Закрыть

Что такое ограничитель перенапряжения: Ограничитель перенапряжения: устройство, виды, технические характеристики

Содержание

Ограничитель перенапряжения: устройство, виды, технические характеристики

Одним из наиболее опасных аварийных режимов в электрических сетях является импульсный скачек напряжения при атмосферных разрядах, перехлесте линий  или коммутационных операциях. Эта величина значительно опережает нарастание импульсного тока и воздействует на изоляцию электрооборудования и других устройств, поэтому классические автоматы и другие защиты, реагирующие на изменение номинального тока, против нее не эффективны.

Значение перенапряжения может в разы превышать номинальную рабочую величину, поэтому такое явление подвергает опасности все оборудование и элементы сети. Для предотвращения значительных убытков и последующих затрат на восстановление в электроустановках используются ограничители перенапряжения (ОПН).

Устройство и принцип действия

Конструктивно ограничитель перенапряжения включает в себя полупроводниковый элемент с нелинейной величиной сопротивления. Как правило, в роли таких элементов выступают вилитовые диски, изготовленные на основе оксидов цинка с включением в из состав тех или иных  примесей. Снаружи диски закрываются защитной рубашкой, а на концах имеют электрические выводы, один из которых подводится к защищаемой электрической сети, а второй заземляется. Пример частного варианта устройства ограничителя перенапряжения представлен на рисунке 1 ниже:

Рисунок 1: устройство ограничителя перенапряжения

Работа ОПН схожа с обычным варистором, отличительной особенностью ограничителя являются некоторые различия с характеристикой варистора в части проводимости и скорости нарастания. Принцип действия ограничителя перенапряжения заключается в его нелинейной вольт-амперной характеристике (ВАХ). Это означает, что при номинальном напряжении сопротивление варисторов достаточно большое и ток через них не протекает – его сопротивление изоляции соизмеримо с изоляцией кабелей, изоляторов и электрических приборов.

В рабочем режиме при возникновении грозовых разрядов или других высоковольтных импульсов сопротивление нелинейных резисторов внутри ограничителя резко снижается. Как правило, эта величина приближается к нулю или несоизмеримо меньше сопротивления сети и всех подключенных к ней приборов. Поэтому при коммутационных или грозовых перенапряжениях ток разряда протекает только через ограничитель перенапряжения на землю, чем и обеспечивается защита электрооборудования.

Пределы срабатывания ограничителя перенапряжений на разряды молний или другие импульсные перенапряжения определяются его ВАХ.

Рис. 2: вольтамперная характеристика ОПН

Как видите из рисунка 2, при работе ограничителя перенапряжения до 600В, протекающий через него ток будет равен нулю. Как только это значение пересечет отметку в 600В, сопротивление резко уменьшиться и протекающий ток увеличиться до сотен и тысяч ампер.

Здесь кривая характеристики представлена тремя участками:

  • 1 – область нулевых или сверхмалых токов;
  • 2 – область средних токовых нагрузок;
  • 3 – область максимального тока.

Применение

Ограничитель перенапряжения применяется для предотвращения нарастания перенапряжения на электрическом оборудовании с последующим переводом импульса разряда на землю.

Рис. 3: пример использования ОПН

Широкое применение нелинейных ограничителей распространено в линиях электропередач, где они выступают в роли молниезащиты, а сами провода являются молниеприемниками. В промышленных целях ограничители перенапряжения используются для защиты различных электрических аппаратов и персонала, к примеру, на тяговых и трансформаторных подстанциях, распределительных устройствах и т.д. В бытовых устройствах ОПН применяются для установки в электрических щитках на вводе в здание или для защиты какого-либо ценного оборудования.

Виды ОПН

В связи с большим спектром решаемых задач ограничители перенапряжения подразделяются на несколько видов, которые отличаются по таким параметрам:

  • Класс напряжения – рабочая величина, на которую рассчитан ограничитель, разделяется на устройства до 1кВ и выше, как правило, номинал напряжения соответствует стандартному значению электрических параметров сети (6, 10, 35 кВ).
  • Материал рубашки – определяет тип изоляции наружного слоя, наиболее часто используются фарфоровые или полимерные модели.
  • Класс защищенности – определяет возможность установки или на открытой части, или только внутри помещения.
  • Количеству элементов или фаз – число ограничителей перенапряжения зависит от числа защищаемых фаз и величины питающего их напряжения.

Так для каждой из фаз в электроустановке может устанавливаться отдельная колонка или одна для всех. Также следует отметить, что в электроустановках на 110 кВ и более ОПН для одной фазы может собираться из нескольких однотипных элементов, к примеру, из трех на 35 кВ.

В зависимости от причин возникновения перенапряжения в сети устройство защиты должно выстраиваться в соответствии с требованиями стандартов:

  • ГОСТ Р 50571.18-2000 – от возможных перенапряжений в низковольтных сетях при замыканиях по высокой стороне.
  • ГОСТ Р 50571.19-2000 – от скачков, образованных воздействием молнии и возникающих в результате переключения электроустановок.
  • ГОСТ Р 50571.20-2000 – от перенапряжений генерируемых электромагнитными воздействиями.

Комбинация нескольких видов позволяет выстраивать многофункциональные или ступенчатые ограничители.

Фарфоровые

Рис. 4: фарфоровые ОПН

Достаточно распространенным вариантом являются ограничители коммутационных перенапряжений с фарфоровым корпусом. Такие модели отличаются своими эксплуатационными  параметрами, так как керамика невосприимчива к воздействию солнечной радиации, а находящийся внутри вентильный разрядник практически не зависит от температуры внешней среды.

Также весомым преимуществом этих ограничителей является большая механическая прочность на сжатие и разрыв, благодаря чему их можно использовать и в качестве опорной конструкции. Но фарфоровые ОПН характеризуются сравнительно большим весом, а также представляют значительную угрозу в случае разрыва, так как осколки фарфора поражают близлежащие здания и могут травмировать персонал.

Полимерные

Рис 5: полимерные ОПН

С развитием химической отрасли и распространением полимеров в качестве диэлектриков они значительно вытеснили фарфоровые ограничители. Полимерные ОПН представляют собой устройства с рубашкой из каучука, винила, фторопласта или других подобных материалов.

Полимерные ограничители куда боле устойчивы к воздействию влаги, отличаются меньшим весом и большей взрывобезопасностью, так как в случае разрушения корпуса избыточным давлением внутри колонки, рубашка повреждается по линии разлома, но не разлетается острыми осколками. Значительным преимуществом полимерных моделей является их устойчивость к динамическим нагрузкам.

К недостаткам полимерных ОПН относится способность к накоплению пыли и прочих засорителей на поверхности диэлектрика, которые со временем приводят к повышению пропускной способности, увеличению тока утечки и пробою изоляции. Также полимеры боятся солнечной радиации и температурных колебаний в окружающей среде.

Одноколонковые

Такие ограничители перенапряжения представляют собой один конструктивный элемент с нелинейным сопротивлением. Число полупроводниковых дисков в них набирается в соответствии с категорией защищаемой электроустановки. В зависимости от количества и типа осаживающейся на поверхности пыли и засорителей, одноколонковые ОПН  подразделяются по классам от II до IV согласно градуировке ГОСТ 9920.

Многоколонковые

В отличии от предыдущих устройств борьбы с коммутационными перенапряжениями, эти средства защиты высоковольтного оборудования имеют несколько колонок, модулей или блоков, объединяемых в одну систему. Данный вид ОПН характеризуется большей надежностью по отношению к защищаемым объектам, так как способен реагировать и на одиночные, и на дифференциальные перенапряжения.

Технические характеристики

При выборе конкретной модели ограничителя перенапряжения обязательно учитываются такие  параметры устройства:

  • Время срабатывания – характеризует скорость открытия полупроводникового элемента ограничителя после нарастания напряжения.
  • Рабочее напряжение – определяет величину электрической энергии, которую ОПН может выдерживать без нарушения работоспособности в течении любого промежутка времени.
  • Номинальное повышенное напряжение – значение рабочей величины, которое ОПН способен выдерживать в течении 10 секунд, также нормируется совместно с остаточным напряжением, которое остается в сети.
  • Ток утечки – возникает как результат приложения напряжения к ограничителю перенапряжения и определяется его омическим сопротивлением или параметрами резисторов. В исправном состоянии этот параметр составляет сотые или тысячные доли ампер, перетекающие по рубашке и полупроводнику от источника к проводу заземления.
  • Разрядный ток – величина, образующаяся при импульсных скачках, в зависимости от источника перенапряжения разделяется на атмосферные, электромагнитные и коммутационные импульсы.
  • Устойчивость к току волны перенапряжения – определяет способность сохранять целостность всех элементов конструкции в аварийном режиме.

Обслуживание и диагностика ОПН

В процессе эксплуатации ограничители перенапряжения не являются одноразовым элементом. Поэтому могут многократно производить операции перевода импульсного разряда на заземляющую шину автоматически. Из-за особенностей протекания и величины перенапряжения ОПН может утрачивать заводские параметры, снижать эффективность работы до полного выхода со строя. Для предотвращения подобных ситуаций они подвергаются периодической проверке в процессе эксплуатации, которая регламентируется п.2.8.7 ПТЭЭП.  При этом проверяется:

  • Сопротивление – не менее раза в 6 лет, измеряется при помощи мегаомметра.
  • Ток проводимости – проверяется только при условии снижения предыдущего параметра.
  • Пробивное напряжение и герметичность проверяются только после заводского ремонта или при приемке в эксплуатацию на заводе. Самостоятельно электроснабжающими и эксплуатирующими организациями такие меры диагностики для ограничителей не производятся.
  • Тепловизионные измерения должны выполняться в соответствии с регламентом изготовителя или местными планово-предупредительными ремонтами.

Также в процессе эксплуатации может выполняться внешний осмотр устройства на наличие подгаров, сколов, загрязнения или других дефектов в изоляции.

Видео по теме статьи

https://www.youtube.com/watch?v=2ZZwQRD6q4I

Список использованной литературы

  • М.А. Аронов, О.А.Аношин, О.Н.Кондратьев, Т.В.Лопухова. «Ограничители перенапряжений в электроустановках 6-750 кВ»   2001
  • Булат В.А. «Техника высоких напряжений» 2003
  • Александров Г.Н. «Ограничение перенапряжений в электрических сетях» 2003
  • Ю.В.Борц,  Е.В. Чекулаев «Контактная сеть» 1981
  • Базуткин В.В. Ларионов В.П. Пинталь Ю.С. «Техника высоких напряжений: Изоляция и перенапряжения в электрических системах» 1986

Защита от перенапряжения сети для дома (220 и 380 вольт)

В современных бытовых приборах используется чувствительная электроника, что делает эти устройства уязвимыми перед перепадами напряжения. Поскольку устранить их не представляется возможным, необходима надежная защита. К сожалению, ее организация не входит в сферу обязанностей службы ЖКХ, поэтому заниматься этим вопросом приходится самостоятельно. Благо защитные устройства приобрести сегодня не проблема. Прежде чем перейти к описанию и принципу действия таких приборов, кратко расскажем о причинах, вызывающих скачки напряжения, и их последствиях.

Что такое перепад напряжения и его природа?

Под этим термином подразумевается краткосрочное изменение амплитуды напряжения электросети, с последующим восстановлением, близким к первоначальному уровню. Как правило, длительность такого импульса исчисляется я миллисекундами. Существует несколько причин для его возникновения:

  1. Атмосферные явления в виде грозовых разрядов, они способны вызвать перенапряжение в несколько киловольт, что не только гарантированно выведет электроприборы из строя, а и может стать причиной пожара. В данном случае жителям многоэтажек проще, поскольку организация защиты от таких предсказуемых явлений входит в обязанности поставщиков электричества. Что касается частных домов (особенно с воздушным вводом), то их жильцы должны самостоятельно заниматься этим вопросом или обращаться к специалистам.
  2. Скачки при коммутационных процессах, когда происходит подключение-отключение мощных потребителей.
  3. Электростатическая индукция.
  4. Подключение определенного оборудования (сварка, коллекторный электродвигатель и т.д.).

На рисунке ниже наглядно продемонстрирована величина грозового (Uгр) и коммутационного импульса (Uк) по отношению к номинальному напряжению сети (Uн).

Грозовой и коммутационный импульсы перенапряжения

Для полноты картины следует упомянуть и о долгосрочном повышении и понижении напряжения. Причиной первого является авария на линии, в результате которой происходит обрыв нулевого провода, что вызывает повышение до 380 вольт. Нормализовать ситуации никакими приборами не получится, потребуется ждать устранения аварии.

Длительное снижение напряжения можно часто наблюдать в сельской местности или дачных поселках. Это связано с недостаточной мощностью трансформатора на подстанции.

В чем заключается опасность перепадов?

В соответствии с допустимыми нормами, допускается отклонение от номинала в диапазоне от -10% до +10%. При скачках напряжение может существенно выйти за установленные границы. В результате блоки питания бытовой техники подвергаются перегрузке и могут выйти из строя или существенно сократить свой ресурс. При высоких или длительных перепадах велика вероятность возгорания проводки, и, как следствие, пожара.

Пониженное напряжение также грозит неприятностями, особенно к этому критичны компрессоры холодильных установок, а также многие импульсные блоки питания.

Защитные устройства

Существует несколько видов защитных устройств различающихся как по функциональности, так и по стоимости, одни из них обеспечивают защиту только одному бытовому прибору, другие – всем имеющимся в доме. Перечислим хорошо зарекомендовавшие себя и наиболее распространенные защитные устройства.

https://www.youtube.com/watch?v=e86nhzDoncM

Сетевой фильтр

Наиболее простой и доступный по деньгам вариант защиты маломощного бытового оборудования. Отлично зарекомендовал себя при бросках до 400-450 вольт. На более высокие импульсы устройство не рассчитано (в лучшем случае оно примет удар на себя, спасая дорогостоящую аппаратуру).

Фильтр удлинитель Swen Fort Pro

Основной элемент защиты у такого устройства – варистор (полупроводниковый элемент изменяющий сопротивление в зависимости от приложенного напряжения). Именно он выходит из строя при импульсе более 450 В. Вторая важная функция фильтра – защита от высокочастотных помех (возникают при работе электродвигателя, сварки и т.д.) отрицательно влияющих на электронику. Третьим элементом защиты является плавкий предохранитель, срабатывающий при КЗ.

Не следует путать фильтры с обычными удлинителями, которые не обладают защитными функциями, но похожи по внешнему виду. Чтобы различить их достаточно посмотреть паспорт изделия, где приведены полные характеристики. Отсутствие такового должно само по себе вызывать подозрение.

Стабилизатор

В отличие от предыдущего типа приборы этого класса позволяют нормализовать напряжение в соответствии с номинальным. Например, установив границу в пределах 110-250 В, на выходе устройства будет стабильные 220 В. Если напряжение выйдет за пределы допустимого, прибор отключит питание и возобновит его подачу после нормализации работы электросети.

Стабилизатор EDR-1000 от производителя Luxeon

В некоторых случаях (например, в сельской местности) установка стабилизатора является единственным способом повысить напряжение до необходимой нормы. Бытовые стабилизаторы выпускают двух модификаций:

  • Линейные. Они предназначены для подключения одного или нескольких бытовых приборов.
  • Магистральные, устанавливаются на входе электросети здания или квартиры.

И первые, и вторые следует подбирать исходя из мощности нагрузки.

Источники бесперебойного питания

Основное отличие от предыдущего типа является возможность продолжения подачи питания подключенного устройства после срабатывания защиты или полного отключения электричества. Время работы в таком режиме напрямую зависит от емкости аккумуляторной батареи и мощности нагрузки.

Бесперебойный блок питания APC, модель SC-420

В быту эти устройства в основном используются для подключения стационарных компьютеров, чтобы при проблемах с электросетью не потерять данные. При срабатывании защиты ИБП будет продолжать подачу питания в течение определенного времени, как правило, не более получаса (зависит характеристик устройства). Этого времени вполне достаточно, чтобы сохранить необходимые данные и корректно отключить компьютер.

Современные модели ИБП могут самостоятельно управлять работой компьютера через USB интерфейс, например, закрыть текстовый редактор (предварительно сохранив открытые документы), после чего произвести отключение. Это довольно полезная функция, если пользователь при срабатывании защиты не находился рядом.

Устройства защиты от импульсных перенапряжений

Все перечисленные выше приборы обладают общим недостатком, у них не реализована действенная защита от импульса высокого напряжения. Если таковой произойдет, он, практически гарантированно выведет такие устройства из строя. Следовательно, защита должна быть организована таким образом, чтобы после срабатывания можно было оперативно привести ее в рабочее состояние. Этому требованию, как нельзя лучше отвечают УЗИП. На их основе организуется многоуровневая система защиты внутренних линий частного дома.

Одна из принятых классификаций таких устройств показана в таблице.

Таблица 1. Классификация УЗИП

КатегорияПрименение
В (I)Обеспечивают защиту при прямом попадании грозового разряда по системе молниезащиты. Место установки – вводно-распределительное устройство или главный распределительный щит. Основная нормирующая характеристика – величина импульсного тока.
С (II)Защищают токораспределительную сеть от коммутационных импульсов, а также играют роль второго защитного уровня при грозовом разряде. Место установки – распределительный щит.
D (III)Обеспечивают последний уровень защиты, при которой к потребителям не допускаются остаточные броски напряжения и дифференциальные перенапряжения. Помимо этого обеспечивается фильтрация высокочастотных помех. Установка производится перед потребителем. Могут быть выполнены в виде модуля под розетку, удлинителя и т.д.

Пример организации трехуровневой защиты продемонстрирован ниже.

Организация трехуровневой защиты от перенапряжения

Конструктивные особенности УЗИП.

Устройство представляет собой платформу (С на рис. 6) со сменным модулем (В), внутри которого находятся варисторы. При их выходе из строя индикатор (А) изменит цвет (в приведенной на рисунке модели на красный).

УЗИП Finder (категория II)

Внешне устройство напоминает автоматический выключатель, крепление – такое же (под DIN рейку).

Особенностью УЗИП является необходимость замены модулей при выходе варисторов из строя (что довольно просто). Конструкция модулей выполнена таким образом, что установить их на платформу с другим номиналом невозможно. Единственный серьезный недостаток связан с характерными особенностями варисторов. Им необходимо время, чтобы остыть, многократное попадание грозового разряда существенно усложняет этот процесс.

Защитное реле

В завершении рассмотрим реле контроля напряжения (РКН), эти устройства способны обеспечить защиту бытовых приборов от коммутационных импульсов, перекоса фаз, а также пониженного напряжения. С грозовыми импульсами они не справятся, поскольку на это не рассчитаны. Их сфера применения – защита внутренней сети квартиры, то есть там, где обеспечение грозозащиты входит в обязанности электрокомпаний.

Приборы могут устанавливаться во входном щитке, непосредственно, после электросчетчика, для этого предусмотрено крепление под DIN рейку.

РКН можно подключать после счетчика

Помимо этого выпускаются модификации приборов в виде удлинителей питания и модулей под розетку.

РКН в виде удлинителя и розеточного модуля

Данные устройства могут произвести только защитное отключение сети, при выходе напряжения за указанные пределы (устанавливается кнопками управления), после нормализации электросети производится ее подключение. Стабилизация и фильтрация не производятся.
https://www.youtube.com/watch?v=AyTLz6G9Ul8

Предостережения

Не следует доверять защиту своего дома самодельным конструкциям, в бытовых условиях бывает проблематично настроить собранную схему и протестировать ее работу в критических режимах.

Не имея практического опыта в организации грозозащиты, не стоит пытаться реализовать ее самостоятельно, эту работу лучше доверить профессионалам. Рекомендуем рассматривать эту часть статьи как информационную.

Все манипуляции с электрощитом, приборами и проводкой необходимо проводить только при отключенном электропитании.

Список использованной литературы

  • Буткевич Г. В. «Дуговые процессы при коммутации электрических цепей» 1973
  • Д. В. Разевига «Техника высоких напряжений» 1976
  • Родштейн Л. А. «Электрические аппараты» 1981
  • Халилов Ф. Х., Евдокунин Г. А., Поляков B.C., Подпоркин Г. В., Таджибаев А. И. «Защита сетей 6-35 кВ от перенапряжений» 2002
  • Дмитриев М. В. «Применение ОПН в электрических сетях 6-750 кВ» 2007

Классификация устройств защиты от импульсных перенапряжений

Узнайте, какие бывают классы УЗИП и где применяется каждый вариант исполнения. Принцип работы устройств защиты от импульсных перенапряжений.


Современный человек, стараясь идти в ногу со временем, насыщает свой дом электроприборами самого различного назначения. Но не каждый домовладелец задумывается о том, что в случае возникновения в сети даже очень кратковременного импульсного напряжения в разы превышающего номинальное, весь его дорогостоящий парк электротехники и электроники может выйти из строя. Что примечательно, воздействие перенапряжения на электрические потребители пагубно тем, что пораженная техника, как правило, становится не пригодной для ремонта. Данный форс-мажор пусть не часто, но гарантировано может быть следствием перенапряжения в сетях, вызванного воздействием грозы, аварийным перехлестом фаз или коммутационных процессов. Защитить электрооборудование призваны так называемые устройства защиты от импульсных перенапряжений. Принцип работы УЗИП, классы и разницу между ними мы рассмотрели ниже. Содержание:

Классификация УЗИП

Аппараты защиты от импульсных напряжений являются широким и обобщенным понятием. В эту категорию устройств входят приборы, которые можно подразделить на классы:

  • I класс. Предназначены для защиты от непосредственного воздействия грозового разряда. Данными устройствами в обязательном порядке должны укомплектовываться вводно-распределительные устройства (ВРУ) административных и промышленных зданий и жилых многоквартирных домов.
  • II класс. Обеспечивают защиту электрических распределительных сетей от перенапряжений, вызванных коммутационными процессами, а также выполняющие функции второй ступени защиты от воздействия удара молнии. Монтируются и подключаются к сети в распределительных щитах.
  • III класс. Применяются, чтобы обезопасить аппаратуру от импульсных перенапряжений, вызванных остаточными бросками напряжений и несимметричным распределением напряжения между фазой и нулевым проводом. Устройства данного класса работают также в режиме фильтров высокочастотных помех. Наиболее актуальны для условий частного дома или квартиры, подключаются и устанавливаются непосредственно у потребителей. Особой популярностью пользуются устройства, которые изготавливаются, как модули, оснащенные быстросъемным креплением для установки на din-рейку, либо имеют конфигурацию электрических штепсельных розеток или сетевых вилок.

Типы устройств

Все устройства, обеспечивающие защиту от импульсных перенапряжений, подразделяются на два типа, которые отличаются по конструкции и принципу действия. Рассмотрим, как работает УЗИП разных видов.

Вентильные и искровые разрядники. Принцип действия разрядников основан на использовании эффекта искровых промежутков. В конструкции разрядников предусмотрен воздушный зазор в перемычке, соединяющей фазы линии электропередач с заземляющим контуром. При номинальной величине напряжения цепь в перемычке разорвана. В случае воздействия грозового разряда в результате перенапряжения в ЛЭП происходит пробой воздушного зазора, цепь между фазой и землей замыкается, импульс высокого напряжения уходит напрямую в землю. Конструкция вентильного разрядника в цепи с искровым промежутком предусматривает резистор, на котором происходит гашение высоковольтного импульса. Разрядники в большинстве случаев находят применение в сетях высокого напряжения.

Ограничители перенапряжения (ОПН). Данные устройства пришли на смену устаревшим и громоздким разрядникам. Для того чтобы понять, как работает ограничитель, надо вспомнить свойства нелинейных резисторов, принцип работы ОПН построен на использовании их вольтамперных характеристик. В качестве нелинейных резисторов в УЗИП используется варистор. Для людей не искушенных в тонкостях электротехники, немного информации, из чего состоит и как он работает. В качестве основного материала для изготовления варисторов служит оксид цинка. В смеси с окислами других металлов создается сборка, состоящая из p-n переходов, обладающая вольтамперными характеристиками. Когда величина напряжения в сети соответствует номинальным параметрам, ток в цепи варистора близок к нулю. В момент возникновения перенапряжения на p-n переходах происходит резкое возрастание тока, что приводит к снижению напряжения до номинальной величины. После нормализации параметров сети варистор возвращается в непроводящий режим и влияние на работу устройства не оказывает.

Компактные размеры ОПН и обширный диапазон разновидностей данных приборов позволили значительно расширить область применения этих устройств, появилась возможность использования УЗИП, как средства защиты от перенапряжений для частного дома или квартиры. Однако ограничители импульсных напряжений, собранные на варисторах, несмотря на все свои преимущества по сравнению с разрядниками, имеют один существенный недостаток – ограничение ресурса работы. Вследствие встроенной в них тепловой защиты, прибор после срабатывания остается некоторое время неработоспособным, по этой причине на корпусе УЗИП предусмотрено быстросъемное устройство, позволяющее произвести быструю замену модуля.

Более подробно о том, что такое УЗИП и какое у него назначение, вы можете узнать из видео:

Как обустроить защиту?

Прежде чем приступить к установке и подключению средств защиты от импульсных перенапряжений, необходимо сделать заземление в доме, иначе все работы по обустройству УЗИП потеряют весь смысл. Классическая схема предусматривает 3 уровня защиты. На вводе устанавливаются разрядники (УЗИП класс I) , обеспечивающие грозозащиту. Следующее защитное устройство класс II, как правило, ОПН подключается в распределительном щите дома. Степень его защиты должна обеспечивать снижение величины перенапряжения до параметров безопасных для бытовых приборов и сети освещения. В непосредственной близости электронных изделий, чувствительных к колебаниям по току и напряжению желательно подключить УЗИП класса III.

При подключении УЗИП необходимо предусмотреть их токовую защиту и защиту от коротких замыканий вводным автоматическим выключателем или плавкими предохранителями. Подробнее о монтаже данных защитных устройств мы расскажем в отдельной статье.

Напоследок рекомендуем просмотреть полезное видео, в котором подробно рассмотрена классификация устройств защиты от перенапряжений, принцип действия и советы по выбору подходящего аппарата:

Вот мы и рассмотрели принцип работы УЗИП, классы и разницу между ними. Надеемся, предоставленная информация была для вас полезной!

Будет интересно прочитать:

  • Как сделать громоотвод в частном доме
  • Для чего нужна главная заземляющая шина
  • Для чего нужен дифавтомат


Нравится0)Не нравится0)

Виды и отличия ограничителей перенапряжения

В бытовых и промышленных условиях используется огромное количество электрооборудования и приборов. Особую опасность для них представляют резкие перепады напряжения в электросети. Возникающие импульсы могут стать причиной выхода из строя техники, возникновения аварий. Чтобы предупредить такую ситуацию, используют специальные устройства. В этой статье рассмотрим типы ограничителей перенапряжения, как они устроены и работают.

Для начала выясним, по какой причине могу возникнуть скачки напряжения.

Импульсы коммутационного характера возникают вследствие таких действий:

  • при переключении в электроустановках с большим показателем мощности;
  • при внезапном перепаде нагрузки в системе;
  • при появлении неполадок, которые спровоцировали короткое замыкание.

Перечисленные ситуации возникают в производственных условиях и  решением таких проблем занимаются специалисты.

Но, есть еще целый ряд случаев скачков напряжения, вызванных природными факторами:

  • если удар молнии приходится в линию электропередач, которая находится за пределами здания;
  • разряд попадает в объект, который находится непосредственно рядом с постройкой, вследствие чего создается электромагнитное поле;
  • молния попадает в почву рядом с постройкой и ток в грунте создает разность потенциалов.

В таких ситуациях в ЛЭП может возникнуть напряжение в пределах 10,0 кВ, а в домашней электропроводке – в пределах 6,0 кВ. Чтобы избежать негативных последствий применяют специальное защитное устройство – ОПН, которое заменило разрядники.

Следует отметить, что устройство ограничителей перенапряжения выполнено с условием создания безопасных условий при коротком замыкании.

Виды ОПН

Какие виды устройств существуют?

Они отличаются по следующим параметрам:

  • по виду изоляции – фарфоровая или полимерная;
  • по конструкции – с одной или несколькими колонками;
  • по показателю рабочего напряжения;
  • по расположению ограничителя.

Кроме того, по назначению ОПН делятся на модели, предназначенные для промышленных объектов и жилых домов.

По классам они делятся на следующие группы:

 

  • А – для защиты от удара молнии в линию электропередач или недалеко находящийся объект. Выдерживают напряжение до 6,0 кВ.
  • В – монтируются в месте ввода кабеля в здание. Защищают от импульсов до 4,0 кВ.
  • С – выдерживают до 2,5 кВ, монтируются в здании в электрощитовых и функционируют в паре.
  • D – защищают электрические приборы, защищают от напряжения до 1,5 кВ. Устанавливаются в специальных коробах в квартире. Техника без сложной электроники может эксплуатироваться без такой защиты.

Главные технические параметры приспособления:

  • Максимальный показатель действующего напряжения – величина, при которой устройство не теряет свой функциональности в течение неограниченного времени.
  • Номинальный показатель напряжения – параметр, который ОПН выдержит в течение десяти минут.
  • Номинальный разрядный и электроток коммутационного перенапряжения.
  • Способность выдерживать короткое замыкание без разрушения защитного корпуса.

Вопросами защиты админзданий, жилых домов, объектов производственного и другого назначения занимаются специальные службы энергокомпаний.

Основные параметры ОПН

Итак, мы выяснили, что назначение ограничителей перенапряжения заключается в обеспечении безопасности для электрооборудования  при резких перепадах электронапряжения. Это предупреждает его 

поломку и продляет срок эксплуатации. Каково устройство и принцип действия ограничителей перенапряжения? Конструкция приспособления состоит из керамической или пластиковой оболочки, которая 

обеспечивает взрывоопасность, и варисторов. Изделия, предназначенные для применения на оборудовании производственных предприятий и ЛЭП, имеют болт, с помощью которого подключаются к сети.

Приспособления, предназначенные для использования в домашних условиях, отличаются миниатюрным размером, оснащены специальным элементом для крепления, имею привлекательный внешний вид. В зависимости от модели, могут управляться дистанционно и иметь индикатор работы.

Основные моменты функционирования устройства основаны на нелинейности варисторов. Когда в электросети присутствует нормальный показатель напряжения, приспособление имеет непроводящие характеристики. При возникновении импульсов, которые могут стать причиной пробоя изоляционной оболочки установки, в ОПН возникают высокие токи. Все это приводит к снижению напряжения до безопасной отметки. Когда показатели в электросети стабилизируются, устройство становится непроводящим.

Брендовый электроинструмент и качественную арматуру можно приобрести у компании «БалтЭнергоСнаб». Здесь представлен широкий ассортимент изделий, цены на которые находятся на конкурентном уровне.

Схема подключения ограничителя импульсных перенапряжений — советы электрика

Ограничитель импульсных перенапряжений и схема установки разрядника

Ограничитель перенапряжений это часто недооцениваемый, но очень важный элемент домашнего электрощитка. Этот элемент рекомендован к установке производителями электрооборудования, в то время как среди самих электриков мнения разделены.

Давайте разберёмся с этим делом.

Наиболее частые вопросы про ограничитель выглядит следующим образом: Каковы классы разрядников? Из чего он состоит и как работает? Как подключить ограничитель перенапряжений? Действительно ли он защищает электрические устройства?

Классы защиты ограничителей

В области напряжения ниже 1000 В ограничители делятся на 4 класса, обозначенные буквами алфавита: A, B, C и D.

  1. Ограничитель класса А не используется в бытовых установках, а применяется для защиты линий электропередач.
  2. Протектор класса B используется для защиты от высоковольтовых скачков напряжения, например, вызванных ударом молнии к линии электропередач.
  3. Ограничитель класса C предназначен для защиты от перенапряжений со слегка более низкими значениями напряжения в сети. Защитные устройства класса B и C обычно устанавливаются в бытовых распределительных устройствах.
  4. Протектор класса D используется для прямой защиты выбранных электроустройств, чувствительных к импульсным помехам и всплескам в 220 В сети. Он монтируется в распределительном щите, за розеткой в электрической коробке или непосредственно в защищаемом устройстве.

Каждое устройство защиты ограничивает электрический потенциал только определенным уровнем. Чем ближе оборудование к А классу — тем более высокая мощность. Например:

  • Класс A уменьшит уровень напряжения до 6 кВ,
  • Класс B уменьшит уровень напряжения до 2,5 кВ,
  • Класс C уменьшит уровень напряжения до 1,5 кВ,
  • Класс D уменьшит уровень напряжения до 0,8 кВ.

Если здание многоэтажное, в главном распределительном щитке должны использоваться защитные устройства класса B, а ограничители класса C следует использовать в распределительных щитках в отдельных квартирах.

Если подключенное к розетке устройство чувствительно к скачкам напряжения, можем также использовать ограничители класса D. К ограничителям класса А у нас нет доступа, это забота энергетической компании.

Поскольку рассматривать будем домашнюю проводку, статья будет посвящена защитным устройствам класса B и класса C (типа I и II).

Обозначение на принципиальных схемах

Основные символы, используемые при обозначении разрядников перенапряжения, следующие:

  1. Общее обозначение разрядника
  2. Разрядник трубчатый
  3. Разрядник вентильный и магнитовентильный
  4. ОПН

Установка ограничителя перенапряжений

Стандартный разрядник B или C (возможно, B + C) состоит из двух компонентов:

  1. Основа ограничителя
  2. Сменная вставка с защитным элементом

Основа

Основание защитного устройства установлено на DIN-рейке TS35. Оно имеет два хомута. Подключите провод фазы ( L ) или нейтральный ( N ) на котором может появиться слишком большой электрический потенциал. С другой стороны подсоедините защитный провод PE, который подключен к защитной линии распределительного устройства.

Защитный проводник должен иметь минимальное поперечное сечение 4 мм2, но не повредит взять ещё больше. В конце концов есть вероятность, что будет течь очень высокий ток.

Есть 3 контакта под терминалом PE. По стандарту в комплект входит вилка, которая вставлена в нужное место и позволяет соединять провода.

Обратите внимание

Благодаря этим зажимам есть возможность удаленного уведомления в случае повреждения вставки или ее перегорания. Этот сигнал может быть подключен, например, к входу блока управления сигнализацией (смотрите схему).

В этом случае панель управления будет проинформирована о повреждении вставки размыканием электрической цепи между красным и зеленым проводами.

Вставка

Вставка содержит все наиболее важные элементы, благодаря которым защитник правильно функционирует:

  • Класс B (тип I) — основным элементом является просто искровой промежуток.
  • Класс C (тип II) — здесь деталь варистор является основным элементом.

Как работает защитник от перенапряжений

Защитой обеспечиваются устройства, питаемые от шнуров сети 220V, подключенных к разряднику в распределительной коробке. Это касается как фазных, так и нейтральных проводников (в зависимости от выбранного типа защиты).

Общее правило заключается в том, что на одной стороне защитного устройства соединяем фазные проводники и, возможно, нейтральный проводник, а с другой стороны — защитный провод.

Когда напряжение в системе в норме, сопротивление между проводами очень велико, порядка нескольких ГигаОм. Благодаря этому ток не течет через разрядник.

Когда происходит скачок напряжения в сети, ток начинает протекать через ограничитель на землю.

В защитных устройствах класса B основным элементом является искровой промежуток. При нормальной работе сопротивление его очень велико. В случае искрового промежутка это сопротивление является гигантским, поскольку искровой промежуток это фактически разрыв цепи.

Когда молния ударяет в элемент электрической установки напрямую, сопротивление искрового промежутка падает почти до нуля благодаря электрической дуге.

Из-за появления очень большого электрического потенциала в искровом промежутке между ранее разделенными элементами создается электрическая дуга.

Благодаря этому, например, фазовый провод, в котором имеется большой всплеск напряжения и защитный провод, создают короткое замыкание и большой ток протекает прямо на землю, минуя внутреннюю электрическую установку. После разряда искровой промежуток возвращается в нормальное состояние — то есть разрывает цепь.

Полезное:  Схема подключения тахометра ВАЗ

Ограничитель класса C имеет внутри варистор.

Варистор представляет собой специфический резистор, который обладает очень высоким сопротивлением при низком электрическом потенциале.

Если в системе происходит скачок напряжения из-за разряда, его сопротивление быстро уменьшается вызывая протекание тока на землю и аналогичную ситуацию, как в случае искрового промежутка.

Разница между классом B и классом C заключается в том, что последний способен ограничивать всплески напряжения с меньшим потенциалом, чем прямой удар молнии. Недостатком этого решения является довольно быстрый износ варисторов.

Схема подключения ограничителя к сети

Как подключить ограничитель к домашнему щитку? Начнем с основ. У нас есть однофазная сеть и одномодульный разрядник. Мы хотим защитить им фазовый провод. Тип сети — TN-S.

Подключаем фазный проводник питания непосредственно к разряднику и подключаем разрядник с другой стороны к клеммной колодке PE.

Но в этом домашнем коммутаторе больше ничего, кроме импульсного ограничителя. Добавим недостающие элементы.

Важно

Как видите, установка ограничителя перенапряжений не влияет на дальнейшую организацию компонентов в домашнем коммутационном щитке. Соединение устройства остаточного тока и автоматических выключателей осуществляется так же.

Вообще в распределительных устройствах разрядники перенапряжения класса B, C или B + C устанавливаются перед автоматическим выключателем (или автоматическими выключателями) и предохранителями токовой защиты. Но ограничитель является первым элементом, лежащим в основе защиты дома или квартиры.

Трехфазная установка

В трехфазной схеме увеличивается ширина ограничителя и количество защищаемых соединений. Однако принцип функционирования ограничителя остается неизменным. Наиболее часто используемые трехслойные системные защитные устройства, работающие в системе 4 + 0, что означает присоединение к разряднику следующих линий:

  • 3-фазные провода
  • 1 нейтральный провод

Каждый из проводов подлежащих защите имеет равные права, то есть возможные перенапряжения устраняются путем подачи тока на защитную установку и, как результат, на землю.

Конечно для установок TN-C (установка без отдельного защитного провода) можно приобрести защитные устройства только с 3 защищаемыми разъемами. Затем с нижней стороны подключите ограничитель к полосе PEN (нейтральная защита).

Безопасность и эффективность ограничителя

Каждый производитель рекомендует использовать дополнительный предохранитель защищающий сеть, в случае повреждения разрядника и короткого замыкания в фазовом проводе с защитным проводником.

В бытовых установках это не часто практикуется, потому что защита от короткого замыкания существует в виде прерывателя или предохранителя, а его малый номинальный ток безопасно защищает сеть от сбоев.

Параметры ограничителя перенапряжений

Перед тем как пойти в магазин и купить это устройство, нужно знать следующее:

  1. Количество модулей (терминалов) — зависит от типа вашей сети. 1 модуль можно купить когда есть однофазная система TN-C. 3 модуля, когда установка находится в сети TN-C трехфазной и 4 модуля когда сеть является трехфазной в TN-S или TT.
  2. Класс (тип) — можно выбирать между классами B, C или B + C. Если не уверены что перед вашей квартирой используется ограничитель типа B, стоит выбрать решение B + C. В противном случае ограничителя типа C будет достаточно.
  3. Номинальное напряжение, в котором работает ограничитель.
  4. Uc — рабочее напряжение протектора, то есть максимальный уровень напряжения который приведет к срабатыванию.
  5. In — номинальный ток ограничителя, то есть какой ток в случае короткого замыкания может протекать через разрядник.
  6. Imax — ток, который разрядник способен принимать во время атмосферного разряда. Обратите внимание, что оба значения (In = 30 000A и Imax = 60 000A) будут относительно большими по отношению к току при нормальной работе приборов в доме.
  7. Up — напряжение до которого уменьшается в случае разрыва. Например если потенциал достигает напряжения 10 000 В в случае всплеска — итоговое значение снижается до 150.

Стоит ли применять ограничитель в сети

Тем не менее редакция 2Схемы.ру настоятельно рекомендует оснастить сеть этим оборудованием. Если он защитит даже одно ценное устройство, расходы сразу окупятся и даже с избытком!

Источник: https://2shemi.ru/ogranichitel-impulsnyh-perenapryazhenij-i-shema-ustanovki-razryadnika/

Установка УЗИП — схемы подключения, правила монтажа

Для всех нас стало нормой, что в распределительных щитках жилых домов, обязательна установка вводных автоматических выключателей, модульных автоматов отходящих цепей, УЗО или дифф.автоматов на помещения и оборудование, где критичны возможные утечки токов (ванные комнаты, варочная панель, стиральная машинка, бойлер).

Помимо этих обязательных коммутационных аппаратов, практически никому не требуется объяснять, зачем еще нужно реле контроля напряжения.

Устанавливать их начали все и везде. Грубо говоря оно защищает вас от того, чтобы в дом не пошло 380В вместо 220В. При этом не нужно думать, что повышенное напряжение попадает в проводку по причине недобросовестного электрика.

Вполне возможны природные явления, не зависящие от квалификации электромонтеров. Банально упало дерево и оборвало нулевой провод.

Также не забывайте, что любая ВЛ устаревает. И даже то, что к вашему дому подвели новую линию СИПом, а в доме у вас смонтировано все по правилам, не дает гарантии что все хорошо на самой питающей трансформаторной подстанции – КТП.

Там также может окислиться ноль на шинке или отгореть контакт на шпильке трансформатора. Никто от этого не застрахован.

Именно поэтому все новые электрощитки уже не собираются без УЗМ или РН различных модификаций.

Что же касается устройств для защиты от импульсных перенапряжений, или сокращенно УЗИП, то у большинства здесь появляются сомнения в необходимости их приобретения. А действительно ли они так нужны, и можно ли обойтись без них?

Подобные устройства появились достаточно давно, но до сих пор массово их устанавливать никто не спешит. Мало кто из рядовых потребителей понимает зачем они вообще нужны.

Первый вопрос, который у них возникает: ”Я же поставил реле напряжения от скачков, зачем мне еще какой-то УЗИП?”

Совет

Никакое реле напряжения от этого не спасет, а скорее всего сгорит вместе со всем другим оборудованием. В то же самое время и УЗИП не защищает от малых перепадов в десятки вольт и даже в сотню.

Например устройства для монтажа в домашних щитках, собранные на варисторах, могут сработать только при достижении переменки до значений свыше 430 вольт.

Поэтому оба устройства РН и УЗИП дополняют друг друга.

Гроза это стихийное явление и просчитать его до сих пор не особо получается. При этом молнии вовсе не обязательно попадать прямо в линию электропередач. Достаточно ударить рядышком с ней.

Даже такой грозовой разряд вызывает повышение напряжения в сети до нескольких киловольт. Кроме выхода из строя оборудования это еще чревато и развитием пожара.

Даже когда молния ударяет относительно далеко от ВЛ, в сетях возникают импульсные скачки, которые выводят из строя электронные компоненты домашней техники. Современный электронный счетчик с его начинкой, тоже может пострадать от этого импульса.

Общая длина проводов и кабелей в частном доме или коттедже достигает нескольких километров.

Сюда входят как силовые цепи так и слаботочка:

  • видеонаблюдение 

Все эти провода принимают на себя последствия грозового удара. То есть, все ваши километры проводки получают гигантскую наводку, от которой не спасет никакое реле напряжения.

Единственное что поможет и защитит всю аппаратуру, стоимостью несколько сотен тысяч, это маленькая коробочка называемая УЗИП.

Монтируют их преимущественно в коттеджах, а не в квартирах многоэтажек, где подводка в дом выполнена подземным кабелем. Однако не забывайте, что если ваше ТП питается не по кабельной линии 6-10кв, а воздушной ВЛ или ВЛЗ (СИП-3), то влияние грозы на среднем напряжении, также может отразиться и на стороне 0,4кв.

Обратите внимание

Поэтому не удивляйтесь, когда в грозу в вашей многоэтажке, у многих соседей одновременно выходят из строя WiFi роутеры, радиотелефоны, телевизоры и другая электронная аппаратура.

Молния может ударить в ЛЭП за несколько километров от вашего дома, а импульс все равно прилетит к вам в розетку. Поэтому не смотря на их стоимость, задуматься о покупке УЗИП нужно всем потребителям электричества.

Цена качественных моделей от Шнайдер Электрик или ABB составляет примерно 2-5% от общей стоимости черновой электрики и средней комплектации распредщитка. В общей сумме это вовсе не такие огромные деньги.

На сегодняшний день все устройства от импульсных перенапряжений делятся на три класса. И каждый из них выполняет свою роль.

Модуль первого класса гасит основной импульс, он устанавливается на главном вводном щите.

После погашения самого большого перенапряжения, остаточный импульс принимает на себя УЗИП 2 класса. Он монтируется в распределительном щитке дома.

Если у вас не будет устройства I класса, высока вероятность что весь удар воспримет на себя модуль II. А это может для него весьма печально закончится.

Однако давайте посмотрим, что говорит об этом не знакомый электрик, а ведущая фирма по системам грозозащиты Citel:

То есть в тексте прямо сказано, класс II монтируется либо после класса 1, либо КАК САМОСТОЯТЕЛЬНОЕ УСТРОЙСТВО.

Третий модуль защищает уже непосредственно конкретного потребителя.

Важно

Если у вас нет желания выстраивать всю эту трехступенчатую защиту, приобретайте УЗИП, которые изначально идут с расчетом работы в трех зонах 1+2+3 или 2+3.

Такие модели тоже выпускаются. И будут наиболее универсальным решением для применения в частных домах. Однако стоимость их конечно отпугнет многих.

Схема качественно укомплектованного с точки зрения защиты от всех скачков и перепадов напряжения распределительного щита, должна выглядеть примерно следующим образом.

На вводе перед счетчиком – вводной автоматический выключатель, защищающий прибор учета и цепи внутри самого щитка. Далее счетчик.

Между счетчиком и вводным автоматом – УЗИП со своей защитой. Электроснабжающая организация конечно может запретить такой монтаж. Но вы можете обосновать это необходимостью защиты от перенапряжения и самого счетчика.

В этом случае потребуется смонтировать всю схемку с аппаратами в отдельном боксе под пломбой, дабы предотвратить свободный доступ к оголенным токоведущим частям до прибора учета.

Однако здесь остро встанет вопрос замены сработавшего модуля и срыва пломб. Поэтому согласовывайте все эти моменты заранее.

После прибора учета находятся:

  • реле напряжения УЗМ-51 или аналог 
  • УЗО 100-300мА – защита от пожара
  • УЗО или дифф.автоматы 10-30мА – защита человека от токов утечки
  • простые модульные автоматы

Если с привычными компонентами при комплектации такого щитка вопросов не возникает, то на что же нужно обратить внимание при выборе УЗИП?

На температуру эксплуатации. Большинство электронных видов рассчитано на работу при окружающей температуре до -25С. Поэтому монтировать их в уличных щитках не рекомендуется.

Совет

Второй важный момент это схемы подключения. Производители могут выпускать разные модели для применения в различных системах заземления.

Например, использовать одни и те же УЗИП для систем TN-C или TT и TN-S уже не получится. Корректной работы от таких устройств вы не добьетесь.

Вот основные схемы подключения УЗИП в зависимости от исполнения систем заземления на примере моделей от Schneider Electric. Схема подключения однофазного УЗИП в системе TT или TN-S:

Здесь самое главное не перепутать место подключения вставного картриджа N-PE. Если воткнете его на фазу, создадите короткое замыкание.

Схема трехфазного УЗИП в системе TT или TN-S:

Схема подключения 3-х фазного устройства в системе TN-C:

На что нужно обратить внимание? Помимо правильного подключения нулевого и фазного проводников немаловажную роль играет длина этих самых проводов.

От точки подключения в клемме устройства до заземляющей шинки, суммарная длина проводников должны быть не более 50см!

А вот подобные схемы для УЗИП от ABB OVR. Однофазный вариант:

Трехфазная схема:

Давайте пройдемся по некоторым схемкам отдельно. В схеме TN-C, где мы имеем совмещенные защитный и нулевой проводники, наиболее распространенный вариант решения защиты – установка УЗИП между фазой и землей.

Каждая фаза подключается через самостоятельное устройство и срабатывает независимо от других.

В варианте сети TN-S, где уже произошло разделение нейтрального и защитного проводника, схема похожа, однако здесь монтируется еще дополнительный модуль между нулем и землей. Фактически на него и сваливается весь основной удар.

Обратите внимание

Именно поэтому при выборе и подключении варианта УЗИП N-PE, указываются отдельные характеристики по импульсному току. И они обычно больше, чем значения по фазному.
Помимо этого не забывайте, что защита от грозы это не только правильно подобранный УЗИП. Это целый комплекс мероприятий.

Их можно использовать как с применением молниезащиты на крыше дома, так и без нее.

Особое внимание стоит уделить качественному контуру заземления. Одного уголка или штыря забитого в землю на глубину 2 метра здесь будет явно не достаточно. Хорошее сопротивление заземления должно составлять 4 Ом.

Принцип действия УЗИП основан на ослаблении скачка напряжения до значения, которое выдерживают подключенные к сети приборы. Другими словами, данное устройство еще на вводе в дом сбрасывает излишки напряжения на контур заземления, тем самым спасая от губительного импульса дорогостоящее оборудование.

Определить состояние устройства защиты достаточно просто:

  • зеленый индикатор – модуль рабочий
  • красный – модуль нужно заменить

При этом не включайте в работу модуль с красным флажком. Если нет запасного, то лучше его вообще демонтировать.

УЗИП это не всегда одноразовое устройство, как некоторым кажется. В отдельных случаях модели 2,3 класса могут срабатывать до 20 раз!

Чтобы сохранить в доме бесперебойное электроснабжение, необходимо также установить автоматический выключатель, который будет отключать узип. Установка этого автомата обусловлена также тем, что в момент отвода импульса, возникает так называемый сопровождающий ток.

Он не всегда дает возможность варисторному модулю вернуться в закрытое положение. Фактически тот не восстанавливается после срабатывания, как по идее должен был.

В итоге, дуга внутри устройства поддерживается и приводит к короткому замыканию и разрушениям. В том числе самого устройства.

Автомат же при таком пробое срабатывает и обесточивает защитный модуль. Бесперебойное электроснабжение дома продолжается.

При этом многие специалисты рекомендуют ставить в качестве такой защиты даже не автомат, а модульные предохранители.

Объясняется это тем, что сам автомат во время пробоя оказывается под воздействием импульсного тока. И его электромагнитные расцепители также будут под повышенным напряжением.

Это может привести к пробою отключающей катушки, подгоранию контактов и даже выходу из строя всей защиты. Фактически вы окажетесь безоружны перед возникшим КЗ.

Есть конечно специальные автоматические выключатели без катушек индуктивности, имеющие в своей конструкции только терморасцепители. Например Tmax XT или Formula A.

Важно

Однако рассматривать такой вариант для коттеджей не совсем рационально. Гораздо проще найти и купить модульные предохранители. При этом можно сделать выбор в пользу типа GG.

Они способны защищать во всем диапазоне сверхтоков относительно номинального. То есть, если ток вырос незначительно, GG его все равно отключит в заданный интервал времени.

Есть конечно и минус схемы с автоматом или ПК непосредственно перед УЗИП. Все мы знаем, что гроза и молния это продолжительное, а не разовое явление. И все последующие удары, могут оказаться небезопасными для вашего дома.

Защита ведь уже сработала в первый раз и автомат выбил. А вы об этом и догадываться не будете, потому как электроснабжение ваше не прерывалось.

Поэтому некоторые предпочитают ставить УЗИП сразу после вводного автомата. Чтобы при срабатывании отключалось напряжение во всем доме.

Однако и здесь есть свои подводные камни и правила. Защитный автоматический выключатель не может быть любого номинала, а выбирается согласно марки применяемого УЗИП. Вот таблица рекомендаций по выбору автоматов монтируемых перед устройствами защиты от импульсных перенапряжений:

Если вы думаете, что чем меньше по номиналу автомат будет установлен, тем надежнее будет защита, вы ошибаетесь. Импульсный ток и скачок напряжения могут быть такой величины, что они приведут к срабатыванию выключателя, еще до момента, когда УЗИП отработает.

И соответственно вы опять останетесь без защиты. Поэтому выбирайте всю защитную аппаратуру с умом и по правилам. УЗИП это тихая, но весьма своевременная защита от опасного электричества, которое включается в работу мгновенно.

1Самая распространенная ошибка – это установка УЗИП в электрощитовую с плохим контуром заземления.

Толку от такой защиты не будет никакого. И первое же “удачное” попадание молнии, сожгет вам как все приборы, так и саму защиту.

2Не правильное подключение исходя из системы заземления.

Проверяйте техдокументацию УЗИП и проконсультируйтесь с опытным электриком ответственным за электрохозяйство, который должен быть в курсе какая система заземления используется в вашем доме.

3Использование УЗИП не соответствующего класса.

Как уже говорилось выше, есть 3 класса импульсных защитных устройств и все они должны применяться и устанавливаться в своих щитовых.

Источник: https://domikelectrica.ru/ustanovka-uzip-sxemy-podklyucheniya-pravila-montazha/

Схема подключения УЗИП

Здесь привожу несколько типовых схем подключения устройств защиты от импульсных перенапряжений (УЗИП). Ниже вы найдете однофазные и трехфазные схемы для разных систем заземления: TN-C, TN-S и TN-C-S. Они наглядные и понятные для простого человека.

Сегодня существует большое количество производителей УЗИП. Сами устройства бывают разных моделей, характеристик и конструкций. Поэтому перед его монтажом обязательно изучите паспорт и схему подключения. В принципе, суть подключения у всех УЗИП одинаковая, но все же рекомендую сначала прочитать инструкцию.

Во всех выложенных схемах присутствуют УЗО и групповые автоматические выключатели. Их я указал для наглядности и полноты распределительного щитка. Эта “начинка” щитка у вас может быть совсем другая.

1. Схема подключения УЗИП в однофазной сети системы заземления TN-S

На данной схеме представлен УЗИП серии Easy9 производителя Schneider Electric. К нему подключаются следующие проводники: фазный, нулевой рабочий и нулевой защитный.

Здесь он устанавливается сразу после вводного автомата. Все контакты на любом УЗИП обозначены. Поэтому куда подключать “фазу”, а куда “ноль” можно легко определить.

Зеленый флажок на корпусе указывает на исправное состояние, а красный флажок сигнализирует о неисправной касете.

Совет

Представленное устройство относится к классу 2. Оно одно самостоятельно не способно защитить от прямого удара молнии. Грамотный выбор УЗИП это сложная и уже отдельная тема.

Также рекомендуется защищать устройства УЗИП с помощью предохранителей.

Думаю тут все понятно…

Ниже представлена аналогичная схема подключения УЗИП, но уже без электросчетчика и с использованием общего УЗО.

2. Схема подключения УЗИП в трехфазной сети системы заземления TN-S

На схеме также изображен УЗИП производителя Schneider Electric серии Easy9, но уже для 3-х фазной сети. На рисунке изображено 4-х полюсное устройство с подключением нулевого рабочего проводника.

Еще существует 3-х полюсное УЗИП этой же серии. Оно применяется в системе заземления TN-C. В нем нет контакта для подключения нулевого рабочего проводника.

3. Схема подключения УЗИП в трехфазной сети системы заземления TN-C

Здесь изображен УЗИП фирмы IEK. Данная схема представляет собой обычный вводной щит для частного дома. Он состоит из вводного автомата, электросчетчика, УЗИП и общего противопожарного УЗО. Также на схеме показан переход с системы заземления TN-C на TN-C-S, что требуется современными нормами.

На первом рисунке изображен 4-х полюсный вводной автомат, а на втором 3-х полюсный.

Выше представлены наглядные схемы подключения УЗИП. Думаю они понятны вам. Если остались вопросы, то жду их в комментариях.

Улыбнемся:

Источник: http://sam-sebe-electric.ru/zashchita-ot-perenapryazheniya/120-skhema-podklyucheniya-uzip

Ограничитель перенапряжения (ОПН): применение в сетях, основные типы и советы по монтажу. Обзор самых эффективных методов защиты!

Первым делом, о чем задумывается человек при работе с электрооборудованием и сетями, так это о безопасной работе всей это системы без аварий и перебоев. Это относится и к простым домам и квартирам, и к целым промышленным комплексам. Везде нуждаются в стабильной и безопасной поставке электроэнергии до конечного потребителя.

Наибольшую опасность вызывают падение и рост напряжения в многократных пределах на короткой дистанции. На это влияют и классические грозы, от которых никто не убережет, а также процессы коммутации внутри электроустановки.

Импульсы могут быстро поломать любое дорогое оборудование, да и от возникновения пожара вы не будете застрахованы. Для избегания пиковых величин разработаны специализированные приборы – ограничители перенапряжения.

Назначение

Сначала нужно разобраться, как работает ограничитель перенапряжения. Его главная черта – это предохранение электрических приборов от высоковольтных перегрузок, влияющих на напряжение. Энергетики решили отдать предпочтение именно этому виду устройств, так как они достаточно просты и надежны в применении.

Устройство

Если посмотреть на фото ограничителя от перенапряжения, то можно быстро разобраться даже на глаз во многих частях, из которых он состоит. Во главе угла тут варистор, который берет на себя роль переменного нелинейного резистора. Их в составе несколько штук. Все они размещаются в корпусе, которые выполнен из фарфоровой части и полимеров высокой прочности.

По конструкции ОПН создается таким образом, чтобы вся система была полностью безопасна от возгораний и взрывов. Особенно это характерно в моменты, когда происходит замыкание.

Очень многое в данном случае зависит от того, куда вы хотите поставить этот прибор. Из-за этого фактора подбираются виды ограничителей перенапряжения. Есть те, кто созданы для защитных функций на линиях электропередач и на оборудовании громоздких промышленных объектах.

Если же говорим про приборы, используемые в квартирах, частных домах и дачах, то они компактны. Их главная функция – предохранение электрических устройств от пиковых показателей.

У них всегда есть удобные крепежные элементы, да и над дизайном уже стали неплохо работать, хотя обычно это элементы находятся далеко от человеческих глаз. Уже есть специальные пульты дистанционного управления и индикаторы, которые влияют на режимы работы.

Что входит в модульный ограничитель:

  • Корпус
  • Предохраняющая часть
  • Сменный варистор
  • Указывающий износ модуль варистора
  • Зажимные насечки
  • Принципы работы

Некоторые технические характеристики опн вам уже известны, а вот принципы их жизнедеятельности не совсем. Вольтамперные характеристики (ВАХ) действуют нелинейно у варисторов. Для их трудоспособности необходим материал с примесями окиси цинка и оксидами иных металлов.

Резистор находится в состоянии покоя, когда напряжение соответствует значениям по номиналу. В варисторах совсем незначительные величины, что объясняется характером емкости.

Если возникает какой-то импульс, который может в конечном итоге привести к поломке изоляционных свойств, то ОПН переносит серьезные колебания тока. Перенапряжения не происходит, а величина в электрооборудовании быстро снижается до безопасных величин.

Виды ОПН

Вы уже поняли, что конструкция бывает совершенно разных типов в зависимости от способов применения, но всё-таки со всеми устройствами так и не ознакомились. Как выбрать ограничитель перенапряжения для дома вы узнаете ниже, узнав в деталях все возможные видовые особенности.

Различаются ОПН по следующим характеристикам:

  • Изоляционный тип (полимерный или фарфорный)
  • Количество колонок
  • Величина стандартного напряжения
  • Установочное место прибора

Можно потом углубиться в конкретные особенности и отличия трехфазных и однофазных приборов. Есть к тому же и классификация, которая относится к месту установки – делятся на B, C и D. Но нам куда важнее разобраться с техническими свойствами.

Технические характеристики

Разобрать обозначение опн на схеме не так уж и сложно, а вот понять все более мелки детали потруднее. Вы должны определить максимально возможное напряжение, которое не помешает работать ОПН без ввода ограничительных значений по времени.

Надо узнать и напряжение по номиналу, которое способе выдерживать прибор в рабочем состоянии в течении десяти минут. Также понять необходимо значения тока во время действия значений по номиналу. Обычно, это незначительные цифры.

Конечно, есть в интернете инструкция как подключить опн своими руками, но лучше всё-таки доверять профессионалам, если не совсем уверены в своих силах. Защищать надо не только серьезные объекты с дорогостоящим оборудованием, но и дома, квартиры и даже летние домики. Это не только обезопасить электроприборы, но и обезопасит человека, когда он будет находиться внутри помещения днем и ночью.

Сейчас это вполне себе решаемый вопрос. От вас требуется только выбрать подходящую модель. Подключить все не так уж и сложно, если есть маломальский опыт в электромонтаже. Всё это пригодится, чтобы подобрать нужный вариант по цене и качеству для конкретного случая.

Фото ограничителя перенапряжения

Источник: http://electrikmaster.ru/ogranichitel-perenapryazheniya/

Как организовать защиту от перенапряжения сети в частном доме

Наличие в доме дорогостоящей электробытовой и электронной технике, природные катаклизмы и низкое качество электроснабжения в городских сетях вынуждают собственников жилья принимать меры, чтобы минимизировать возможный ущерб от вышеуказанных факторов.

В данной статье речь пойдёт о практических мерах по защите от перенапряжения, которые можно реализовать при организации электроснабжения частного дома. Причём эти работы можно выполнить как при новом строительстве, так и при модернизации существующих систем электроснабжения частного дома.

Я выполнял указанные работы при переводе электропитания дома с однофазной на трёхфазную схему. Причём работы были не только выполнены, но и приняты представителями горэлектросетей без замечаний, а правильное функционирование приборов и эффективность защиты от перенапряжения проверена на практике в процессе эксплуатации.

Обратите внимание

Известно, что основным условием подключения к городским электросетям является выполнение технических условий (ТУ), которые выдаются собственнику жилья. Как показал личный опыт, надеяться на то, что в данных ТУ будут отражены все мероприятия по безопасной эксплуатации электрооборудования, можно с определённым скептицизмом.

На фото ниже показаны ТУ, выданные мне в горэлектросетях.

Примечание: пункты, помеченные на фото красным цветом, были мной реализованы самостоятельно ещё до получения тех. условий. Пункт, помеченный синим цветом, больше обусловлен интересами самих горсетей (защитить себя от ответственности за ущерб перед собственником дома по причине возможных проблем в зоне их ответственности).

Поэтому при разработке проекта схемы электроснабжения частного дома было решено использовать дополнительные меры по защите электрооборудования, которые не были отражены в ТУ. Ниже на фото показан фрагмент проекта электроснабжения моего жилого дома.

Как видно из фото, в учётно-распределительном шкафу (ЩР1), устанавливаемом внутри дома, предусмотрено устройство защиты от импульсных перенапряжений (УЗИП-II) согласно требованиям ТУ, выданных городскими электрическими сетями.

Так как ввод в дом осуществляется по воздушной линии, то с учётом требований ПУЭ (правил устройства электроустановок), на вводе в дом должны устанавливаться ограничители перенапряжений, что и было мной учтено в проекте (УЗИП-I на фото), которые установлены в шкафу (ЩВ1) на фасаде здания. Для защиты индивидуальных электроприёмников в доме используются ИБП (источники бесперебойного питания) и стабилизаторы напряжений.

Таким образом, защита электрооборудования дома от перенапряжений реализована в трёх зонах (уровнях):

  • на вводе в дом
  • внутри дома, в учётно-распределительном шкафу
  • индивидуальная защита электроприборов внутри помещений дома

Защита от перенапряжения

Что важно учесть при выполнении работ

В первую очередь должен отметить специфические особенности, предъявляемые к выполнению электромонтажных работ со стороны представителей городских электросетей.

Для примера с точки зрения учёта потребляемой электроэнергии достаточно поверить и опечатать счётчик электроэнергии.

Но поскольку в каждом из нас они видят «потенциальных расхитителей электроэнергии», то всё, что касается монтажа оборудования, присоединений на участке от городской опоры и до счётчика включительно, должно быть «недоступным для потребителя», закрытым (в боксы, шкафы) и опломбированным. Причём даже в том случае, если эти «требования» противоречат требованиям технической документации на установленное оборудование, создают риск возникновения отказов в работе оборудования и т. д. Более подробно об этих «специфических требованиях» будет сказано ниже.

Теперь о технической стороне вопроса:

Для защиты электрооборудования, установленного в доме, я использовал следующие приборы и аппараты.

1. В качестве УЗИП (устройства защиты от импульсных перенапряжений) — I уровня мной были использованы ограничители перенапряжений нелинейные (ОПН), российского производства (Санкт-Петербург), в количестве трёх штук (по одному, на каждый фазный проводник). Заводское обозначение данных приборов — ОПНд-0,38. Установлены они в опечатанном пластиковом боксе в стальном шкафу на фасаде дома.

Что важно отметить по данному оборудованию:

  • Данные приборы защищают только от импульсных (кратковременных) перенапряжений, возникающих при грозах, а также от кратковременных коммутационных перенапряжений, причём в обе стороны. При длительных перенапряжениях, вызванных авариями и неполадками в городской электросети, данные приборы защиту дома не обеспечат.
  • В техническом плане ОПН представляет собой варистор (нелинейный резистор). Прибор подключается параллельно нагрузке между фазным и нулевым проводом. При появлении бросков (импульсов) напряжения, внутреннее сопротивление прибора моментально снижается, при этом ток через прибор резко и многократно возрастает, уходя в землю. Таким образом, происходит сглаживание (снижение) амплитуды импульсного напряжения. В связи с вышесказанным, при монтаже данных приборов нужно обратить особое внимание на устройство контура заземления и надёжного подключения ОПН к нему.
  • В зависимости от схемы электроснабжения дома, количество используемых ОПН может варьироваться. Например, для однофазного воздушного ввода достаточно установить один такой прибор, при питании от городской сети по двухпроводной линии. Для трёхфазного воздушного ввода в большинстве случаев достаточно установить три прибора (по числу фаз). Если ввод в дом осуществляется по трёхфазной, но пяти проводной схеме, или приборы ставится на участке после разделения общего проводника на нулевой рабочий (N) проводник и защитный проводник (PE), то потребуется установка дополнительного прибора между нулевым и защитным проводником.

2. В качестве УЗИП — II уровня я использовал аппараты УЗМ-50 М (устройство защитное многофункциональное) российского производства.

Из особенностей данных аппаратов можно отметить следующее:

  • В отличие от ОПН, данные аппараты обеспечивают защиту не только от импульсных перенапряжений, но и защиту от длительных (аварийных) перенапряжений и просадок (недопустимого падения напряжения).
  • В конструктивном отношении представляют собой реле контроля напряжения, дополненное мощным реле и варистором, заключенным в один корпус.
  • Для однофазной сети необходимо установить один аппарат, для трёхфазной сети потребуется три аппарата, не зависимо от числа проводников питающей линии.

3.

Третий немаловажный момент, касающийся правильного монтажа и работы УЗИП при их последовательном включении (показаны на фото красными прямоугольниками УЗИП-1 и УЗИП-2) заключается в том, что расстояние между ними (по длине кабеля) должно быть не менее 10 метров. В моём случае оно равно 20 метрам.

Примечание: приобрести указанное оборудование (ОПН и УЗМ) в моём городе оказалось невозможным, ввиду его отсутствия в продаже, заказывал через интернет. Такой расклад навеял мысль о том, что вопросу защиты электрооборудования, по крайней мере, в нашем городе, внимания практически никто не уделяет.

Практическое выполнение работ

Практическое выполнение работ не представляет собой большой сложности и показано на фото ниже, с небольшими пояснениями.

Монтаж ОПН-0,38 на вводе в дом

На фото показан монтаж ОПН в пластиковом боксе. Из особенностей нужно учесть, что специальных боксов для ОПН не существует, ибо конструктивно они крепятся на опорной конструкции и по типу своего исполнения могут устанавливаться открыто.

Установка ОПН в боксе — мера вынужденная. Бокс должен иметь возможность для пломбировки.

Для установки ОПН в боксе сделана самодельная конструкция из оцинкованной стали толщиной 1 мм, которая закреплена вместо штатной дин рейки, установленной в боксе на заводе-изготовителе.

Важно

При монтаже ОПН и подключении к ним проводов использование граверных шайб — обязательно. По требованиям ТУ, вводной автомат должен устанавливаться в боксе с возможностью пломбировки. Использовался аналогичный бокс, как для ОПН, что и показано на фото ниже (верхний пластиковый бокс в металлическом шкафу).

Такое нагромождение конструкций (пластиковых боксов в металлическом шкафу) на фасаде дома, обусловлено, как я отмечал ранее, именно специфическими требованиями горэлектросетей и вызывает не только заметное удорожание работ, но и дополнительных затрат сил, времени и нервов.

На мой взгляд, правильное в техническом плане выполнение работ при воздушном вводе, выполненное проводом СИП, должно бы быть следующим: от опоры горэлектросетей до фасада дома прокладываем провод СИП, крепим на фасаде дома и обрезаем с небольшим напуском.

Затем на каждый провод СИП крепим прокалывающий зажим с отводом из медного провода сечением 10 мм2, который заводится в шкаф (или бокс) на клеммы вводного автомата. Срезы проводов СИП закрываем герметичными колпачками. Таким образом, мы правильно «перешли» с алюминия (провод СИП) на медь.

При этом у нас не возникло бы проблем с подключением медного провода (сечением 10 мм2) к клеммам модульного вводного автомата. Но такую работу представители горсетей не примут.

Поэтому провод СИП сечением 16 мм2 необходимо завести непосредственно на клеммы вводного автомата, который должен быть установлен в пластиковый бокс. Сделать это на практике очень сложно, так как нужно сохранить степень защиты бокса (для наружной установки не ниже IP 54), при этом провод СИП должен быть зафиксирован по отношению к пластиковому боксу и т. д.

На практике пришлось просто купить ещё один стальной шкаф, в котором установил сами пластиковые боксы, затем провод СИП был заведён в шкаф и закреплён в нём. Ниже на фото показаны завершающие работы по монтажу шкафа и его крепления на фасаде дома. Работы были приняты без замечаний и претензий.

Ещё один важный момент, на который нужно обратить внимание, связан с тем, что ОПН при работе во время грозы отводит ток в землю посредством подключения самого ОПН к контуру заземления. При этом токи могут достигать значительных величин: от 200 — 300 А и до нескольких тысяч ампер.

Совет

Поэтому важно обеспечить кратчайший путь от самих ОПН до контура заземления медным проводником сечением не менее 10 мм2. Ниже на фото показано, как данное подключение выполнил я. Для надёжности работы ОПН я сделал подключение приборов к контуру заземления двумя медными проводами сечением 10 мм2 каждый.

На фото провод в желто-зеленой трубке ТУТ (термоусаживающаяся трубка).

Монтаж аппаратов УЗМ-50М в учётно-распределительном шкафу

Выполнение электромонтажных работ проблем не доставляет, поскольку аппараты имеют штатное крепление на DIN-рейку. Фрагмент выполнения работ по монтажу УЗМ-50М в шкафу показан на фото ниже. Аппараты также должны устанавливаться в пластиковый бокс с возможностью пломбирования. На фото верхняя крышка бокса не показана.

С точки зрения электрической схемы подключения (хотя схема имеется в паспорте на аппарат и на корпусе самого аппарата) у неподготовленного читателя могут возникнуть вопросы. Чтобы пояснить особенности подключения аппарата, ниже на рисунке приводится схема подключения, приведённая в паспорте на УЗМ-50М, с некоторыми моими пояснениями.

Во-первых, как видно из схемы, УЗМ-50М является однофазным коммутирующим аппаратом и для своего функционирования требует обязательного подключения проводников L и N к верхним клеммам.

Это показано на схеме подключения в обоих случаях (а и б).

Далее, между схемой а и схемой б появляется различие, о котором производитель не даёт ни какого пояснения и приходится потребителю самостоятельно додумывать, как и в каких случаях какую схему использовать.

Различие заключается в том, что по верхней схеме (а) нагрузка подключается к аппарату по двум проводам (L и N). Т. е. в случае аварийного срабатывания аппарата цепь будет разорвана как п

Что такое ограничитель перенапряжения (или ограничитель перенапряжения)?

Устройство защиты от перенапряжения — также известное как ограничитель перенапряжения , ограничитель скачков напряжения , ограничитель перенапряжения (TVSS) или устройство защиты от перенапряжения — это название, данное широкой группе устройств, которые разработан для реакции на внезапное или кратковременное перенапряжение.

Устройства защиты от перенапряжения служат защитными устройствами , предотвращающими повреждение оборудования, вызванное ненормальными условиями.

Ограничитель перенапряжения и устройство защиты от перенапряжений

Разрядник (или грозозащитный разрядник) служит той же цели, что и разрядник : они защищают электрооборудование от условий перенапряжения . Оба они обычно именуются SPD (Устройства защиты от перенапряжения).

Разница между ними заключается в масштабе защиты. Ограничители перенапряжения предназначены для крупномасштабной защиты (от среднего до высокого напряжения), а устройства защиты от перенапряжения предназначены для защиты небольшого масштаба (низкое напряжение).Сетевые фильтры могут быть специфичными для конкретного прибора — например, сетевым фильтром для стиральной машины или сетевым фильтром для холодильника — или сетевым фильтром для всего дома.

Ограничители перенапряжения (или разрядники) используются коммунальными предприятиями в системах передачи и распределения электроэнергии для защиты своего электронного оборудования и инфраструктуры. Их также можно найти в крупномасштабных промышленных предприятиях, таких как горнодобывающая промышленность или нефть и газ.

Они защищают от очень больших токов короткого замыкания, например, вызываемых молнией — отсюда и название «грозозащитный разрядник».Они выглядят так:

Устройства защиты от перенапряжения используются для защиты бытового и бытового электрооборудования. Они защищают электронные устройства в вашем доме, такие как компьютер, телевизор и холодильник.

Ограничивающее напряжение

Ограничивающее напряжение относится к максимальной величине напряжения, которое может пройти через сетевой фильтр (или электрический выключатель) до того, как ограничит прохождение через него дальнейшего тока.

Из-за этого ограничители перенапряжения иногда называют « Transient Clamps ».

« Фиксация напряжения » означает ограничение напряжения при обнаружении скачка переходного напряжения выше напряжения фиксации. Вы можете использовать хороший мультиметр для измерения напряжения на выключателе.

Стандарты устройств защиты от перенапряжения

Существует множество национальных и международных стандартов, касающихся устройств защиты от перенапряжения. К наиболее известным из них относятся:

  • IEC 61643-11 Устройства защиты от перенапряжений низкого напряжения — Часть 11: Устройства защиты от перенапряжений, подключенные к энергосистемам низкого напряжения — Требования и методы испытаний
  • IEC 61643-21 Устройство защиты от перенапряжений низкого напряжения устройства — Часть 21: Устройства защиты от перенапряжений, подключенные к телекоммуникационным и сигнальным сетям — Требования к характеристикам и методы испытаний
  • IEC 61643-22 Устройства защиты от перенапряжения низкого напряжения — Часть 22: Устройства защиты от перенапряжения, подключенные к телекоммуникационным и сигнальным сетям — Выбор и принципы применения
  • EN 61643-11, 61643-21 и 61643-22
  • Telcordia Technologies Технический справочник TR-NWT-001011
  • ANSI / IEEE C62.xx
  • AS / NZS 1768 Молниезащита (Стандарты Австралии)

Типы ограничителей перенапряжения

Типы ограничителей переходного напряжения:

  • Разделительные конденсаторы
  • Стабилитроны
  • Диоды-ограничители переходных процессов (TVS-диоды)
  • Металлооксидные варисторы (MOV)
  • Лавинный диод
  • PolySwitch

Конденсаторы развязки

Конденсаторы развязки (также известные как байпасные конденсаторы) используются для развязки (т.е.е. отдельные) две части электрической цепи.

Где они используются

  • Приложения с низким энергопотреблением
  • Простые схемы

Преимущества

  • Очень низкая стоимость
  • Простота обслуживания
  • Быстродействие

Недостатки

  • Требуется несколько конденсаторы разных размеров для полной защиты
  • Неравномерное подавление

Стабилитроны

Обычные диоды пропускают ток только в одном направлении — от анода к катоду.Стабилитрон — это особый тип диода, который позволяет току течь (функционально и предсказуемо) в обратном направлении — от катода к аноду — , как только напряжение через диод достигает определенного уровня.

Этот уровень напряжения, необходимый для протекания тока в обратном направлении, известен как напряжение стабилитрона .

Это напряжение стабилитрона будет поддерживаться даже тогда, когда через стабилитрон протекает большой ток. Этот атрибут стабилитрона используется при использовании стабилитрона в качестве ограничителя переходного напряжения.

Стабилитрон специально используется в режиме «обратного смещения» или в режиме обратного пробоя, когда напряжение стабилитрона равно желаемому выходному напряжению. Нагрузка поддерживается параллельно стабилитрону, что позволяет стабилитрону действовать как шунтирующий стабилизатор. Стабилитрон проводит избыточный ток и, следовательно, поддерживает постоянное напряжение на нагрузке.

Обратите внимание, что хотя напряжение подавляется, стабилитрон действует скорее как регулятор напряжения, чем как ограничитель напряжения.Это не оптимально для случаев, когда необходимо резко ограничить напряжение.

Где они используются

  • Высокоскоростные линии передачи данных
  • Высокочастотные цепи
  • Фиксация в схемах с низким энергопотреблением

Преимущества

  • Низкая стоимость
  • Простота обслуживания
  • Быстродействующая
  • Двунаправленный
  • Обычно открывается при отказе (в отличие от короткого отказа)

Недостатки

  • Используется только в низковольтных системах ( обратите внимание, что это потому, что напряжение стабилитрона = выходное напряжение, а напряжения стабилитрона не очень высокие )
  • Необходимо соблюдать осторожность, чтобы обеспечить поддержание минимального тока стабилитрона.

Диоды-ограничители переходного напряжения (TVS Diodes)

Где они используются

TVS обычно используются в системах передачи данных.Это связано с их:

  • Быстрое время отклика на условия перенапряжения
  • Долговечность
  • Низкое напряжение ограничения

Все эти три преимущества являются желательными характеристиками в системе передачи данных, которые обычно (1) чрезвычайно чувствительны к повреждению вызвано перенапряжением (2) в труднодоступных или часто посещаемых областях и (3) обычно работает при низком напряжении.

Преимущества

  • Низкая стоимость
  • Простота обслуживания
  • Быстродействующая
  • Двунаправленная

Недостатки

  • Используется только в низковольтных системах

ОПН — Перевод на немецкий — примеры английский

Предложения: разрядник перенапряжения согласно

Эти примеры могут содержать грубые слова на основании вашего поиска.

Эти примеры могут содержать разговорные слова, основанные на вашем поиске.

Ограничитель перенапряжения по любому из предшествующих пунктов, в котором вторая электрическая линия по существу заземлена.

Überspannungsableiter nach einem der vorhergehenden Ansprüche, wobei die zweite elektrische Leitung im wesentlichen auf Erdpotential liegt.

Ограничитель перенапряжения по п. 1, в котором первая электрическая линия является линией питания.

Настоящее изобретение относится к разряднику для защиты от перенапряжения для контроллера заряда батареи.

Ограничитель перенапряжения содержит первый детектор напряжения с фиксированным заранее определенным порогом срабатывания и второй детектор напряжения с адаптивно регулируемым порогом напряжения.

Die Überspannungsschutzvorrichtung umfasst dabei einen ersten Spannungsdetektor mit einer fest vorgegebenen Ansprechschwelle und einem zweiten Überspannungsdetektor mit einer adaptiv anpassbaren Spannungsdetektor mit einer adaptiv anpassbaren Spannungsdetektor mit einer fest vorgegebenen Ansprechschwelle und einem zweiten Überspannungsdetektor mit einer adaptiv anpassbaren Spann.

Таким образом, ОПН (1) можно сделать очень компактным.

Изобретение относится к разряднику (1) для защиты от перенапряжения, содержащему несколько тяговых элементов (3), которые зажимают разрядную стойку (2) в осевом направлении.

Die Erfindung betrifft einen Überspannungsabieiter (1) mit mehreren Zugelementen (3), die Ableitsäule (2) in axialer Richtung einspannen.

Компоновка включает разрядник для защиты от перенапряжения (1, 1a).

Ограничитель перенапряжения имеет варисторный элемент (6).

Разделительный искровой разрядник для ограничения максимального напряжения на ОПН .

Электрораспределительный аппарат с выдвижным предохранителем , ограничитель перенапряжения .

Несмотря на простую конструкцию, ОПН обладает хорошими механическими и электрическими свойствами и может изготавливаться особенно экономичным способом.

Der Überspannungsableiter weist trotz einfachen Aufbaus gute mechanische und elektrische Eigenschaften auf und kann in besonders kostengünstiger Weise hergestellt werden.

Корпус для электрического устройства, в частности для разрядника для разрядника перенапряжения , содержащий изолирующую формованную оболочку.

Gehäuse für elektrische Vorrichtung, insbesondere für Überspannungsableiter , mit einer isolierenden Formumhüllung.

Электрический разрядник по п.1, в котором формованный пластмассовый материал (12) представляет собой силиконовый каучук.

Elektrischer Überspannungsableiter nach Anspruch 1, bei dem das geformte Kunststoffmaterial (12) ein Siliconkautschukmaterial ist.

Ограничитель перенапряжения (1) по п.1, в котором корпус (10) дополнительно содержит средство отвода воды.

Überspannungsableiter (1) nach Anspruch 1, bei dem das Gehäuse (10) außerdem ein Wasserableitungsmittel umfasst.

Параллельно с каждой функцией клапана имеется разрядник для защиты от перенапряжения в виде варистора.

Ограничитель перенапряжения по любому из предшествующих пунктов, в котором элемент защиты от перенапряжения (24, 26, 28 и / или 30) представляет собой металлооксидный варистор.

Überspannungsableiter nach einem der vorhergehenden Ansprüche, wobei das Überspannungsableitelement (24, 26, 28 и / или 30) ein Metalloxid-Varistor ist.

Преобразовательная подстанция по п.1, отличающаяся тем, что упомянутый элемент схемы содержит разрядник для защиты от перенапряжения (ARR) , подключенный между упомянутой нейтральной точкой и землей.

Stromrichterstation gemäß Patentanspruch 1, dadurch gekennzeichnet, daß dieses Schaltkreiselement einen zwischen dem Neutral punkt und der Erde angeschlossenen Überspannungsableiter (ARR) umfaßt.

Способ по п. 8, отличающийся тем, что изолятор содержит один или несколько варисторных блоков (40, 56), которые, таким образом, могут также функционировать как разрядник для защиты от перенапряжений .

Verfahren nach Anspruch 8, wobei der Isolator einen oder mehrere Varistorblöcke (40, 56) enthält, so daß er auch als Überspannungsableiter funktioniert.

Упомянутый ограничитель перенапряжения (1, 1a) содержит первую и вторую клеммы (4, 5) соединителя.

Такой ОПН (1) имеет особенно компактные размеры и, таким образом, особенно хорошо приспособлен к условиям ограниченного пространства в высоковольтных распределительных устройствах.

Ein solcher Überspannungsableiter (1) hat besonders kompakte Abmessungen und ist damit besonders gut an die beengten Platzverhältnisse in Hochspannungsschaltanlegen angepasst.

Elastimold. Кабельные аксессуары. Ограничители перенапряжения. Металлооксидный варистор (MOV) ограничители перенапряжения

337500 РАСПРЕДЕЛЕНИЕ СРЕДНЕГО НАПРЯЖЕНИЯ

337500 РАСПРЕДЕЛЕНИЕ СРЕДНЕГО НАПРЯЖЕНИЯ ЧАСТЬ 1: ОБЩИЕ ПОЛОЖЕНИЯ 1.01 ОПИСАНИЕ СИСТЕМЫ A. Большинство новых нагрузок будет обслуживаться от подземной системы распределения электроэнергии. Эта система представляет собой первичный избирательный открытый контур

Дополнительная информация

УСТРОЙСТВА ЗАЩИТЫ ОТ НАПРЯЖЕНИЯ

УСТРОЙСТВА ЗАЩИТЫ ОТ НАПРЯЖЕНИЯ 1. ВВЕДЕНИЕ В целях обеспечения безопасности людей, защиты оборудования и, в определенной степени, бесперебойного снабжения, координация изоляции направлена ​​на снижение вероятности. Дополнительная информация

Руководство заказчика подстанции 08/05/02

Руководство пользователя подстанции Содержание Раздел Стр. 2 из 85 Описание 0 Предисловие 010.00 Общие 010.10 Информация, необходимая для проверки подстанций нового клиента 010.20 Подстанция нового клиента

Дополнительная информация

Когда случаются перебои в подаче электроэнергии.

Когда случаются перебои в подаче электроэнергии. Мы знаем, что никогда не стоит отключать электроэнергию, поэтому мы работаем круглый год, обрезая деревья и инвестируя в нашу систему, чтобы сократить проблемы до того, как они начнутся. Отключение

Дополнительная информация

ТРАНСФОРМАТОРНЫЙ СЛОВАРЬ

СЛОВАРЬ ТРАНСФОРМАТОРА АВТОТРАНСФОРМАТОР Трансформатор, имеющий только одну обмотку на фазу; часть обмотки разделяется между первичной и вторичной обмотками. СОСТОЯНИЕ Новое — Все материалы и компоненты

Дополнительная информация

16300 РАСПРЕДЕЛЕНИЕ СРЕДНЕГО НАПРЯЖЕНИЯ

16300 СРЕДНЕЕ НАПРЯЖЕНИЕ ЧАСТЬ 1: ОБЩИЕ ПОЛОЖЕНИЯ 1.01 ОПИСАНИЕ СИСТЕМЫ A. Большинство новых нагрузок будет обслуживаться от подземной системы распределения электроэнергии. Эта система представляет собой первичную конфигурацию с открытым контуром, обслуживаемую

Дополнительная информация

Руководство по выбору продукта

PG-CA-1109 для распределительных систем 5 кВ-35 кВ Гидравлические и защитные кабельные соединения Кабельные муфты Руководство по выбору продукции Введение Руководство по продукту PG-CA предоставляет простой в использовании исчерпывающий перечень

Дополнительная информация

Каталог компании Nexans 2013

a Компания Nexans Каталог 03 Сетевые решения Nexans Div.Euromold ПРЕЗЕНТАЦИЯ КОМПАНИИ EUROMOLD Euromold — ведущий европейский специализированный разработчик, производитель и дистрибьютор сборных конструкций

Дополнительная информация

Тестовые питатели с радиальным распределением

Отчет подкомитета по анализу системы распределения тестовых фидеров с радиальным распределением Резюме: Для анализа радиальных распределительных фидеров доступно множество компьютерных программ. В 1992 г. вышла статья

. Дополнительная информация

Каталог компании Nexans 2014

Каталог компании Nexans 2014 Сетевые решения Nexans Div.Euromold ПРЕЗЕНТАЦИЯ КОМПАНИИ EUROMOLD Euromold — ведущий европейский специализированный разработчик, производитель и дистрибьютор сборных конструкций

Дополнительная информация

Регуляторы ступенчатого напряжения

Ступенчатые регуляторы напряжения Дон Уэрхэм, инженер по эксплуатации на местах Сегодняшняя повестка дня Введение Теория регулятора напряжения Рекомендации по применению регулятора напряжения Установка и надлежащий байпас Заключение / вопросы

Дополнительная информация

Регуляторы напряжения распределения

Стабилизаторы напряжения распределения типа JFR, однофазные 2.От 5 до 19,9 кВ Тип SFR Трехфазный От 13,2 до 34,5 кВ Передача и распределение электроэнергии Регуляторы напряжения Siemens JFR и SFR Повышение качества обслуживания

Дополнительная информация

Гиперссылки неактивны

Подготовлено: NIB / EOB РУКОВОДСТВО ПО ПЛАНИРОВАНИЮ ДЛЯ ОДИНОЧНЫХ ПОДСТАНЦИЙ, ОБСЛУЖИВАЕМЫХ ОТ ТРАНСМИССИОННЫХ ЛИНИЙ 05503 Департамент: Электротехническая секция T&D: Техническая поддержка T&D Утверждено: G.O.Дуру (БОГ)

Дополнительная информация

CPS 100 480Y S K CPS 100 480Y S C

Ref. № 1299 Руководство по заказу серии Visor Табл. 1-4. Модернизация продуктов защиты от перенапряжения TVSS Общее описание Clipper Power System Visor Series CPS 100 480Y S K.1-9 Номинальные характеристики перенапряжения 100 = / фаза 120

Дополнительная информация

Как выбрать трансформатор

Рассмотрим разомкнутую сеть среднего напряжения в качестве примера источник 1 источник 2 NC NC NC или NO главный распределительный щит среднего напряжения A B Детальный проект подстанции NC NC NC NO NC NC распределительный щит 1 распределительный щит 2 распределительный щит 3 MV MV MV LV

Дополнительная информация

Выключатель вакуумный типа ВАД-3

Бюллетень с инструкциями Бюллетень 6055-11 Вакуумный автоматический выключатель типа VAD-3 4.76 кВ, 29 ка (250 МВА) 4,76 кВ, 41 ка (350 МВА) 8,25 кВ, 33 ка (500 МВА) 15,0 кВ, 18 ка (500 МВА) 15,0 кВ, 28 ка (750 МВА) 15,0

Дополнительная информация

Инструкция по эксплуатации

Инструкции по эксплуатации автомобильного петлевого детектора D-TEK Этот продукт является аксессуаром или частью системы. Всегда читайте и следуйте инструкциям производителя оборудования, к которому вы подключаете этот продукт

Дополнительная информация

Трансформаторные вводы для КРУЭ

Трансформаторные вводы для соединений GIS Oil to SF6 GARIP RTKG 725-55 kv Сертификат SQS ISO 91 / ISO 141 Вводы RIP — Технология для SF6 / масла — Втулки В современных КРУЭ в металлическом корпусе SF6-газ —

Дополнительная информация

Что обеспечивает простой и быстрый монтаж?

Что обеспечивает простой и быстрый монтаж? SIMATIC TOP connect: системная кабельная разводка для подключения датчиков и исполнительных механизмов к SIMATIC S7.Ответы для индустрии. Более эффективная прокладка кабелей — это просто: SIMATIC TOP connect

Дополнительная информация

Электрическое заземление. Приложение C

Приложение C Электрическое заземление Заземление низковольтного оборудования Наиболее часто упоминаемым нарушением электрического порядка Управления по безопасности и охране здоровья (OSHA) является неправильное профессиональное заземление оборудования

Дополнительная информация

Распределение электроэнергии

Распределение электроэнергии A S Pabla Инженер-консультант и бывший главный инженер Электроэнергетический совет штата Пенджаб McGraw-Hill Нью-Йорк Чикаго Сан-Франциско Лиссабон Лондон Мадрид Мехико Милан Новый

Дополнительная информация .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *