принцип работы, устройство, как выбрать
Во время эксплуатации энергетического оборудования на него постоянно воздействуют токовые перегрузки, снижающие долговечность. Защитой в таких ситуациях служит тепловое реле для электродвигателя, отключающее электроснабжение при возникновении нестандартных обстоятельств.
Предлагаем разобраться в конструкции, принципе работы, видах и нюансах подключения защитного устройств. Кроме того, мы расскажем, какие параметры и характеристики стоит учитывать пи выборе теплового реле.
Содержание статьи:
Конструктивное исполнение тепловых реле
Тепловые реле всех видов имеют аналогичное устройство. Наиболее важный элемент любого из них — чувствительная биметаллическая пластина.
Значение тока срабатывания находится под влиянием температурных показателей среды, в которой работает реле. Рост температуры уменьшает время срабатывания.
Чтобы это влияние свести к минимуму, разработчики устройств выбирают как можно большую температуру биметалла. С этой же целью некоторые реле снабжают дополнительной компенсационной пластиной.
Состоит прибор из корпуса, нихромового нагревателя, биметаллической пластины, защелки, винта, рычага, подвижного контакта и кнопки возврата (+)
Если в конструкцию реле включены нихромовые нагреватели, подключение их осуществляют по параллельной, последовательной или параллельно-последовательной схеме с пластиной.
Значение тока в биметалле регулируют при помощи шунтов. Все детали вмонтированы в корпус. Биметаллический элемент U-образной формы зафиксирован на оси.
Цилиндрическая пружина упирается в один конец пластины. Другим концом она базируется на уравновешенной изоляционной колодке.Совершает повороты вокруг оси и является опорой для контактного мостика, оснащенного контактами из серебра.
Для координации тока уставки биметаллическая пластина своим левым концом соединена с ее механизмом. Регулировка происходит за счет влияния на первичную деформацию пластины.
Если величина токов перегрузки становится равной или большей чем уставки, изоляционная колодка поворачивается под воздействием пластины. Во время ее опрокидывания происходит отключение размыкающего контакта устройства.
Тепловое реле ТРТ в разрезе. Здесь основными элементами являются: корпус (1), механизм уставки (2), кнопка (3), ось (4), контакты серебряные (5), контактный мостик (6), изоляционная колодка (7), пружина (8), пластина биметаллическая (9), ось (10)
Автоматически реле делает возврат в первоначальное положение. Процесс самовозврата занимает не более 3 минут с момента включения защиты. Возможен и ручной возврат, для этого предусмотрена специальная клавиша Reset.
При ее использовании прибор занимает исходное положение за 1 минуту. Чтобы задействовать кнопку, ее проворачивают против часовой стрелки до момента, когда она поднимется над корпусом. Ток установки обычно указан на щитке.
Принцип работы приспособления
Выполняя защитную функцию, разъединяет силовые питающие цепи. Тепловое реле отличается от него тем, что при превышении нагрузки просто выдает управляющий сигнал. При такой защите токи небольшой величины коммутируются в одной цепи управления.
В схеме перед термореле находится . Когда цепи размыкаются в аварийном порядке, отпадает надобность в дублировании работы контактора. Следовательно, не расходуется материал для изготовления силовых контактных групп.
Наиболее популярными являются приборы, оснащенные биметаллическими пластинами. Собственно пластина состоит из двух аналогичных элементов.
Один из них обладает значительным температурным коэффициентом, а другой — несколько меньшим. Эти две составляющие плотно прилегают друг к другу.
Так как составные части биметаллической пластины выполнены из пары разнородных металлов, имеющих неодинаковые коэффициенты расширения, нагрев заставляет ее изгибаться и взаимодействовать с контактами
Обеспечивается такое жесткое скрепление путем сваривания или прокаткой в горячем виде. За счет того, что пластина закреплена неподвижно, при нагреве наблюдается ее изгиб в сторону элемента с меньшим температурным коэффициентом. Этот принцип взят за основу при создании .
При их производстве применяют хромоникелевую сталь и немагнитную, обладающие большим значением температурного коэффициента. Как материал с малым значением этого параметра используют инвар — соединение никеля с железом.
По такой схеме функционирует тепловое реле. Незакрепленный конец биметаллической пластины при ее прогибе воздействует на контакты термореле (+)
Пластину из биметалла прогревают токи нагрузки. Протекают они чаще всего по специальному нагревателю. Существует и комбинированный нагрев, при котором, кроме тепла, отдаваемого нагревателем, биметалл прогревает еще и ток, проходящий через него.
Как подключить тепловое реле
Замкнутый контакт (normal connected), при помощи которого производят подключение теплового модуля к магнитному пускателю, обозначают NC или НЗ, что расшифровывается, как нормально замкнутый. Буквенным сочетанием NO обозначают нормально разомкнутый контакт.
В несложной схеме он применяется для подачи сигнала, свидетельствующего о срабатывании защиты двигателя из-за превышения пороговой температуры.
При внедрении в сложные схемы управления он способен формировать в аварийном порядке сигнал выведения из рабочего состояния конвейера.
Тепловое реле размещают за контакторами, но перед электродвигателем. Подсоединение контакта normal connectde к кнопке «Стоп» на пульте управления осуществляют по последовательной схеме (+)
Обозначение клемм контакторов диктует ГОСТ: нормально замкнутый — 95-96, нормально разомкнутый — 97-98. К первой паре подключают пускатель, вторую используют для схем сигнализации. Так как двигатель и тепловое реле нужно защищать от КЗ, цепь должна содержать автомат защиты.
Схема прибора включает кнопки «Тест» и «Стоп» или «Сброс». С помощью первой проверяют работоспособность, а второй — отключают защиту вручную.
При помощи переключателя поворотного взвода после включения защиты вновь запускают электродвигатель. На стеклянную крышку изделия наносят маркировку и пломбируют.
Если исходить из типа подключения, можно выделить две большие группы термореле:
- первая группа – устройства, монтируемые за магнитным пускателем и те, что подключаются с использованием перемычек;
- вторая группа – приборы, устанавливаемые на контактор пускателя непосредственно.
В последнем случае при запуске основная нагрузка приходится на контактор. Здесь тепловой модуль оснащен медными контактами, подключенными к входам пускателя непосредственно.
Схема теплового реле. На нее нанесены обозначения управляющих элементов и выводов. У разных моделей эти обозначения могут отличаться (+)
К ТР подключают провода от двигателя. Само реле в такой схеме представляет промежуточный узел, анализирующий ток, протекающий транзитом к двигателю от магнитного пускателя.
Нюансы при установке прибора
На скорость срабатывания теплового модуля могут повлиять не только токовые перегрузки, но и показатели внешней температуры. Защита сработает даже в условиях отсутствия перегрузок.
Бывает и так, что под воздействием принудительной вентиляции двигатель подвержен тепловой перегрузке, но защита не срабатывает.
Чтобы избежать таких явлений, нужно следовать рекомендациям специалистов:
- При выборе реле ориентироваться на максимально допустимую температуру срабатывания.
- Защиту монтировать в одном помещении с защищаемым объектом.
- Для установки выбирать места, где нет источников тепла или вентиляционных устройств.
- Нужно настраивать тепловой модуль, ориентируясь на реальную температуру окружения.
- Лучший вариант — наличие в конструкции реле встроенной термокомпенсации.
Дополнительной опцией термореле является защита при обрыве фазы или полностью питающей сети. Для трехфазных моторов этот момент особо актуален.
Ток в тепловом реле движется последовательно через его нагревательный модуль и дальше к двигателю . С обмоткой пускателя прибор соединяют дополнительные контакты (+)
При неполадках в одной фазе две остальные принимают на себя ток большей величины. В результате быстро происходит перегрев, а далее — отключение. При неэффективной работе реле может выйти из строя и двигатель, и проводка.
Существующие типы устройств
Класс тепловых реле включает несколько видов: ТРН,РТЛ, ТРП, РТИ, РТТ. Применение каждого обусловлено особенностями конструкции.
Токовое реле двухфазное (ТРН), используют в основном для электрозащиты двигателей асинхронных, имеющих короткозамкнутый ротор. Как правило, они работают от сети с номиналом до 500 В, частотой 50 Гц.
Оснащено реле ручным механизмом управления контактами. Габариты ТРН дают возможность встраивать их в комплектные устройства как закрытого, так и открытого типа станций, координирующих работу приводов. Функцию защиты от КЗ они не выполняют и сами нуждаются в ней.
Реле ТРП имеют механизм, устойчивый к вибрациям, ударопрочный корпус. Разработаны для охраны асинхронных трехфазных двигателей, функционирующих в условиях больших механических нагрузок.
Рассчитаны они на максимальный ток 600 А и напряжение максимум 500 В, а в цепях с постоянным током — 440 В. Автоматика нечувствительна к внешней температуре и срабатывает тогда, когда показатель превышает 200°C.
Устройства РТЛ — трехфазные, кроме защиты двигателя от перегрузок, предохраняют от заклинивания ротор. Они страхуют его от поломок в случае перекоса фаз, при затяжном пуске.
Работают автономно с клеммниками КРЛ и в модификации с магнитным пускателем ПМЛ. Токовый рабочий промежуток — от 0,10 до 86 А.
Контактор в паре с тепловым реле. Когда устройство срабатывает, нормально замкнутый и нормально разомкнутый контакт синхронно меняют свое положение
РТТ – приспособление защищает асинхронные двигатели от токовых бросков, перекоса фаз, заклинивания и других нештатных ситуаций. Используется и как самостоятельный прибор, и в виде встройки в пускатели ПМА, ПМЕ.
Изделие трехфазное РТИ наделено теми же функциями, что и предыдущее, но используется в модификации с пускателями КТМ и КМИ.
Как выбрать тепловое реле
Двигателю необходимо реле для защиты, когда по технологическим причинам существует потенциальная угроза его перегруженности. Второй случай — необходимость ограничения времени запуска в условиях пониженного напряжения.
Эти требования содержатся в соответствующей инструкции. В которой изложено пожелание об оснащении защитного изделия выдержкой по времени. Реализуют все это при помощи тепловых реле.
Базовые характеристики приспособлений
Базовыми данными устройства, защищающего двигатель, являются:
- Быстродействие контактов в зависимости от параметров тока — время-токовый показатель.
- Рабочий ток, при котором ТП срабатывает.
- Предельные токовые регулировки уставки. Во всех приборах, выпускаемых разными производителями, этот параметр отличается незначительно. Превышение номинала на 20% влечет за собой срабатывание прибора минут через 25.
- Номинальная величина тока рабочей биметаллической пластины. Имеется в виду значение, при превышении которого реле не отключается немедленно.
- Токовый диапазон, в котором срабатывает реле.
Сведения о тепловом реле можно получить, расшифровав его маркировку. Символ, обозначающий тип исполнения, может отличаться.
Контактор в паре с тепловым реле. Когда устройство срабатывает, нормально замкнутый и нормально разомкнутый контакт синхронно меняют свое положение (+)
Места размещения отечественных ТП регламентированы ГОСТом 15150. На их работу оказывают влияние такие моменты, как высота подъема над уровнем моря, вибрация, удары, ускорения.
Все эти нюансы производители отражают в маркировке своих изделий. Некоторые из них дополнительно включают сведения о возможности работы при наличии вредных веществ и взрывоопасных газов.
Выбор устройства по правилам
Требования к термореле изложены в инструкции. Здесь же оговорено, что защита должна обладать выдержкой по времени. Реализуют все запросы при помощи специальных приборов.
Время-токовые характеристики ТР и защищаемого двигателя. При токах КЗ нагревательные элементы реле становятся термически неустойчивыми (+)
Анализируя времятоковые характеристики ТР, нужно принимать во внимание, что срабатывание может происходить из перегретого или холодного состояния.
Безупречная защита предполагает, что кривая, изображающая оптимальную для беспроблемного функционирования оборудования зависимость продолжительности токопрохождения от величины тока для реле и двигателя, разные. Первая должна находиться ниже, чем вторая.
В таблице приведены технические характеристики термореле типа РТЛ. По ней можно подобрать защитное устройство с необходимыми параметрами по мощности двигателя (+)
Правильный подбор защитного изделия осуществляется на основе такого параметра, как рабочий номинальный ток. Его значение связано с номинальным током нагрузки электродвигателя.
Как международными, так и отечественными стандартами предусмотрено, что номинальный ток двигателя аналогичен уставке тока срабатывания термореле.
Это значит, что включение в работу прибора происходит при перегрузке от 20 до 30% или при Iср.х1,2 или 1,3 не позже 20 минут.
Исходя из этого, выбор нужно осуществлять так, чтобы ток несрабатывания ТР превышал номинальный ток прикрываемого объекта в среднем на 12%. Величина In отображена в паспорте прибора и на табличке, закрепленной на корпусе.
Основываясь на ней, подбирают как ТР, так и пускатель, соответствующий ему. Шкала реле калибрована в амперах и, как правило, отвечает значению тока уставки.
В качестве примера можно привести подбор теплового реле для асинхронного двигателя, подключенного к сети 380 В, мощностью 1,5 кВт.
Рабочий номинальный ток для него — 2,8 А, значит, для теплового реле пороговый ток будет равен: 1,2*2,8 = 3,36 А. По таблице выбор нужно остановить на РТЛ-1008, у которого диапазон регулировки находится в пределах от 2,4 до 4 А.
При срабатывании защиты сначала устраняют первопричину остановки, а затем возвращают «теплушку» в исходное состояние при помощи клавиши возврата
Когда паспортные данные двигателя неизвестны, ток определяют путем использования специальных приборов — токоизмерительных клещей или мультиметра с соответствующей опцией. Измерения проводят на каждой из фаз.
Важно при выборе уделить внимание напряжению, указанному на приборе. Если запланировано использовать тандем ТР-пускатель, нужно учесть число контактов.
При включении устройства в трехфазную сеть необходим модуль, имеющий функцию защиты для случаев перегорания проводников или перекоса фаз.
Выводы и полезное видео по теме
Схема эффективной защиты двигателя:
Составные части теплового реле:
Принцип взаимодействия различных приборов в разных вариантах подключения теплового реле одинаков. Для лучшей ориентации в схемах надо уметь “читать” маркировку устройств. В идеале все работы по подключению должен выполнять мастер, имеющий допуск к работе в условиях высокого напряжения.
Есть, что дополнить, или возникли вопросы по выбору и применению теплового реле? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом использования устройств. Форма для связи находится в нижнем блоке.
Тепловое реле — принцип работы, виды, устройство. Инструкция как выбрать и подключить оборудование
Для безопасности эксплуатации электротехнического оборудования должны использоваться специальные приспособления, которые контролируют соответствие условий и параметров работы нормативным требованиям. Одним из таких устройств является тепловое реле, не допускающее перегрев приборов.
Краткое содержимое статьи:
Назначение устройства
Высокая нагрузка, которую испытывают электродвигатели, обусловливает рост потребления электроэнергии в процессе функционирования. Это часто приводит к превышению нормативных параметров работы оборудования. Перегрузка в электрической цепи является причиной быстрого роста температуры. А она, в свою очередь, вызывает появление неисправностей и аварий.
Назначение теплового реле состоит в создании предпосылок для поддержания нормальных условий эксплуатации посредством возможности отключения электроэнергии при перегрузках и риске аварии.
Это устройство замыкает или размыкает цепь по сигналу, поступающему от агрегата в зависимости от текущей рабочей температуры. В результате электродвигатель защищается от токовых перегрузок.
Среди преимуществ данного устройства можно отметить:
- компактные размеры;
- незначительный вес;
- несложность конструктивного исполнения;
- долговечность эксплуатации;
- доступность по цене.
Но при этом потребуется периодическая проверка работоспособности и настройка.
Принципы работы
В тепловом реле чаще всего присутствуют две биметаллические пластины. Они имеют разные коэффициенты расширения – у одной этот параметр больший по величине, а у другой меньший. Там где пластины прилегают друг к другу, обеспечивается их жесткое крепление или прокатом, или сваркой.
При нагревании неподвижно закрепленной пластины происходит ее изгиб. Эта особенность и лежит в основе принципа действия теплового реле.
Часто в качестве применяемых материалов выступают инвар и сталь немагнитного или хромированного исполнения.
Биметаллическая часть начинает нагреваться вследствие воздействия тепла. Оно выделяется в пластине нагрузочным током. Но нагрев также может производиться и по другой схеме – через нагреватель, по которому идет ток.
Наиболее высокие показатели эффективности работы реле обеспечиваются при комбинированном способе нагревания – от тепла тока, идущего через пластину, и от нагревателя. После того как пластинка прогнется, ее свободный конец взаимодействует с контактным блоком реле.
Разновидности приспособлений
Применение находят разнообразные типы тепловых реле, которые имеют разные параметры действия и свою сферу использования:
РТЛ – является трехфазной модификацией. Она эффективна при защите моторов электрического типа от перегрузок, роторного заклинивания, фазного перекоса или длительного запуска. Такое реле можно крепить на клеммы ПМЛ на пускателе или непосредственно на КРЛ при самостоятельной эксплуатации.
РТТ – также трехфазный вариант, но применяют его при создании систем безопасности эксплуатации короткозамкнутых моторов. Реле может защитить от продолжительного запуска или заклинивания. Крепится на пускатель ПМЕ и ПМА в корпусной его части или же на отдельную панель при самостоятельной работе.
РТИ – работает при наличии трехфазного питания и защищает двигатели от тяжелых режимов. Для установки используется корпус пускателя типа КМИ или КМТ.
ТРН – устройство на 2 фазы для контроля пуска и последующего функционирования. Предусмотрен ручной способ перевода контактов в первоначальный вид. Преимущество – отсутствие влияния температурного режима вовне.
Твердотельное 3-х фазное с подвижными элементами. Работает с той же целью, что и другие модификации, но может эксплуатироваться даже в условиях риска взрывных явлений. Это обусловлено нечувствительностью к состоянию среды.
РТК – отслеживает состояние и изменение одного показателя, а сам термоконтроль производится щупом.
РТЭ – является непосредственным элементом конструкции агрегата. Оно состоит из проводника, изготовленного из особого сплава. При достижении температурой определенного уровня материал начинает плавиться.
На фото теплового реле можно рассмотреть особенности конструкции отдельных их видов. Эти отличия нужно принимать во внимание при выборе необходимого вам для конкретной ситуации компонента.
Как выбирать
Перед тем, как изучать инструкцию для подключения теплового реле, необходимо изучить основные критерии, на основании которых это устройство выбирается. Важным параметром является связь между нагрузочным током и периодом срабатывания устройства.
Учитывают также и состояние, которое станет сигналом для активизации реле – холодное или перегретое. При этом нагревательные компоненты отличаются термической неустойчивостью в ситуации, когда действуют токи короткого замыкания.
Показатель номинальной нагрузки двигателя является основой для расчета требуемого тока реле. Как правило, термореле будет срабатывать, если в течение 20-30 минут имеет место перегрузка в 20-30%. Причем постоянная компонента периода нагревания электродвижка находится в зависимости от времени перегрузки.
Если такое превышение нормативной нагрузки незначительно по времени, то постоянная будет равна 5-10 минутам. А вот в ситуации длительных отклонений в нагреве будет задействована не одна обмотка, а вся масса движка. Тогда параметр постоянной нагрева растет до 40 минут или 1 часа.
Учитывают и зависимость нагрева пластины от температуры среды. Если окружающее пространство нагревается, то и ток, при котором реле активизируется, будет меньше. Поэтому при отклонении температуры от номинала требуется дополнительная регулировка реле. Также его следует ставить в тех же условиях, в которых работает и сам агрегат.
Существуют и другие значимые характеристики тепловых реле:
- напряжение силового типа;
- параметры регулировочных контактов;
- мощность при запуске контактов;
- пределы срабатывания;
- восприимчивость фазных перекосов;
- класс выключения.
Особенности подключения
Часто используемая схема подключения теплового реле своими руками предполагает использование контакта постоянно замкнутого типа. Этот контакт (NC или НЗ по маркировке) функционирует в последовательной связи с отключающей кнопкой «стоп», расположенной на пульте управления.
В стандартных условиях такой контакт связан с подключением системы сигнализации, которая дает информацию об активизации защиты агрегата. В усложненных схемах возможно построение механизма аварийного размыкания цепи и остановки двигателя.
Само термореле находится в цепи после контакторов, но перед двигателем. Включение размыкающегося реле производится кнопкой «стоп». При этом используется последовательная схема.
Тепловые реле являются эффективным способом обезопасить работу электродвигателя. Они имеют различные характеристики, сферу применения, отличаются стоимостью. Поэтому целесообразно заранее определиться с наиболее подходящим типом устройства, ориентируясь на модели от проверенных производителей.
Фото теплового реле
принцип работы, конструкция, обозначение на схеме
В виду высокой стоимости электродвигателей вопрос их защиты от повреждения при нарушении нормального режима работы стоит достаточно остро. Среди наиболее популярных нарушений перегрузка, обрыв одной из фаз, снижение рабочего напряжения. И все они характеризуются большими рабочими токами, протекающими в обмотках электрической машины, что приводит к перегреву, ухудшению диэлектрических свойств изоляции и перегоранию жил, если ситуацию пустить на самотек. Для защиты электрических двигателей от перегревания в схему питания электропривода вводят тепловое реле.
Конструкция
Современный рынок электрооборудования предлагает огромный выбор тепловых реле различного принципа действия, как следствие, будет отличаться и их конструктивное исполнение. Однако, в соответствии с п.3.2. ГОСТ 16308-84 все технические параметры конкретной модели должны соответствовать данному типу по габаритам, исполнению и принципиальной схеме этого типа. Наиболее распространенным вариантом за счет простоты исполнения и относительной дешевизны является электротепловое реле на биметаллической пластине. Конструкция которого приведена на рисунке 1.
Рис. 1. Конструкция теплового релеКак видите, в состав механизма входят:
- нагревательный элемент – токоведущая часть, пропускающая через себя рабочий ток электрической машины;
- биметаллическая пластина – выступает в роли действующего индикатора, реагирующего на превышение температуры;
- толкатель – выполняет функции жесткого рычага, передающего усилие от биметаллической пластины;
- температурный компенсатор – позволяет внести поправку на температуру окружающей среды для стабилизации величины тока срабатывания;
- защелка – предназначена для фиксации положения температурного реле;
- штанга расцепителя – подвижная часть механизма, предназначенного для перемещения контактов;
- контакты реле – передают питание в блок управления;
- пружина – создает усилие для перемещения реле в устойчивое положение.
На практике существуют и другие типы реле, конструкция которых будет принципиально отличаться. Данный вариант приведен в качестве примера для наглядности протекания процессов и пояснения принципа работы.
Принцип работы
В основу работы положен принцип разности температурного расширения различных металлов, описанных законом Джоуля-Ленца. При нагревании биметаллической пластины, состоящей из двух металлов с различным коэффициентом теплового расширения, произойдет ее геометрическая деформация. Именно такая пластина и устанавливается в термореле, она реагирует на превышение температуры более установленного предела.
Для рассмотрения принципа работы температурного реле воспользуемся трехмерной моделью реального устройства, приведенной на рисунке 2 ниже:
Рис. 2. Принцип действия температурного релеКак видите, подключенное в цепь электродвигателя тепловое реле пропускает основную нагрузку электрической машины через токоведущие шины. Если смоделировать ситуацию перегрузки, когда через них потечет ток в несколько раз превышающий номинальный, то шины начнут нагреваться и избыток тепла перейдет на биметаллическую пластину, подключенную к каждой из фаз электродвигателя. При достижении температуры уставки биметаллическая пластина изогнется и приведет в движение один из толкателей. Толкатель, в свою очередь, сместит рычаг защелки на несколько миллиметров, что отпустит пружинный механизм и даст ход штанге расцепителя.
После этого контакты теплового реле отключат питание цепи управления и перекроют контакты цепи сигнализации, которая оповестит об отключении защитного приспособления. После устранения причины перегрева реле возвращается в рабочее положение посредством нажатия механической кнопки. Следует отметить, что сразу после отключения теплового реле включить его не получиться, так как биметаллическая пластина еще не остыла и возможны ложные срабатывания. Поэтому процесс требует определенной выдержки времени, после которой электродвигатель можно запускать в работу.
Обозначение на схеме
При чтении схем важно ориентироваться в обозначении всех устройств, изображенных на них. Это позволяет обеспечивать точное подключение с соблюдением основных параметров работы электроустановки, селективности срабатывания защит и поддерживать нормальный режим электроснабжения. Изображение теплового реле на схемах определяется положениями двух нормативных документов. В соответствии с таблицей 3 ГОСТ 2.755-87 контакты данного вида оборудования изображаются следующим образом (рисунок 3):
Рис. 3. Изображение контакта терморелеВ тоже время, само температурное реле имеет обозначение в соответствии с п.21 таблицы 1 ГОСТ 2.756-76, которое отображается на схеме следующим образом (см. рисунок 4):
Рис. 4. Воспринимающая часть электротеплового релеЗнание схематических изображений электротеплового реле позволит вам ориентироваться в принципиальных схемах уже действующих агрегатов. Или самостоятельно составлять и подключать оборудование через защитное приспособление.
Виды
Современное разнообразие тепловых реле охватывает довольно широкий ассортимент. Поэтому деление на виды производиться в соответствии с установленными критериями на основании п. 1.1. ГОСТ 16308-84. Так, по роду тока рабочей цепи все устройства подразделяются на две большие группы: реле переменного и постоянного тока. В зависимости от количества рабочих полюсов встречаются:
- однополюсные – применяются для двигателей постоянного тока и других однофазных моделей;
- двухполюсные – устанавливаются в трехфазную цепь, где контроль может осуществляться только по двум фазам;
- трехполюсные – актуальны для мощных асинхронных агрегатов с короткозамкнутым ротором.
В зависимости от типа контактов вторичных цепей все тепловые приборы подразделяются на модели:
- только с замыкающим контактом;
- только с размыкающим контактом;
- и с замыкающим, и с размыкающим контактом;
- с переключающими;
В зависимости от способа возврата теплового реле в исходное положение существуют варианты с включением вручную или с самостоятельным возвратом. Также в моделях может реализовываться функция перевода с одного вида работы на другой.
Также существует разделение по наличию или отсутствию приспособления для компенсации температуры окружающего пространства. И модели с возможностью регулировки тока несрабатывания или с отсутствием таковой функции.
Назначение
Основным назначением теплового реле является защита электродвигателя от перекоса фаз, перегрева на затяжных пусках, заклинивании вала или подачи чрезмерной нагрузки. Для решения всех этих задач на практике выпускаются различные типы реле, имеющие узкую специализацию по конкретному направлению, рассмотрим далее более детально каждый из них.
- РТЛ используется для защиты трехфазных асинхронных электрических машин от воздействия токов перегрузки, перегрева при обрыве или перекосе фаз, проблем с вращением вала. Может применяться как самостоятельно, так и с установкой на пускатель ПМЛ.
- РТТ предназначено для работы с трехфазными агрегатами с короткозамкнутым ротором, обеспечивает полный охват аварийных режимов, приводящих к перегреванию обмоток. Также может устанавливаться на магнитный пускатель ПМА, ПМЕ или самостоятельно на монтажную панель.
- РТИ – трехфазное тепловое реле с возможностью монтажа на пускатели серии КМТ, КМИ. Отличаются стабильным низким расходом электроэнергии, включаются в работу совместно с предохранителями.
- ТРН – применяется для контроля пуска и режима работы электродвигателя, мало зависит от внешних температурных факторов. Является двухполюсной моделью, которую можно использовать для пуска двигателей постоянного тока.
- Твердотельные — в отличии от предыдущих, не имеет контактных групп и перемещающихся элементов внутри. Применяется в трехфазных цепях, где устанавливаются повышенные требования к пожарной безопасности.
- РТК – контролирует температурные показатели не через рабочие токи, а путем размещения датчика в корпусе мотора. Поэтому весь процесс взаимодействия осуществляется только по величине температуры.
- РТЭ – представляет собой подобие предохранителя, так как отключение происходит за счет плавления проводника. Само тепловое устройство монтируется непосредственно с электродвигателем.
Технические характеристики
Корректная работа релейной защиты обеспечивается за счет соответствия параметров теплового устройства заданным условиям работы электрической машины. Поэтому важно изучить основные рабочие параметры реле еще до его приобретения. К основным техническим данным теплового реле относятся:
- величина номинального напряжения и частота на которые оно рассчитано;
- время-токовая характеристика – определяет время срабатывания при установленной кратности превышения;
- время возврата теплового элемента в исходное положение;
- диапазон изменения тока уставки;
- тепловая устойчивость к превышению рабочей величины;
- климатическое исполнение и степень пыле- влагозащищенности.
Схемы подключения
Подключение вышеперечисленных моделей тепловых реле может производиться по нескольким схемам, отличающихся в зависимости от конкретного типа оборудования. Рассмотрим наиболее актуальные из них.
Рис. 5. Схема включения теплового релеКак видите на рисунке 5, трехфазное реле RT1 подключается последовательно к двигателю M. Питание к ним подается через контактор KM. В нормальном режиме работы контакты RT1 нормально замкнуты и через катушку КМ протекает ток. Как только возникнет аварийный режим, тепловая защита разомкнет контакты и катушка контактора обесточится, питание двигателя прекратиться.
Аналогичным образом происходит включение двухполюсного реле, с той разницей, что контакты защитного устройства включаются последовательно только в две фазы из трех, как показано на рисунке ниже:
Рис. 6. Схема включения двухполюсного релеПомимо этого существует схема включения теплового реле для мощных электродвигателей, рабочий ток которых в разы превышает допустимый предел для защитного приспособления. В таких ситуациях используется трансформаторное преобразование, а схема включения выглядит следующим образом:
Рис. 7. Схема трансформаторного включенияКритерии выбора
Основным критерием при выборе конкретной модели является соответствие номинальной нагрузки допустимому интервалу самого теплового реле. Для нормальной работы электрической машины вам понадобиться срабатывание при 20 – 30% перегрузке не более, чем в 5 минутный интервал. Величина тока вычисляется по формуле:
Iсраб = 1,2*Iном
Это означает, что допустимый предел регулирования должен включать в себя полученную величину тока срабатывания. Затем, проверьте на время-токовой характеристике (см. рисунок 8), за какой промежуток времени будет срабатывать защита при такой кратности:
Рис. 8. Время-токовая характеристикаВ данном случае время будет равно 4 минутам при 20% теплового превышения, что вполне удовлетворяет критериям поставленной задачи.
Использованная литература
- Родштейн Л.П. «Электрические аппараты» 1989
- Гуревич В.И. «Электрические реле. Устройство, принцип действия и применения. Настольная книга инженера» 2011
- Фигурнов Е. П. «Релейная защита» 2004
- Басс Э.И., Дорогунцев В.Г. «Релейная защита электроэнергетических систем» 2002
- Кацман М.М. «Электрические машины» 2013
- Агейкин Д.И. Костина Е.Н. Кузнецова Н.Н. «Датчики систем автоматического контроля и регулирования» 1959
Тепловое реле: устройство, принцип действия, назначение
Одним из защитных аппаратов, применяемых в электроустановках, является тепловое реле, которое используется для защиты электродвигателя от перегрузки. На сегодняшний день существуют различные виды и типы данных изделий, однако все они имеют схожую область применения. В этой статье мы расскажем читателям сайта Сам Электрик об устройстве, принципе действия и назначении тепловых реле.Конструкция
Начнем с того, что расскажем, из чего состоит реле тепловой защиты. В основу работы РТ заложено явление описано физическим законом Джоуля-Ленца:
Количество тепла выделяемому на участке электрической цепи пропорционально квадрату силы тока и сопротивления данного участка.
Данное явление с успехом используется в тепловом расцепителе. Короткий участок цепи, выполняющий роль теплового излучателя, намотан спиралью на изолятор. Весь ток, проходящий через электрическую машину, проходит через данный участок. Непосредственно возле спирали стоит биметаллическая пластина, которая при нагревании изгибается и воздействует на контактную группу. Пластина состоит из двух разнородных металлов, имеющих разный коэффициент расширения при нагреве, объединенных в один элемент.
На фото ниже изображен разрез действующего аппарата. Через проводники проходит три фазы питания на электрический двигатель. Обмотка нагрева расположена сверху биметаллической пластины для уменьшения ложного срабатывания от внешнего воздействия. Пластины упираются в подвижную планку, которая толкает механизм расцепителя. Сверху расположен пружинный регулятор токовой установки, для точной настройки пределов срабатывания, и две группы контактов (открытые NO и закрытые NC).
Принцип работы
Как выглядит тепловое реле вы узнали, теперь идем дальше и расскажем, как работает данное устройство. Как мы уже сказали ранее, РТ защищает двигатель от продолжительной перегрузки.
На каждом электродвигателе есть табличка с паспортными данными, где указан номинальный рабочий ток. Существуют механизмы, в работе которых возможно превышение рабочего тока, как во время запуска, так и в рабочем процессе. При длительном воздействии таких перегрузок, происходит перегрев обмоток, разрушение изоляции, и выход из строя самого двигателя.
Данное реле тепловой защиты предназначено для воздействия на цепи управления, путем отключения схемы, размыканием контактов, или подачей сигнала предупреждения дежурному персоналу замыкая контакты. Устройство устанавливается после пускового контактора в силовую цепь перед электродвигателем для того, чтобы контролировать проходящий ток.
Установку параметров производят в большую сторону от номинального тока двигателя, на величину 10-20 %, согласно паспортным данным. Отключение машины происходит не сразу, а по прошествии определенного времени. Все зависит от температуры окружающей среды и тока перегрузки, и может колебаться от 5 до 20 минут. Неправильно выбранный параметр приведет к ложному срабатыванию или игнорированию перегруза и выходу из строя оборудования.
Графическое обозначение устройства на схеме по ГОСТ:
Более подробно узнать о том, как устроено тепловое реле и как оно работает, вы можете, просмотрев данное видео:
Устройство и принцип действия РТТ
Назначение
Сразу же хотелось бы сказать о том, что существуют различные виды и типы тепловых реле и соответственно область применения каждой классификации своя собственная. Вкратце поговорим о назначении основных разновидностей устройств.
РТЛ — трехфазное, предназначено для защиты электродвигателя от перегрузок, перекоса фаз, затянутого пуска или заклинивания ротора. Крепятся на контакты пускатели ПМЛ или как самостоятельное устройство с клеммами КРЛ.
РТТ — на три фазы, предназначены для защиты короткозамкнутых двигателей от токов перегрузки, перекоса фаз, заклинивания ротора двигателя, затянутого запуска механизма. Может крепиться на ПМА и ПМЕ пускатели, а также самостоятельно устанавливаться на панели.
РТИ — защищают электромотор от перегрузки, асимметрии фаз, длинного пуска и заклинивания машины. Трехфазное тепловое реле, крепится на пускатели серии КМТ и КМИ.
ТРН — двухфазное реле, контролирует режим работы и пуска, имеет только ручной возврат контактов, работа устройства мало зависит от температуры окружающей среды.
Твердотельные трехфазное реле, не имеют подвижных деталей, не зависят от состояния окружающей среды, применяют во взрывоопасных местах. Следит за током нагрузки, разгоном, обрывом фаз, заклиниванием механизма.
РТК — контроль температуры происходит щупом, расположенным в корпусе электроустановки. Представляет собой термо реле, и контролирует только один параметр.
РТЭ — реле плавления сплава, электропроводящий проводник выполнен из сплава металла, при определенной температуре плавится и механически разрывает цепь. Данное тепловое реле встраивается непосредственно в контролируемое устройство.
Как видно из нашей статьи, существует большое разнообразие контроля за состоянием электроустановок, отличающихся типом и внешним видом, но одинаково выполняющих защиту электрооборудования. Это и все, что хотелось рассказать вам об устройстве, принципе действия и назначении тепловых реле. Надеемся, информация была для вас полезной и интересной!
Будет интересно прочитать:
Подключение теплового реле: схема, видео, фото
У каждого мастера на все руки имеется пара задумок соорудить какой-либо станок, точильный, токарный или подъемник. Сегодня поговорим о важном элементе электропривода — тепловом реле, которое еще называют токовым или теплушкой. Данное устройство реагирует на величину тока через него проходящее и в случае превышения установленного значения производит переключение контактов, отключая привод или сигнализируя о внештатной ситуации. В одной из наших статей мы уже рассматривали типы теплушек и принцип их работы, а также по каким параметрам происходит выбор теплового реле. В этой статье мы рассмотрим, как производится установка и подключение теплового реле своими руками. Инструкция будет предоставлена со схемами, фото и видео примерами, чтобы вам были понятны все нюансы монтажа.Что важно знать?
Чтобы не повторятся, и не нагромождать лишний текст, кратко изложу смысл. Токовое реле является обязательным атрибутом системы управления электроприводом. Данное устройство реагирует на ток, который проходит через него на двигатель. Оно не защищает электродвигатель от короткого замыкания, а только оберегает от работы с повышенным током, возникающим при перегрузке или нештатной работе механизма (например, клин, заедание, затирание и прочие непредвиденные моменты).
При выборе теплового реле руководствуются паспортными данными электродвигателя, которые можно взять с таблички на его корпусе, как на фото ниже:
Как видно на бирке, номинальный ток электродвигателя 13.6 / 7.8 Ампера, для напряжений 220 и 380 Вольт. Согласно правилам эксплуатации, тепловое реле необходимо выбирать на 10-20 % больше номинального параметра. От правильного выбора данного критерия зависит способность теплушки вовремя сработать и не допустить порчу электропривода. При расчете тока установки для приведенного на бирке номинала на 7.8 А, у нас получился результат 9.4 Ампера для токовой уставки аппарата.
При выборе в каталоге продукции нужно учесть, что данный номинал не был крайним на шкале регулировки уставки, поэтому желательно подобрать значение ближе к центру регулируемых параметров.К примеру, как на реле РТИ-1314:
Особенности монтажа
Как правило, установку теплового реле производят совместно с магнитным пускателем, который и осуществляет коммутацию и запуск электропривода. Однако существуют также и приборы с возможностью установки как отдельное устройство рядом на монтажной панели или DIN рейке, такие как ТРН и РТТ. Все зависит от наличия нужного номинала в ближайшем магазине, складе или в гараже в «стратегических запасах».
Наличие у теплового реле ТРН только двух входящих подключений не должно вас пугать, поскольку фазы три. Неподключенный провод фазы уходит с пускателя на двигатель, минуя реле. Ток в электродвигателе меняется пропорционально во всех трех фазах, поэтому контролировать достаточно любые две из них. Собранная конструкция, пускатель с теплушкой ТРН будет выгладить так: Или так с РТТ:
Реле снабжены двумя группами контактов нормально замкнутой и нормально открытой группой, которые подписаны на корпусе 96-95, 97-98. На картинке ниже структурная схема обозначения по ГОСТу:Давайте разберемся каким образом собрать схему управления которая бы отключала двигатель от сети при возникновении аварийной ситуации перегрузки или обрыва фазы. Из нашей статьи про подключение двигателя через магнитный пускатель, вы уже узнали некоторые нюансы. Если еще не успели ознакомится то просто перейдите по ссылке.
Рассмотрим схему из статьи в которой трехфазный двигатель вращается в одну сторону и управление включением осуществляется с одного места двумя кнопками СТОП И ПУСК.
Автомат включен и на верхние клеммы пускателя поступает напряжение. После нажатия на кнопку ПУСК, катушка пускателя А1 и А2 оказывается подключена к сети L2 и L3. В данной схеме используется пускатель с катушкой на 380 вольт, вариант подключения с однофазной катушкой 220 вольт ищите в нашей отдельной статье (ссылка выше).
Катушка включает пускатель и замыкаются дополнительные контакты No(13) и No(14), теперь можно отпустить ПУСК, контактор останется включенным. Данная схема называется «пуск с самоподхватом». Теперь для того чтобы отключить двигатель от сети необходимо обесточить катушку. Проследив по схеме путь тока, видим что это может произойти при нажатии СТОП или размыкании контактов теплового реле (выделен красным прямоугольником).
То есть, при возникновении внештатной ситуации, когда теплушка сработает, она разорвет цепь схемы и снимет пускатель с самоподхвата, обесточив двигатель от сети. При срабатывании данного устройства контроля тока, перед повторным запуском необходимо осмотреть механизм, для выяснения причины возникновения отключения, и не включать до ее устранения. Часто причиной срабатывания является высокая внешняя температура окружающего воздуха, данный момент необходимо учитывать при эксплуатации механизмов и их настройке.
Сфера применения в домашнем хозяйстве тепловых реле не ограничивается только самодельными станками и прочими механизмами. Правильно было бы использовать их в системе контроля тока насоса системы отопления. Специфика работы циркуляционного насоса в том, что на лопастях и улитке образуется известковый налет, который может стать причиной заклинивания мотора и выхода его из строя. Используя приведенные схемы подключения, можно собрать блок контроля и защиты насоса. Достаточно установить в цепи питания нужный номинал теплушки и подключить контакты.
Кроме того будет интересна схема подключения теплового реле через трансформаторы тока, для мощных двигателей, таких как насос системы водополива для дачных поселков или фермерских хозяйств. При установке трансформаторов в цепи питания, учитывается коэффициент трансформации, к примеру 60/5 это при токе через первичную обмотку в 60 ампер, на вторичной обмотке он будет равен 5А. Применение такой схемы позволяет сэкономить на комплектующих, при этом не потеряв в эксплуатационных характеристиках.
Как видно, красным цветом выделены трансформаторы тока, который подключены к реле контроля и амперметру для визуальной наглядности происходящих процессов. Трансформаторы подключены схемой звезда, с одной общей точкой. Такая схема не представляет из себя больших трудностей в реализации, поэтому вы можете самостоятельно ее собрать и подключить к сети.
Напоследок рекомендуем просмотреть видео, в котором наглядно показывается процесс подключения теплового реле к магнитному пускателю для защиты электродвигателя:
Вот и все, что вы должны знать о подключении теплового реле своими руками. Как вы видите, монтаж не представляет особой сложности, главное правильно составить схему подсоединения всех элементов в цепи!
Будет интересно прочитать:
Как выбрать тепловое реле для двигателя по мощности и току
Продолжительная работа механизма на максимуме вызывает перегрев обмоток и порчу изоляции, в результате чего происходит межвитковое замыкание, перерастающее в обширное выгорание полюсов двигателя и дорогостоящий ремонт. Чтобы этого не происходило, в цепь питания устанавливается реле, которое называют тепловым или «теплушкой». По цепи питания данный аппарат контролирует величину тока и при длительном отклонении от номинала установки, размыкает контакты, лишая питания цепь управления, размыкая пусковое устройство. В этой статье мы расскажем, как выбрать тепловое реле для двигателя по мощности и току.
Методика выбора
Чтобы правильно выбрать номинал теплового реле нам необходимо узнать его In (рабочий, номинальный ток) и уже опираясь на эти данные можно подобрать правильный диапазон уставки аппарата.
Правилами технической эксплуатации ПУЭ оговорен этот момент и допускается устанавливать до 125% от номинального тока во взрывобезопасных помещениях, и 100%, т.е. не выше номинала двигателя во взрывоопасных.
Как узнать In? Эту величину можно посмотреть в паспорте электродвигателя, табличке на корпусе.
Как видно на табличке (для увеличения нажмите на картинку) указаны два номинала 4.9А/2.8А для 220В и 380В. Согласно нашей схеме включения нужно выбрать ампераж, ориентируясь на напряжение, и по таблице подобрать реле для защиты электродвигателя с нужным диапазоном.
Для примера рассмотрим, как выбрать тепловую защиту для асинхронного двигателя АИР 80 мощностью 1.1 кВт, подключенного к трехфазной сети 380 вольт. В этом случае наш In будет 2.8А, а допустимый максимальный ток «теплушки» 3.5А (125% от In). Согласно каталогу нам подходит РТЛ 1008-2 с регулируемым диапазоном 2.5 до 4 А.
Что делать, если паспортные данные не известны?
Для этого случая рекомендуем использовать токовые клещи или мультиметр С266, конструкция которого также включает токоизмерительные клещи. С помощью данных приборов нужно определить ток мотора в работе, измерив его на фазах.
В том случае, когда на таблице частично читаются данные, размещаем таблицу с паспортными данными асинхронных двигателей широко распространенных в народном хозяйстве (тип АИР). С помощью нее возможно определить In.
Кстати, недавно мы рассмотрели принцип действия и устройство тепловых реле, с чем настоятельно рекомендуем вам ознакомиться!
В зависимости от токовой нагрузки будет различаться и время срабатывания защиты, при 125% должно быть порядка 20 минут. В диаграмме ниже указана векторная кривая зависимости кратности тока от In и времени срабатывания.
Напоследок рекомендуем просмотреть полезное видео по теме:
Надеемся, прочитав нашу статью, вам стало понятно, как выбрать тепловое реле для двигателя по номинальному току, а также мощности самого электродвигателя. Как вы видите, условия выбора аппарата не сложные, т.к. можно без формул и сложных вычислений подобрать подходящий номинал, используя таблицу!
Советуем также прочитать:
Какова структура теплового реле?
Тепловое реле обычно состоит из нагревательного элемента, управляющего контакта и системы действия, механизма сброса, устройства установки тока и элемента температурной компенсации. Когда деформация достигает определенного расстояния, шатун толкается, чтобы размыкать цепь управления, так что контактор теряет питание и главная цепь отключается, тем самым реализуя защиту двигателя от перегрузки.
При фактической работе двигателя, такой как перетаскивание производственного оборудования на работу, если машина не работает или цепь ненормальная, двигатель столкнется с перегрузкой, скорость двигателя уменьшится, ток в обмотке увеличится, и температура обмотки двигателя увеличится. Если ток перегрузки мал и время перегрузки короткое, а обмотка двигателя не превышает допустимого повышения температуры, перегрузка допустима. Однако, если время перегрузки велико и ток перегрузки велик, повышение температуры обмотки двигателя превысит допустимое значение, что приведет к старению обмотки двигателя, сокращению срока службы двигателя и даже сгоранию обмотки двигателя в серьезных случаях. .Поэтому такую перегрузку мотор не переносит. Тепловое реле должно использовать принцип теплового воздействия тока для отключения цепи двигателя в случае перегрузки, которую двигатель не может выдержать, чтобы обеспечить защиту двигателя от перегрузки. (Каков принцип работы теплового реле?)
Схема принципа работы теплового реле
Когда тепловое реле используется для защиты двигателя от перегрузки, термоэлемент подключается последовательно с обмоткой статора двигателя , нормально замкнутый контакт теплового реле включен последовательно в цепь управления электромагнитной катушкой контактора переменного тока, а ручка регулировки тока установки регулируется так, чтобы шток переключения в елочку и шток толкателя находились на нужном расстоянии .
Когда двигатель работает нормально, термический элемент нагревается током термического элемента, то есть номинальным током двигателя. Биметаллический лист изгибается после нагрева, так что шток толкателя только контактирует со штоком переключения передач в елочку, но не может толкать рычаг в елочку. В это время нормально замкнутый контакт находится в замкнутом состоянии, контактор переменного тока остается замкнутым, и двигатель работает нормально.
Если двигатель перегружен, ток в обмотке увеличивается, а также ток в термоэлементе, температура биметаллического листа повышается, а степень изгиба увеличивается.Он толкает стержень переключения передач в елочку, который толкает нормально закрытый контакт, так что контакт размыкается, что приводит к отключению цепи катушки контактора переменного тока, размыканию контактора и отключению питания двигателя, а двигатель защищен остановившись.
1 — Кулачок регулирования тока, 2 — Листовая пружина (2a, 2b), 3 — Кнопка ручного сброса, 4 — Дуговая пружина, 5 — Основной металлический лист, 6 — Наружная направляющая пластина, 7 — Внутренняя направляющая пластина, 8 — Нормально закрытый статический контакт, 9 — Подвижный контакт, 10 — Рычаг, 11 — Нормально открытый статический контакт (регулировочный винт сброса), 12 — Компенсирующий биметаллический лист, 13 — Толкатель, 14 — Шатун, 15 — Нажимная пружина
Тепловой элемент
Тепловой элемент является сердцем теплового реле :
1.В тепловом реле прямого нагрева используется биметаллический лист в качестве теплового элемента, позволяющего напрямую пропускать электрическую серу. Поскольку сам биметаллический лист имеет определенное сопротивление, он может выделять тепло, когда через него проходит ток. Поскольку биметаллический лист используется как в качестве чувствительного, так и в качестве нагревательного элемента, этот метод нагрева имеет характеристики простой конструкции, небольшого объема, экономии материала, небольшой постоянной времени нагрева и быстрого изменения температуры.
2.Косвенный нагрев — это выделение тепла посредством теплового элемента, который электрически не связан с биметаллическим листом. Термоэлементы имеют нитевидную форму или обвиты вокруг биметаллического листа. Поскольку тепло, генерируемое термоэлементом, передается биметаллическому листу через воздух, постоянная времени нагрева велика, а скорость, отражающая изменение температуры, относительно мала .
3. Комбинированный нагрев представляет собой комбинацию прямого и косвенного нагрева.Постоянная времени нагрева смеси находится между двумя вышеуказанными формами. Значение сопротивления можно легко отрегулировать путем параллельного или последовательного соединения различных сопротивлений, и он имеет преимущества прямого и косвенного нагрева, поэтому получил широкое распространение.
4. Нагрев трансформатора тока в основном используется для теплового реле большой мощности и пускового теплового реле большой нагрузки.
Управляющий контакт и система действия
В настоящее время широко используемой структурой теплового реле является подвижный контакт пружинного типа.Когда двигатель перегружен, нормально замкнутый контакт будет отключен. После остановки двигателя биметаллический лист теплового реле охладится и вернется в исходное состояние. Подвижный контакт нормально замкнутого контакта автоматически возвращается в исходное положение под действием пружины. Однако пружина подвижного контакта традиционного пружинного типа легко отпадает, в результате чего вспомогательный контакт не электризуется, в результате чего тепловое реле не может использоваться. Существующий более безопасный метод заключается в модернизации подвижного контакта пружинного типа до динамического контакта с листовой пружиной и установке контактного моста в контактный мост с листовой пружиной , чтобы вибрация подвижного контакта была больше, когда он контактирует с статический контакт.Из-за влияния инерции движения и столкновения контактный мост пружинного типа будет производить динамическую упругую деформацию. В разные динамические моменты исходный контактный мост с плоской листовой пружиной будет отличаться, а кривизна вызывает движение изгиба и растяжения, что дополнительно приводит в движение сферический подвижный контакт, вызывая фрикционное качение относительно статического контакта, что приводит к более полному повреждению сопротивления поверхностной мембраны, обеспечивает эффект контактной проводимости и повышает надежность оборудования.
Механизм сброса и защита от обрыва фазы
После того, как термоэлемент нагревается и изгибается, ток основной цепи отключается путем нажатия пускового устройства, чтобы сработало тепловое реле. Биметаллический лист охлаждают, восстанавливая исходное состояние. Очевидно, на это нужно время. Есть два способа сброса теплового реле: ручной и автоматический. Ручной сброс обычно составляет не менее 5 минут, автоматический сброс — не более 10 минут.
Режим сброса можно выбрать с помощью кнопки сброса. В нормальном состоянии, когда кнопка сброса указывает на A (автоматический сброс), NC замкнут, а NO отключен; в состоянии отключения, когда кнопка сброса указывает на A, NC размыкается, а NO закрывается. После отключения и остановки двигателя подвижный контакт не может быть сброшен. Подвижный контакт можно сбросить только после нажатия кнопки сброса. В это время тепловое реле находится в состоянии ручного сброса. Если перегрузка двигателя является неисправностью, чтобы избежать легкого повторного запуска двигателя, тепловое реле должно перейти в режим ручного сброса.В состоянии ручного сброса принцип сброса такой же. Чтобы переключить тепловое реле из режима ручного сброса в режим автоматического сброса, просто поверните кнопку сброса в положение A (автоматический сброс).
Некоторые типы тепловых реле также имеют защиту от обрыва фазы. Структурная схема представлена на рисунке ниже. Функция защиты от обрыва фазы теплового реле обеспечивается механизмом дифференциального усиления, состоящим из внутренних и внешних толкателей. Когда двигатель работает нормально, ток теплового элемента через тепловое реле нормальный, и как внутренний, так и внешний толкающие стержни перемещаются вперед в соответствующее положение; при обрыве фазы источника питания ток фазы равен нулю, а биметаллический лист фазы охлаждается и сбрасывается, что заставляет внутренний толкатель перемещаться вправо, а биметаллический лист двух других фаз увеличивает степень изгиба из-за увеличения тока, который заставляет внешний толкатель перемещаться влево Функция дифференциального усиления подталкивает нормально замкнутый контакт к размыканию через короткое время после обрыва фазы, так что контактор переменного тока размыкается, а двигатель защищается при сбое питания.
Установка тока устройства и температурной компенсации
Установочный ток относится к максимальному току, который проходит через нагревательный элемент в течение длительного времени без срабатывания теплового реле. Когда ток, проходящий через нагревательный элемент, превышает 20% установленного значения тока, тепловое реле срабатывает в течение 20 минут. Установочный ток теплового реле можно изменить, установив ручку тока. При выборе и настройке теплового реле значение тока настройки должно соответствовать номинальному току двигателя.
Конструкция высокоточной установки тока реле тепловой перегрузки включает в себя опору (1), компенсирующее двойное золото (3), регулировочный винт (4) и установочный кулачок (5).
Тепловое реле перегрузки — это наиболее широко используемый электрический компонент для защиты двигателя. В процессе эксплуатации заказчику необходимо отрегулировать значение тока уставки теплового реле перегрузки в соответствии с фактическим рабочим состоянием двигателя. Если точность настройки реле тепловой перегрузки невысока, это легко может вызвать аварийное отключение или перегрев двигателя.
Левый рычаг тяги переключения передач в елочку также изготовлен из биметаллического листа. При изменении температуры окружающей среды биметаллический лист в главной цепи в определенной степени деформируется и изгибается. В это время левый рычаг стержня переключения в елочку также будет деформироваться и изгибаться в том же направлении, чтобы сохранить расстояние между рычагом в виде елочки и толкателем в основном неизменным, чтобы обеспечить точность срабатывания теплового реле. Этот эффект называется температурной компенсацией.
Из рисунка ниже видно, как решить проблему низкой общей точности традиционной структуры путем компенсации двойного золота.
Отверстие для заклепки и резьбовое отверстие устанавливаются на компенсационном двойном металле. Отверстие для клепки совпадает с бобышкой для клепки, а отверстие с резьбой — с резьбой регулировочного винта. На двойном компенсационном металлическом элементе отверстие для элемента, совмещенное с заклепочной втулкой, спроектировано таким образом, что компенсационный двойной металл и U-образные детали склепываются и фиксируются.
Под действием опорного шага плоскости и горячей клепки формирования характеристик, компенсация двухкомпонентная золота обеспечивает точность позиционирования, тем самым улучшая текущую точность настройки, вызванные операции установки кулачка, и решает проблему низкого тока точности настройки традиционной структуры .
Рекомендовать артикул:
Каков принцип и функция реле?
Как выбрать реле?
Каковы общие неисправности реле?
Каков принцип работы теплового реле?
Тепловые реле — это защитные электрические устройства, используемые для защиты двигателей или другого электрического оборудования и электрических цепей от перегрузки.При фактической работе двигателя, такой как перетаскивание производственного оборудования на работу, если машина неисправна или цепь ненормальная, двигатель столкнется с перегрузкой, скорость двигателя снизится, ток в обмотке увеличится, а температура обмотки двигателя повысится. Если ток перегрузки мал и время перегрузки короткое, а обмотка двигателя не превышает допустимого повышения температуры, перегрузка допустима. Однако, если время перегрузки велико и ток перегрузки велик, повышение температуры обмотки двигателя превысит допустимое значение, что приведет к старению обмотки двигателя, сокращению срока службы двигателя и даже сгоранию обмотки двигателя в серьезных случаях. .Поэтому такую перегрузку мотор не переносит. Тепловое реле использует принцип теплового воздействия тока для отключения цепи двигателя в случае перегрузки, которую двигатель не может выдержать, чтобы обеспечить защиту двигателя от перегрузки.
Тепловые реле Nader
Структура теплового реле
Тепловое реле состоит из нагревательного элемента, биметаллического листа и контакта, среди которых биметаллический лист является ключевым измерительным элементом .Биметаллический лист состоит из двух видов металла с разным коэффициентом теплового расширения. Сторона с большим коэффициентом теплового расширения называется активным слоем, а сторона с малым коэффициентом теплового расширения — пассивным слоем. Тепловое расширение биметаллического листа происходит после нагрева. Однако из-за разных коэффициентов теплового расширения двух слоев металла первые два слоя металла тесно связаны друг с другом, из-за чего биметаллический лист изгибается, как одна сторона пассивного слоя.Механическая сила, создаваемая изгибом биметаллического листа из-за нагрева, заставит подвижный контакт разорвать цепь.
Структура теплового реле
Принцип работы теплового реле
Когда двигатель работает нормально, тепловой элемент теплового реле не выделяет достаточно тепла для срабатывания функции защиты, и его нормально замкнутый контакт будет оставаться замкнутым штат; когда двигатель перегружен, тепловой элемент теплового реле будет генерировать достаточно тепла, чтобы сработала функция защиты, и его нормально замкнутый контакт будет отключен, чтобы двигатель потерял мощность через цепь управления, чтобы защитить двигатель. После устранения неисправности термореле необходимо сбросить до перезапуска двигателя.
Тепловое реле обычно имеет две формы сброса: ручной сброс и автоматический сброс. Преобразование двух форм сброса может быть выполнено путем регулировки винта сброса. Когда термореле поставляется с завода, производитель обычно устанавливает его в состояние автоматического сброса. При использовании, устанавливается ли тепловое реле в состояние ручного или автоматического сброса, зависит от конкретной ситуации в цепи управления. В целом, принцип заключается в том, что даже если тепловое реле сбрасывается автоматически после выполнения защитного действия теплового реле, защищенный двигатель не должен перезапускаться автоматически, в противном случае тепловое реле должно быть установлено в состояние ручного сброса. Это сделано для предотвращения повторного запуска двигателя и повреждения оборудования, если неисправность не устранена. Например, для цепи управления ручным запуском и ручным остановом, управляемым кнопкой, тепловое реле может быть установлено в режим автоматического сброса; для цепи автоматического пуска, управляемой элементом автоматики, тепловое реле должно быть переведено в режим ручного сброса.
Классификация тепловых реле
Биметаллическая пластина: биметаллический лист, изготовленный путем прокатки двух видов металлов с разным коэффициентом расширения (обычно никелевый марганец и медная пластина), нагревается и изгибается, чтобы толкать несущий стержень, таким образом перемещаясь при контакте. Биметаллическая пластина широко используется и часто образует магнитный пускатель с контактором.
Тип термистора: тепловое реле, сопротивление которого изменяется в зависимости от температуры.
Тип плавкого сплава: используя теплоту тока перегрузки, чтобы плавкий сплав достиг определенного значения температуры, сплав плавится и приводит в действие реле.
Реле — гарантированное время выполнения заказа
1. Что такое реле?
Реле — это устройство, которое размыкает или замыкает контакты, чтобы вызвать срабатывание другого электрического управления. Реле управляют одной электрической цепью, размыкая и замыкая контакты в другой цепи. Реле обычно используются для переключения меньших токов в цепи управления и обычно не управляют устройствами, потребляющими энергию, за исключением небольших двигателей и соленоидов, потребляющих малый ток. Тем не менее, реле могут «управлять» большими значениями напряжения и силы тока за счет усиления эффекта, поскольку небольшое напряжение, приложенное к катушке реле, может привести к коммутации большого напряжения контактами.Кроме того, реле также широко используются для включения пусковых катушек, нагревательных элементов, контрольных ламп и звуковой сигнализации.
2. Почему мы используем реле?
Очень распространенная причина, особенно в промышленном применении, — это требования к напряжению и току. Многие машины и электрическое оборудование используют для работы более высокое напряжение. Чтобы сделать его более безопасным для операторов, мы используем низкое напряжение и ток для наших элементов управления. Например, вы не хотите, чтобы кто-то нажимал на кнопку, к которой подключено высокое напряжение.Когда мы используем реле, замыкающиеся контакты могут быть рассчитаны на гораздо более высокий ток.
3. Как работают реле?
Реле работает по принципу электромагнитного притяжения. Когда цепь реле определяет ток короткого замыкания, она возбуждает электромагнитное поле, которое создает временное магнитное поле. Это магнитное поле перемещает контакты реле для размыкания или замыкания соединений. Реле малой мощности имеет только один контакт, а реле высокой мощности имеет два, три и четыре контакта для размыкания переключателя.
Внутренняя часть реле имеет железный сердечник, намотанный катушкой управления. Питание на катушку подается через контакты нагрузки и управляющего переключателя. Ток, протекающий через катушку, создает вокруг нее магнитное поле. Из-за этого магнитного поля верхнее плечо магнита притягивает нижнее плечо. Следовательно, замкните цепь, что заставит ток течь через нагрузку. Если контакт уже замкнут, то он движется в противоположном направлении и, следовательно, размыкает контакты. Расширенное обучение: ( Каков принцип и функция реле? )
4. Что такое контактор?
Согласно принципу работы реле, электромагнитное реле, твердотельное реле, статическое реле, реле максимального тока, тепловое реле.
5. Что такое электромагнитное реле?
Реле электромагнитные — это те реле, которые работают по принципу электромагнитного притяжения. Это тип магнитного переключателя, который использует магнит для создания магнитного поля.Магнитное поле используется для размыкания и замыкания переключателя, а также для выполнения механических операций. Расширенное обучение: ( Какие электрические компоненты обычно используются в распределительном шкафу? )
6. Что такое статическое реле?
Статическое реле, не содержащее движущихся частей, известно как статическое реле. В реле такого типа выходной сигнал обеспечивается статическими компонентами, такими как магнитная, электронная цепь и т. Д.Реле, которое состоит из статического и электромагнитного реле, также называется статическим реле, потому что статические блоки получают ответ, а электромагнитное реле используется только для переключения.
7. Что такое реле максимального тока?
Реле максимального тока, которое определяется как реле, которое срабатывает только тогда, когда значение тока превышает время срабатывания реле. Он защищает оборудование энергосистемы от тока короткого замыкания.
8. Что такое тепловое реле?
Тепловое реле работает по принципу теплового воздействия электрической энергии.Биметаллические ленты, нагревательные катушки и трансформаторы тока являются важными частями теплового реле.
Что такое твердотельное реле?
9. Что такое твердотельное реле?
Твердотельное реле, аббревиатура SSR, то есть электронное переключающее устройство. Он включается или выключается, когда на его клеммы управления подается небольшое внешнее напряжение. SSR состоит из датчика, который реагирует на соответствующий вход, твердотельного электронного переключающего устройства, которое переключает питание на схему нагрузки, и механизма связи, позволяющего сигналу управления активировать этот переключатель без механических частей.Реле может быть предназначено для переключения на нагрузку переменного или постоянного тока. Он выполняет ту же функцию, что и электромеханическое реле, но не имеет движущихся частей.
Что такое реле? Определение, принцип работы и конструкция
Определение: Реле — это устройство, которое размыкает или замыкает контакты, чтобы вызвать срабатывание другого электрического управления. Он обнаруживает недопустимое или нежелательное состояние с помощью назначенной области и дает команды автоматическому выключателю для отключения поврежденной области.Таким образом защищает систему от повреждений.
Принцип работы реле
Работает по принципу электромагнитного притяжения. Когда цепь реле определяет ток короткого замыкания, она возбуждает электромагнитное поле, которое создает временное магнитное поле.
Это магнитное поле перемещает якорь реле для размыкания или замыкания соединений. Реле малой мощности имеет только один контакт, а реле высокой мощности имеет два контакта для размыкания переключателя.
Внутренняя часть реле показана на рисунке ниже. Он имеет железный сердечник, на который намотана управляющая катушка. Питание на катушку подается через контакты нагрузки и управляющего переключателя. Ток, протекающий через катушку, создает вокруг нее магнитное поле.
Из-за этого магнитного поля верхнее плечо магнита притягивает нижнее плечо. Следовательно, замкните цепь, что заставит ток течь через нагрузку. Если контакт уже замкнут, то он движется в противоположном направлении и, следовательно, размыкает контакты.
Шест и бросок
Полюс и броски — это конфигурации реле, где полюс — это переключатель, а броски — это количество соединений. Однополюсный, однополюсный — это простейший тип реле, которое имеет только один переключатель и только одно возможное соединение. Точно так же однополюсное реле двойного хода имеет один переключатель и два возможных соединения.
Конструкция реле
Реле работает как электрически, так и механически. Он состоит из электромагнитных и набора контактов, выполняющих операцию переключения.Конструкция реле в основном делится на четыре группы. Это контакты, подшипники, электромеханическая конструкция, выводы и корпус.
Контакты — Контакты — самая важная часть реле, влияющая на надежность. Хороший контакт обеспечивает ограниченное контактное сопротивление и снижает износ контактов. Выбор материала контактов зависит от нескольких факторов, таких как природа прерываемого тока, величина прерываемого тока, частота и рабочее напряжение.
Подшипник — Подшипник может быть одношариковым, многошариковым, шарнирно-шариковым и ювелирным. Одиночный шарикоподшипник используется для обеспечения высокой чувствительности и низкого трения. Многоступенчатый шарикоподшипник обеспечивает низкое трение и большую устойчивость к ударам.
Электромеханическое исполнение — Электромеханическое исполнение включает конструкцию магнитопровода и механическое крепление сердечника, ярма и якоря.