Закрыть

Что такое линейное напряжение и фазное: что это такое и чем они отличаются

Содержание

Линейное и фазное напряжение — соотношение и формулы, схема соединения звездой и треугольником

Одним из видов систем с множеством фаз, представлены цепи, состоящие из трех фаз. В них действуют электродвижущие силы синусоидального типа, возникающие с синхронной частотой, от единого генератора энергии, и имеют разницу в фазе.

Электрическое напряжение трехфазных сетей

  • Виды напряжения ↓
  • Отличия ↓
  • Соотношение ↓
  • Схема ↓
  • Расчет линейного и фазного напряжения ↓

Под фазой, понимаются самостоятельные блоки системы с множеством фаз, имеющие идентичные друг другу параметры тока. Поэтому, в электротехнической области, определение фазы имеет двойное толкование.

Во-первых, как значение, имеющее синусоидальное колебание, а во-вторых, как самостоятельный элемент в электросети с множеством фаз. В соответствии с их количеством и маркируется конкретная цепь: двухфазная, трехфазная, шестифазная и т.д.

Сегодня в электроэнергетике, наиболее популярными являются цепи с трехфазным током. Они обладают целым перечнем достоинств, выделяющих их среди своих однофазных и многофазных аналогов, так как, во-первых, более дешевы по технологии монтажа и транспортировки электроэнергии с наименьшими потерями и затратами.

Во-вторых, они имеют свойство легко образовывать движущееся по кругу магнитное поле, которое является движущей силой для асинхронных двигателей, которые используются не только на предприятиях, но и в быту, например, в подъемном механизме высотных лифтов и т.д.

Электрические цепи, имеющие три фазы, позволяют одновременно пользоваться двумя видами напряжения от одного источника электроэнергии – линейным и фазным.

Виды напряжения

Знание их особенностей и характеристик эксплуатации, крайне необходимо для манипуляций в электрощитах и при работе с устройствами, питаемыми от 380 вольт:

  1. Линейное. Его обозначают как межфазный ток, то есть проходящий между парой контактов или идентичными клеймами разных фаз. Оно определяется разностью потенциалов пары фазных контактов.
  2. Фазное. Оно появляется при замыкании начального и конечного выводов фазы. Также, его обозначают как ток, возникающий при замыкании одного из контактов фазы с нулевым выводом. Его величина определяется абсолютным значением разности выводов от фазы и Земли.

Отличия

В обычной квартире, или частном доме, как правило, существует только однофазный тип сети 220 вольт, поэтому, к их щиту электропитания, подведены в основном два провода – фаза и ноль, реже к ним добавляется третий – заземление.

К высотным многоквартирным зданиям с офисами, гостиницами или торговыми центрами, подводится сразу 4 или 5 кабелей электропитания, обеспечивающих три фазы сети 380 вольт.

Почему такое жесткое разделение? Дело в том, что трехфазное напряжение, во-первых, само отличается повышенной мощностью, а во-вторых, оно специфически подходит для питания особых сверхмощных электродвигателей трехфазного типа, которые используются на заводах, в электролебедках лифтов, эскалаторных подъемниках и т. д.

Такие двигатели при включении в трехфазную сеть вырабатывают в разы большее усилие, чем их однофазные аналоги тех же габаритов и веса.

Проводить разводку проводки такого типа можно без использования профессионального оборудования и приборов, достаточно обычных отверток с индикаторами.

Соединяя проводники не нужно монтировать нулевой контакт, ведь вероятность пробоя очень мала, благодаря не занятой нейтрали.

Но такая схема сети имеет и свое слабое место, так как в линейной схеме монтажа крайне сложно найти место повреждения проводника в случае аварии или поломки, что может повысить риск возникновения пожара.

Таким образом, главным отличием между фазным и линейным типами являются разные схемы подключения проводов обмоток источника и потребителя электроэнергии.

Соотношение

Значение напряжения фазы равняется около 58% от мощности линейного аналога. То есть, при обычных эксплуатационных параметрах, линейное значение стабильно и превосходит фазное в 1,73 раза.

Оценка напряжения в сети трехфазного электрического тока, в основном производится по показателям его линейной составляющей. Для линий тока этого типа, подающегося с подстанций, оно, как правило, равняется 380 вольтам, и идентично фазному аналогу в 220 В.

В электросетях с четырьмя проводами, напряжение трехфазного тока маркируется обоими значениями – 380/220 В. Это обеспечивает возможность питания от такой сети устройств, как с однофазным потреблением электроэнергии 220 вольт, так и более мощных агрегатов, рассчитанных на ток 380 В.

Самой доступной и универсальной стала система трехфазного типа 380/220 В, имеющая нулевой провод, так называемое заземление. Электрические агрегаты, работающие на одной фазе 220 В., могут быть запитаны от линейного напряжения при подключении к любой паре фазных выводов.

Электрические агрегаты трехфазного питания работают только при подключении сразу к трем выводам разных фаз.

В этом случае, применение нулевого вывода в качестве заземления, не является обязательным, хотя в случае повреждения изоляции проводов, его отсутствие серьезно повышает вероятность удара током.

Схема

Агрегаты трехфазного тока имеют две схемы подключения в сеть: первая – «звезда», вторая – «треугольником». В первом варианте, начальные контакты всех трех обмоток генератора замыкаются вместе по параллельной схеме, что, как и в случае с обычными щелочными батарейками не даст прироста мощности.

Вторая, последовательная схема подключения обмоток источника тока, где каждый начальный вывод подключается к конечному контакту предыдущей обмотки, дает трехкратный прирост напряжения за счет эффекта суммирования напряжений при последовательном подключении.

Кроме того, такие же схемы подключения имеют и нагрузку в виде электродвигателя, только устройство, подключенное в трехфазную сеть по схеме «звезда», при токе в 2,2 А будет выдавать мощность 2190Вт, а тот же агрегат, подключенный «треугольником», способен выдать в три раза большую мощность – 5570, за счет того, что благодаря последовательному подключению катушек и внутри двигателя, сила тока суммируется и доходит до 10 А.

Имея источник трехфазного напряжения и двигатели, имеющие аналогичную схему подключения, можно получить в разы больше мощности просто за счет эффективного подключения всех агрегатов.

Расчет линейного и фазного напряжения

Сети с линейным током нашли широкое применение за счет своих характеристик меньшей травмоопасности и легкости разведения такой электропроводки. Все электрические устройства в этом случае соединены только с одним фазным проводом, по которому и идет ток, и только он один и представляет опасность, а второй – это земля.

Рассчитать такую систему несложно, можно руководствоваться обычными формулами из школьного курса физики. Кроме того, для измерения этого параметра сети, достаточно использовать обычный мультиметр, в то время как для снятия показаний подключения фазного типа, придется задействовать целую систему оборудования.

Для подсчета напряжения линейного тока, применяют формулу Кирхгофа:

  • ∑ Ik = 0;

Уравнение которой гласит, что каждой из частей электрической цепи, сила тока равна нулю – k=1.

И закон Ома:

  • I=U/R;

Используя их, можно без труда произвести расчеты каждой характеристики конкретного клейма или электросети.

В случае разделения системы на несколько линий, может появиться необходимость рассчитать напряжение между фазой и нулем:

  • IL = IF;

Эти значения являются переменными, и меняются при разных вариантах подключения. Поэтому, линейные характеристики идентичны фазовым.

Однако, в некоторых случаях, требуется вычислить чему равно соотношение фазы и линейного проводника.

Для этого, применяют формулу:

  • Uл=Uф∙√3, где:

Uл – линейное, Uф – фазовое. Формула справедлива, только если –  IL = IF.

При добавлении в электросистему дополнительных отводящих элементов, необходимо и персонально для них рассчитывать фазовое напряжение. В этом случае, значение Uф заменяется на цифровые данные самостоятельного клейма.

При подключении промышленных систем к электросети, может появиться необходимость в расчете значения реактивной трехфазной мощности, которое вычисляется по следующей формуле:

  • Q = Qа + Qb + Qс;

Идентичная структура формулы активной мощности:

  • P = Pа + Pb + Pс;

Примеры расчета:

Фазное и линейное напряжение. В чем отличие их отличия, а так же преимущества и недостатки

Фазное напряжение и линейное, соединение звездой и треугольником. В разговорах профессиональных электриков можно нередко слышать эти слова. Но даже не всякий электрик знает точное их значение. Так что же означают эти термины? Попробуем разобраться.

На заре развития электротехники энергия электрических генераторов и батарей передавалась потребителям по сетям постоянного тока. В США главным апологетом этой идеи был знаменитый изобретатель Томас Эдисон и крупнейшие на то время энергетические компании, подчиняясь авторитету «гиганта инженерной мысли», беспрекословно внедряли её в жизнь.

Однако, когда встал вопрос о создании разветвлённой электрической сети потребителей, питающейся от расположенного на большом расстоянии генератора, что потребовало создания первой линии электропередачи, победил проект никому тогда неизвестного сербского эмигранта Николы Теслы.

Он кардинально изменил саму идею системы электроснабжения, применив в ней вместо постоянного, генератор и электрические линии переменного тока. что позволило значительно снизить потери энергии, расход материалов и повысить энергоэффективность.

В этой системе использовался созданный Теслой трёхфазный генератор переменного тока, а передача энергии осуществлялась с помощью трансформаторов напряжения, изобретённых русским учёным П. Н. Яблочковым.

Другой русский инженер М. О. Доливо‑Добровольский уже через год не только создал подобную систему электроснабжения в России, но и значительно усовершенствовал её.

У Теслы для генерации и передачи энергии использовались шесть проводов, Добровольский предложил путём видоизменения подключения генератора сократить это количество до четырех.

Экспериментируя над созданием генератора, он попутно изобрёл асинхронный электродвигатель с короткозамкнутым ротором, находящий и поныне самое широкое применение в промышленности.

Что такое фаза: определяемся в значении

Понятие фазы существует только в цепях синусоидального переменного тока. Математически такой ток можно представить и описать уравнениями вращающегося вектора, закреплённого одним концом в начале координат. Изменение величины напряжения цепи с течением времени будет представлять собой проекция этого вектора на ось координат.

Значение этой величины зависит от угла, под которым находится вектор к координатной оси. Строго говоря, угол вектора — это и есть фаза.

Значение напряжения измеряется относительно потенциала Земли, всегда равного нулю. Поэтому провод, в котором существует напряжение переменного тока, называют фазным, а другой, заземлённый, — нулевым.

Фазовый угол одиночного вектора не представляет большого практического значения — в электрических сетях он за 1/50 сек совершает полный оборот в 360°. Куда большее применение имеет относительный угол между двумя векторами.

В цепях с так называемыми реактивными элементами: катушками, конденсаторами, он образуется между векторами значений напряжения и тока. Такой угол называют фазовым сдвигом.

Если величины реактивных нагрузок не меняются во времени, то и фазовый сдвиг между током и напряжением будет постоянным. А уже с его помощью можно производить анализ и расчёт электрических цепей.

В XIX веке, когда ещё не было научной теории электричества, и все разработки нового оборудования осуществлялись опытным путем, экспериментаторы заметили, что виток провода, вращающийся в постоянном магнитном поле, создаёт на своих концах электрическое напряжение.

Затем выяснилось, что оно изменяется по синусоидальному закону. Если намотать катушку из многих витков, напряжение пропорционально увеличится. Так появились первые электрические генераторы, которые могли обеспечивать потребителей электрической энергией.

Тесла в генераторе, разрабатываемом для крупнейшей тогда в США Ниагарской гидроэлектростанции, для более эффективного использования магнитного поля, разместил в нем не одну катушку, а три.

[attention type=yellow]За один оборот ротора магнитное поле статора пересекали сразу три катушки благодаря чему отдача генератора увеличилась в корень из трёх раз и от него можно было запитать одновременно трёх различных потребителей.[/attention]

Экспериментируя с такими генераторами, первые инженеры‑электрики заметили, что напряжения в обмотках изменяются не одновременно. Когда, например, в одной из них оно достигает положительного максимума, в двух других оно будет равным половине отрицательного минимума и так периодически для каждой обмотки, а для математического описания такой системы уже нужна была система трёх вращающихся векторов с относительным углом между ними в 120°.

В дальнейшем оказалось, что если нагрузки в цепях обмоток сильно отличались друг от друга, это значительно ухудшало работу самого генератора. Выяснилось, что в больших разветвлённых сетях выгоднее не тащить к потребителям три различных линии электропередач, а подвести к ним одну трёхфазную и уже на конце её обеспечивать равномерное распределение нагрузок по каждой фазе.

Именно такую схему и предложил Доливо‑Добровольский, когда по одному выводу от каждой из трёх обмоток генератора соединяются вместе и заземляются, вследствие чего их потенциал становится одинаковым и равным нулю, а электрические напряжения снимаются с других трёх выводов обмоток.

Эта схема получила наименование «соединения звездой». Она и поныне является основной схемой организации трёхфазных электрических сетей.

Разберёмся что такое фазное напряжение

Для создания таких сетей требуется провести от генератора к потребителям линию электропередачи, состоящую из трёх проводов фазных и одного нулевого. Конечно, в реальных сетях для уменьшения потерь в проводах на обоих концах линий подключаются ещё и повышающие и понижающие трансформаторы, но реальной картины работы сети это не меняет.

Нулевой провод нужен, чтобы зафиксировать передать к потребителю потенциал общего вывода генератора, ведь именно по отношению к нему создаётся напряжение в каждом фазном проводе.

Таким образом, фазное напряжение образуется и измеряется относительно общей точки соединения обмоток — нулевого провода. В хорошо сбалансированной по нагрузкам трёхфазной сети через нулевой провод течет минимальный ток.

На выходе трёхфазной линии электропередачи имеются три фазных провода: L1, L2, L3 и один нулевой — N. По существующим евростандартам они должны иметь цветовые обозначения:

  • L1 — коричневый;
  • L2 — чёрный;
  • L3 — серый;
  • N — синий;
  • Жёлто‑зелёный для защитного заземления.

Такие линии подводятся к большим серьёзным потребителям: предприятиям, городским микрорайонам и т. п. Но маломощным конечным потребителям, как правило, не нужны три источника напряжения, поэтому они подключаются к однофазным сетям, где имеется только один фазный и один нулевой провод.

Равномерным распределением нагрузок в каждой из трёх однофазных линий обеспечивается баланс фаз в трёхфазной системе электроснабжения.

[attention type=green]Таким образом, для организации однофазных сетей используется напряжение одного из фазных проводов относительно нулевого. Такое напряжение и называется фазным.
[/attention]
По принятому в большинстве стран стандарту для конечных потребителей оно должно составлять 220 В. На него рассчитывается и выпускается практически все бытовое электрооборудование. В США и некоторых странах Латинской Америки для однофазных сетей принято стандартное напряжение 127 В, а кое‑где и 110 В.

Что такое линейное напряжение сети

Преимущества однофазной сети в том, что один из проводов имеет потенциал, близкий к потенциалу Земли.

Это, во‑первых, помогает обеспечивать электробезопасность оборудования, когда риск поражения электротоком представляет только один, фазный провод.

Во‑вторых, такая схема удобна для разводки сетей, расчета и понимания их работы, проведения измерений. Так, для нахождения фазного провода не нужны специальные измерительные приборы, достаточно иметь индикаторную отвёртку.

Но от трёхфазных сетей можно получить и ещё одно напряжение, если подключить нагрузку между двумя фазными проводами. Оно будет по значению выше фазного напряжения, потому что будет представлять собой проекцию на координатную ось не одного вектора, а двух, расположенных под углом в 120° друг к другу.

Этот «довесок» и будет давать прирост примерно в 73%, или √3–1. По существующему стандарту линейное напряжение в трёхфазной сети должно быть равно 380 В.

Каково основное отличие этих напряжений

Если к такой сети подключить соответствующую нагрузку, например, трёхфазный электродвигатель, он будет давать механическую мощность, значительно большую, чем однофазный такого же размера и веса. Но подключить трёхфазную нагрузку можно двумя способами. Один, как уже было сказано — «звезда».

Если же начальные выводы всех трёх обмоток генератора или линейного трансформатора не соединять вместе, а подключить каждый из них к конечному выводу следующей, создав из обмоток последовательную цепочку, такое соединение называется «треугольником».

Особенность его в отсутствии нулевого провода, и для подключения к таким сетям нужно соответствующее трёхфазное оборудование, у которого нагрузки также соединены «треугольником».

При таком соединении в нагрузке действуют только линейные напряжения 380 В. Один пример: электродвигатель, включённый в трёхфазную сеть по схеме «звезда», при токе в обмотках 3,3 А будет развивать мощность 2190 Вт.

[attention type=red]Тот же двигатель, включенный «треугольником», будет в корень из трёх раз мощнее — 5570 Вт за счёт увеличения тока до 10 А.[/attention]

Получается, что, имея трёхфазную сеть и такой же электродвигатель, мы можем получить значительно больший выигрыш по мощности, чем при использовании однофазных, а просто изменив схему подключения, мы увеличим выходную мощность двигателя ещё втрое. Правда, его обмотки также должны быть рассчитаны на повышенный ток.

Таким образом, основное отличие между двумя видами напряжений в сетях переменного тока, как мы выяснили, — это величина линейного напряжения, которая в 3 раза больше фазного. За величину фазного напряжения принимается абсолютное значение разности потенциалов фазного провода и Земли. Линейное же напряжение — это относительная величина разности потенциалов между двумя фазными проводами.

[attention type=green]Ну и в завершении статьи два видео о соединении звездой и треугольником, для тех кто хочет разобраться подробнее.[/attention]

Линейное напряжение и фазное напряжение

В трехфазной системе линейное напряжение представляет собой разность потенциалов между любыми двумя линиями или участками. Разность потенциалов между любыми двумя фазами называется фазным напряжением. Трехфазное бытовое электроснабжение или 440 вольт называется линейным напряжением. Разность потенциалов между одной из фаз и нейтральным соединением или между любым из фазных напряжений представляет собой однофазный источник переменного тока 230 вольт. Трехфазная сбалансированная система учитывает все линейные напряжения и токи. Однако известно, что когда применяются несимметричные нагрузки, система становится неуравновешенной.

Линейное напряжение

Фазы — это проводники или обмотки катушки, присутствующие в линейных напряжениях. В трехфазной системе линейное напряжение представляет собой разность потенциалов между любыми двумя линиями или фазами; он обозначается V Line или VL-L. Если R, Y и B представляют собой три фазы (красную, желтую и синюю), то разность напряжений между R и Y, Y и B и B и R является линейным напряжением. Из-за постоянного изменения линейного напряжения в системе переменного тока в любой момент времени всегда будут находиться два вентиля преобразователя в проводящем состоянии.

В трехсимметричной системе разность потенциалов между фазами всегда равна величине напряжения, а фазовый угол и векторная сумма трех фаз всегда равны нулю. Проще говоря, линейное напряжение — это напряжение, которое линия электропередачи доставляет до места назначения или точки, в которой она используется. Если напряжение в сети неожиданно повышается, возникает состояние, известное как «скачок напряжения».

Фазное напряжение

Фазное напряжение — это разность потенциалов между любой из фаз (R, Y или B) и точкой соединения нейтрали. Vфаза = VR (напряжение в красной фазе) = VB (напряжение в синей фазе) = VY (напряжение в желтой фазе). Термин «фазовое напряжение» относится к напряжению, приложенному к любому компоненту сбалансированного трехфазного источника или нагрузки. Разность напряжений между двумя фазами называется межфазным напряжением.

Распределительная сторона трансформатора соединена звездой. Для трехфазной сети линейное напряжение в √3 раза превышает фазное напряжение. Как правило, межфазное и линейное напряжения одинаковы. Трансформатор напряжения можно использовать для измерения линейного или фазного напряжения выше 440 вольт. Потенциометр снижает напряжение со 110 вольт до 63,5 вольт, переходя от более высокого уровня к более низкому.

Разница между линейным напряжением и фазой

Линейное напряжение

Фазное напряжение

  1. Линейное напряжение — это напряжение, которое прикладывается между двумя фазами в многофазной системе.

  2. Термин «линейное напряжение» относится к векторному потенциалу фазного провода, когда он подключен к другому фазному проводу.

  1. Фазное напряжение меньше линейного при соединении треугольником.

  2.  Напряжение фазы — это разница напряжений между фазой и нейтралью. (Обратите внимание, что нейтраль доступна только при соединении по схеме «звезда» и недоступна при соединении по схеме «треугольник».)

  3. Фазное напряжение — это разность потенциалов между фазным проводом и нейтральным проводом.

Какая фаза напряжения?

Фазное напряжение — это напряжение, измеренное между любой линией и нейтралью. Например, сеть 208/120 вольт имеет линейное напряжение 208 вольт и фазное напряжение 120 вольт.

Заключение 

Линейное напряжение — это напряжение, которое линия электропередачи подает к месту назначения или точке, в которой она используется. Трехсбалансированная система учитывает все линейные напряжения и токи. Когда применяются несимметричные нагрузки, система считается неуравновешенной. Потенциометр снижает напряжение со 110 вольт до 63,5 вольт, переходя от более высокого уровня к более низкому. Служба 208/120 вольт имеет линейное напряжение 208 вольт и фазное напряжение 120 вольт.

Это связано с тем, что трехфазное электричество имеет более высокую удельную мощность, чем однофазные цепи. Трехфазное питание снижает гармонические токи и устраняет необходимость в больших нейтральных линиях. Например, сеть 208/120 вольт имеет линейное напряжение 208 вольт и фазное напряжение 120 вольт. Напряжение между любыми двумя линиями называется линейным напряжением.

 

Объяснение: линейное напряжение, линейный ток, фазное напряжение, фазный ток

Термины «линия» и «фаза» относятся к системе электропитания переменного или переменного тока. Эти термины используются, в частности, в трехфазной системе электроснабжения, при соединении по схеме «звезда» и «треугольник». Вы должны знать об этих терминах, чтобы понимать систему электрического баланса и несбалансированную систему. Напряжение — это разность потенциалов на проводнике, которая фактически заставляет начать протекание тока, с другой стороны, ток — это поток электронов через проводник.

В трехфазной энергосистеме используются два типа соединений: 1. Соединение звездой 2. Соединение треугольником.

Соединение по схеме «звезда» — это соединение одной клеммы всех трех фаз с нейтральной точкой. Соединение треугольником — это когда все три фазы соединены в замкнутую систему, окончание одной фазы связано с началом другой фазы. Здесь вы можете увидеть схему соединений «звезда» и «треугольник».


Что такое линейное напряжение?

В трехфазной системе разность потенциалов или напряжение между любыми двумя фазами или клеммой под напряжением называется линейным напряжением. Итак, если три фазы R, Y, B, то линейное напряжение может проходить через R-Y, Y-B или B-R. Линейное напряжение обозначается VL. Как правило, линейное напряжение представляет собой более высокое напряжение трехфазной энергосистемы. Линейное напряжение доступно на уровне 440 В в Индии. Линейное напряжение больше фазного.

В энергосистеме, соединенной звездой, линейное напряжение в три (√3) раза выше, чем фазное напряжение. Итак, VL = √3*VPh или VL = 1,732VPh

В энергосистеме, соединенной треугольником, линейное напряжение равно фазному напряжению. Таким образом, VL = VPh

Пример линейного напряжения: 33 кВ, 11 кВ и 440 В являются примерами линейного напряжения. 440 В в основном используется для питания потребителей, а другие напряжения используются для передачи электроэнергии.

Что такое фазное напряжение?

В энергосистеме разность потенциалов или напряжение между любой фазой и нейтральной точкой называется фазным напряжением. Фазное напряжение обозначается VPh. Если три фазы — R, Y и B, а нейтральная точка — N, то фазное напряжение может проходить через R-N, Y-N или B-N. В энергосистеме фазное напряжение в Индии составляет 230 В. Фазное напряжение ниже сетевого напряжения.

В энергосистеме, соединенной звездой, фазное напряжение VPh = VL/√3

В энергосистеме, соединенной треугольником, фазное напряжение равно линейному напряжению или VPh = VL

Фазное напряжение Пример: Однофазное питание 230 В является примером фазного напряжения.

Разница между линейным напряжением и фазным напряжением

1. Линейное напряжение является высоким, тогда как фазное напряжение является низким.

2. Для получения линейного напряжения требуются обе клеммы под напряжением, тогда как для получения фазного напряжения требуется любая клемма одной фазы.

Читайте также:  

Что такое линейный ток?

Протекание тока через любую линию между трехфазным источником питания и нагрузкой называется линейным током. Линейный ток обозначается IL. Здесь нейтраль не требуется для измерения линейного тока.

При соединении по схеме звезда Линейный ток равен фазному току, или IL = IPh

При соединении треугольником линейный ток в √3 раза больше фазного тока или IL = √3IPh

Что такое фазный ток?

Протекание тока через любой компонент трехфазной системы к нагрузке называется фазным током. Фазный ток обозначается IPh.

При соединении звездой фазный ток равен линейному току или IPh = IL

При соединении треугольником фазный ток IPh = IL/√3

Разница между линейным током и фазным током

1.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *