффициент тепловой поправки, который указывается производителями в технической документации к устройству. Из-за инерционности теплового расцепителя автоматический выключатель срабатывает не мгновенно, что не допускает срабатывания аппарата при кратковременных перегрузках.

Перегрузка в сети может возникнуть при подключении какого-либо прибора, имеющего слишком большую мощность для данной электросети, либо при одновременной работе нескольких мощных потребителей электроэнергии или большого количества электроприборов. Использование же автомата позволяет исключить перегрев электросети, оплавление изолирующих материалов и значительно уменьшает риск пожара, возникшего от горения проводки.    

     

Фото: электромагнитный расцепитель

Работа автоматического выключателя при коротком замыкании

Короткое замыкание в электросети ведет к многократному возрастанию силы тока за крайне небольшой промежуток времени. Это вызывает вырабатывание магнитного поля в катушке электромагнитного расцепителя и опускание сердечника, который преодолевает сопротивление пружины. Сердечник вызывает срабатывание механизма и размыкает контакты, что вызывает отключение аппарата и приводит к разрыву электрической цепи. Это дает возможность предохранить от воздействия замыкания, как сам автомат, так и проводку и подключенные к электросети приборы, предотвращая их повреждение и возгорание.

Из-за природы короткого замыкания скорость срабатывания электромагнитного расцепителя значительно превышает аналогичный показатель теплового расцепителя, но для его активации требуется куда большое значение силы тока. Для срабатывания этого устройства сила электротока должна как минимум втрое превысить номинальную мощность данного автомата.

Гашение электродуги

В автоматическом выключателе при размыкании электрической сети возникает электродуга, мощность которой находится в прямой зависимости от силы тока, который проходит через данную цепь. Образование электродуги приводит к повреждению контактов внутри автомата и значительно сокращает время эксплуатации прибора. Поэтому необходимо специальное устройство, которое позволило бы защитить автоматический выключатель от негативного воздействия электрической дуги. Для этого предназначена дугогасительная камера, представляющая собой ряд параллельных пластин, используемых для раздробления дуги и ее последующего затухания и охлаждения. Горение электродуги вызывает газообразование, поэтому для удаления газов необходимо специальное отверстие.

Из-за возникновения электрической дуги автоматические выключатели не рекомендуется применять в роли обычных выключателей. Поэтому защитная функция данного устройства превалирует над управленческой, хотя и не исключается возможность использования автоматического выключателя для коммутации.

основные виды и их особенности

Современную электрическую сеть невозможно представить себе без необходимых средств защиты, в частности, автоматического выключателя. В отличие от устаревших плавких предохранителей он предназначен для многоразовой защиты сети и электрооборудования. При этом автоматический выключатель защищает от токов короткого замыкания, излишних перегрузок, а некоторые модели даже от недопустимого падения напряжения. И вот в центре всей этой конструкции наиболее значимым элементом является расцепитель автоматического выключателя. Именно от него зависит надежность и скорость срабатывания, поэтому стоит сравнить все существующие на данный момент разновидности.

Сравнение

Итак, в числе первых можно назвать тепловой расцепитель. В силу своей конструкции тепловой расцепитель срабатывает с выдержкой времени. Чем больше превышение тока, тем быстрее срабатывает тепловой расцепитель. Так что время срабатывания может варьироваться от нескольких секунд до часа. Именно поэтому чувствительность автомата, где установлен тепловой расцепитель, всегда определяется времятоковой характеристикой и соответствует классу B, C или D.

Следующая разновидность относится к числу расцепителей мгновенного действия. Речь идет о таком понятии, как электромагнитный расцепитель. Он срабатывает за доли секунды, чем выгодно отличается от тепловых расцепителей. Однако электромагнитный расцепитель имеет и свою особенность — срабатывание происходит при существенно большем превышении номинального тока. Исходя из этого, электромагнитный расцепитель также обладает определенной чувствительностью и относится к одному из классов — A, B, C или D.

Пожалуй, самым эффективным можно назвать электронный расцепитель автоматического выключателя. Быстрая скорость срабатывания и высокая чувствительность делают электронный расцепитель идеальным средством защиты от перегрузок и токов короткого замыкания. По этой причине данный расцепитель мгновенного действия используют на больше токи.

Именно электронный расцепитель зачастую монтируют как на воздушные автоматические выключатели, так и на автоматические выключатели в литом корпусе. Воздушные автоматические выключатели подразумевают открытое исполнение (как правило, в металлическом корпусе) и рассчитаны на силу тока до нескольких тысяч ампер. Как уже было сказано, электронный расцепитель из-за моментальной скорости срабатывания идеально подходит для силовых сетей. Что же касается автоматических выключателей в литом корпусе, то их отличают компактные размеры и закрытое исполнение в корпусе из термореактивной пластмассы. Их удобно монтировать на DIN-рейку, но закрытый корпус подразумевает повышенные требования к надежности расцепителя. Таковым опять же является электронный расцепитель, где отсутствуют подвижные механические элементы.

Принцип работы

Независимо от вида расцепителя принцип его работы основан на размыкании цепи в случае превышения токовых характеристик. Любой расцепитель является неотъемлемой частью автоматического выключателя, встроенной в него или механически связанной с ним. Расцепитель автоматического выключателя под воздействием токов короткого замыкания или при превышении нагрузки инициирует освобождение удерживающего устройства в корпусе автоматического выключателя. В результате этого происходит размыкание электрической цепи.

Конструкция

Конструкция во многом зависит от разновидности расцепителя. Так, основой теплового расцепителя служит биметаллическая пластина — металлическая лента из двух полос, имеющих разные коэффициенты теплового расширения. При прохождении через нее токов, превышающих допустимое значение, биметаллическая пластина деформируется, тем самым, срабатывает механизм расцепления.

У электромагнитного расцепителя конструкция представляет собой соленоид (обмотку цилиндрической формы) с подвижным сердечником. Ток проходит по обмотке соленоида и в случае превышения токовых характеристик сердечник втягивается, воздействуя на размыкающий механизм.

А вот электронный расцепитель автоматического выключателя не основан на механическом воздействии и представляет собой несколько иную конструкцию. Он состоит из контроллера и датчиков тока. Контроллер сравнивает значения датчиков тока с установленными характеристиками, а в случае превышения заданных параметров тока дает сигнал на отключение. Таким образом, электронный расцепитель обладает более гибкими настройками, позволяя настраивать параметры автоматического выключателя под конкретные требования защиты электросети.

устройство и сферы применения, автомат защиты сети

При обеспечении защиты электросети от всевозможных сбоев используются различные приспособления и механизмы. В их числе — автоматизированные выключатели, которые предотвращают серьезные сбои в электрической цепи и сохраняют бытовые приборы от выхода из строя. Чтобы понять принцип действия автоматического выключателя, необходимо разобраться с его устройством и техническими характеристиками.

Основные типы

Внешне элемент представляет собой небольшую конструкцию из термостойкой пластмассы, на лицевой части которой находится специальный переключатель, а в задней — фиксатор-защелка. Сверху и снизу расположены винтовые клеммы. В зависимости от конструктивных особенностей и устройства, автоматические выключатели могут разделяться на следующие типы:

  1. Установочные модели — снабжены пластиковым коробом, что позволяет использовать их для всех жилищ без страха получить удар током.
  2. Универсальные агрегаты — не имеют такой защиты как предыдущая разновидность, из-за чего их используют только в специальных условиях, оснащая распределительное оборудование.
  3. Быстродействующие выключатели — характеризуются невероятной скоростью реагирования на проблемы в электрической цепи. По заявлениям производителей, скорость равна 5 миллисекундам.
  4. Устройства замедленного действия — скорость срабатывания варьируется в пределах 10−100 миллисекунд.
  5. Селективные — характеризуются поддержкой регулировки режима выключения.
  6. Электрические модели обратного тока — способны срабатывать только при изменении направления тока в каком-либо диапазоне.
  7. Поляризованные детали — отключают тот участок цепи, в котором замечается существенный скачок интенсивности тока.
  8. Неполяризованные — работают наподобие предыдущих разновидностей, но не ограничиваются одним направлением тока.

Что касается скорости отключения, то она определяется принципом работы автомата, а также соответствующими условиями для обесточивания конкретного участка. Они создаются электрооборудованием и токоограничивающими элементами.

Принцип действия и устройство

Принцип действия, конструкция и другие особенности автоматического выключателя определяются сферой эксплуатации и задачами, для которых он предназначается. Включение и выключение оборудования осуществляется как ручным образом, так и с помощью специального привода.

Первый вариант запуска имеется в защитных моделях, которые работают с силой тока до 1 тыс. ампер. Их характеризует высокая коммутационная способность, которая никак не зависит от интенсивности движения рукояти. При возникновении аварийной ситуации выключатель самостоятельно отсоединяет цепь, к чему приводит запуск механизма свободного расцепления.

Незаменимым элементом узла является расцепитель. Его задача заключается в контролировании рабочих свойств определенного участка цепи и воздействии при непредвиденных обстоятельствах на выключатель. Кроме этого, расцепитель способен удаленно отключать автомат, что немаловажно при обслуживании сложных и мощных цепей. Существуют такие виды подобных элементов:

  1. Электромагнитные — способны защищать цепь проводки от коротких замыканий.
  2. Термические — препятствуют воздействию интенсивных скачков силы тока.
  3. Смешанные.

Также в продаже имеются полупроводниковые выключатели, которые характеризуются простотой регулировки и стабильными настройками. Их используют в электрических цепях многоквартирных домов и коттеджей.

Если возникает необходимость выполнить соединение цепи при отсутствии подключения к сети, можно обойтись защитными выключателями без расцепителей. На сегодняшний день в продаже доступны сотни моделей и типов выключателей, которые подходят для различной среды эксплуатации и не боятся сверхинтенсивного использования. Отдельные серии выдерживают максимальные нагрузки и не боятся окружающих воздействий.

Выбирая подходящий выключатель автомат, нужно предварительно ознакомиться с документацией, которая поставляется вместе с ним. Это позволит подобрать оптимальный вариант для домашней сети.

Особенности конструкции

Разбираясь с принципом работы «автомата», важно знать об основных компонентах, из которых он состоит. Большинство моделей работает на основе таких узлов:

  1. Система расцепления.
  2. Контактные соединения.
  3. Узел контроля.
  4. Прибор для гашения дуги.
  5. Расцепители.

Контактная система представляет собой соединение статичных и динамичных контактов, которые закрыты в специальном кожуге. Динамичные контакты удерживаются шарнирами на полуоси рукояти. Их задача заключается в осуществлении одинарного отключения участка цепи.

Устройство для погашения дуги располагается в двух полюсах и предназначается для захвата дуги и ее охлаждения. По своей конструкции механизм представляет собой камеру гашения дуги с деионной решеткой из пластинок. Что касается системы расцепления, то это шарнирный компонент на три или четыре звена. С ее помощью осуществляется мгновенное расцепление и выключение контактной системы. Сферы применения затрагивают и ручные устройства, и автоматические.

Задача электромагнитного расцепителя заключается в выключении всей системы при коротком замыкании. По конструкции он представляет собой обычный электромагнит со специальным крюком. У отдельных моделей может присутствовать система гидравлического замедления. Существует еще один тип расцепителей — тепловой. Элемент является небольшой металлической пластинкой, которая деформируется под воздействием повышенного уровня напряжения и запускает процесс отключения.

Полупроводниковые элементы — это измерительный датчик, магнит и блок реле. Магнит воздействует на всю систему, а измерительный датчик состоит из трансформатора для переменного тока или усилителя для постоянного тока.

Большинство моделей защитных приборов оснащены совмещенными расцепителями, которые работают на основе термоэлементов для защиты от повышения силы тока, а также магнитных катушек для предотвращения коротких замыканий.

Защитные конструкции обладают несколькими компонентами, размещенными внутри или снаружи автомата. В их числе всевозможные расцепители и контакты, приводы для удаленного контроля, сигнализационное оборудование и датчики автоматического отключения.

Режимы работы

Находясь в обычном режиме работы, выключатель пропускает ток с той силой, которая соответствует нормальному уровню. Электроэнергия, используемая для функционирования устройства, поступает на верхнюю клемму. В свою очередь, эта клемма взаимодействует со статичным контактом, который передает ток на динамичный контакт, металлический проводник и непосредственно на катушку соленоида.

Оказываясь в этой катушке, электричество начинает проходить по термическому расцепителю, а затем проникать на клемму в нижней части защитного оборудования. При существенном скачке напряжения или повышении риска замыкания выключатель автоматически останавливает работу сети.

Если появляется перегруз цепи, элемент работает по другому принципу. Такое явление замечается при сильном повышении силы тока в конкретном участке, которая превышает допустимое значение в несколько раз. При контакте с тепловым расцепителем этот ток начинает деформировать его, что становится сигналом для отключения автомата.

Такой тип защиты не способен срабатывать моментально, так как процесс деформации пластинки занимает какое-то время и требует достаточного прогревания. Скорость отключения определяется избыточной силой тока в защищаемой зоне и занимает временной промежуток от нескольких секунд до часа. За счет такой задержки лишние отключения автомата из-за минимальных и непродолжительных скачков практически исключаются. В большинстве случаев эти скачки происходят при запуске электроприборов с высоким пусковым током.

Что касается показателей, при которых термический элемент начинает работать, то они регулируются специальной деталью и настраиваются еще во время производства элемента. Оптимальным вариантом является значение, превышающее нормальное число в 1,1−1,5 раза.

Также нужно учитывать тот факт, что в зданиях с повышенной температурой автомат защиты сети может функционировать со сбоями, так как в подобных условиях металлическая пластина поддается деформации гораздо быстрее. В холодной среде все происходит в обратном порядке — выключатель слишком долго не реагирует на скачки напряжения электрического тока.

Реакция на короткое замыкание

Современные выключатели способны обезопасить сеть не только от скачков напряжения и перегруза, но и от частых замыканий. Как известно, подобные происшествия повышают интенсивность тока до той температуры, при которой начинается процесс расплавления изоляции проводки. А ведь подобное происшествие влечет за собой опасные последствия и может привести к пожарной ситуации. Чтобы избежать образования коротких замыканий, нужно вовремя выключить электричество. Именно для этих целей и используется выключатель.

Устройство состоит из катушки соленоида и сердечника, который фиксируется посредством небольшой пружины. При возникновении непредвиденного скачка напряжения начинает расти магнитная индукция. В связи с этим происходит моментальное размыкание контактов, а подача электротока в защищаемый участок приостанавливается. Электромагнитная деталь включается за несколько миллисекунд и препятствует воспламенению изоляции.

При отключении контактов между ними образуется дуга с температурой до 3 тыс. градусов. Естественно, бытовые приборы не способны перенести воздействие такого температурного режима, поэтому защитные автоматы дополнительно оснащают элементом гашения дуги, которые напоминают собой коробку из металлических пластинок.

Полезные советы

Если запуск электрооборудования был вызван коротким замыканием, то без устранения причины поломки восстановить электричество не получится. Зачастую проблема случается при повреждении какого-нибудь бытового прибора, поэтому, чтобы вернуть все на свои места, достаточно отсоединить вышедшее из строя устройство от сети, а затем повторно запустить выключатель. При успешном выполнении такой задачи система должна снова заработать. А если этого не произошло, значит, придется обратиться за помощью к специалистам и определить первоначальный источник поломки.

Столкнувшись с проблемой частых отключений защитных элементов, не нужно спешить покупать новый прибор с более высокими показателями силы тока — проблема от этого не исчезнет. Ведь на этапе монтажа выключателей учитывается площадь поперечного сечения провода, поэтому чрезмерно высокий ток не появится в проводке.

Для определения причины поломки и дальнейших действий следует вызвать специалиста, но не пытаться сделать все своими руками. В большинстве случаев самостоятельные действия не дают никаких хороших результатов, а иногда и приводят к плачевным последствиям.

К сожалению, пожарные ситуации возникают слишком часто, и зачастую к ним приводит халатность потребителей, которые не соблюдают основные правила обращения с электроприборами и электричеством в целом. Но намного разумнее предупредить последствия пожара, чем потом горько жалеть о случившемся.

И если в недалеком прошлом защиту от коротких замыканий и перегруза осуществляли классические предохранители из фарфора со сменными вставками, а также пробки, то сегодня это решается с помощью автоматизированного оборудования. Выбирая такой элемент, нужно заранее ознакомиться с его техническими характеристиками и совместимостью с конкретной цепью. Качественный автомат защиты сможет спасти бытовые приборы от повреждения, а жилище от пожарной опасности.

Защита в действии.

Принцип действия автоматического выключателя

21vek-220v.ru

3-12-2014

3-12-2014

Защита в действии. Принцип действия автоматического выключателя

21vek-220v.ru

Основные принципы работы автоматических выключателей

Так как автоматический выключатель кроме коммутационных операций выполняет функции защиты электрических сетей и различного электрического оборудования в аварийных ситуациях, то его нужно рассматривать с учетом вариантов использования.
Коммутационные функции автоматический выключатель может выполнять не часто — не более 30 раз в сутки. Для более частых переключений, отключений и включений существуют специальные устройства и приборы.
Автоматические выключатели (автоматы) сконструированы таким образом, чтобы обеспечивалась простата и удобство их эксплуатации и обслуживания, особенно в установках большой мощности.
В основном, коммутация автоматических выключателей выполняется в ручном режиме, но есть модели, разработанные для использования со специальным (электромагнитным или электродвигательным) приводом. Такие устройства позволяют проводить управление выключателем дистанционно.
Но ручной (или приводный) режим управления относится к операции включения. Отключение автоматического выключателя (автомата) происходит в автоматическом режиме. Выключение может происходить при достижении максимально допустимых токов или (в некоторых устройствах) при достижении минимально допустимых токов.
В зависимости от функциональности автоматического выключателя их делят на:

  • • автоматы тока максимального,
  • • автоматы понижения напряжения,
  • • автоматы обратной мощности.

Автомат тока максимального применяется для разрыва электрической цепи в условиях достижения предельных нагрузок или тока короткого замыкания. Такое использование автоматического выключателя повторяет использование рубильника с предохранителями. Но в выключателе не нужно менять плавкие вставки, а достаточно его повторно включить. Хотя рубильник с предохранителем незаменим при некоторых особых режимах использования электрической системы.
Использование автоматических выключателей в условиях с повышенной влажностью или запыленностью должно быть в закрытом щите или шкафу с достаточной степенью защиты IP.
Скорость срабатывания (отключения цепи) определяется принципом работы и системой гашения дуги. Эти характеристики свойственны для токоограничивающих автоматов.
Регулируемая скорость срабатывания (отключения) автоматического выключателя реализована в селективных (регулируемых) автоматах.
Но если требуется защита от токов другой направленности по сравнению с рабочими, то применяют автоматы обратного тока.
Особую конструкцию имеют неполяризованные автоматические выключатели, которые могут отключать цепь, контролируя его величину во всех направлениях. Поляризованный автомат производит контроль величины тока только в одном направлении.

Конструкция автоматических выключателей

Конструкция автоматического выключателя зависит от его назначения и предполагаемого применения.
Управление автоматическим выключателем может выполняться в ручном режиме или приводом (дистанционно). Ручное управление применяется для автоматов с номиналом до 1000 А. Причем включение должно производиться уверенно, без остановок и возвратов. Начатое движение рукоятки автомата должно закончиться его включением.
Привод управления автоматическим выключателем должен иметь исключение повторного включения при коротком замыкании. Но важную конструкционную особенность должны выполнять автоматические выключатели при срабатывании защитного механизма вне зависимости от положения включающего привода. Это достигается за счет применения специальных расцепителей.
Расцепитель автоматического выключателя отслеживает контролируемый параметр и управляет расцепляющим устройством.
Расцепители могут иметь несколько вариантов исполнения:

  • • электромагнитный — защищают от короткого замыкания цепи,
  • • тепловой — защищают от перегрузок цепи,
  • • комбинированный — совмещают защиту от КЗ и перегрузок,
  • • полупроводниковый — настраиваемые системы защиты с точной установкой параметров.

Если автоматический выключатель устанавливается для выполнения включения и отключения цепи без токов или коммутация производится редко, то применяют автоматы без расцепителя.
Различные автоматические выключатели могут иметь совершенно разную степень защиты IP. Так как автоматы применяются в различных условиях с различными факторами воздействия (пыль, влага и т.д.), то информация об их степени защиты и типаже должна быть указана в документации, прилагаемой к устройству. Хотя большинство производителей работают по ТУ (техническим условиям), некоторые автоматы получили уровень государственного стандарта (ГОСТ).

Узлы и механизмы автоматического выключателя

Конструкция автомата предусматривает применение многих механизмов и узлов, среди которых:

  • • контактная система,
  • • система расцепителей,
  • • система дугогашения,
  • • система управления,
  • • механизм свободного расцепления.

Контактная система — это неподвижные контакты установленные в корпус и подвижные контакты на оси (одинарный разрыв).
Система дугогашения — это дугогасительная камера со стальной решеткой или фибровые пластины (искрогаситель). Устанавливаются отдельно для каждого полюса автоматического выключателя.
Механизм свободного расцепления — шарнирный механизм с 3 или 4 звеньями. Выполняет отключение контактов при ручном и автоматическом управлении.
Расцепитель тока с электромагнитом — это якорный электромагнит срабатывающий при коротком замыкании. Существуют электромагнитные расцепители с системой гидравлического замедления, которые обеспечивают защиту от перегрузочных токов.
Расцепитель тепловой — это биметаллическая пластина с тепловой характеристикой. Когда ток перегрузки деформирует пластину, она создает усилие необходимое для отключения автомата.
Расцепитель на основе полупроводников — это прибор содержащий измерительный элемент, полупроводниковые реле и электромагнит на выходе, который связан с механизмом свободного расцепления.
Комбинированные расцепители — это сочетание нескольких систем защиты. Например, тепловые и электромагнитные.

Автоматические выключатели могут снабжаться многими другими устройствами и приспособлениями, которые помогают сконцентрировать в одном устройстве максимальное количество функций и характеристик. Все эти устройства ориентированы на удобное использование прибора с исключением дополнительных действий и операций по защите и коммутации электрической системы.
Особые конструкции автоматических выключателей, таких как автоматы с минимальным или независисмым расцепителем позволяют обеспечить дистанционное выключение. Применение специальных устройств замковой фиксации положения рукоятки обеспечивают дополнительную защиту персонала при выполнении ремонтных или регламентных работ. А сигнализация положения контактов автомата упрощает контроль рабочего режима электрической системы.
Поэтому, применение автоматических выключателей должно быть предварительно взвешенным и тщательно обдуманным. Это гарантирует максимальную функциональность электрических систем и обеспечит их надежную защиту.

Основные принципы работы автоматических выключателей

Так как автоматический выключатель кроме коммутационных операций выполняет функции защиты электрических сетей и различного электрического оборудования в аварийных ситуациях, то его нужно рассматривать с учетом вариантов использования.
Коммутационные функции автоматический выключатель может выполнять не часто — не более 30 раз в сутки. Для более частых переключений, отключений и включений существуют специальные устройства и приборы.
Автоматические выключатели (автоматы) сконструированы таким образом, чтобы обеспечивалась простата и удобство их эксплуатации и обслуживания, особенно в установках большой мощности.
В основном, коммутация автоматических выключателей выполняется в ручном режиме, но есть модели, разработанные для использования со специальным (электромагнитным или электродвигательным) приводом. Такие устройства позволяют проводить управление выключателем дистанционно.
Но ручной (или приводный) режим управления относится к операции включения. Отключение автоматического выключателя (автомата) происходит в автоматическом режиме. Выключение может происходить при достижении максимально допустимых токов или (в некоторых устройствах) при достижении минимально допустимых токов.
В зависимости от функциональности автоматического выключателя их делят на:

  • • автоматы тока максимального,
  • • автоматы понижения напряжения,
  • • автоматы обратной мощности.

Автомат тока максимального применяется для разрыва электрической цепи в условиях достижения предельных нагрузок или тока короткого замыкания. Такое использование автоматического выключателя повторяет использование рубильника с предохранителями. Но в выключателе не нужно менять плавкие вставки, а достаточно его повторно включить. Хотя рубильник с предохранителем незаменим при некоторых особых режимах использования электрической системы.
Использование автоматических выключателей в условиях с повышенной влажностью или запыленностью должно быть в закрытом щите или шкафу с достаточной степенью защиты IP.
Скорость срабатывания (отключения цепи) определяется принципом работы и системой гашения дуги. Эти характеристики свойственны для токоограничивающих автоматов.
Регулируемая скорость срабатывания (отключения) автоматического выключателя реализована в селективных (регулируемых) автоматах.
Но если требуется защита от токов другой направленности по сравнению с рабочими, то применяют автоматы обратного тока.
Особую конструкцию имеют неполяризованные автоматические выключатели, которые могут отключать цепь, контролируя его величину во всех направлениях. Поляризованный автомат производит контроль величины тока только в одном направлении.

Конструкция автоматических выключателей

Конструкция автоматического выключателя зависит от его назначения и предполагаемого применения.
Управление автоматическим выключателем может выполняться в ручном режиме или приводом (дистанционно). Ручное управление применяется для автоматов с номиналом до 1000 А. Причем включение должно производиться уверенно, без остановок и возвратов. Начатое движение рукоятки автомата должно закончиться его включением.
Привод управления автоматическим выключателем должен иметь исключение повторного включения при коротком замыкании. Но важную конструкционную особенность должны выполнять автоматические выключатели при срабатывании защитного механизма вне зависимости от положения включающего привода. Это достигается за счет применения специальных расцепителей.
Расцепитель автоматического выключателя отслеживает контролируемый параметр и управляет расцепляющим устройством.
Расцепители могут иметь несколько вариантов исполнения:

  • • электромагнитный — защищают от короткого замыкания цепи,
  • • тепловой — защищают от перегрузок цепи,
  • • комбинированный — совмещают защиту от КЗ и перегрузок,
  • • полупроводниковый — настраиваемые системы защиты с точной установкой параметров.

Если автоматический выключатель устанавливается для выполнения включения и отключения цепи без токов или коммутация производится редко, то применяют автоматы без расцепителя.
Различные автоматические выключатели могут иметь совершенно разную степень защиты IP. Так как автоматы применяются в различных условиях с различными факторами воздействия (пыль, влага и т.д.), то информация об их степени защиты и типаже должна быть указана в документации, прилагаемой к устройству. Хотя большинство производителей работают по ТУ (техническим условиям), некоторые автоматы получили уровень государственного стандарта (ГОСТ).

Узлы и механизмы автоматического выключателя

Конструкция автомата предусматривает применение многих механизмов и узлов, среди которых:

  • • контактная система,
  • • система расцепителей,
  • • система дугогашения,
  • • система управления,
  • • механизм свободного расцепления.

Контактная система — это неподвижные контакты установленные в корпус и подвижные контакты на оси (одинарный разрыв).
Система дугогашения — это дугогасительная камера со стальной решеткой или фибровые пластины (искрогаситель). Устанавливаются отдельно для каждого полюса автоматического выключателя.
Механизм свободного расцепления — шарнирный механизм с 3 или 4 звеньями. Выполняет отключение контактов при ручном и автоматическом управлении.
Расцепитель тока с электромагнитом — это якорный электромагнит срабатывающий при коротком замыкании. Существуют электромагнитные расцепители с системой гидравлического замедления, которые обеспечивают защиту от перегрузочных токов.
Расцепитель тепловой — это биметаллическая пластина с тепловой характеристикой. Когда ток перегрузки деформирует пластину, она создает усилие необходимое для отключения автомата.
Расцепитель на основе полупроводников — это прибор содержащий измерительный элемент, полупроводниковые реле и электромагнит на выходе, который связан с механизмом свободного расцепления.
Комбинированные расцепители — это сочетание нескольких систем защиты. Например, тепловые и электромагнитные.

Автоматические выключатели могут снабжаться многими другими устройствами и приспособлениями, которые помогают сконцентрировать в одном устройстве максимальное количество функций и характеристик. Все эти устройства ориентированы на удобное использование прибора с исключением дополнительных действий и операций по защите и коммутации электрической системы.
Особые конструкции автоматических выключателей, таких как автоматы с минимальным или независисмым расцепителем позволяют обеспечить дистанционное выключение. Применение специальных устройств замковой фиксации положения рукоятки обеспечивают дополнительную защиту персонала при выполнении ремонтных или регламентных работ. А сигнализация положения контактов автомата упрощает контроль рабочего режима электрической системы.
Поэтому, применение автоматических выключателей должно быть предварительно взвешенным и тщательно обдуманным. Это гарантирует максимальную функциональность электрических систем и обеспечит их надежную защиту.

Устройство автоматического выключателя — Ремонт220

Автор Фома Бахтин На чтение 2 мин. Просмотров 838 Опубликовано Обновлено

 

Описание принципа работы и устройства автоматического выключателя здесь основано на примере модульного автомата (автоматического выключателя), как наиболее часто применяемого быту для управления и защиты от коротких замыканий и перегрузок электропроводки.

Устройство автоматического выключателя

Корпус автоматического выключателя 1 выполнен из термостойкой пластмассы. Пластиковая рукоядка 2 служит для управления автоматом (включение или выключение). Фиксация автоматического выключателя на DIN-рейке производится защёлкой-фиксатором  3.

Принцип работы автоматического выключателя

При включении  автомата напряжение, подаваемое на верхнюю винтовую клемму 4 проходит через биметаллическую пластину 6 (тепловое расцепление) и через обмотку соленоида 9, поступая на подвижный контакт 7.

Далее, через неподвижный контакт 8, напряжение поступает на нижнюю винтовую клемму, к которой подключается «отходящий» провод – нагрузка.

Защитное отключение автоматического выключателя происходит при срабатывании механизма расцепления, приводя к размыканию подвижного контакта 7.

Механизм расцепления, в зависимости от силы проходящего тока может быть приведён в действие двумя способами:

  1. При значительном резком увеличении тока, проходящего через автомат (короткое замыкание) образуется магнитное поле, которое втягивает сердечник, что приводит в действие механизм расцепления – это магнитное расцепление.
  2. При прохождении через автоматический выключатель токов со значениями, превышающими допустимые, происходит нагрев биметаллической пластины 6, что приводит к её изгибу и, как и в первом случае – расцеплению контактов.

Из-за больших токов, в обоих случаях при расцеплении контактов образуется дуга, поэтому для её нейтрализации в устройство автоматического выключателя обязательно входит дугогасительная камера 5, которая представляет собой набор металлических пластин особой формы, закреплённых параллельно.

В качестве дополнительной защиты от прогорания корпуса автоматического выключателя применяется специальная металлическая пластина 10.

Автоматические выключатели – устройство и принцип работы


Апэшка- АП50, устройство.


Назначение и принцип действия выключателя

Автоматический выключатель — это коммутационное устройство, которое может замыкать, передавать и отключать ток в нормальных условиях контура, а также может замыкать, переносить и отключать ток в ненормальных условиях контура (включая условия короткого замыкания) в течение определенного времени. Автоматические выключатели могут использоваться для распределения электроэнергии, нечастого запуска асинхронных двигателей и защиты линий электропередач и двигателей. Они могут автоматически отключать цепь при серьезной перегрузке, коротком замыкании или пониженном напряжении.Его функция эквивалентна комбинации предохранителя с реле перегрева и недогрева. Более того, как правило, нет необходимости менять детали после отключения тока короткого замыкания. В настоящее время он получил широкое распространение.

Автоматический выключатель обычно состоит из контактной системы, системы гашения дуги, рабочего механизма, расцепителя и корпуса. Автоматические выключатели делятся на автоматические выключатели, автоматические выключатели в литом корпусе и автоматические выключатели рамного типа в зависимости от их конструкции.

Роль автоматических выключателей

Отключите и включите цепь нагрузки, а также отключите неисправную цепь, чтобы предотвратить распространение аварии и обеспечить безопасную работу. Высоковольтный выключатель должен разорвать дугу 1500 В, ток 1500-2000 А, эти дуги можно растянуть до 2 м, но они продолжают гореть и не гаснуть. Поэтому гашение дуги — это проблема, которую необходимо решать с помощью высоковольтных выключателей.

Низковольтные автоматические выключатели также называются автоматическими воздушными выключателями, которые могут использоваться для подключения и отключения цепей нагрузки, а также могут использоваться для управления двигателями, которые запускаются нечасто.Его функция эквивалентна сумме части или всех электрических устройств, таких как рубильник, реле максимального тока, реле потери напряжения, тепловое реле и устройство защиты от утечек. Это важный защитный электрический прибор в низковольтных распределительных сетях.

Низковольтные автоматические выключатели обладают множеством функций защиты (защита от перегрузки, короткого замыкания, пониженного напряжения и т. Д.), Регулируемым значением срабатывания, высокой отключающей способностью, удобством в эксплуатации и безопасностью, поэтому в настоящее время они широко используются. Устройство и принцип работы Низковольтный автоматический выключатель состоит из исполнительного механизма, контактов, устройств защиты (различных расцепителей), системы гашения дуги и т. Д.

Принцип работы выключателя

Когда происходит короткое замыкание, магнитное поле, создаваемое сильным током (обычно в 10–12 раз), преодолевает пружину силы реакции, расцепитель тянет рабочий механизм, и переключатель мгновенно срабатывает.

При перегрузке ток становится больше, увеличивается тепловыделение, и биметалл до определенной степени деформируется, заставляя механизм двигаться (чем больше ток, тем короче время действия).

Главные контакты выключателей низкого напряжения управляются вручную или электрически замыкаются. После того, как главный контакт замкнут, механизм свободного отключения блокирует главный контакт в замкнутом положении. Катушка расцепителя максимального тока и термоэлемент теплового расцепителя включены последовательно с главной цепью, а катушка расцепителя минимального напряжения подключена параллельно источнику питания. Когда цепь закорочена или сильно перегружена, якорь расцепителя максимального тока втягивается, вызывая срабатывание свободного отключающего механизма, и главный контакт отключает главную цепь.Когда цепь перегружена, нагревательный элемент теплового расцепителя изгибает биметалл и толкает механизм свободного отключения. Когда в цепи пониженное напряжение, якорь расцепителя минимального напряжения отпускается. Это также приводит в действие механизм свободного отключения. Независимый расцепитель используется для дистанционного управления. Во время нормальной работы его катушка обесточена. Когда требуется дистанционное управление, нажмите кнопку пуска, чтобы активировать катушку, и якорь приводит в действие механизм свободного отключения для перемещения главного контакта.Нажмите «Отключиться».

Теперь есть электронные типы, которые используют трансформаторы для сбора токов каждой фазы и сравнения их с установленными значениями. Когда ток ненормальный, микропроцессор посылает сигнал, чтобы электронный расцепитель приводил в действие рабочий механизм.

Параметры выключателя

Номинальное рабочее напряжение (Ue): это напряжение, при котором автоматический выключатель работает в нормальных (непрерывных) условиях.

Номинальный ток (In): максимальное значение тока, которое автоматический выключатель, оснащенный специальным реле максимального тока, может выдерживать неопределенно долго при температуре окружающей среды, указанной производителем, и не будет превышать температурный предел, указанный токоведущим компонентом.

Значение уставки тока срабатывания реле короткого замыкания (Im): реле срабатывания короткого замыкания (мгновенное или с короткой задержкой) используется для быстрого отключения автоматического выключателя при возникновении высокого значения тока короткого замыкания и его предела срабатывания Im.

Номинальная отключающая способность при коротком замыкании (Icu или Icn): Номинальный ток отключения при коротком замыкании автоматического выключателя — это максимальное (ожидаемое) значение тока, которое автоматический выключатель может отключить без повреждения. Значение тока, указанное в стандарте, представляет собой среднеквадратичное значение переменного тока в токе короткого замыкания.При вычислении стандартного значения переходная составляющая постоянного тока (всегда возникающая при наихудшем случае короткого замыкания) принимается равной нулю. Номинальные характеристики промышленных выключателей (Icu) и бытовых выключателей (Icn) обычно выражаются в кА (действующее значение).

Отключающая способность при коротком замыкании (Ics): Номинальная отключающая способность автоматического выключателя делится на два типа: номинальная предельная отключающая способность при коротком замыкании и номинальная рабочая отключающая способность при коротком замыкании.

Автоматические выключатели

: принцип действия и номинальные характеристики | Устройства

В этой статье мы обсудим: — 1. Значение автоматических выключателей 2. Принцип работы автоматических выключателей 3. Явление дуги 4. Гашение дуги 5. Переключение сопротивления 6. Номинальные характеристики.

Значение автоматических выключателей:

Автоматические выключатели — это механические устройства, предназначенные для замыкания или размыкания контактных элементов, тем самым замыкая или размыкая электрическую цепь в нормальных или ненормальных условиях.

Автоматические выключатели, которые обычно используются для защиты электрических цепей, оснащены отключающей катушкой, подключенной к реле или другим средствам, предназначенным для автоматического размыкания выключателя в ненормальных условиях, таких как перегрузка по току.

Автоматические выключатели выполняют следующие функции:

(i) Он непрерывно пропускает ток полной нагрузки без перегрева или повреждения,

(ii) Открывает и замыкает цепь на холостом ходу,

(iii) Включает и отключает нормальный рабочий ток и

(iv) Он замыкает и размыкает токи короткого замыкания той величины, на которую рассчитано.

Автоматический выключатель удовлетворительно выполняет первые три режима работы, но при выполнении четвертого режима, т. е. когда он должен включать или отключать токи короткого замыкания, он подвергается механическим и термическим нагрузкам. Автоматические выключатели рассчитаны на максимальное напряжение, количество полюсов, частоту, максимальную длительную пропускную способность по току, максимальную отключающую способность и максимальную мгновенную пропускную способность и пропускную способность по току 4 с.

Отключающая или отключающая способность автоматического выключателя — это максимальное значение тока, которое может быть отключено им без каких-либо повреждений.Автоматические выключатели также имеют номинальные характеристики в МВА, которая является произведением тока отключения, номинального напряжения и 10 –6 .

Принцип работы автоматических выключателей :

Автоматический выключатель — это устройство переключения и прерывания тока. Он состоит, по существу, из неподвижных и подвижных контактов, которые соприкасаются друг с другом и пропускают ток при нормальных условиях, то есть при включенном выключателе. Когда автоматический выключатель замкнут, токоведущие контакты, называемые электродами, сцепляются друг с другом под давлением пружины.

В нормальном рабочем состоянии автоматический выключатель может быть отключен или включен оператором станции с целью переключения и технического обслуживания. Чтобы размыкать автоматический выключатель, требуется лишь небольшое давление на спусковой крючок. Каждый раз, когда в какой-либо части энергосистемы возникает неисправность, на катушки отключения выключателя подается питание, и подвижные контакты разъединяются каким-либо механизмом, размыкая цепь.

Разделение токоведущих контактов приводит к возникновению дуги.Таким образом, ток может продолжаться до тех пор, пока разряд не прекратится. Возникновение дуги не только задерживает процесс прерывания тока, но также выделяет огромное количество тепла, которое может вызвать повреждение системы или самого выключателя. Следовательно, основная проблема автоматического выключателя — погасить дугу в кратчайшие сроки, чтобы выделяемое им тепло не достигало опасного значения.

Базовая конструкция выключателя требует разделения контактов в изолирующей жидкости, которая выполняет две функции:

1.Гасит дугу, возникающую между контактами, при размыкании выключателя.

2. Обеспечивает изоляцию между контактами и от каждого контакта к земле.

Для этой цели обычно используются следующие изоляционные жидкости:

и. Воздух атмосферного давления.

ii. Сжатый воздух.

iii. Нефть производит водород для гашения дуги.

iv. Сверхвысокий вакуум.

v. Гексафторид серы (SF 6 ).

Жидкости, используемые в автоматических выключателях, должны обладать такими свойствами, как высокая диэлектрическая прочность, негорючесть, высокая термическая стабильность, способность гасить дугу, химическая стабильность и коммерческая доступность при умеренной стоимости.

Из простых газов воздух является самым дешевым и наиболее широко используемым для размыкания цепи. Водород обладает лучшими характеристиками гашения дуги, но имеет более низкую диэлектрическую прочность по сравнению с воздухом. Также, если водород загрязнен воздухом, он образует взрывоопасную смесь.Азот имеет те же свойства, что и воздух. CO 2 имеет почти такую ​​же диэлектрическую прочность, что и воздух, но является лучшим средством для гашения дуги при умеренных токах. Кислород — хорошее средство пожаротушения, но он химически активен. SF 6 обладает выдающимися характеристиками гашения дуги и хорошей диэлектрической прочностью. Из всех этих газов SF 6 и воздух используются в промышленных газовых автоматических выключателях.

Явления дуги автоматических выключателей :

Дуга представляет собой столб ионизированного газа, молекулы которого потеряли один или несколько электронов.Отрицательно заряженные электроны с высокой скоростью притягиваются к положительному контакту (т. Е. Аноду) и по пути отрывают больше электронов от удара. Положительные ионы притягиваются к отрицательному контакту (т. Е. К катоду), но, поскольку они составляют почти весь вес атома, они движутся к нему относительно медленно. Таким образом, ток возникает из-за движения электронов.

Возникновение дуги :

Для зажигания дуги необходимо, чтобы электроны выходили из катода, как только контакты начинают разъединяться при возникновении неисправности.

Считается, что инициирующие электроны образуются в следующих двух процессах:

(i) Из-за градиента высокого напряжения на катоде, приводящего к полевой эмиссии:

При удалении подвижного контакта площадь контакта и давление между разделяющими контактами уменьшаются, а из-за уменьшения площади контакта сопротивление увеличивается (но все равно намного меньше ома). Хотя контактное сопротивление довольно мало, но из-за большой величины тока короткого замыкания между разделительными контактами возникает достаточно высокое падение потенциала, порядка 10 6 В / см, чтобы вытеснить электроны с поверхности катода.

(ii) Повышением температуры, приводящим к термоэлектронной эмиссии:

По мере того, как контакты разъединяются, уменьшение площади контакта вызывает увеличение плотности тока до очень высоких значений, порядка 10 6 А / см 2 . Эти очень высокие плотности тока повышают температуру поверхности контакта (катода), что приводит к тепловому излучению.

В автоматических выключателях используются контакты, как правило, из меди, термоэлектронная эмиссия из такого металла довольно мала, поэтому за возникновение дуги в основном ответственна автоэлектронная эмиссия.

Техническое обслуживание дуги :

Электроны, испускаемые таким образом из катода, совершают множество столкновений с атомами и молекулами газов и паров, существующих между двумя контактами, во время их движения к аноду. Такие столкновения вызывают ионизацию атомов и молекул, вытесняя больше электронов.

Ионизации способствует:

(i) Высокая температура среды вокруг контактов, вызванная высокими плотностями тока, при высокой температуре кинетическая энергия, полученная движущимися электронами, увеличивается.

(ii) Напряженность поля или градиент напряжения, который увеличивает кинетическую энергию движущихся электронов и увеличивает шансы отрыва электронов от нейтральных молекул.

(iii) Увеличение длины свободного пробега — расстояния, на которое электрон перемещается свободно. По мере того, как контакты расходятся, средний пробег увеличивается, а количество нейтральных молекул увеличивается, а также увеличение среднего пробега снижает плотность газа, что дополнительно увеличивает свободный пробег электронов.

Все три вышеупомянутых процесса (термоэмиссия, ионизация и автоэмиссия) могут запускаться либо один за другим, либо почти одновременно, что позволяет инициировать и поддерживать дугу, и, наконец, если ток дуги высокий, дуга может достигать высокой температуры. достаточно, чтобы термическая ионизация стала основным источником электропроводности.

Напряжение дуги :

При разъединении контактов автоматического выключателя образуется дуга.Напряжение, которое появляется на контактах автоматического выключателя, называется напряжением дуги.

Для умеренных значений тока и напряжения характеристику дуги можно выразить уравнением Айртона —

e a = A + B / i a … (6. 1)

Таким образом, с увеличением тока дуги напряжение падает как гипербола. Константы A и B линейно изменяются с длиной дуги l

А = α + l

и B = β + δl… (6.2)

Средние значения α, ϒ, β и δ для воздушных дуг между медными электродами следующие —

α = 30 В; ϒ = 10 В / см; β = 10 ВА; δ = 30 ВА / см

Сверху Ур.Из (6.1) очевидно, что вольт-амперная характеристика напряжения дуги отрицательна, т. Е. Напряжение дуги высокое, когда ток дуги низкий, и наоборот. Это, конечно, хорошо известное свойство дуг.

На рисунке 6.1 показаны временные характеристики переменного тока и напряжения. Из рис. 6.1 видно, что напряжение на дуге практически постоянно в то время, когда ток близок к своим пиковым значениям. При нулевом токе напряжение дуги быстро возрастает до пикового значения, и это пиковое значение имеет тенденцию поддерживать ток в форме дуги.

Напряжение на дуге синфазно с током дуги, поскольку ток дуги преимущественно резистивный. Величина напряжения дуги увеличивается в каждом последующем токовом контуре. Это связано с тем, что предполагается, что контакты выключателя разъединяются, что увеличивает длину дуги и, следовательно, напряжение дуги.

Погашение дуги в автоматических выключателях :

При разъединении токоведущих контактов автоматического выключателя образуется дуга, которая сохраняется в течение короткого периода после разъединения контактов.Дуга обеспечивает постепенный переход контактов из токоведущего состояния в изолирующее по напряжению, но это опасно из-за энергии, генерируемой в ней в виде тепла, которое может привести к взрывной силе.

Автоматический выключатель должен обеспечивать гашение дуги без повреждения оборудования или опасности для персонала. Дуга играет жизненно важную роль в работе автоматического выключателя. Прерывание дуги постоянного тока относительно сложнее, чем дуги переменного тока.В дугах переменного тока, когда ток становится равным нулю во время регулярной волны, дуга исчезает и предотвращается повторное зажигание.

Прежде чем обсуждать методы гашения дуги, необходимо изучить факторы, ответственные за поддержание дуги между контактами.

Это:

(i) Разница потенциалов между контактами и

(ii) Ионизированные частицы между контактами.

Падение потенциала между разъединяющими контактами достаточно для поддержания дуги и довольно мало.Один из способов погасить дугу — развести контакты на таком расстоянии, чтобы падение потенциала стало недостаточным для поддержания дуги. Однако этот метод неприменим в высоковольтных системах, где для этой цели потребуется разделение на несколько счетчиков.

Проводимость дуги пропорциональна количеству электронов на кубический сантиметр, произведенному ионизацией, квадрату диаметра дуги и обратной величине длины. Мы не можем добиться многого, увеличивая длину дуги до разумного значения.Что можно сделать, так это уменьшить плотность свободных электронов, то есть уменьшить ионизацию и уменьшить диаметр дуги. Таким образом, гашению дуги можно способствовать деионизацией дуги. Это может быть достигнуто путем охлаждения дуги или удалением ионизированных частиц из пространства между контактами выключателя.

Коммутация сопротивления в автоматических выключателях :

Преднамеренное включение сопротивления параллельно контактному пространству (или дуге) называется переключением сопротивления.Переключение сопротивления используется в автоматических выключателях, имеющих высокое сопротивление нулевого поста контактного пространства (т. Е. Автоматические выключатели с воздушным ударом).

Сильные колебания напряжения возникают из-за:

(i) Отключение малых индуктивных токов (т. Е. Отключение тока) и

(ii) Прерывание емкостных токов.

Это может поставить под угрозу работу системы. Этого можно избежать, применив переключение сопротивления (подключив резистор к контактам автоматического выключателя).

При возникновении неисправности контакты автоматического выключателя размыкаются, и между ними возникает дуга. Когда дуга шунтируется сопротивлением R, часть тока дуги отводится через это сопротивление. Это приводит к уменьшению тока дуги и увеличению скорости деионизации дугового пути. Таким образом, сопротивление дуги увеличивается, что приводит к дальнейшему увеличению тока через шунтирующее сопротивление R. Этот процесс нарастания продолжается до тех пор, пока ток не станет настолько малым, что не сможет поддерживать дугу.Теперь дуга гаснет, и ток в цепи прерывается.

В качестве альтернативы сопротивление может включаться автоматически путем передачи дуги от главных контактов к контакту датчика, поскольку в случае с осевым автоматическим выключателем время, необходимое для этого действия, очень мало (обычно менее половины -цикл текущей волны). Если путь дуги заменен металлическим путем, ток, протекающий через сопротивление, ограничивается, а затем легко прерывается.

Типовые схемы подключения резисторов показаны на рис. 6.18. На рис. 6.18 (а) предусмотрен второй разрыв для отключения тока резистора. На рис. 6.18 (b) зазоры расположены так, что подвижный контакт окончательно разрушает резистивные элементы. На рис. 6.18 (c) дуга сначала возникает на неподвижных и подвижных контактах F и M, затем передается через неподвижные и контактные контакты F и P датчика, а затем разрывается там.

Шунтирующий резистор также помогает ограничить колебательный рост переходных процессов повторного включения напряжения.Математически можно доказать, что собственная частота колебаний контура, показанного на рис. 6.17 (а), равна —

.

Шунтирующий резистор R предотвращает колебательный рост напряжения повторного зажигания и вызывает его экспоненциальный рост вплоть до восстанавливающегося напряжения. Это наиболее эффективно, когда значение R выбрано так, чтобы схема была критически демпфированной. Значение R, необходимое для критического демпфирования, составляет 0,5. √L / C. Рис. 6.17 (b) показывает колебательный и экспоненциальный рост при критическом затухании контура.

Подводя итог, можно сказать, что резисторы на контактах выключателя могут использоваться для выполнения одной или нескольких из следующих функций:

1. Это снижает RRRV и, таким образом, снижает нагрузку на автоматический выключатель.

2. Обеспечивает гашение высокочастотных переходных процессов повторного включения при отключении индуктивных или емкостных нагрузок.

3. В автоматическом выключателе с несколькими прерывателями он помогает более равномерно распределять переходное восстанавливающееся напряжение по всем контактным промежуткам.

Используемые резисторы могут быть нелинейными или проволочными. Нелинейные резисторы подходят как по пространству, так и по соображениям надежности для малых шунтирующих токов, где проволочные резисторы имеют тенденцию быть менее удовлетворительными по механическим соображениям. В случае сильных токов могут возникнуть трудности с размещением относительно большого объема необходимого резисторного материала.

Нелинейные резисторы не подходят для модификации RRRV и пика напряжения, как линейные резисторы, но они особенно подходят для приложений выравнивания напряжения и подавления перенапряжений, в которых относительно небольшие токи порядка 1-10 А при нормальном пиковом напряжении. адекватны.

В масляных автоматических выключателях с прямым размыканием (резервуарного типа) сопротивление контактного пространства после нуля низкое. Следовательно, переключение сопротивления не обязательно. Однако характеристики при малых токах можно улучшить, применив переключение сопротивления, и это иногда применяется; при прерывании небольшого тока значение реактивного сопротивления в цепи будет иметь тенденцию быть настолько большим, что индуктивность L в выражении для критического сопротивления будет больше, что приведет к появлению резисторов порядка тысяч Ом.

Пост-нулевое сопротивление воздушного выключателя высокое. Это может привести к резким скачкам напряжения из-за прерывания тока. Следовательно, используется переключение сопротивления. Вспомогательные контакты здесь заменены изолирующими контактами, которые являются частью воздушных выключателей.

Номинальные характеристики автоматического выключателя:

Номинальные характеристики автоматического выключателя указываются в зависимости от выполняемых им функций. Полные технические характеристики, стандартные характеристики и различные испытания переключателей и автоматических выключателей можно найти в IS 375/1951.

Помимо нормальной работы автоматических выключателей, автоматический выключатель должен выполнять следующие три основные функции в условиях короткого замыкания:

1. Автоматический выключатель должен быть способен отключать цепь и изолировать неисправную секцию в случае неисправности. Это называется отключающей способностью автоматического выключателя.

2. Поскольку на практике автоматический выключатель включается 2-3 раза, чтобы обеспечить постоянство неисправности, т.е., он должен быть способен замыкать цепь в максимальном асимметричном пике в волне тока. Это относится к включающей способности автоматического выключателя.

3. Когда автоматический выключатель работает вместе с другими автоматическими выключателями и в случае неисправности в какой-либо одной секции, выключатели в звуковых секциях не должны срабатывать, т. Е. Цепь должна быть способна безопасно переносить токи повреждения в течение короткого времени. в то время как другой автоматический выключатель (включенный последовательно) устраняет неисправность. Это относится к кратковременной мощности автоматического выключателя.

В дополнение к вышеперечисленным номинальным характеристикам автоматический выключатель должен быть указан с учетом (i) количества полюсов (ii) номинального напряжения (iii) номинального тока (iv) номинальной частоты и (v) рабочего режима. Число полюсов на фазу выключателя зависит от рабочего напряжения.

Номинальное напряжение:

В нормальных условиях эксплуатации напряжение в любой точке энергосистемы непостоянно. Благодаря этому производитель гарантирует безупречную работу автоматического выключателя при номинальном максимальном напряжении, которое, как правило, выше номинального номинального напряжения.

Номинальное максимальное напряжение автоматического выключателя — это наибольшее действующее значение напряжения, превышающее номинальное напряжение системы, на которое автоматический выключатель рассчитан, и является верхним пределом срабатывания. Прежняя практика определения номинального напряжения автоматического выключателя в качестве номинального напряжения системы больше не применяется. Номинальное напряжение выражается в кВ действующее значение и относится к межфазному напряжению для трехфазной цепи.

и. Номинальный ток:

Номинальный нормальный ток автоматического выключателя — это действующее значение тока, который автоматический выключатель должен выдерживать при номинальной частоте и номинальном напряжении непрерывно при определенных условиях.В определенных условиях важным является повышение температуры различных компонентов автоматического выключателя при нормальной нагрузке. Важным условием нормальной работы масляного выключателя является то, что температура масла не должна превышать 40 ° C, а температура контактов не должна превышать 35 ° C.

ii. Номинальная частота:

Номинальная частота автоматического выключателя — это частота, на которой он рассчитан на работу. Стандартная частота 50 Гц. Особые соображения требуют применения на других частотах.

iii. Эксплуатационная нагрузка:

Рабочий режим автоматического выключателя состоит из заданного количества единичных операций с заданными интервалами.

Операционная последовательность обозначает последовательность операций включения и выключения, которые автоматический выключатель может выполнять при определенных условиях.

Отключающая способность:

Этот термин выражает наивысшее действующее значение тока короткого замыкания, которое автоматический выключатель способен отключить при определенных условиях переходного восстанавливающегося напряжения и напряжения промышленной частоты.Выражается в кА, действующее значение при разрыве контактов.

Из волны тока короткого замыкания, показанной на рис. 6.19, видно, что действующее значение тока изменяется со временем из-за наличия постоянной составляющей тока, которая со временем спадает.

Известно, что в определенной фазе ток максимален в момент повреждения, после чего ток спадает. Кроме того, из-за времени реле выключатель начинает размыкать дугогасительные контакты только через некоторое время после возникновения короткого замыкания.Следовательно, фактический ток, прерываемый автоматическим выключателем, меньше начального значения тока короткого замыкания I 1 .

Пусть в момент разъединения контактов.

Переменная составляющая тока короткого замыкания, I ac = x

Постоянная составляющая тока короткого замыкания, I dc = y

Теперь симметричный ток отключения —

= действующее значение переменной составляющей тока короткого замыкания в момент размыкания контактов

= x / √2… (6.19)

Несимметричный ток отключения —

= среднеквадратичное значение комбинированных сумм компонентов переменного и постоянного тока

Теперь по этим двум значениям отключающих токов есть два соответствующих значения отключающих способностей. Обычно отключающая способность автоматического выключателя в МВА выражается как √3 x номинальное напряжение в кВ x номинальный ток отключения в кА.

Такая практика определения отключающей способности в МВА удобна при определении уровня неисправности.Однако в соответствии с пересмотренными стандартами отключающая способность выражается в кА для определенных условий TRV, и этот метод учитывает как ток отключения, так и TRV.

Две отключающие способности теперь можно определить следующим образом:

(i) Симметричная отключающая способность автоматического выключателя — это значение симметричного отключающего тока, которое автоматический выключатель способен отключить при установленном восстанавливающемся напряжении и заявленном эталонном напряжении повторного включения при заданных условиях.

(ii) Асимметричная отключающая способность автоматического выключателя — это значение асимметричного отключающего тока, которое автоматический выключатель способен отключить при установленном восстанавливающемся напряжении и заявленном эталонном напряжении повторного включения при заданных условиях.

Производительность:

Всегда существует вероятность включения автоматического выключателя при коротком замыкании. Включающая способность автоматического выключателя зависит от его способности противостоять воздействию электромагнитных сил, которые пропорциональны квадрату пикового значения включающего тока.Ток включения автоматического выключателя при замыкании на короткое замыкание — это пиковое значение максимальной волны тока (включая составляющую постоянного тока) в первом цикле тока после замыкания цепи автоматическим выключателем.

Для определения тока включения выключателя необходимо умножить симметричный ток отключения на √2, чтобы преобразовать действующее значение в пиковое значение, а затем на 1,8, чтобы учесть «эффект удвоения» максимальной асимметрии.

Таким образом, номинальный ток включения = 1.8 x √2 номинальный ток отключения при коротком замыкании

= 2,55 номинальный ток отключения при коротком замыкании

или Включающая способность = 2,55 x симметричная отключающая способность… (6.21)

Кратковременный ток:

иногда требуется автоматический выключатель для передачи тока короткого замыкания на короткие промежутки времени без отключения. Это происходит в случае кратковременных неисправностей, таких как сбой на линиях электропередачи, и неисправность автоматически устраняется и сохраняется только в течение 1 или 2 секунд.По этой причине автоматические выключатели рассчитаны на короткое время и срабатывают только тогда, когда неисправность сохраняется в течение более длительного времени, чем указанный предел времени.

Кратковременный ток автоматического выключателя — это действующее значение тока, которое автоматический выключатель может выдерживать в полностью замкнутом положении без повреждений в течение заданного интервала времени при заданных условиях. Обычно он выражается в кА за период в 1 или 4 секунды, известный как оценка в одну секунду и оценка в четыре секунды соответственно.Эти характеристики основаны на тепловых ограничениях.

Низковольтные выключатели

не имеют такой кратковременной защиты, потому что они обычно оборудованы последовательными расцепителями перегрузки прямого действия.

Автоматический выключатель

: принцип работы, типы и конструкция

Автоматический выключатель

— это коммутационное устройство, способное замыкать, проводить и отключать ток в нормальных и ненормальных условиях цепи в течение определенного времени. Итак, какова его структура и сколько существует типов? Как это работает? Прочитайте это.

Введение

Автоматический выключатель — это коммутационное устройство, способное замыкать, проводить и отключать ток в нормальных и ненормальных условиях цепи в течение определенного времени. Его можно разделить на высоковольтный выключатель и низковольтный выключатель в зависимости от диапазона их использования. Разделение высокого и низкого напряжения относительно нечеткое. Как правило, выключатели с напряжением выше 3 кВ — это высоковольтные выключатели.

Автоматические выключатели

могут использоваться для распределения электроэнергии, нечастого пуска асинхронных двигателей и защиты линий электропередач и двигателей.При серьезной перегрузке, коротком замыкании или пониженном напряжении они могут автоматически отключать электрическую цепь, как комбинация реле максимального напряжения и предохранителя. После отключения тока короткого замыкания замена деталей не требуется.

Посмотрите это, чтобы узнать больше:

Что такое автоматический выключатель?

О чем мы поговорим:

I Принцип работы

Автоматический выключатель обычно состоит из контактной системы , системы тушения дуги , привода , расцепителя и корпуса .

При коротком замыкании магнитное поле, создаваемое сильным током (обычно от 10 до 12 раз), преодолевает противодействующую пружину, расцепитель срабатывает на приводной механизм, и переключатель мгновенно срабатывает. Когда цепь перегружена, ток становится больше, тепловыделение увеличивается, а биметаллический лист до определенной степени деформируется, заставляя механизм двигаться (чем больше ток, тем короче время работы).

Высоковольтный выключатель должен отключать дугу 1500 В и 1500-2000 А.Эти дуги можно растянуть до 2 м и продолжать гореть без тушения. Поэтому гашение дуги — актуальная проблема для высоковольтных выключателей.

Рисунок 1. Погасание дуги

Принцип поддува и гашения дуги в основном заключается в уменьшении тепловыделения охлаждающей дуги. С другой стороны, удлинение дуги используется для усиления рекомбинации и диффузии заряженных частиц. При этом заряженные частицы в дуговом промежутке сдуваются, и диэлектрическая прочность среды быстро восстанавливается.

Низковольтные выключатели , также называемые автоматическими воздушными выключателями, могут использоваться для подключения и отключения цепей нагрузки, а также для управления двигателями, которые запускаются нечасто. Его функция эквивалентна сумме некоторых или всех электрических систем, таких как рубильник, реле максимального тока, реле нулевого напряжения, тепловое реле и устройство защиты от утечек, которое является важным устройством защиты в распределительной сети низкого напряжения.

Выключатели низкого напряжения

имеют множество функций защиты (защита от перегрузки, короткого замыкания, пониженного напряжения и т. Д.).). Кроме того, они имеют регулируемое рабочее значение, высокую отключающую способность и простую и безопасную работу, поэтому они широко используются.

Низковольтный выключатель состоит из исполнительного механизма, контактов, устройств защиты (различных расцепителей) и системы дугогашения. Его главный контакт управляется вручную или электрически замкнут. После замыкания главного контакта устройство свободного отключения блокирует главный контакт в закрытом положении.

Катушка расцепителя максимального тока и тепловой элемент теплового расцепителя подключены последовательно с главной цепью, а катушка расцепителя минимального напряжения подключена параллельно источнику питания.

Когда цепь короткозамкнута или сильно перегружена, якорь расцепителя максимального тока втягивается, вызывая срабатывание свободного расцепителя, затем главный контакт отключает основную цепь. При перегрузке цепи термоэлемент теплового расцепителя нагревается и изгибает биметаллический лист, толкая механизм свободного срабатывания. Когда в цепи пониженное напряжение, срабатывает якорь расцепителя пониженного напряжения, активируя механизм свободного отключения.

Рисунок 2. Устройство отключения максимального тока

Независимый расцепитель используется для дистанционного управления. Во время нормальной работы катушка выключена. Когда требуется дистанционное управление, нам нужно нажать кнопку пуска, чтобы подать питание на катушку.

II Условия труда

1. Температура окружающей среды

Верхний предел: 40 ℃;

Нижний предел: -5 ℃;

Среднее значение в течение 24 часов: <35 ℃.

2. Высота

Высота места установки не превышает 2000м.

3. Атмосферные условия

Относительная влажность атмосферы не превышает 50% при температуре окружающего воздуха 40 ℃. Он может иметь более высокую относительную влажность при более низкой температуре. Среднемесячная максимальная относительная влажность самого влажного месяца составляет 90%, а среднемесячная минимальная температура месяца — 25 ℃. Кроме того, следует учитывать конденсацию, которая возникает на поверхности продукта из-за перепадов температуры.

4. Уровень загрязнения: уровень 3

5. Цепь управления

(1) Целостность защитного устройства и цепей отключения и включения в цепи управления должна контролироваться, чтобы гарантировать нормальную работу автоматического выключателя.

(2) Должно быть указано состояние нормального включения и отключения выключателя, и должен быть очевидный индикаторный сигнал во время автоматического включения и автоматического отключения.

(3) После завершения замыкания и отключения должен сработать командный импульс, чтобы отключить подачу питания на замыкание или отключение.

(4) При отсутствии механического устройства защиты от срабатывания следует установить устройство защиты от срабатывания ;

Рисунок 3. Электрическое устройство защиты от срабатывания

(5) Цепь сигнала аварийного отключения автоматического выключателя должна быть подключена по «принципу несоответствия».

(6) Для оборудования, которое может иметь ненормальные рабочие условия или неисправности, должен быть установлен предупреждающий сигнал.

(7) Источник питания механизма пружинного привода и механизма ручного управления может быть постоянным или переменным током, а источник питания электромагнитного рабочего механизма должен быть постоянным током.

III Характеристики автоматического выключателя

Характеристики выключателя:

1. Номинальное рабочее напряжение (Ue)

Напряжение, при котором автоматический выключатель работает в нормальных (непрерывных) условиях.

2. Номинальный ток (In)

Максимальное значение тока, которое автоматический выключатель, оснащенный специальным реле отключения по максимальному току, может выдержать при температуре окружающей среды, указанной производителем, и не будет превышать температурный предел, указанный для компонента подшипника тока.

3. Ток срабатывания реле короткого замыкания (Im)

Реле отключения при коротком замыкании (мгновенная или с кратковременной задержкой) используется для быстрого отключения автоматического выключателя при появлении большого тока повреждения, а его предел срабатывания соответствует заданному значению lm.

4. Номинальная отключающая способность при коротком замыкании (Icu или Icn)

Номинальный ток отключения при коротком замыкании автоматического выключателя — это наивысшее (ожидаемое) значение тока, которое автоматический выключатель может отключить без повреждения. Стандартное значение тока представляет собой среднеквадратичное значение переменной составляющей тока повреждения, а переходная составляющая постоянного тока (которая всегда возникает при коротком замыкании) предполагается равной нулю. Номинальное значение промышленного автоматического выключателя (Icu) и бытового автоматического выключателя (Icn) обычно выражается в среднеквадратичном выражении в кА.

5. Отключающая способность при коротком замыкании (Ics)

Номинальная отключающая способность автоматического выключателя делится на два типа: номинальная предельная отключающая способность при коротком замыкании и номинальная рабочая отключающая способность при коротком замыкании .

Независимо от того, какой это автоматический выключатель, он будет иметь два важных технических индикатора: Icu и Ics. Однако, поскольку автоматический выключатель используется на ответвлении, этого будет достаточно для соответствия Icu.

Некоторые люди предпочитают выбирать большее значение. Однако, если он слишком большой, это приведет к ненужным отходам. Например, для автоматического выключателя того же типа цена типа H высокого типа отключения в 1,3–1,8 раза дороже, чем тип S обычного типа). Следовательно, нет необходимости слепо гнаться за лучшим Ику.

Напротив, для автоматических выключателей, используемых в основной линии, должны выполняться требования Icu и Ics. Если для измерения отключающей способности использовать только Icu, возникнут некоторые скрытые опасности.

IV Автоматический выключатель Типы

Существует много типов автоматических выключателей, которые можно классифицировать в зависимости от использования, формы конструкции, метода работы, количества полюсов, способа установки, средства гашения дуги и области применения.

Согласно …

Типы

с использованием категории

неселективный тип (тип A) и селективный тип (тип B)

структура

универсальный тип и пластиковый корпус типа

режим работы

ручного типа и немручного режима (электричество, накопление энергии) типа

количество полюсов

монопольный, двухполюсный, трехполюсный и четырехполюсный типа

способ установки

фиксированного типа, вставного типа и выдвижного типа

Дугогасящая среда

воздушный и вакуумный

Дугогасящая техника

дугогасящий и токоограничивающий тип

использование

Типы

, используемые для распределения электроэнергии, защиты электродвигателей, домашнего хозяйства, защиты от остаточного тока (утечки), специального использования и т. Д.

Автоматический выключатель В Конструкция

1. Внутренние аксессуары

(1) Вспомогательный контакт

Вспомогательный контакт — это контакт между механизмом размыкания и замыкания главной цепи, в основном используется для отображения размыкания и замыкания состояния автоматического выключателя. Он подключен к цепи управления для управления или блокировки связанных с ней электрических устройств посредством размыкания и замыкания автоматического выключателя, например, для вывода сигналов на сигнальные лампы, реле и т. Д.

Для автоматического выключателя в литом корпусе (MCCB) с номинальным током корпуса корпуса (lnm) 100A он имеет схему преобразования с одной точкой прерывания, а схема с 225A lnm и выше имеет мостовую структуру контактов, а обычный тепловой ток составляет 3A. . Кроме того, один с внутренним диаметром 400 А и выше может быть установлен с двумя обычно открытыми и двумя обычно закрытыми контактами, а обычный тепловой ток составляет 6 А. Число рабочих характеристик такое же, как общее число рабочих характеристик выключателя.

Рис. 4. Блок вспомогательных контактов в масляном автоматическом выключателе

(2) Контакт сигнализации

Контакт аварийной сигнализации в основном используется при аварии автоматического выключателя и срабатывает только тогда, когда автоматический выключатель срабатывает и размыкается. Когда происходит перегрузка, короткое замыкание или сбой пониженного напряжения на нагрузке автоматического выключателя, автоматический выключатель срабатывает свободно, и контакт аварийной сигнализации перемещается из исходного разомкнутого положения в замкнутое положение, включая индикатор, электрический звонок, зуммер и т. д.во вспомогательной строке для отображения статуса аварийного отключения.

Поскольку автоматический выключатель редко срабатывает из-за сбоя нагрузки, срок службы контакта аварийной сигнализации составляет 1/10 срока службы автоматического выключателя. Рабочий ток контакта сигнализации обычно не превышает 1 А.

(3) Независимый расцепитель

Независимый расцепитель — это расцепитель, который возбуждается источником напряжения , напряжение которого не зависит от напряжения главной цепи. Это аксессуар для дистанционного управления открыванием.Когда напряжение источника питания равно любому напряжению между 70% -110% номинального управляющего напряжения источника питания, автоматический выключатель может быть надежно отключен.

Независимый расцепитель имеет кратковременную рабочую систему, и время проводимости катушки, как правило, не должно превышать 1 с, в противном случае провод сгорит. Чтобы предотвратить возгорание катушки, микровыключатель соединен последовательно с катушкой независимого расцепителя. Когда независимый расцепитель втягивается якорем, микровыключатель переключается с нормально замкнутого на нормально разомкнутый.

Из-за отключения цепи питания и управления независимого расцепителя, даже если кнопка нажата вручную, катушка шунта никогда не включится. Это позволяет избежать перегорания катушки. Когда автоматический выключатель снова включается, микровыключатель снова находится в нормально замкнутом положении.

Рисунок 5. Автоматический выключатель с независимым расцепителем

(4) Отключение при пониженном напряжении

Отключение при пониженном напряжении — это тип отключения, позволяющий отключать автоматический выключатель с задержкой или без задержки, когда его напряжение на клеммах падает до указанного диапазона.Он срабатывает, когда напряжение источника питания падает (даже медленно) до диапазона от 70% до 35% от номинального рабочего напряжения.

Когда напряжение источника питания равно 35% от номинального рабочего напряжения отключения, отключение по пониженному напряжению должно предотвращать включение автоматического выключателя; когда напряжение источника питания равно или превышает 85% от номинального рабочего напряжения, он должен обеспечивать надежное включение автоматического выключателя в горячих условиях. Следовательно, когда определенное падение напряжения происходит в напряжении источника питания в защищенной цепи, автоматический выключатель может быть автоматически отключен, так что электрические устройства нагрузки или оборудование под автоматическим выключателем защищены от повреждения из-за пониженного напряжения.

При использовании катушка отключения при пониженном напряжении подключается к стороне источника питания автоматического выключателя, и автоматический выключатель может быть включен только после срабатывания отключения при пониженном напряжении.

2. Внешние аксессуары

(1) Электрический привод

Это аксессуар для автоматических выключателей дальнего действия включения и выключения, который включает моторный привод и электромагнитный привод.

Приводной механизм двигателя представляет собой автоматический выключатель в литом корпусе с lnm 400A и выше, электромагнитный приводной механизм подходит для автоматического выключателя в литом корпусе с lnm 225A и ниже. Будь то электромагнит или двигатель, их направления втягивания и вращения одинаковы, только благодаря положению кулачка внутри электрического рабочего механизма, обеспечивающего закрытие и открытие. Когда автоматический выключатель приводится в действие электрическим механизмом, автоматический выключатель должен иметь возможность замыкания при любом напряжении от 85% до 110% от номинального управляющего напряжения.

Рисунок 6. Автоматический выключатель в литом корпусе

(2) Поворотная ручка

Подходит для автоматических выключателей в литом корпусе. Механизм ручки поворота установлен на крышке выключателя. Поворотный вал ручки установлен в отверстие для согласования ее механизма. Другой конец вращающегося вала проходит через дверное отверстие шкафа с выдвижным ящиком, и ручка устанавливается на головке вала, выступающей на дверце всего устройства, круглое или квадратное основание которого закреплено на дверце винтами.

Эта установка позволяет оператору вращать ручку по часовой стрелке или против часовой стрелки за пределами двери, чтобы обеспечить включение или выключение автоматического выключателя. В то же время поворот ручки может обеспечить закрытие двери шкафа при включении автоматического выключателя до тех пор, пока поворотная ручка не откроется или не сработает снова. В аварийной ситуации, когда автоматический выключатель «замкнут» и электрическая панель должна быть открыта, мы можем нажать красную кнопку разблокировки сбоку от основания ручки.

(3) Удлинитель

Это внешняя удлинительная рукоятка, которая устанавливается непосредственно на рукоятку выключателя. Обычно он используется для автоматических выключателей большой мощности на 600 А и выше для ручных операций включения и выключения.

(4) Устройство блокировки ручки

Зажим устанавливается на раму ручки, ручка пробивается и затем фиксируется висячим замком. Когда автоматический выключатель замкнут, устройство блокировки ручки может остановить других, чтобы отключить питание и вызвать сбой.Кроме того, когда сторону нагрузки автоматического выключателя необходимо отремонтировать или питание отключено, это может предотвратить ошибочное включение автоматического выключателя.

Рисунок 7. Устройство блокировки выключателя

VI Метод подключения

Способы подключения автоматического выключателя следующие: проводка перед платой, за платой, вставного типа, выдвижного типа, среди которых проводка перед платой является наиболее распространенным методом проводки.

1. Электропроводка за платой

Самая большая особенность проводки за платой заключается в том, что автоматический выключатель можно заменить или отремонтировать без повторного подключения проводки , только отключив предварительное питание.

Из-за особой конструкции изделие оснащено специальными монтажными пластинами, монтажными винтами и винтами для проводки в соответствии с требованиями проекта. Следует отметить, что надежность контакта выключателя большой мощности напрямую влияет на нормальное использование выключателя, поэтому мы должны устанавливать его строго в соответствии с требованиями производителя.

2. Подключаемая проводка

На монтажной плате укомплектованного устройства сначала установите монтажное основание выключателя с 6 розетками на нем. На поверхности монтажного основания имеется соединительная пластина или болты позади монтажного основания, а шнур питания и линия нагрузки подключаются к монтажному основанию заранее.

При использовании вставляйте автоматический выключатель прямо в крепление. Если автоматический выключатель сломан, просто вытащите сломанный и замените на исправный.Время замены подключаемой проводки короче, чем проводки до и за платой, что более удобно.

Рисунок 8. Электропроводка в автоматическом выключателе

3. Электропроводка выдвижного типа

Ящики входа и выхода автоматического выключателя вращаются по часовой стрелке или против часовой стрелки с помощью рычага. И основная цепь, и вторичная цепь используют съемную конструкцию, исключая изолятор , необходимый для фиксированного типа.Одна машина с двумя видами использования более экономична и в то же время обеспечивает большое удобство эксплуатации и обслуживания, повышая безопасность и надежность. В частности, держатель контактов главной цепи основания ящика может использоваться взаимозаменяемо с держателем контактов предохранителя типа NT.

Последние Электронные Блог:

Устройство и принцип работы полевых транзисторов

Что такое электрический разъем?

MCB (Миниатюрный автоматический выключатель) Работа и эксплуатация

Автоматический выключатель (MCB) автоматически отключает электрическую цепь во время ненормального состояния сети, означает состояние перегрузки, а также неисправное состояние.

В настоящее время в электросети низкого напряжения мы используем автоматический выключатель вместо предохранителя. Предохранитель может этого не распознавать, но автоматический выключатель делает это более надежно. Автоматический выключатель намного более чувствителен к перегрузке по току, чем предохранитель.

Обращение с MCB электрически безопаснее, чем с предохранителем. Быстрое восстановление питания возможно в случае срабатывания предохранителя, так как предохранители должны быть повторно подключены или заменены для восстановления питания. Восстановление легко возможно, просто включив его. Давайте посмотрим на работу автоматического выключателя.

Внутри MCB

Принцип работы MCB

Всякий раз, когда через MCB протекает непрерывный сверхток, биметаллическая полоса нагревается и отклоняется из-за изгиба. Это отклонение биметаллической полосы освобождает механическую защелку. Поскольку эта механическая защелка прикреплена к рабочему механизму, она вызывает размыкание контактов миниатюрного автоматического выключателя, и MCB отключается, тем самым останавливая ток, протекающий в цепи. Чтобы возобновить прохождение тока, MCB должен быть включен вручную.Этот механизм защищает от неисправностей, возникающих из-за перегрузки по току или перегрузки.

Но во время короткого замыкания ток внезапно возрастает, вызывая электромеханическое смещение плунжера, связанного с катушкой отключения или соленоидом. Плунжер ударяет по рычагу отключения, вызывая немедленное освобождение фиксирующего механизма, что приводит к размыканию контактов выключателя. Это было простое объяснение принципа работы миниатюрного автоматического выключателя.

MCB очень прост, удобен в использовании и обычно не ремонтируется.Просто заменить проще. Расцепитель — это основная часть, отвечающая за его правильную работу. Есть два основных типа механизма отключения. Биметалл обеспечивает защиту от тока перегрузки, а электромагнит обеспечивает защиту от тока короткого замыкания.

Работа MCB

При длительной перегрузке цепи биметаллическая полоса перегревается и деформируется. Эта деформация биметаллической ленты вызывает смещение точки защелки. Подвижный контакт MCB устанавливается посредством давления пружины с этой точкой защелки, что небольшое смещение защелки вызывает отпускание пружины и заставляет подвижный контакт перемещаться для размыкания MCB.

Катушка тока или отключающая катушка размещена таким образом, чтобы во время короткого замыкания магнитодвижущая сила (ммс) катушки заставляла ее плунжер ударять по той же точке защелки и смещать защелку. Опять же, когда рычаг управления миниатюрным автоматическим выключателем приводится в действие вручную, это означает, что когда MCB выходит из положения вручную, одна и та же точка защелки смещается в результате того, что движущийся контакт отделяется от неподвижного контакта таким же образом.

Это может быть из-за деформации биметаллической полосы, увеличения mmf катушки отключения или, может быть, ручного управления, та же точка защелки смещается и деформированная пружина освобождается, что в конечном итоге отвечает за перемещение подвижного контакта.Когда подвижный контакт отделен от неподвижного контакта, существует высокая вероятность возникновения дуги. Затем эта дуга проходит через направляющую дуги, попадает в разделители дуги и, наконец, гасится. Когда мы включаем его, мы сбрасываем смещенную рабочую защелку в ее предыдущее положение включения, и MCB готов к следующему отключению или срабатыванию отключения.

Видео предоставлено:
chrvoje engineering

Дополнительные базовые руководства доступны в учебном уголке.

Эта статья была впервые опубликована 2 июня 2018 г. и недавно обновлена ​​7 октября 2020 г.
Принцип работы выключателя

Анимация

Автоматический выключатель — это автоматический выключатель, предназначенный для защиты электрической цепи от повреждений, вызванных перегрузкой электричеством или коротким замыканием. Функция автоматических выключателей заключается в обнаружении неисправности и немедленном прекращении электрического тока путем прерывания цепи.

Анимация выключателя

Введение в автоматический выключатель

При работе энергосистемы часто бывает желательно и необходимо отключать или отключать различные устройства или линии передачи в нормальных и ненормальных условиях.Раньше для этой цели использовались переключатели и предохранители, чтобы размыкать или замыкать контакт.

Но если предохранитель выйдет из строя из-за неисправности, потребуется время для его замены, что приведет к значительному прерыванию передачи энергии. Оператор должен отправиться в поле, чтобы заменить предохранитель в случае его выхода из строя. Выключатели или предохранители не могут выдерживать большие токи из-за своей конструкции.

Эти недостатки выключателей и предохранителей заставили использовать их в более низком диапазоне напряжений.Но в развивающейся электротехнике каждый день мы имеем дело с новой технологией, состоящей из более высокого диапазона напряжений, что побудило использовать устройство, называемое автоматическим выключателем.

Определение автоматического выключателя

Автоматический выключатель — это устройство, которое замыкает цепь по желанию оператора и размыкает цепь по намерению оператора, а также при любой неисправности в цепи.

Обобщенные важные функции автоматических выключателей следующие:
  1. Выключателем можно управлять вручную или дистанционно из диспетчерской.
  2. Автоматический выключатель может автоматически срабатывать в условиях неисправности через логическую схему.
  3. Он может выдерживать более высокие напряжения, обеспечивая более высокую изоляцию между двумя контактами в разомкнутом состоянии.

Принцип действия выключателя

Каждому инженеру-электрику необходимо знать, как работает автоматический выключатель. . Автоматический выключатель состоит из двух электродов, один неподвижный, а другой подвижный. Цепь будет замкнута, если два контакта находятся в контакте, и она будет разомкнута, когда эти два разъединены.

Это основано на требовании оператора, должна ли цепь быть замкнута или разомкнута в исходном случае. Предположим, что если выключатель изначально включен для замыкания цепи, если в цепи возникает какая-либо неисправность или если оператор хотел ее размыкать, то логический сигнал включает реле отключения, которое разделяет два контакта, перемещая подвижную катушку на расстояние от фиксированной катушки .

Это выглядит простым управлением, но реальное препятствие только здесь, т.е. когда два контакта разделяются, между концами контактов будет большая переходная разность потенциалов, которая позволяет огромным электронам перескакивать с высокого потенциала на низкий.Но переходное расстояние между двумя контактами в этот момент действует как диэлектрик для перехода электронов от одного электрода к другому.

Если разность потенциалов выше, чем электрическая прочность, электроны пытаются перейти к другому электроду, который ионизирует диэлектрическую среду, что приводит к сильной искре между электродами. Эта искра между электродами называется « дуга ».

Даже несмотря на то, что дуга сохраняется в течение микросекунд, достаточно взорвать изолирующий кожух выключателя и компоненты в нем из-за высокой теплоты искрения.

Таким образом, чтобы избежать этого повреждения автоматического выключателя, силу дуги необходимо уменьшить за счет увеличения диэлектрической прочности между двумя электродами, когда они разделяются, а проявленный электрод должен погаснуть непосредственно перед тем, как повредить выключатель.

Такие среды, как воздух, масло, вакуум и SF6 (гексафторид серы), используются в качестве среды для гашения дуги, которая обеспечивает высокую диэлектрическую прочность, а также гасит дугу в кратчайшие сроки.

Автоматический выключатель основного назначения

  • Коммутатор токов нагрузки
  • Устранить неисправность
  • Нормальный разрыв и ток короткого замыкания
  • Перенести ток короткого замыкания без разрыва (или взрыва!) I.е. отсутствие искажений из-за магнитных сил в условиях неисправности.
  • Важными характеристиками с точки зрения защиты являются: Скорость, с которой основной ток размыкается после получения отключающего импульса.

Преимущества автоматического выключателя перед предохранителем

  • Автоматический выключатель работает при высоком напряжении по сравнению с предохранителем.
  • Выключателем
  • можно управлять дистанционно, запитав катушку включения или отключения, что невозможно в случае плавкого предохранителя.
  • Функционирование автоматического выключателя (срабатывание или включение) можно легко проверить.
  • Нет необходимости заменять автоматический выключатель после неисправности.

Основные определения — Автоматический выключатель

Автоматический выключатель — это автоматический выключатель, предназначенный для защиты электрической цепи от повреждений, вызванных перегрузкой или коротким замыканием. Его основная функция заключается в обнаружении неисправности и немедленном прекращении электрического тока путем прерывания цепи.В отличие от предохранителя, который срабатывает один раз, а затем его необходимо заменить, автоматический выключатель можно сбросить (вручную или автоматически) для возобновления нормальной работы. Автоматические выключатели бывают разных размеров, от небольших устройств, защищающих отдельные бытовые приборы, до больших распределительных устройств, предназначенных для защиты цепей высокого напряжения, питающих весь город.

Истоки

Ранняя форма автоматического выключателя была описана Томасом Эдисоном в заявке на патент 1879 года, хотя в его коммерческой системе распределения энергии использовались предохранители.Его целью была защита проводки цепи освещения от случайных коротких замыканий и перегрузок.

Эксплуатация

Все автоматические выключатели имеют общие характеристики в своей работе, хотя детали существенно различаются в зависимости от класса напряжения, номинального тока и типа автоматического выключателя.

Автоматический выключатель должен обнаруживать неисправность; в выключателях низкого напряжения это обычно делается внутри корпуса выключателя. Автоматические выключатели для больших токов или высокого напряжения обычно снабжены контрольными устройствами для определения тока короткого замыкания и срабатывания отключающего механизма размыкания.Электромагнит отключения, который освобождает защелку, обычно получает питание от отдельной батареи, хотя некоторые высоковольтные выключатели являются автономными с трансформаторами тока, реле защиты и внутренним источником питания управления.

При обнаружении неисправности контакты в автоматическом выключателе должны размыкаться, чтобы прервать цепь; некоторая механически накопленная энергия (с использованием чего-то вроде пружины или сжатого воздуха), содержащаяся в выключателе, используется для разделения контактов, хотя часть необходимой энергии может быть получена от самого тока короткого замыкания.Малые автоматические выключатели могут управляться вручную; более крупные агрегаты имеют соленоиды для отключения механизма и электродвигатели для восстановления энергии пружин.

Контакты выключателя должны пропускать ток нагрузки без чрезмерного нагрева, а также должны выдерживать тепло дуги, возникающей при размыкании цепи. Контакты изготавливаются из меди или медных сплавов, сплавов серебра и других материалов. Срок службы контактов ограничен эрозией из-за прерывания дуги.Миниатюрные автоматические выключатели и выключатели в литом корпусе обычно выбрасываются, когда контакты изношены, но силовые выключатели и высоковольтные выключатели имеют заменяемые контакты.

Когда ток прерывается, возникает дуга. Эту дугу необходимо сдерживать, охлаждать и гасить контролируемым образом, чтобы промежуток между контактами снова мог выдерживать напряжение в цепи. В различных автоматических выключателях в качестве среды, в которой образуется дуга, используется вакуум, воздух, изолирующий газ или масло.Для гашения дуги используются различные методы, в том числе:

  • Удлинение дуги
  • Интенсивное охлаждение (в струйных камерах)
  • Разделение на частичные дуги
  • Гашение нулевой точки (Контакты размыкаются при переходе через нулевой ток по времени формы волны переменного тока, эффективно прерывая ток холостого хода во время размыкания. Переход через нулевой уровень происходит при удвоенной частоте сети, то есть 100 раз в секунду для 50 Гц переменного тока и 120 раз за второй для 60 Гц переменного тока)
  • Подключение конденсаторов параллельно контактам в цепях постоянного тока

Наконец, после устранения неисправности контакты должны быть снова замкнуты, чтобы восстановить питание прерванной цепи.

Прерывание дуги

Миниатюрные низковольтные выключатели используют только воздух для гашения дуги. Более крупные мощности будут иметь металлические пластины или неметаллические дугогасительные камеры для разделения и охлаждения дуги. Магнитные продувочные катушки отклоняют дугу в дугогасительную камеру.

В более высоких номиналах масляные выключатели полагаются на испарение некоторого количества масла, чтобы пропустить струю масла через дугу.

Газовые выключатели (обычно с гексафторидом серы) иногда растягивают дугу с помощью магнитного поля, а затем полагаются на диэлектрическую прочность гексафторида серы (SF6) для гашения растянутой дуги.

Вакуумные выключатели

имеют минимальное образование дуги (поскольку нет ничего, что могло бы ионизировать, кроме материала контактов), поэтому дуга гаснет при очень небольшом растяжении (<2–3 мм). Вакуумные выключатели часто используются в современных распределительных устройствах среднего напряжения до 35000 вольт.

В автоматических выключателях

для гашения дуги может использоваться сжатый воздух, или, в качестве альтернативы, контакты быстро переводятся в небольшую герметичную камеру, при этом выход вытесненного воздуха приводит к гашению дуги.

Автоматические выключатели

обычно могут отключать весь ток очень быстро: обычно дуга гаснет через 30–150 мс после срабатывания механизма, в зависимости от возраста и конструкции устройства.

Ток короткого замыкания

Автоматические выключатели

рассчитаны как на номинальный ток, который предполагается выдерживать, так и на максимальный ток короткого замыкания, который они могут безопасно отключить.

В условиях короткого замыкания может существовать ток, во много раз превышающий нормальный (см. Максимальный предполагаемый ток короткого замыкания).Когда электрические контакты размыкаются, чтобы прервать большой ток, существует тенденция к образованию дуги между разомкнутыми контактами, что позволяет току продолжаться. Следовательно, автоматические выключатели должны включать в себя различные функции для разделения и гашения дуги.

В автоматических выключателях с воздушной изоляцией и миниатюрных выключателях конструкция дугогасительной камеры, состоящая (часто) из металлических пластин или керамических выступов, охлаждает дугу, а магнитные обмотки отводят дугу в дугогасительную камеру. В более крупных автоматических выключателях, таких как те, которые используются в распределении электроэнергии, может использоваться вакуум, инертный газ, такой как гексафторид серы, или контакты, погруженные в масло, для подавления дуги.

Максимальный ток короткого замыкания, который может прервать прерыватель, определяется испытанием. Применение выключателя в цепи с предполагаемым током короткого замыкания выше, чем номинальная отключающая способность выключателя, может привести к тому, что выключатель не сможет безопасно устранить неисправность. В худшем случае выключатель может успешно прервать неисправность, только чтобы взорваться при сбросе.

Миниатюрные автоматические выключатели, используемые для защиты цепей управления или небольших приборов, могут не иметь достаточной отключающей способности для использования на щитовом щите; эти автоматические выключатели называются «дополнительными устройствами защиты цепи», чтобы отличать их от автоматических выключателей распределительного типа.

Стандартные номинальные значения тока

Международный стандарт IEC 60898-1 и европейский стандарт EN 60898-1 определяют номинальный ток In автоматического выключателя для низковольтных распределительных устройств как ток, который выключатель рассчитан на постоянное проведение (при температуре окружающего воздуха 30 ° C). . Обычно доступные предпочтительные значения номинального тока: 6 А, 10 А, 13 А, 16 А, 20 А, 25 А, 32 А, 40 А, 50 А, 63 А, 80 А и 100 А (серия Renard, слегка изменен, чтобы включить ограничение тока розеток British BS 1363).На автоматическом выключателе указан номинальный ток в амперах, но без обозначения единицы измерения «A». Вместо этого перед числом в амперах стоит буква «B», «C» или «D», которая указывает мгновенный ток отключения, то есть минимальное значение тока, которое вызывает отключение автоматического выключателя без преднамеренной задержки по времени (т. Е. менее чем за 100 мс), выраженное в единицах In:

Тип Мгновенный ток отключения
B более 3 дюймов до 5 дюймов включительно
С более 5 дюймов до 10 дюймов включительно
D более 10 дюймов до 20 дюймов включительно
К от 8 In до 12 In включительно Для защиты нагрузок, вызывающих частые кратковременные (примерно от 400 мс до 2 с) пики тока при нормальной работе.
Z выше 2 In до 3 In включительно на периоды порядка десятков секунд. Для защиты таких нагрузок, как полупроводниковые приборы или измерительные цепи с использованием трансформаторов тока.

Типы выключателей

Можно создать множество различных классификаций автоматических выключателей на основе их характеристик, таких как класс напряжения, тип конструкции, тип прерывания и конструктивные особенности.

Выключатели низковольтные

Низковольтные (менее 1000 В переменного тока) широко используются в бытовом, коммерческом и промышленном применении, в том числе:

  • MCB (Миниатюрный автоматический выключатель) — номинальный ток не более 100 А.Характеристики срабатывания обычно не регулируются. Тепловой или термомагнитный режим. Изображенные выше выключатели относятся к этой категории.
  • MCCB (автоматический выключатель в литом корпусе) — номинальный ток до 2500 A. Тепловой или термомагнитный режим. Ток срабатывания можно регулировать в больших номиналах.
  • Низковольтные силовые выключатели могут быть установлены в многоярусные блоки в распределительных щитах низкого напряжения или в распределительных шкафах.

Характеристики автоматических выключателей низкого напряжения соответствуют международным стандартам, таким как IEC 947.Эти автоматические выключатели часто устанавливаются в выдвижных шкафах, которые позволяют снимать и заменять без демонтажа распределительного устройства.

Большой низковольтный литой корпус и силовые выключатели могут иметь электрические моторные приводы, позволяющие отключать (размыкать) и замыкать их с помощью дистанционного управления. Они могут быть частью системы автоматического включения резерва для резервного питания.

Низковольтные автоматические выключатели также предназначены для использования с постоянным током (DC), например, с питанием постоянного тока для линий метро.Для постоянного тока требуются специальные выключатели, потому что дуга не имеет естественной тенденции гаснуть на каждом полупериоде, как для переменного тока. Автоматический выключатель постоянного тока будет иметь предохранительные катушки, которые создают магнитное поле, которое быстро растягивает дугу при прерывании постоянного тока.

Малые автоматические выключатели либо устанавливаются непосредственно в оборудование, либо размещаются в щите выключателя.

Термомагнитный миниатюрный автоматический выключатель на DIN-рейку на 10 ампер является наиболее распространенным типом современных бытовых потребительских устройств и коммерческих распределительных щитов по всей Европе.В конструкцию входят следующие компоненты:

  1. Рычаг привода — используется для ручного отключения и сброса автоматического выключателя. Также указывает состояние автоматического выключателя (Вкл. Или Выкл. / Сработал). Большинство выключателей сконструированы таким образом, что они могут сработать, даже если рычаг удерживается или заблокирован в положении «включено». Иногда это называют операцией «свободного отключения» или «положительного отключения».
  2. Приводной механизм — прижимает контакты вместе или врозь.
  3. Контакты — Разрешить ток при прикосновении и прервать ток при раздвигании.
  4. Клеммы
  5. Полоса биметаллическая
  6. Калибровочный винт — позволяет производителю точно настроить ток срабатывания устройства после сборки.
  7. Соленоид
  8. Разделитель / гаситель дуги

Магнитный выключатель

В магнитных выключателях

используется соленоид (электромагнит), тяговое усилие которого увеличивается с увеличением тока. В некоторых конструкциях помимо электромагнитных сил используются электромагнитные силы. Контакты выключателя удерживаются замкнутыми защелкой.Когда ток в соленоиде превышает номинал автоматического выключателя, тяга соленоида освобождает защелку, которая затем позволяет контактам размыкаться под действием пружины. Некоторые типы магнитных отбойных молотков имеют функцию гидравлической задержки с использованием вязкой жидкости. Сердечник удерживается пружиной до тех пор, пока ток не превысит номинальное значение выключателя. Во время перегрузки скорость движения соленоида ограничивается жидкостью. Задержка допускает кратковременные скачки тока сверх нормального рабочего тока для запуска двигателя, подачи питания на оборудование и т. Д.Токи короткого замыкания обеспечивают соленоидное усилие, достаточное для освобождения защелки независимо от положения сердечника, таким образом обходя функцию задержки. Температура окружающей среды влияет на время задержки, но не влияет на номинальный ток магнитного прерывателя.

Термомагнитный выключатель

Термомагнитные выключатели, которые используются в большинстве распределительных щитов, включают в себя как методы, при которых электромагнит мгновенно реагирует на большие скачки тока (короткие замыкания), так и биметаллическую полосу, реагирующую на менее экстремальные, но более длительные условия перегрузки по току.

Выключатели общего назначения

При питании ответвленной цепи более чем одним токоведущим проводом каждый токоведущий провод должен быть защищен полюсом выключателя. Чтобы гарантировать отключение всех токоведущих проводов при отключении любого полюса, необходимо использовать прерыватель «общего отключения». Они могут содержать два или три отключающих механизма в одном корпусе, или, в случае небольших выключателей, они могут связывать полюса снаружи с помощью рукояток управления. Двухполюсные автоматические выключатели с общим расцеплением обычно используются в системах на 120/240 В, где нагрузки 240 В (включая основные приборы или другие распределительные щиты) охватывают два провода под напряжением.Трехполюсные автоматические выключатели с общим расцепителем обычно используются для подачи трехфазной электроэнергии на большие двигатели или другие распределительные щиты.

Двух- и четырехполюсные выключатели используются, когда необходимо отсоединить нейтральный провод, чтобы убедиться, что ток не может течь обратно через нейтральный провод от других нагрузок, подключенных к той же сети, когда людям нужно прикоснуться к проводам для обслуживания. Отдельные автоматические выключатели никогда не должны использоваться для отключения токоведущей и нейтрали, потому что, если нейтраль отключается, а токоведущий провод остается подключенным, возникает опасное состояние: цепь будет обесточена (приборы не будут работать), но провода останутся под напряжением. и УЗО не сработают, если кто-то коснется провода под напряжением (потому что для срабатывания УЗО требуется питание).Поэтому, когда необходимо переключение нейтрального провода, следует использовать только обычные размыкающие выключатели.

Автоматические выключатели среднего напряжения

Выключатели среднего напряжения номиналом от 1 до 72 кВ могут быть собраны в распределительные устройства в металлическом корпусе для использования внутри помещений или могут быть отдельными компонентами, установленными на открытом воздухе на подстанции. Автоматические выключатели с воздушным разрывом заменили маслонаполненные блоки для внутреннего применения, но теперь сами заменяются вакуумными выключателями (примерно до 35 кВ).Как и описанные ниже высоковольтные автоматические выключатели, они также управляются реле защиты, считывающими ток, управляемыми через трансформаторы тока. Характеристики выключателей среднего напряжения приведены в международных стандартах, таких как IEC 62271. В выключателях среднего напряжения почти всегда используются отдельные датчики тока и реле защиты, а не встроенные тепловые или магнитные датчики максимального тока.

Автоматические выключатели среднего напряжения можно классифицировать по среде, используемой для гашения дуги:

  • Вакуумный автоматический выключатель. Эти выключатели с номинальным током до 3000 А прерывают ток, создавая и гаснув дугу в вакуумном контейнере.Обычно они применяются для напряжений примерно до 35000 В, что примерно соответствует диапазону среднего напряжения энергосистем. Вакуумные выключатели обычно имеют более длительный срок службы между капитальными ремонтами, чем воздушные выключатели.
  • Воздушный автоматический выключатель — номинальный ток до 10 000 А. Характеристики срабатывания часто полностью регулируются, включая настраиваемые пороги срабатывания и задержки. Обычно с электронным управлением, хотя некоторые модели управляются микропроцессором через встроенный электронный расцепитель.Часто используется для распределения электроэнергии на крупных промышленных предприятиях, где выключатели размещены в выдвижных корпусах для облегчения обслуживания.
  • SF6 автоматические выключатели гасят дугу в камере, заполненной газообразным гексафторидом серы.

Автоматические выключатели среднего напряжения могут быть подключены к цепи болтовым соединением с шинами или проводами, особенно в открытых распределительных устройствах. Автоматические выключатели среднего напряжения в распределительных устройствах часто имеют выдвижную конструкцию, что позволяет снимать выключатель без нарушения соединений силовой цепи с использованием механизма с приводом от двигателя или с ручным приводом для отделения выключателя от корпуса.

Выключатели высоковольтные

Сети передачи электроэнергии защищены и управляются высоковольтными выключателями. Определение высокого напряжения варьируется, но при работе по передаче электроэнергии обычно считается 72,5 кВ или выше, согласно недавнему определению Международной электротехнической комиссии (МЭК). Высоковольтные выключатели почти всегда работают от соленоидов, а реле защиты от тока, управляемые через трансформаторы тока. На подстанциях схема реле защиты может быть сложной, защищая оборудование и шины от различных типов перегрузок или замыканий на землю / землю.

Высоковольтные выключатели широко классифицируются по средам, используемым для гашения дуги.

  • Масло наливное
  • Минимум масла
  • Воздушный удар
  • Вакуум
  • SF6

Некоторые производители: ABB, GE (General Electric), AREVA, Mitsubishi Electric, Pennsylvania Breaker, Siemens, Toshiba, Kon? Ar HVS, BHEL, CGL.

Из-за проблем с окружающей средой и стоимостью изоляции разливов нефти в большинстве новых выключателей для гашения дуги используется элегаз.

Автоматические выключатели

можно классифицировать как резервуар под напряжением, в котором корпус, содержащий механизм отключения, находится под линейным потенциалом, или как мертвый резервуар с корпусом, находящимся под потенциалом земли. Обычно выпускаются высоковольтные выключатели переменного тока с номинальным напряжением до 765 кВ. Выключатели на 1200 кВ, скорее всего, появятся на рынке очень скоро.

Высоковольтные выключатели, используемые в системах передачи, могут быть устроены так, чтобы обеспечить отключение одного полюса трехфазной линии вместо отключения всех трех полюсов; для некоторых классов неисправностей это улучшает стабильность и доступность системы.

Выключатели высоковольтные с гексафторидом серы (SF6)

В автоматическом выключателе с гексафторидом серы для гашения дуги используются контакты, окруженные газообразным гексафторидом серы. Чаще всего они используются для напряжений на уровне передачи и могут быть включены в компактные распределительные устройства с элегазовой изоляцией. В холодном климате может потребоваться дополнительный нагрев или снижение номинальных характеристик автоматических выключателей из-за сжижения газа SF6.

Отбойные молотки прочие

Следующие типы описаны в отдельных статьях.

  • Автоматические выключатели для защиты от замыканий на землю, слишком малые для отключения устройства перегрузки по току:
    • Устройство защитного отключения (УЗО, ранее известное как выключатель дифференциального тока) — обнаруживает дисбаланс токов, но не обеспечивает защиту от сверхтоков.
    • Выключатель дифференциального тока с защитой от сверхтоков (RCBO) — сочетает в себе функции УЗО и MCB в одном корпусе. В США и Канаде устанавливаемые на панели устройства, сочетающие в себе обнаружение замыкания на землю и защиту от перегрузки по току, называются прерывателями цепи при замыкании на землю (GFCI); Настенное устройство розетки, обеспечивающее только обнаружение замыкания на землю, называется GFI.
    • Автоматический выключатель утечки на землю (ELCB) — Он непосредственно определяет ток на землю, а не обнаруживает дисбаланс. Их больше не видят в новых инсталляциях по разным причинам.
  • Автовыключатель — Тип автоматического выключателя, который снова замыкается после задержки. Они используются в воздушных распределительных системах, чтобы предотвратить кратковременные неисправности, вызывающие длительные отключения.
  • Polyswitch (polyfuse) — небольшое устройство, обычно описываемое как предохранитель с автоматическим сбросом, а не автоматический выключатель.
Позвоните в Defined Electric по телефону 505-269-9861 или напишите по электронной почте одному из наших квалифицированных электриков в Альбукерке сегодня, чтобы получить бесплатную смету для вашего следующего электрического проекта. Автоматический выключатель

и предохранитель: в чем явные различия?

Прерыватель цепи

и предохранитель — автоматические выключатели и предохранители имеют одну и ту же цель: поддерживать электрические системы, предотвращая перегрузки по току и перегрузки, которые могут вызвать повреждения, например, пожары. Оба они прерывают ток, но совершенно по-разному друг от друга.В то время как предохранитель изготовлен из куска металла, плавящегося при перегреве, автоматические выключатели имеют внутреннюю структуру для переключения механизмов, которые могут быть отключены небезопасным током. Мы обсудим основные различия между ними в этом посте, чтобы точно объяснить проблему автоматического выключателя и предохранителя.

В чем разница между автоматическим выключателем и предохранителем?

Различия между автоматическим выключателем и предохранителем обсуждаются с учетом нескольких факторов, таких как требования к вспомогательному оборудованию, возможность повторного использования, принцип работы, время работы, их функции, индикация состояния, температура, стоимость, отключающая способность, характеристическая кривая, защита и режим. операции.

Автоматический выключатель и предохранитель (Ссылка: escoutah.com )

Предохранители могут быстрее прерывать подачу электричества, но когда они расплавляются, их следует заменить; с другой стороны, автоматические выключатели просто необходимо сбросить. Сравнивая эти два устройства, мы рассмотрим некоторые из основных преимуществ и проблем между автоматическими выключателями и предохранителями, чтобы различать их.

Предохранитель — это электрический прибор, состоящий из фарфора, стекла или пластика, содержащего тонкий слой проволоки.Если в установке случаются какие-либо неисправности и в цепи протекает чрезмерное значение тока, предохранитель плавится автоматически и размыкает главный контакт системы, тем самым защищая устройства от любых повреждений. Автоматические выключатели также выполняют ту же функцию, что и предохранители, но основаны на процессе электромагнетизма. Автоматические выключатели также защищают устройства от повреждений из-за завышенного тока. Посетите здесь, если вы хотите узнать больше об автоматическом выключателе и предохранителях.

Принцип работы автоматических выключателей Выключатели

имеют два различных метода работы: первый — с использованием электромагнитной секции, а второй — с использованием биметаллического ножа. В обоих случаях при включении прерыватель позволяет электрическому току перемещаться от нижней секции к верхней клемме через полосу. Когда ток повышается до небезопасных значений, магнитная сила ленты или соленоида становится достаточно большой, чтобы тянуть металлический нож в переключающем механизме и отключать ток.Другой способ, который может произойти, заключается в том, что металлическое лезвие может согнуться, нажав выключатель и оборвав соединение.

Принцип работы автоматического выключателя

(Ссылка: indiamart.com )

Чтобы возобновить прохождение тока, кнопку переключателя можно только снова включить, что снова открывает систему. Во многих приложениях автоматические выключатели находятся в отдельном шкафу, включая различные переключатели, представленные в виде коробки выключателя. Этот простой процесс переключения позволяет отключать отдельные цепи в доме просто тогда, когда это необходимо для работы на определенной проводке в этом месте.

У автоматических выключателей

есть другие конструкции, такие как прерыватели цепи при замыкании на землю (обычно известные как GFCI). Их работа заключается в том, чтобы избежать поражения электрическим током, а не просто перегрева. Они отключают систему в розетке, если ток становится несимметричным. Их можно сбросить нажатием кнопки и, как правило, они используются в ванных комнатах или на кухнях, где поражение электрическим током или немедленные удары током слишком опасны при использовании электрических устройств рядом с водопроводными трубами, такими как смесители или раковины.

Типы предохранителей

Типы предохранителей слишком разные как для коммерческого, так и для домашнего использования. Самый распространенный тип состоит из нити или металлической проволоки, покрытой стеклянной, керамической или металлической оболочкой. Предохранители обычно вставляются в центральную коробку предохранителей в жилых домах, где проводка здания проходит через эту коробку. Когда ток течет, предохранитель позволяет мощности проходить без каких-либо ограничений через нить накала между проводами.Нить накала плавится при перегрузках и прекращает прохождение тока.

Типы предохранителей (Ссылка: steinerelectric.com )

Для того, чтобы нить накаливания перерезалось, потребуется немного времени, и, следовательно, любой скачок напряжения прекратится. Если предохранитель сломан, его следует удалить и заменить новым. На рынке доступны несколько различных номиналов и напряжений для работы с различными мощностями тока. Лучшим предохранителем для системы обычно является предохранитель, рассчитанный на немного большее, чем нормальное значение, значение тока.

Ключевые отличия автоматического выключателя от предохранителя

Ключевые различия для сравнения автоматического выключателя и предохранителя приведены ниже:

  • Предохранитель работает по принципу тепловых и электрических свойств проводящих веществ, тогда как автоматический выключатель работает по принципу электромагнетизма и механизму переключения.
  • Перегоревшие предохранители нельзя использовать повторно, но автоматические выключатели можно использовать более одного раза.В результате нет необходимости заменять автоматический выключатель после возникновения какой-либо неисправности.
  • Вспомогательный контакт необходим в автоматическом выключателе, в то время как вспомогательный контакт не требуется в предохранителе.
  • Автоматический выключатель может использоваться как переключатель ВКЛ / ВЫКЛ, тогда как предохранитель не может использоваться как кнопка ВКЛ / ВЫКЛ.
  • Срабатывание выключателя зависит от температуры окружающей среды, но предохранители не зависят от температуры окружающей среды.
  • Характеристическая диаграмма предохранителя изменяется из-за эффекта старения, и, как следствие, через некоторое время его необходимо заменить из-за неудобств и срабатывания.Однако производительность автоматического выключателя не меняется.
  • Предохранитель обеспечивает защиту только от перегрузок по мощности, а автоматический выключатель обеспечивает надлежащую работу для защиты как от коротких замыканий, так и от перегрузок по мощности.
  • Автоматический выключатель прерывает цепь, и для обнаружения любой неисправности в этой цепи требуется релейная система. Но предохранитель поддерживает процессы как прерывания, так и обнаружения.
  • Отключающая способность предохранителя меньше, чем у автоматического выключателя.
  • Автоматические выключатели
  • более дорогие, в то время как стоимость предохранителей ниже.
  • Время срабатывания предохранителя слишком мало, около 0,002 секунды, в то время как время срабатывания автоматического выключателя относительно больше, чем время срабатывания предохранителя. Это от 0,03 до 0,06 секунды.
  • Режим работы предохранителя полностью автоматический, но автоматический выключатель может работать как вручную, так и автоматически с помощью релейной системы.

Каковы преимущества и недостатки автоматического выключателя и предохранителя?

Преимущества и недостатки автоматического выключателя и предохранителя перечислены ниже:

Преимущества автоматического выключателя по сравнению с предохранителем (Ссылка: steinerelectric.com )

  • Предохранители дешевле, доступны практически на любом рынке оборудования. Они быстро реагируют на перегрузки, обеспечивая большую защиту чувствительных электрических инструментов. Единственная проблема заключается в том, что если система склонна к скачкам напряжения, которые равномерно вызывают перегорание предохранителей, то быстрая реакция на перегрузку может стать недостатком.
  • При выходе из строя предохранителей их необходимо заменить. Это может быть сложно, особенно в темной комнате, или если новый предохранитель недоступен во время требования.Другой недостаток заключается в том, что люди обычно сами заменяют предохранитель на новый, который на самом деле имеет более высокий номинальный ток или напряжение, которое слишком велико для необходимости или применения. Это может привести к перегреву системы.
  • Предохранители обычно говорят, что просто увидеть, какой переключатель сломан, а какой потребуется сбросить. Средний домовладелец может найти его в безопасности, потому что нет никаких сомнений в выборе предохранителя наилучшего номинала, а все электрические соединения находятся в коробке выключателя.
  • Основным недостатком использования автоматического выключателя является то, что его установка, замена и ремонт могут быть более дорогими. Автоматические выключатели не срабатывают так быстро, как предохранители при ограничении мощности. Это означает, что электронные устройства, подключенные к электрической схеме, могут быть повреждены из-за мощности, которая просто пропускается через цепь. Он может быть более чувствительным к движению и вибрации, что может позволить процессу переключения обнаруживать новые причины, не связанные с перегрузками в системе.
  • Предохранители и автоматические выключатели не являются взаимозаменяемыми для всех промышленных применений. Например, предохранитель не следует использовать в приложениях, которым требуется GFCI. Электрики имеют лучшую квалификацию, чтобы выбрать, какой автоматический выключатель или плавкий предохранитель больше подходит для любого конкретного применения или электрического монтажа. Если у вас есть какие-либо вопросы о специальном проекте и вы хотите узнать больше, вам следует поговорить с опытным экспертом.

Как насчет мер безопасности?
  • При добавлении цепей или проводки в доме всегда проверяйте местные строительные нормы и правила.
  • Никогда не снимайте крышку электрического блока, если вы не являетесь квалифицированным электриком.
  • Когда перегорает предохранитель или срабатывает автоматический выключатель, выясните, в чем основная причина. Часто домовладельцы либо заменяют предохранитель, либо сбрасывают выключатель, что не решает основную проблему. Убедитесь, что все цепи не перегружены слишком большим количеством устройств или других электроприборов.
  • Никогда не пытайтесь поменять панель. Вам следует поговорить с лицензированным электриком для решения проблемы.
  • Всегда проверяйте, что выключатели находятся в надлежащем рабочем состоянии.

В заключение, автоматические выключатели или предохранители являются одними из самых важных механизмов безопасности в вашем доме. Если вы добавили новые места или электрические розетки, вы можете подумать об обновлении услуг, если это необходимо.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *