Закрыть

Для чего нужен статор: Перемотка или ремонт статора (якоря) после замыкания: как проверить статор

Содержание

Перемотка или ремонт статора (якоря) после замыкания: как проверить статор

Электрический двигатель – это машина, превращающая электрическую энергию в механическую. Работа любого электрического двигателя или генератора основана на условии взаимодействия магнитных полей статора и ротора.

Коллекторный синхронный двигатель

Cтатор в разных типах электродвигателей

Статор – это неотъемлемый узел электрической машины, сохраняющий неподвижное состояние во время работы двигателя. Ротор – вращающаяся часть электрического мотора, передающая механическую энергию на выходной вал. Другое название ротора – якорь.

Синхронный или коллекторный двигатель

Электрический ток на ламели коллектора передается графитовыми щетками. Такой электродвигатель будет работать, как в сети постоянного, так и переменного тока. Пульсирующее магнитное поле, создаваемое обмотками статора, будет взаимодействовать с пульсирующим магнитным полем, генерируемым обмотками якоря. Ротор станет вращаться. Подобные электродвигатели широко применяются в различных бытовых и промышленных приборах: электродрелях, пылесосах, силовых приводах станков, электротранспорте.

Интересно. Двигатели такого типа имеют еще одно название – синхронные. Это означает, что скорость вращения ротора равна скорости вращения электромагнитного поля, возникающего в двигателе.

Асинхронные двигатели

Подавляющее количество электромоторов, применяющихся и в промышленности, и в быту, – это асинхронные электродвигатели с короткозамкнутыми роторами. Такие двигатели применяются в трехфазных и однофазных сетях переменного тока.

Асинхронный двигатель

Статорная конструкция собирается из большого количества стальных пластин и расположена в корпусе основания, отлитом из немагнитных металлов: чугуна или алюминия.

Наборный статор двигателя

Материал пластин – электротехническая сталь. Пластины изолированы друг от друга специальным диэлектрическим лаком.

В статоре имеются продольные пазы, где размещаются три обмотки, сдвинутые относительно оси вращения электромотора на 120 градусов друг от друга. Ротор также набирается из изолированных пластин электротехнической стали. В пазы ротора уложены стержни из алюминия, реже меди, соединенные по торцам контактными кольцами. Отсюда и название – короткозамкнутый ротор. Такая конструкция, называемая «беличьим колесом», играет роль обмотки ротора.

Ниже представлен вид асинхронного электродвигателя в разрезе. Хорошо видно, что такое наборный статор.

Разрез асинхронного двигателя

Обмотки двигателя могут подключаться к трехфазной электрической сети по схеме «треугольник» или «звезда».

Варианты подключения трехфазного двигателя

Коммутация схемы производится в клеммной коробке двигателя, называемой борн или брно.

При подаче трехфазного напряжения в обмотках статора возникают пульсирующие токи, которые вызывают появление в статоре вращающегося магнитного поля. Это поле пересекает токопроводящие стержни ротора, в которых индуцируются вторичные пульсирующие токи.

Результатом становится появление магнитного поля в роторе. Магнитные поля статора и ротора взаимодействуют и заставляют вращаться стержни «беличьего колеса», вместе с тем и сам ротор. Якорь вращается со скоростью несколько меньшей, чем магнитное поле статора.

Величина этой разности называется скольжением и может составлять от 2 до 8 %. Из-за наличия скольжения двигатели подобной конструкции получили название асинхронные. Эффект скольжения физически необходим для работы асинхронного двигателя не будет отставания вращения ротора от магнитного поля статора, не будет индуцироваться ток в стержнях ротора, исчезнет магнитное поле в якоре, приводящее во вращение ротор.

Материал для статоров

Статорные и роторные узлы набираются из изолированных пластин электротехнической стали толщиной от 0,2 до 0,5 мм. В такой стали присутствует повышенное количество кремния (3-4,5 %). В результате сплав получает повышенное электрическое сопротивление и улучшенные магнитные характеристики. Малая толщина пластин и высокое удельное сопротивление существенно снижают паразитные вихревые токи Фуко в статоре и роторе. Это позволяет уменьшить нагрев узлов и деталей электродвигателя, повысить его электрический КПД.

Технология перемотки статора

Индикаторами нештатной работы электромотора являются:

  • Снижение мощности;
  • Повышенный нагрев корпуса;
  • «Пробивание» напряжения на массу.

В таком случае следует провести диагностику неисправности статора. Необходимо определить, как проверить статор на межвитковое замыкание мультиметром. Величина сопротивления обмоток указана в справочной литературе на конкретный двигатель. Проверив мультиметром сопротивление каждой из обмоток, можно определить дефектную. После чего необходимо перемотать одну или все обмотки статора.

Основные операции:

  • Удаление из пазов статора старых обмоток;
  • Очищение пазов от остатков старой электро,- и термоизоляции;
  • Установка новой изоляции в пазах статора;
  • Укладка новых обмоток;
  • Пропитка обмоток диэлектрическим лаком и его сушка;
  • Проверка электрических параметров новых обмоток статора.

При правильно проведенном ремонте электромотор восстановит свои первоначальные характеристики.

Проверка якоря коллекторного двигателя

У якоря коллекторного электродвигателя надо проверять два основных типа неисправностей:

  1. Механические;
  2. Электрические.

На заметку. К механическим неисправностям, как правило, относится выработка ресурса подшипников. Появляются сильный шум при работе двигателя, нагрев подшипников, продольный и радиальный люфт якоря.

Электрические неисправности включают в себя:

  • Обрыв провода в обмотке;
  • Межвитковое замыкание;
  • Пробой обмотки на корпус якоря и самого мотора;
  • Износ контактных ламелей коллектора.

Следует рассмотреть, как проверить якорь на межвитковое замыкание. Сделать это удобно с помощью цифрового мультиметра либо, при его отсутствии, стрелочным тестером.

Электронный мультиметр

Как прозвонить якорь? Следует поочередно измерять сопротивление обмоток якоря, касаясь щупами мультиметра противоположных ламелей коллектора.

Значительное отклонение величины сопротивления позволит узнать неисправную обмотку. Пробой на корпус проверяется мультиметром в диапазоне сопротивления 20 кОм. Один щуп присоединяется к валу ротора, другим поочередно касаются ламелей коллектора. Прибор должен показывать состояние «разрыв». По показанию мультиметра менее 20 кОм можно узнавать о неисправности обмотки, и, следовательно, необходимости ремонта якоря.

Ремонт электродвигателей

Проведение ремонта электродвигателей, такого, как перемотка статора или ротора, операция ответственная и кропотливая. Необходимы определенные знания и навыки работы, опыт. Проще всего производится устранение механических неисправностей, обычно это замена подшипников и восстановление геометрии коллектора либо его полная замена. Также бывает необходимо поменять стесанные графитовые щетки, подающие ток на обмотки якоря.

При ремонте электрической части двигателя потребуются специальные материалы, обмоточный провод нужной марки, специальные инструменты и оснастка.

Если речь идет о ремонте ограниченного количества электродвигателей, то лучше обратиться в специализированное ремонтное предприятие. Это целесообразно, как с точки зрения качества ремонта, так и экономики.

Для проведения ремонтных работ в больших количествах необходимо создать профильный участок ремонта, подобрать персонал, содержать определенное количество оборудования, материалов и комплектующих, иметь справочную литературу.

Теплоизоляция статора

Электродвигатель при работе подвержен достаточно сильному нагреву до 100-145 0С. Для сохранения работоспособности, защиты деталей и узлов от перегрева на валу двигателя имеется крыльчатка вентилятора, производящая обдув ротора и статора. Кроме того, для защиты обмоток статора применяются различные термоизолирующие материалы, такие как:

  • Прокладки на базе компонентов из слюды и специальных картонов;
  • Термоизолирующие материалы из стеклоткани;
  • Термостойкие пропиточные лаки.

Правильное технологическое применение таких теплоизоляционных компонентов обеспечивает долгую надежную и бесперебойную работу электродвигателей.

Защита статора тепловым реле

В процессе эксплуатации электродвигатель может потреблять повышенный ток из сети и испытывать сильный нагрев. Причины могут быть разные, например, слишком большая нагрузка на валу, частые включения и выключения мотора, повышенная температура окружающей среды. Такие нештатные режимы работы могут привести к перегреву статорных обмоток и выходу их из строя. Для предотвращения повреждения электродвигателя в статорной системе устанавливается один или два биметаллических тепловых реле это термовыключатели, называемые кликсонами.

Термовыключатель кликсон

При повышении температуры статора выше положенного значения происходит размыкание биметаллического контакта кликсона. Термовыключатель размыкает цепь питания катушки управления силовым контактором, который подает напряжение на электромотор. Контактор отключает электромотор от силовой электросети. Дальнейшее включение контактора и, следовательно, электродвигателя возможно лишь после охлаждения обмоток статора и замыкания биметаллической пары термовыключателя.

Двигатели, применяемые в промышленности

В промышленности успешно применяются оба типа двигателей: и асинхронные с короткозамкнутым ротором, и синхронные коллекторные.

Первый тип устройств имеет важные достоинства:

  • Низкая цена;
  • Надежность и долговечность;
  • Простота эксплуатации.

Имеются и минусы:

  • Невозможность плавного регулирования оборотов якоря;
  • Невысокая скорость вращения – предел 3000 об./мин. в сетях с частотой 50Гц;
  • Большие пусковые токи.

Однако достоинства этих изделий многократно превосходят их недостатки.

К сведению. Асинхронные двигатели применяются в тех устройствах, где требуются постоянные режимы работы промышленного или транспортного оборудования. Например, в приводах всевозможных насосов, ленточных транспортеров, в системах вентиляции, в подъемных механизмах. Ниша асинхронных электрических машин занимает 65-75 % от общего объема применяемых электромоторов.

Синхронные, коллекторные двигатели имеют свои достоинства:

  • Возможность плавного бесступенчатого изменения скорости вращения;
  • Большая мощность;
  • Большая скорость вращения.

Недостатки, присущие коллекторным электромоторам:

  • Относительно высокая стоимость;
  • Скользящие контакты коллектора якоря, снижающие надежность эксплуатации и уменьшающие ресурс машины;
  • Необходимость частого обслуживания.

Они применяются там, где необходимо плавное изменение угловых скоростей: это приводы станков, тяговые моторы электротранспорта, точные системы монтажа.

Оба типа двигателей находят массовое применение в промышленности и быту. Для их длительной и безотказной работы необходимо проведение регламентных работ, при необходимости и восстановительного ремонта, включающего перемотку обмоток статора и ротора.

Видео

Статор и ротор — что это такое?

Автор Aluarius На чтение 4 мин. Просмотров 3.2k. Опубликовано

Существует несколько классов электрических преобразователей, среди которых практическое применение нашли так называемые индуктивные аналоги. В них преобразование энергии происходит за счет преобразования индукции обмоток, являющиеся неотъемлемой частью самого агрегата. Обмотки располагаются на двух элементах – на статоре и роторе. Итак, чем отличаются статор и ротор (что это такое и каковы их функции?).

Самое простое определение двух частей преобразователя – это их функциональность. Здесь все просто: статор (электродвигателя или генератора) является неподвижной частью, ротор подвижной. В большинстве случаев последний располагается внутри первого, и между ними есть небольшой зазор. Есть так называемые агрегаты с внешним ротором, который представляет собой вращающееся кольцо, внутри которого располагается неподвижный статор.

Виды преобразователей

Почему так важно рассмотреть виды, чтобы понять, чем отличается статор электродвигателя от подвижной его части. Все дело в том, что конструктивных особенностей у электродвижков немало, то же самое касается и генераторов (это преобразователи механической энергии в электрическую, электродвигатели имеют обратную функциональность).



Итак, электрические двигатели делятся на аппараты переменного и постоянного тока. Первые в свою очередь разделяются на синхронные, асинхронные и коллекторные. У первых угловая скорость вращения статора и ротора равны. У вторых два эти показателя неравны. У коллекторных видов в конструкции присутствует так называемый преобразователь частоты и количества фаз механического типа, который носит название коллектор. Отсюда и название агрегата. Именно он напрямую связан с обмотками ротора двигателя и его статора.

Машины постоянного тока на роторе имеют тот же коллектор. Но в случае с генераторами он выполняет функции преобразователя, а в случае с электродвигателями функции инвертора.

Если электрический агрегат – это машина, в которой вращается только ротор, то его название – одномерный. Если в нем вращаются в противоположные стороны сразу два элемента, то этот аппарат носит название двухмерный или биротативный.

Асинхронные электродвигатели

Чтобы разобраться в понятиях ротора двигателя и его статора, необходимо рассмотреть один из видов электрических преобразовательных машин. Так как асинхронные электродвижки используются чаще всего в производственном оборудовании и бытовой техники, то стоит рассмотреть именно их.

Итак, что собой представляет асинхронный электродвигатель? Это обычно чугунный корпус, в который запрессован магнитопровод. В нем сделаны специальные пазы, куда укладывается обмотка статора, собранная из медной проволоки. Пазы сдвинуты относительно друг друга на 120º, поэтому их всего три. Они же образуют три  фазы.

Ротор в свою очередь – это цилиндр, собранный из стальных листов (сталь штампованная электротехническая), и насажанный на стальной вал, который в свою очередь при сборке электрического движка устанавливается в подшипники. В зависимости от того, как собраны фазные обмотки агрегата, роторы двигателя могут быть фазными или короткозамкнутыми.

  • Фазный ротор – это цилиндр, на котором собраны катушки, сдвинутые относительно друг друга на 120º. При этом в его конструкцию установлены три контактных кольца, которые не соприкасаются ни с валом, ни между собой. К кольцам присоединены с одной стороны концы трех обмоток, а с другой графитовые щетки, которые относительно колец располагаются в скользящем контакте. Пример такой машины – это крановые электродвигатели с фазным ротором.
  • Короткозамкнутый ротор собирается из медных стержней, которые укладываются в пазы. При этом их соединяют специальным кольцом, изготовленном из меди.

Асинхронный электрический двигатель с фазным ротором является обладателем больших размеров и веса. Но у него отличные свойства, касающиеся пусковых и регулировочных моментов. Двигатели, у которых установлен короткозамкнутый ротор, считаются самыми надежными на сегодняшний день. Они просты в конструкции, поэтому и являются дешевыми. Их единственный недостаток – это большой пусковой ток, с которым сегодня борются соединением обмоток статора со звезды на треугольник. То есть, пуск производится при соединении звездой, после набора оборотов производится переключение на треугольник.

Устройство и принцип работы электродвигателя

Электрический двигатель постоянного тока

org/ImageObject»>

Эра электродвигателей берёт своё начало с 30-х годов XIX века, когда Фарадей на опытах доказал способность вращения проводника, по которому проходит ток, вокруг постоянного магнита. На этом принципе Томасом Девенпортом был сконструирован и испытан первый электродвигатель постоянного тока. Изобретатель установил своё устройство на действующую модель поезда, доказав тем самым работоспособность электромотора.

Практическое применение ДПТ нашёл Б. С. Якоби, установив его на лодке для вращения лопастей. Источником тока учёному послужили 320 гальванических элементов. Несмотря на громоздкость оборудования, лодка могла плыть против течения, транспортируя 12 пассажиров на борту.

Лишь в конце XIX столетия синхронными электродвигателями начали оснащать промышленные машины. Этому способствовало осознание принципа преобразования электродвигателем постоянного тока механической энергии в электричество. То есть, используя электродвигатель в режиме генератора, удалось получать электроэнергию, производство которой оказалось существенно дешевле от затрат на выпуск гальванических элементов. С тех пор электродвигатели совершенствовались и стали завоёвывать прочные позиции во всех сферах нашей жизнедеятельности.

Содержание

  1. Устройство и описание ДПТ
  2. Статор (индуктор)
  3. Ротор (якорь)
  4. Коллектор
  5. Принцип работы
  6. Типы ДПТ
  7. По наличию щеточно-коллекторного узла
  8. По виду конструкции магнитной системы статора
  9. Управление
  10. Механическая характеристика
  11. Регулировочная характеристика
  12. Области применения
  13. Преимущества и недостатки
  14. Видео в дополнение к написанному

Устройство и описание ДПТ

Конструктивно электродвигатель постоянного тока устроен по принципу взаимодействия магнитных полей.

Самый простой ДПТ состоит из следующих основных узлов:

  1. Двух обмоток с сердечниками, соединенных последовательно. Данная конструкция расположена на валу и образует узел, называемый ротором или якорем.
  2. Двух постоянных магнитов, повёрнутых разными полюсами к обмоткам. Они выполняют задачу неподвижного статора.
  3. Коллектора – двух полукруглых, изолированных пластин, расположенных на валу ДПТ.
  4. Двух неподвижных контактных элементов (щёток), предназначенных для передачи электротока через коллектор до обмоток возбуждения.

Рисунок 1. Схематическое изображение простейшего электродвигателя постоянного тока.

Рассмотренный выше пример – это скорее рабочая модель коллекторного электродвигателя. На практике такие устройства не применяются. Дело в том, что у такого моторчика слишком маленькая мощность. Он работает рывками, особенно при подключении механической нагрузки.

Статор (индуктор)

В моделях мощных современных двигателях постоянного тока используются статоры, они же индукторы, в виде катушек, намотанных на сердечники. При замыкании электрической цепи происходит образование линий магнитного поля, под действием возникающей электромагнитной индукции.

Для запитывания обмоток индуктора ДПТ могут использоваться различные схемы подключения:

  • с независимым возбуждением обмоток;
  • соединение параллельно обмоткам якоря;
  • варианты с последовательным возбуждением катушек ротора и статора;
  • смешанное подсоединение.

Схемы подключения наглядно видно на рисунке 2.

Рисунок 2. Схемы подключения обмоток статора ДПТ

У каждого способа есть свои преимущества и недостатки. Часто способ подключения диктуется условиями, в которых предстоит эксплуатация электродвигателя постоянного тока. В частности, если требуется уменьшить искрения коллектора, то применяют параллельное соединение. Для увеличения крутящего момента лучше использовать схемы с последовательным подключением обмоток. Наличие высоких пусковых токов создаёт повышенную электрическую мощность в момент запуска мотора. Данный способ подходит для двигателя постоянного тока, интенсивно работающего в кратковременном режиме, например для стартера. В таком режиме работы детали электродвигателя не успевают перегреться, поэтому износ их незначителен.

Ротор (якорь)

В рассмотренном выше примере примитивного электромотора ротор состоит из двухзубцового якоря на одной обмотке, с чётко выраженными полюсами. Конструкция обеспечивает вращение вала электромотора.

В описанном устройстве есть существенный недостаток: при остановке вращения якоря, его обмотки занимают устойчивое. Для повторного запуска электродвигателя требуется сообщить валу некий крутящий момент.

Этого серьёзного недостатка лишён якорь с тремя и большим количеством обмоток. На рисунке 3 показано изображение трёхобмоточного ротора, а на рис. 4 – якорь с большим количеством обмоток.

Рисунок 3. Ротор с тремя обмотками

Рисунок 4. Якорь со многими обмотками

Подобные роторы довольно часто встречаются в небольших маломощных электродвигателях.

Для построения мощных тяговых электродвигателей и с целью повышения стабильности частоты вращения используют якоря с большим количеством обмоток. Схема такого двигателя показана на рисунке 5.

Рисунок 5. Схема электромотора с многообмоточным якорем

Коллектор

Если на выводы обмоток ротора подключить источник постоянного тока, якорь сделает пол-оборота и остановится. Для продолжения процесса вращения необходимо поменять полярность подводимого тока. Устройство, выполняющее функции переключения тока с целью изменения полярности на выводах обмоток, называется коллектором.

Самый простой коллектор состоит из двух, изолированных полукруглых пластин. Каждая из них в определённый момент контактирует со щёткой, с которой снимается напряжение. Одна ламель всегда подсоединена к плюсу, а вторая – к минусу. При повороте вала на 180º пластины коллектора меняются местами, вследствие чего происходит новая коммутация со сменой полярности.

Такой же принцип коммутации питания обмоток используются во всех коллекторах, в т. ч. и в устройствах с большим количеством ламелей (по паре на каждую обмотку). Таким образом, коллектор обеспечивает коммутацию, необходимую для непрерывного вращения ротора.

В современных конструкциях коллектора ламели расположены по кругу таким образом, что каждая пластина соответствующей пары находится на диаметрально противоположной стороне. Цепь якоря коммутируется в результате изменения положения вала.

Принцип работы

Ещё со школьной скамьи мы помним, что на провод под напряжением, расположенный между полюсами магнита, действует выталкивающая сила. Происходит это потому, что вокруг проволоки образуется магнитное поле по всей его длине. В результате взаимодействия магнитных полей возникает результирующая «Амперова» сила:

F=B×I×L, где B означает величину магнитной индукции поля, I – сила тока, L – длина провода.

Вектор «Амперовой» всегда перпендикулярен до линий магнитных потоков между полюсами. Схематически принцип работы изображён на рис. 6.

Рис. 6. Принцип работы ДПТ

Если вместо прямого проводника возьмём контурную рамку и подсоединим её к источнику тока, то она повернётся на 180º и остановится в в таком положении, в котором результирующая сила окажется равной 0. Попробуем подтолкнуть рамку. Она возвращается в исходное положение.

Поменяем полярность тока и повторим попытку: рамка сделала ещё пол-оборота. Логично припустить, что необходимо менять направление тока каждый раз, когда соответствующие витки обмоток проходят точки смены полюсов магнитов. Именно для этой цели и создан коллектор.

Схематически можно представить себе каждую якорную обмотку в виде отдельной контурной рамки. Если обмоток несколько, то в каждый момент времени одна из них подходит к магниту статора и оказывается под действием выталкивающей силы. Таким образом, поддерживается непрерывное вращение якоря.

Типы ДПТ

Существующие электродвигатели постоянного тока можно классифицировать по двум основным признакам: по наличию или отсутствию в конструкции мотора щеточно-коллекторного узла и по типу магнитной системы статора.

Рассмотрим основные отличия.

По наличию щеточно-коллекторного узла

Двигатели постоянного тока для коммутации обмоток, которых используются щёточно-коллекторные узлы, называются коллекторными. Они охватывают большой спектр линейки моделей электромоторов. Существуют двигатели, в конструкции которых применяется до 8 щёточно-коллекторных узлов.

Функции ротора может выполнять постоянный магнит, а ток от электрической сети подаётся непосредственно на обмотки статора. В таком варианте отпадает надобность в коллекторе, а проблемы, связанные с коммутацией, решаются с помощью электроники.

В таких бесколлекторных двигателях устранён один из недостатков –искрение, приводящее к интенсивному износу пластин коллектора и щёток. Кроме того, они проще в обслуживании и сохраняют все полезные характеристики ДПТ: простота в управлении связанном с регулировкой оборотов, высокие показатели КПД и другие. Бесколлекторные моторы носят название вентильных электродвигателей.

По виду конструкции магнитной системы статора

В конструкциях синхронных двигателей существуют модели с постоянными магнитами и ДПТ с обмотками возбуждения. Электродвигатели серий, в которых применяются статоры с потоком возбуждения от обмоток, довольно распространены. Они обеспечивают стабильную скорость вращения валов, высокую номинальную механическую мощность.

О способах подключения статорных обмоток шла речь выше. Ещё раз подчеркнём, что от выбора схемы подключения зависят электрические и тяговые характеристики двигателей постоянного тока. Они разные в последовательных обмотках и в катушках с параллельным возбуждением.

Управление

Не трудно понять, что если изменить полярность напряжения, то направление вращения якоря также изменится. Это позволяет легко управлять электромотором, манипулируя полярностью щеток.

Механическая характеристика

Рассмотрим график зависимости частоты от момента силы на валу. Мы видим прямую с отрицательным наклоном. Эта прямая выражает механическую характеристику электродвигателя постоянного тока. Для её построения выбирают определённое фиксированное напряжение, подведённое для питания обмоток ротора.

Примеры механических характеристик ДПТ независимого возбуждения

Регулировочная характеристика

Такая же прямая, но идущая с положительным наклоном, является графиком зависимости частоты вращения якоря от напряжения питания. Это и есть регулировочная характеристика синхронного двигателя.

Построение указанного графика осуществляется при определённом моменте развиваемом ДПТ.

Пример регулировочных характеристик двигателя с якорным управлением

Благодаря линейности характеристик упрощается управление электродвигателями постоянного тока. Поскольку сила F пропорциональна току, то изменяя его величину, например переменным сопротивлением, можно регулировать параметры работы электродвигателя.

Регулирование частоты вращения ротора легко осуществляется путём изменения напряжения. В коллекторных двигателях с помощью пусковых реостатов добиваются плавности увеличения оборотов, что особенно важно для тяговых двигателей. Это также один из эффективных способов торможения. Мало того, в режиме торможения синхронный электродвигатель вырабатывает электрическую энергию, которую можно возвращать в энергосеть.

Области применения

Перечислять все области применения электродвигателей можно бесконечно долго. Для примера назовём лишь несколько из них:

  • бытовые и промышленные электроинструменты;
  • автомобилестроение – стеклоподъёмники, вентиляторы и другая автоматика;
  • трамваи, троллейбусы, электрокары, подъёмные краны и другие механизмы, для которых важны высокие параметры тяговых характеристик.

Преимущества и недостатки

К достоинствам относится:

  • Линейная зависимость характеристик электродвигателей постоянного тока (прямые линии) упрощающие управление;
  • Легко регулируемая частота вращения;
  • хорошие пусковые характеристики;
  • компактные размеры.

У асинхронных электродвигателей, являющихся двигателями переменного тока очень трудно достичь таких характеристик.

Недостатки:

  • ограниченный ресурс коллектора и щёток;
  • дополнительная трата времени на профилактическое обслуживание, связанное с поддержанием коллекторно-щёточных узлов;
  • ввиду того, что мы пользуемся сетями с переменным напряжением, возникает необходимость выпрямления тока;
  • дороговизна в изготовлении якорей.

По перечисленным параметрам из недостатков в выигрыше оказываются модели асинхронных двигателей. Однако во многих случаях применение электродвигателя постоянного тока является единственно возможным вариантом, не требующим усложнения электрической схемы.

Видео в дополнение к написанному

//www.youtube.com/embed/uPdv7l9zx2c?feature=oembed//www.youtube.com/embed/1N2xPGI-zJs?feature=oembed//www.youtube.com/embed/OVtQw2yfLrw?feature=oembed

Двигатель постоянного тока

В данной статье мы подробно рассмотрим двигатели постоянного тока. Детально разберем типы и принцип работы данных двигателей. Расскажем как происходит переключение и контролирование двигателя, контролирования скорости и регулировка скорости импульса, а так же опишем как изменить направление вращения двигателя постоянного тока разными методами.

Описание и принцип работы

Электрические двигатели постоянного тока — это непрерывные приводы, которые преобразуют электрическую энергию в механическую. Двигатель постоянного тока достигает этого, создавая непрерывное угловое вращение, которое можно использовать для вращения насосов, вентиляторов, компрессоров, колес и т. д. Купить двигатель постоянного тока вы можете на Алиэкспресс:

Наряду с обычными роторными двигателями постоянного тока имеются также линейные двигатели, способные производить непрерывное движение вкладыша. Существуют в основном три типа обычных электрических двигателей: двигатели переменного тока, двигатели постоянного тока и шаговые двигатели.

Двигатели переменного тока, как правило, используются в однофазных или многофазных промышленных мощных установках, в которых постоянный крутящий момент и скорость требуются для управления большими нагрузками, такими как вентиляторы или насосы.

В этом уроке по электродвигателям мы рассмотрим только простые двигатели постоянного тока и шаговые двигатели, которые используются во многих различных типах электронных схем, систем позиционного управления, микропроцессоров, PIC и роботизированных схем.

Типы двигателей постоянного тока

Двигатель постоянного тока, является наиболее часто используемым приводом для создания непрерывного движения, скорость вращения которого легко регулируется, что делает их идеальными для использования в устройствах, таких как регулирование скорости, управление сервоприводом и / или требуется позиционирование. Двигатель постоянного тока состоит из двух частей: «Статор», который является неподвижной частью, и «Ротор», который является вращающейся частью. В результате доступно три типа двигателей постоянного тока.

  • Коллекторный двигатель — этот тип двигателя создает магнитное поле в намотанном роторе (вращающаяся деталь), пропуская электрический ток через узел коммутатора и угольной щетки, отсюда и термин «щеточный». Магнитное поле статоров (неподвижная часть) создается с помощью обмотки статора или постоянных магнитов. Обычно моторы с щеткой постоянного тока дешевые, маленькие и легко управляемые.
  • Бесколлекторный двигатель — этот тип двигателя создает магнитное поле в роторе, используя постоянные магниты, прикрепленные к нему, и коммутация достигается с помощью электроники. Они, как правило, меньше, но дороже, чем обычные двигатели постоянного тока щеточного типа, потому что они используют переключатели «эффекта Холла» в статоре для получения требуемой последовательности вращения поля статора, но они имеют лучшие характеристики крутящего момента / скорости, более эффективны и имеют более длительный срок эксплуатации. чем эквивалентные коллекторные типы.
  • Серводвигатель — этот тип двигателя в основном представляет собой коллекторный двигатель постоянного тока с некоторой формой управления позиционной обратной связью, подключенной к валу ротора. Они подключены к контроллеру типа ШИМ и управляются им, и в основном используются в системах позиционного управления и радиоуправляемых моделях.

Обычные двигатели постоянного тока имеют почти линейные характеристики, скорость вращения которых определяется приложенным напряжением постоянного тока, а их выходной крутящий момент определяется током, протекающим через обмотки двигателя. Скорость вращения любого двигателя постоянного тока может варьироваться от нескольких оборотов в минуту (об / мин) до многих тысяч оборотов в минуту, что делает их пригодными для применения в электронике, автомобилестроении или робототехнике.  При подключении их к коробкам передач или зубчатым передачам их выходная скорость может быть уменьшена, в то же время увеличивая крутящий момент двигателя на высокой скорости.

Коллекторный двигатель постоянного тока

Стандартный коллекторный двигатель постоянного тока состоит в основном из двух частей: неподвижного корпуса двигателя, называемого статором, и внутренней части, которая вращается, создавая движение, называемое ротором или «арматурой» для машин постоянного тока.

Обмотка статора двигателя представляет собой электромагнитную цепь, которая состоит из электрических катушек, соединенных вместе в круговую конфигурацию для создания необходимого северного полюса, затем южного полюса, затем северного полюса и т.д., типа стационарной системы магнитного поля для вращения, в отличие от машин переменного тока, чье поле статора постоянно вращается с приложенной частотой. Ток, который течет в этих полевых катушках, известен как ток поля двигателя.

Эти электромагнитные катушки, которые формируют поле статора, могут быть электрически соединены последовательно, параллельно или вместе с ротором двигателя. Последовательно намотанный двигатель постоянного тока имеет обмотки статора, соединенные последовательно с ротором. Аналогично, двигатель постоянного тока с шунтирующим витком имеет свои обмотки возбуждения статора, соединенные параллельно с ротором, как показано ниже.

Ротор постоянного тока состоит из токонесущих проводников, соединенных вместе на одном конце с электрически изолированными медными сегментами, называемыми коммутатором. Коммутатор позволяет осуществлять электрическое подключение через угольные щетки (отсюда и название «щеточный» двигатель) к внешнему источнику питания при вращении ротора.

Установленное ротором магнитное поле пытается выровнять себя с полем статора, заставляя ротор вращаться вокруг своей оси, но не может выровняться из-за задержек коммутации. Скорость вращения двигателя зависит от силы магнитного поля роторов, и чем больше напряжение подается на двигатель, тем быстрее вращается ротор. Изменяя это приложенное постоянное напряжение, можно также изменять частоту вращения двигателя.

Двигатель постоянного тока с щеточным постоянным магнитом (PMDC), как правило, намного меньше и дешевле, чем его эквивалентные родственники двигателя постоянного тока с обмоткой статора, поскольку они не имеют обмотки возбуждения. В двигателях с постоянными магнитами постоянного тока (PMDC) эти полевые катушки заменяются сильными магнитами типа редкоземельных элементов (например, самарий-коболт или неодим-железо-бор), которые имеют очень сильные магнитные энергетические поля.

Использование постоянных магнитов дает двигателю постоянного тока намного лучшую линейную характеристику скорости / крутящего момента, чем эквивалентные намотанные двигатели из-за постоянного и иногда очень сильного магнитного поля, что делает их более подходящими для использования в моделях, робототехнике и сервоприводах.

Хотя щеточные электродвигатели постоянного тока очень эффективны и дешевы, проблемы, связанные с щеточным электродвигателем постоянного тока, заключаются в том, что искрение возникает в условиях большой нагрузки между двумя поверхностями коммутатора и угольных щеток, что приводит к самогенерированию тепла, короткому сроку службы и электрическому шуму из-за искрения, что может повредить любое полупроводниковое коммутационное устройство, такое как МОП-транзистор или транзистор. Чтобы преодолеть эти недостатки, были разработаны бесщеточные или бесколлекторные двигатели постоянного тока.

Бесколлекторный двигатель постоянного тока

Бесщеточный (бесколлекторный) двигатель постоянного тока (BDCM) очень похож на двигатель постоянного тока с постоянными магнитами, но не имеет щеток для замены или износа из-за искрения коммутатора. Поэтому в роторе выделяется мало тепла, что увеличивает срок службы двигателей. Конструкция бесщеточного двигателя устраняет необходимость в щетках благодаря более сложной схеме привода, в которой магнитное поле ротора является постоянным магнитом, который всегда синхронизирован с полем статора, что позволяет более точно контролировать скорость и крутящий момент.

Тогда конструкция бесщеточного двигателя постоянного тока очень похожа на двигатель переменного тока, что делает его истинным синхронным двигателем, но одним недостатком является то, что он дороже, чем аналогичная конструкция «щеточного» двигателя.

Управление бесщеточными двигателями постоянного тока очень отличается от обычного щеточного двигателя постоянного тока тем, что этот тип двигателя включает в себя некоторые средства для определения углового положения роторов (или магнитных полюсов), необходимые для получения сигналов обратной связи, необходимых для управления переключением полупроводников. Самым распространенным датчиком положения / полюса является «Датчик Холла», но некоторые двигатели также используют оптические датчики.

При использовании датчиков с эффектом Холла полярность электромагнитов переключается с помощью схемы управления двигателем. Тогда двигатель можно легко синхронизировать с цифровым тактовым сигналом, обеспечивая точное управление скоростью.  Бесщеточные двигатели постоянного тока могут быть сконструированы так, чтобы иметь внешний ротор с постоянными магнитами и внутренний статор электромагнита или внутренний ротор с постоянными магнитами и внешний статор электромагнита.

Преимущества бесщеточного двигателя постоянного тока по сравнению с его «щеточным» кузеном заключаются в более высокой эффективности, высокой надежности, низком электрическом шуме, хорошем контроле скорости и, что более важно, отсутствии износа щеток или коммутатора, что обеспечивает значительно более высокую скорость. Однако их недостатком является то, что они более дороги и сложнее в управлении.

Серводвигатель постоянного тока

Серводвигатели постоянного тока используются в системах с замкнутым контуром, в которых положение выходного вала двигателя возвращается обратно в цепь управления двигателем. Типичные позиционные устройства «обратной связи» включают в себя резольверы, энкодеры и потенциометры, используемые в моделях радиоуправления, таких как самолеты, лодки и т. д.

Серводвигатель, как правило, включает в себя встроенную коробку передач для снижения скорости и способен напрямую выдавать высокие крутящие моменты. Выходной вал серводвигателя не вращается свободно, как валы двигателей постоянного тока из-за присоединения редуктора и устройств обратной связи.

Блок-схема серводвигателя постоянного тока

Серводвигатель состоит из двигателя постоянного тока, редуктора, устройства позиционной обратной связи и некоторой формы коррекции ошибок. Скорость или положение контролируется по отношению к позиционному сигналу входного сигнала или опорного приложенному к устройству.

Усилитель обнаружения ошибок просматривает этот входной сигнал и сравнивает его с сигналом обратной связи с выходного вала двигателя и определяет, находится ли выходной вал двигателя в состоянии ошибки, и, если это так, контроллер вносит соответствующие исправления, либо ускоряя двигатель, либо замедляя его вниз. Эта реакция на устройство позиционной обратной связи означает, что серводвигатель работает в «замкнутой системе».

Наряду с крупными промышленными применениями серводвигатели также используются в небольших моделях с дистанционным управлением и робототехнике, причем большинство серводвигателей способны вращаться примерно на 180 градусов в обоих направлениях, что делает их идеальными для точного углового позиционирования. Тем не менее, эти сервоприводы типа RC не могут непрерывно вращаться на высокой скорости, как обычные двигатели постоянного тока, если специально не модифицированы.

Серводвигатель состоит из нескольких устройств в одном корпусе, двигателя, коробки передач, устройства обратной связи и коррекции ошибок для контроля положения, направления или скорости. Они широко используются в робототехнике и небольших моделях, так как ими легко управлять, используя всего три провода: питание , заземление и управление сигналами.

Переключение и контроль двигателя постоянного тока

Небольшие двигатели постоянного тока могут быть включены «Вкл» или выключены «Выкл» с помощью переключателей, реле, транзисторов или МОП-транзисторов, причем простейшей формой управления двигателем является «линейное» управление. Схема этого типа использует биполярный транзистор в качестве переключателя (транзистор Дарлингтона также может использоваться, если требуется более высокий номинальный ток) для управления двигателем от одного источника питания.

Изменяя величину тока базы, протекающего в транзистор, можно управлять скоростью двигателя, например, если транзистор включен наполовину, тогда только половина напряжения питания поступает на двигатель. Если транзистор включен полностью (насыщен), то все напряжение питания поступает на двигатель и вращается быстрее. Затем для этого линейного типа управления мощность постоянно подается на двигатель, как показано ниже.

Контроль скорости двигателя

Простая схема переключения, приведенная выше, показывает схему для однонаправленной (только в одном направлении) цепи управления скоростью двигателя. Поскольку скорость вращения двигателя постоянного тока пропорциональна напряжению на его клеммах, мы можем регулировать это напряжение на клеммах с помощью транзистора.

Два транзистора соединены в виде пары Дарлингтона для управления током основного ротора двигателя. 5 кОм потенциометр используется для регулирования количества базового привода на первый пилот — транзистора TR 1 , который, в свою очередь, контролирует главный коммутационный транзистор TR 2 , позволяя изменять напряжение постоянного тока двигателя от нуля до Vcc, в этом примере от 9 до 12 вольт.

Опциональные диоды маховика подключены к переключающему транзистору TR 2 и клеммам двигателя для защиты от любой обратной ЭДС, создаваемой двигателем при его вращении. Регулируемый потенциометр может быть заменен непрерывным логическим «1» или логическим «0» сигналом, подаваемым непосредственно на вход цепи, чтобы переключить двигатель «полностью включено» (насыщение) или «полностью выключено» (отключение) соответственно из порта микроконтроллера или ПОС.

Наряду с этим базовым контролем скорости, та же схема также может использоваться для управления скоростью вращения двигателей. Путем многократного переключения тока двигателя «ВКЛ» и «ВЫКЛ» на достаточно высокой частоте, скорость двигателя можно варьировать от состояния покоя (0 об / мин) до полной скорости (100%), изменяя отношение бестокового пространства к его запасу. Это достигается путем изменения соотношения времени включения (t ON ) и времени выключения (t OFF ), и это может быть достигнуто с помощью процесса, известного как широтно-импульсная модуляция (ШИМ).

Регулировка скорости импульса

Ранее мы говорили, что скорость вращения двигателя постоянного тока прямо пропорциональна среднему значению напряжения на его клеммах, и чем выше это значение, вплоть до максимально допустимого напряжения двигателя, тем быстрее будет вращаться двигатель. Другими словами, больше напряжения, больше скорости. Изменяя соотношение между временем «ВКЛ» (t ВКЛ ) и временем «ВЫКЛ» (t ВЫКЛ ), которое называется «Коэффициент заполнения», или «Рабочий цикл», среднее значение напряжения двигателя и, следовательно, его скорость вращения может варьироваться. Для простых униполярных приводов коэффициент заполнения β задается как:

и среднее выходное напряжение постоянного тока, подаваемое на двигатель, определяется как: Vmean = β x Vsupply. Затем, изменяя ширину импульса а, можно управлять напряжением двигателя и, следовательно, мощностью, подаваемой на двигатель, и этот тип управления называется широтно-импульсной модуляцией или ШИМ.

Другим способом управления частотой вращения двигателя является изменение частоты (и, следовательно, периода времени управляющего напряжения), в то время как времена коэффициента включения «ВКЛ» и «ВЫКЛ» поддерживаются постоянными. Этот тип управления называется частотно-импульсной модуляцией или PFM .

При частотно-импульсной модуляции напряжение двигателя регулируется путем подачи импульсов переменной частоты, например, на низкой частоте или с очень небольшим количеством импульсов, среднее напряжение, подаваемое на двигатель, является низким, и, следовательно, скорость двигателя является низкой.  При более высокой частоте или множестве импульсов среднее напряжение на клеммах двигателя увеличивается, и скорость двигателя также увеличивается.

Затем транзисторы можно использовать для управления количеством энергии, подаваемой на двигатель постоянного тока с режимом работы: «линейная» (изменение напряжения двигателя), «широтно-импульсная модуляция» (изменение ширины импульса) или «частотно — импульсная модуляция»(изменение частоты импульса).

Изменение направления движения двигателя постоянного тока

Хотя управление скоростью двигателя постоянного тока с помощью одного транзистора имеет много преимуществ, оно также имеет один главный недостаток: направление вращения всегда одинаковое, это «однонаправленная» схема. Во многих случаях нам необходимо управлять двигателем в обоих направлениях вперед и назад.

Для управления направлением двигателя постоянного тока необходимо поменять полярность питания постоянного тока, подаваемого на соединения двигателя, чтобы его вал вращался в противоположном направлении.  Один очень простой и дешевый способ управления направлением вращения двигателя постоянного тока состоит в использовании различных переключателей, расположенных следующим образом:

В первом контуре используется одинарный двухполюсный, двухходовый переключатель (DPDT) для контроля полярности соединений двигателей. При переключении контактов подача на клеммы двигателя изменяется, и двигатель меняет направление. Второй контур немного сложнее и использует четыре однополюсных, одноходовых (SPST) переключателя, расположенных в «H» -конфигурации.

Механические переключатели расположены в виде пары переключений и должны работать в определенной комбинации для работы или остановки двигателя постоянного тока. Например, комбинация переключателей A + D управляет вращением вперед, в то время как переключатели B + C управляют вращением назад, как показано на рисунке. Комбинации переключателей A + B или C + D замыкают клеммы двигателя, вызывая его быстрое торможение. Тем не менее, использование переключателей таким образом имеет свои опасности, так как рабочие переключатели A + C или B + D вместе отключат источник питания.

В то время как две вышеупомянутые схемы будут очень хорошо работать для большинства небольших двигателей постоянного тока, мы действительно хотим использовать различные комбинации механических переключателей только для изменения направления вращения двигателя, НЕТ! Мы могли бы изменить ручные переключатели для набора электромеханических реле и иметь одну кнопку прямого или обратного хода или даже использовать твердотельный четырехпозиционный двусторонний переключатель CMOS 4066B.

Но еще один очень хороший способ достижения двунаправленного управления двигателем (а также его скоростью) состоит в том, чтобы подключить двигатель к схеме транзисторного типа H-моста, как показано ниже.

H-мостовая схема двигателя

Схема H-моста, приведенная выше, названа так потому, что базовая конфигурация четырех переключателей, либо электромеханических реле, либо транзисторов, напоминает букву «H» с двигателем, расположенным на центральной шине. Транзистор или МОП-транзистор является, вероятно, одним из наиболее часто используемых типов двунаправленных цепей управления двигателем постоянного тока. Он использует «комплементарные пары транзисторов» как NPN, так и PNP в каждой ветви, причем транзисторы попарно объединяются для управления двигателем.

Управляющий вход A управляет двигателем в одном направлении, т.е. вращением вперед, в то время как вход B управляет двигателем в другом направлении, т.е. обратным вращением. Затем переключение транзисторов «ВКЛ» или «ВЫКЛ» в их «диагональных парах» приводит к направленному управлению двигателем.

Например, когда транзистор TR1 включен, а транзистор TR2 выключен, точка A подключена к напряжению питания (+ Vcc), а если транзистор TR3 выключен, а транзистор TR4 включен, точка B подключена к 0 вольт (GND). Затем двигатель будет вращаться в одном направлении, соответствующем положению клеммы А двигателя и положительной клемме В двигателя.

Если состояния переключения меняются местами так, что TR1 — «ВЫКЛ», TR2 — «ВКЛ», TR3 — «ВКЛ» и TR4 — «ВЫКЛ», ток двигателя будет течь в противоположном направлении, вызывая вращение двигателя в противоположном направлении.

Затем, применяя противоположные логические уровни «1» или «0» к входам A и B, направление вращения двигателя можно регулировать следующим образом.

Таблица истинности H-моста

Вход АВход BФункция двигателя
TR1 и TR4TR2 и TR3
00Двигатель остановлен (OFF)
10Мотор вращается вперед
01Мотор вращается задним ходом
11НЕ ПОЛОЖЕНО

Важно, чтобы никакая другая комбинация входов не допускалась, так как это может привести к короткому замыканию источника питания, то есть оба транзистора, TR1 и TR2, были включены в одно и то же время (предохранитель = взрыв!).

Как и в случае однонаправленного управления двигателем постоянного тока, как показано выше, скорость вращения двигателя также можно регулировать с помощью широтно-импульсной модуляции или ШИМ. Затем, комбинируя переключение Н-моста с ШИМ-управлением, можно точно контролировать направление и скорость двигателя.

Имеющиеся в продаже готовые ИС- декодеры, такие как четырехполупроводниковая ИС H-моста SN754410 или L298N с двумя H-мостами, доступны со всей необходимой встроенной логикой управления и безопасности, специально разработанные для двунаправленных цепей управления двигателем H-моста.

Автор: Тимеркаев Борис

Тимеркаев Борис — 68-летний доктор физико-математических наук, профессор из России. Он является заведующим кафедрой общей физики в Казанском национальном исследовательском техническом университете имени А. Н. ТУПОЛЕВА — КАИ

Как работает двигатель постоянного тока ?

Как работает двигатель постоянного тока ?

org/ImageObject»>

masterok

August 4th, 2013

Загрузка

Дорогие мои читатели, начинаем разбирать темы августовского стола заказов (боже мой, как быстро летит время!). Сегодняшняя тема может быть мало кого заинтересует, зато если кого заинтересует, так это будет очень в пользу им. Слушаем trudnopisaka: Напишите пожалуйста понятно о устройстве электродвигателей постоянного тока. Можно на  примере одного из типов. Ведь с одной стороны принцип работы очень простой, а с другой,  если разобрать один из электродвигателей, то там много деталей, назначение которых не  очевидно. А на сайтах в начале поисковой выдачи есть только название этих деталей, в лучшем  случае. Планирую с детьми собрать простой электродвигатель, чтобы это помогло им в понимании  техники и они не боялись ее осваивать.

Первый этап развития электродвигателя (1821-1832) тесно связан с созданием физических приборов для демонстрации непрерывного преобразования электрической энергии в механическую.

В 1821 году М. Фарадей, исследуя взаимодействие проводников с током и магнитом, показал, что электрический ток вызывает вращение проводника вокруг магнита или вращение магнита вокруг проводника. Опыт Фарадея подтвердил принципиальную возможность построения электрического двигателя.

Для второго этапа развития электродвигателей (1833-1860) характерны конструкции с вращательным движением якоря.

Томас Дэвенпорт — американский кузнец, изобретатель, в 1833 году сконструировал первый роторный электродвигатель постоянного тока, создал приводимую им в движение модель поезда. В 1837 году он получил патент на электромагнитную машину.

В 1834 году Б. С. Якоби создал первый в мире электрический двигатель постоянного тока, в котором реализовал принцип непосредственного вращения подвижной части двигателя. 13 сентября 1838 г. лодка с 12 пассажирами поплыла по Неве против течения со скоростью около 3 км/ч. Лодка была снабжена колесами с лопастями. Колеса приводились во вращение электрическим двигателем, который получал ток от батареи из 320 гальванических элементов. Так впервые электрический двигатель появился на судне.

Испытания различных конструкций электродвигателей привели Б. С. Якоби и других исследователей к следующим выводам:

  • расширение применения электродвигателей находится в прямой зависимости от удешевления электрической энергии, т. е. от создания генератора, более экономичного, чем гальванические элементы;
  • электродвигатели должны иметь по возможности малые габариты, большую мощность ибольший коэффициент полезного действия;
  • этап в развитии электродвигателей связан с разработкой конструкций с кольцевым неявнополюсным якорем и практически постоянным вращающим моментом.

Третий этап развития электродвигателей характеризуется открытием и промышленным использованием принципа самовозбуждения, в связи с чем был окончательно осознан и сформулирован принцип обратимости электрической машины. Питание электродвигателей стало производиться от более дешёвого источника электрической энергии — электромагнитного генератора постоянного тока.

В 1886 году электродвигатель постоянного тока приобрёл основные черты современной конструкции. В дальнейшем он всё более и более совершенствовался.

В настоящее время трудно представить себе жизнь человечества без электродвигателя. Он используется в поездах, троллейбусах, трамваях. На заводах и фабриках стоят мощные электрические станки. Электромясорубки, кухонные комбайны, кофемолки, пылесосы — всё это используется в быту и оснащено электродвигателями.

Подавляющее большинство электрических машин работает по принципу магнитного отталкивания и притяжения. Если между северным и южным полюсами магнита поместить проволоку и пропустить по ней ток, то её вытолкнет наружу. Как это возможно? Дело в том, что проходя по проводнику, ток формирует вокруг себя круговое магнитное поле по всей длине провода. Направление этого поля определяют по правилу буравчика (винта).

При взаимодействии кругового поля проводника и однородного поля магнита, между полюсами магнитное поле с одной стороны ослабевает, а с другой усиливается. То есть среда становится упругой и результирующая сила выталкивает провод из поля магнита под углом 90 градусов в направлении, определяемом по правилу левой руки (правило правой руки используется для генераторов, а правило левой руки подходит только для двигателей). Эта сила называется «амперовой» и её величина определяется по закону Ампера F=BхIхL, где В – значение магнитной индукции поля; I – ток, циркулирующий в проводнике; L – длина провода.

 Загрузка

Это явление использовали как основной принцип работы первых электродвигателей, этот же принцип используют и поныне. В двигателях постоянного тока малой мощности для создания постоянного магнитного поля применяются постоянные магниты. В электромоторах средней и большой мощности однородное магнитное поле создают с помощью обмотки возбуждения или индуктора.

Рассмотрим принцип создания механического движения с помощью электричества более подробно. На динамической иллюстрации показан простейший электромотор. В однородном магнитном поле вертикально располагаем проволочную рамку и пропускаем по ней ток. Что происходит? Рамка проворачивается и по инерции двигается какое-то время до достижения горизонтального положения. Это нейтральное положение – мёртвая точка — место, где воздействие поля на проводник с током равно нулю. Чтобы движение продолжилось, нужно добавить ещё хотя бы одну рамку и обеспечить переключение направление тока в рамке в нужный момент. На обучающем видео внизу страницы хорошо виден этот процесс.

Современный двигатель постоянного тока вместо одной рамки имеет якорь с множеством проводников, уложенных в пазы, а вместо постоянного подковообразного магнита имеет статор с обмоткой возбуждения с двумя и более полясами. На рисунке показан двухполюсный электромотор в разрезе. Принцип его работы следующий. Если по проводам верхней части якоря пропустить ток движущийся «от нас» (отмечено крестиком), а в нижней части — «на нас» (отмечено точкой), то согласно правилу левой руки верхние проводники будут выталкиваться из магнитного поля статора влево, а проводники нижней половины якоря по тому же принципу будут выталкиваться вправо. Поскольку медный провод уложен в пазах якоря, то, вся сила воздействия будет передаваться и на него, и он будет проворачиваться. Дальше видно, что когда проводник с направлением тока «от нас» провернётся вниз и станет против южного полюса создаваемого статором, то он будет выдавливаться в левую сторону, и произойдёт торможение. Чтобы этого не случилось нужно поменять направление тока в проводе на противоположное, как только будет пересечена нейтральная линия. Это делается с помощью коллектора – специального переключателя, коммутирующего обмотку якоря с общей схемой электродвигателя.

Таким образом, обмотка якоря передаёт вращающий момент на вал электромотора, а тот в свою очередь приводит в движение рабочие механизмы любого оборудования, такого как, например, станок для сетки рабицы. Хотя в этом случае используется асинхронный двигатель переменного тока, основной принцип его работы идентичен принципу действия двигателя постоянного тока – это выталкивание проводника с током из магнитного поля. Только у асинхронного электромотора вращающееся магнитное поле, а у электродвигателя постоянного тока – поле статичное.

Конструктивно все электрические двигатели постоянного тока состоят из индуктора и якоря, разделенных воздушным зазором.

Индуктор (статор) электродвигателя постоянного тока служит для создания неподвижного магнитного поля машины и состоит из станины, главных и добавочных полюсов. Станина служит для крепления основных и добавочных полюсов и является элементом магнитной цепи машины. На главных полюсах расположены обмотки возбуждения, предназначенные для создания магнитного поля машины, на добавочных полюсах — специальная обмотка, служащая для улучшения условий коммутации.

Якорь электродвигателя постоянного тока состоит из магнитной системы, собранной из отдельных листов, рабочей обмотки, уложенной в пазы, и коллектора служащего для подвода к рабочей обмотке постоянноготока.

Коллектор представляет собой цилиндр, насаженный на вал двигателя и избранный из изолированных друг от друга медных пластин. На коллекторе имеются выступы-петушки, к которым припаяны концы секций обмотки якоря. Съем тока с коллектора осуществляется с помощью щеток, обеспечивающих скользящий контакт с коллектором. Щетки закреплены в щеткодержателях, которые удерживают их в определенном положении и обеспечивают необходимое нажатие щетки на поверхность коллектора. Щетки и щеткодержатели закреплены на траверсе, связанной с корпусомэлектродвигателя.

Коллекторный движок он очень хорош. Он чертовски легко и гибко регулируется. Можно повышать обороты, понижать, механическая характеристика жесткая, момент он держит на ура. Зависимость прямая. Ну сказка, а не мотор. Если бы не одна ложка дегтя во всей этой вкусняшке — коллектор.

Это сложный, дорогой и очень ненадежный узел. Он искрит, создает помехи, забивается проводящей пылью от щеток. А при большой нагрузке может полыхнуть, образовав круговой огонь и тогда все, капец движку. Закоротит все дугой наглухо.

Но что такое коллектор вообще? Нафига он нужен? Выше я говорил, что коллектор это механический инвертор. Его задача переключать напряжение якоря туда сюда, подставляя обмотку под поток.

Коллектор в электрических машинах выполняет роль выпрямителя переменного тока в постоянный (в генераторах) и роль автоматического переключателя направления тока во вращающихся проводниках якоря (в двигателях).

Когда магнитное поле пересекается только двумя проводниками, образующими рамку, коллектор будет представлять собой одно кольцо, разрезанное на две части, изолированные одна от другой. В общем случае каждое полукольцо носит название коллекторной пластины.

Начало и конец рамки присоединяются каждый к своей коллекторной пластине. Щетки располагаются таким образом, чтобы одна из них была всегда соединена с проводником, который будет двигаться у северного полюса, а другая — с проводником, который будет двигаться у южного полюса.

Рис. 2. Упрощенное изображения коллектора

Рис. 3. Выпрямление переменного тока с помощью коллектора

Сообщим рамке вращательное движение в направлении по часовой стрелке. В момент, когда вращающаяся рамка займет положение, изображенное на рис. 3, А, в ее проводниках будет индуктироваться наибольший по величине ток, так как проводники пересекают магнитные силовые линии, двигаясь перпендикулярно к ним.

Индуктированный ток из проводника В, соединенного с коллекторной пластиной 2, поступит на щетку 4 и, пройдя внешнюю цепь, через щетку 3 возвратится в проводник А. При этом правая щетка будет положительной, а левая отрицательной.

Дальнейший поворот рамки (положение В) приведет снова к индуктированию тока в обоих проводниках; однако направление тока в проводниках будет противоположно тому, которое они имели в положении А. Так как вместе с проводниками повернутся и коллекторные пластины, то щетка 4 снова будет отдавать электрический ток во внешнюю цепь, а по щетке 3 ток будет возвращаться в рамку.

Отсюда следует, что, несмотря на изменение направления тока в самих вращающихся проводниках, благодаря переключению, произведенному коллектором, направление тока во внешней цепи не изменилось.

В следующий момент (положение Г), когда рамка вторично займет положение на нейтральной линии, в проводниках и, следовательно, во внешней цепи тока опять не будет.

В последующие моменты времени рассмотренный цикл движений будет повторяться в том же порядке. Таким образом, направление индуктированного направление тока во внешней цепи благодаря коллектору все время будет оставаться одним и тем же, а вместе с этим сохранится и полярность щеток.

От чего зависят обороты коллекторного двигателя — Moy-Instrument.Ru

КОЛЛЕКТОРНЫЙ ДВИГАТЕЛЬ ПЕРЕМЕННОГО ТОКА

Коллекторные двигатели переменного тока в принципе отличаются от двигателей постоянного тока последовательного возбуждения (рис. 2.1) лишь тем, что их магнитную систему, включая станину и полюсы, делают шихтованной из листовой электротехнической стали. Это необходимо для уменьшения магнитных потерь, которые в двигателе переменного тока имеют повышенную величину, так как магнитный поток возбуждения является переменным (изменяется с частотой сети).

Рис. 2.1. Схема коллекторного двигателя переменного тока

Электромагнитный (вращающий) момент в коллекторном двигателе переменного тока создается так же, как в двигателе постоянного тока, за счет взаимодействия тока якоря с магнитным потоком возбуждения Ф:

. (2.1)

Однако здесь и ток якоря, и магнитный поток изменяются с частотой сети, причем поток несколько отстает по фазе от тока за счет потерь в стали (рис. 2.2):

; (2.2)

. (2.3)

Рис. 2.2. Кривые вращающего момента, тока и магнитного потока коллекторного двигателя переменного тока

Подставив выражения I и Ф в уравнение момента и преобразовав его, получим

, (2.4)

(2.5)

Из выражений (2.4, 2.5) следует, что вращающий момент коллектор­ного двигателя переменного тока имеет две составляющие:

— постоянную (не зависящую от t)

; (2.6)

— переменную (изменяющуюся с удвоенной частотой сети)

. (2.7)

На рис. 2.2 представлена зависимость электромагнитного момента коллекторного двигателя переменного тока в функции времени. Анализ ее показывает, что фазовый сдвиг является причиной появления в течение каждого периода некоторого отрицательного значения электромагнитного момента. С увеличением фазового сдвига отрицательная составляющая момента возрастает и при становится равной положительной составляющей. В этом случае среднее за период значение момента равно нулю и двигатель не работает.

Коллекторные двигатели переменного тока выполняют с последовательным возбуждением – ток якоря является также и током возбуждения. Этим объясняется тем, что фазовый сдвиг между током I и потоком Ф невелик.

Анализ зависимости M = f(t) показывает также, что в течение периода величина момента не остается постоянной, а достигает максимума, когда произведение тока на поток максимально, и падает до нуля при нулевом значении одного из сомножителей. Однако пульсации момента не нарушают работу двигателя, так как частота пульсаций велика, а вращающиеся части обладают значительной инерцией.

По своим рабочим свойствам коллекторный двигатель переменного тока напоминает двигатель постоянного тока последовательного возбуждения. Большим недостатком коллекторных двигателей переменного тока является неудовлетворительная коммутация, сопровождающаяся искрением на щетках. Объясняется это тем, что в коммутируемых секциях обмотки якоря кроме реактивной составляющей э.д.с. ер и э.д.с. вращения евр возникает еще и трансформаторная э.д.с. етр, наводимая переменным магнитным потоком возбуждения.

Универсальные коллекторные двигатели получили большое распространение в устройствах автоматики и в бытовых электроприборах. Это двигатели малой мощности, которые могут работать как от постоянного, так и от переменного тока. Магнитная система их выполняется полностью шихтованной из листовой электротехнической стали.

В универсальном коллекторном двигателе стремятся получить примерно одинаковые частоты вращения при номинальной нагрузке как на постоянном, так и на переменном токе. Достигается это тем, что обмотку возбуждения электродвигателя выполняют с ответвлениями: при работе электродвигателя от сети постоян­ного тока обмотка возбуждения используется полностью, а при работе от сети переменного тока – лишь частично (рис. 2.3).

Рис. 2.3.Принципиальная схема универсального коллекторного двигателя последовательного возбуждения

Однако и в этом случае наблюдается расхождение характеристик двигателей, работающих на постоянном и переменном токах, обусловленное тем, что при работе на переменном токе на величину и фазу тока оказывают влияние индуктивные сопротив­ления обмоток якоря и возбуждения. Уменьшение числа витков обмотки возбуждения двигателя, работающего на переменном токе, обеспечивает сближение механических характеристик лишь при номинальной нагрузке. На рис. 2.4 приведены рабочие Характеристики универсального коллекторного двигателя мощностью 55 Вт.

Рис. 2.4. Рабочие характеристики универсального коллекторного двигателя

Величина тока, потребляемого универсальным двигателем при работе на переменном токе, больше, чем при работе этого же двигателя на постоянном токе, так как переменный ток помимо активной составляющей имеет еще и реактивную составляющую. К.п.д. универсального двигателя на переменном токе ниже, чем на постоянном, что объясняется повышенными магнитными и электрическими потерями.

Регулирование частоты вращения двигателей переменного тока и универсальных двигателей осуществляется точно так же, как и двигателей постоянного тока с последовательным возбуждением.

Коллекторный двигатель постоянного тока

Преобразование электрического тока в механическое движение (вращение) осуществляется электромеханическим преобразователем энергии — электрической машиной. Принцип работы, которой, основан на явлениях электромагнитной индукции и силы Ампера, действующей на проводник с током, движущийся в магнитном поле.

Электрические машины делятся по видам преобразования энергии:

• Генератор — преобразует механическую энергию в электрическую и тепло;
• Электрический двигатель — преобразует электрическую энергию в механическую работу и тепло;
• Электромеханический преобразователь (трансформатор) — преобразуют электрическую энергию одного вида в электрическую энергию другого вида, отличающуюся по напряжению, частоте и другим параметрам;
• Электромагнитный тормоз — механическая и электрическая энергии преобразуются в тепло.

В большинстве случаев электрическая машина состоит из двух элементов рис. 1;
• Ротор (якорь) — вращающаяся часть, состоит из обмотки якоря и коллекторного узла;
• Статор — неподвижная часть, состоит из источника магнитного поля. Постоянный магнит или электромагнит.

Между ротором и статором присутствует воздушный зазор, который служит их разделителем.

Электрические машины делятся на:

Коллекторный двигатель постоянного тока

Коллекторный электродвигатель — электрическая машина, в которой датчиком положения ротора и переключателем тока в обмотках является одно и то же устройство — щёточно-коллекторный узел.

Щеточно-коллекторный узел — обеспечивает электрическое соединение цепи ротора с цепями, расположенными в неподвижной части двигателя. Состоит из коллектора (набора контактов, расположенных на роторе) и щёток (скользящих контактов, расположенных вне ротора и прижатых к коллектору), рис. 2.

Обычно в маломощных моторах всего два полюса обмотки возбуждения (одна пара) и трехзубцовый якорь. Три зуба это минимум для запуска из любого положения, но чем больше зубцов тем более эффективно используется обмотка, меньше токи и более плавный момент, т.к сила является проекцией на угол, а активный участок обмотки проворачивается на меньший угол.

В коллекторном электродвигателе щёточно-коллекторный узел одновременно выполняет две функции:
• является датчиком углового положения ротора (датчик угла) со скользящими контактами;
• переключателем направления тока со скользящими контактами в обмотках ротора в зависимости от углового положения ротора.

Щеточно-коллекторный узел является сам ненадежным элементом электрических машин, поскольку скользящие контакты интенсивно изнашиваются от трения.

Электродвигатели характеризуют два основных параметра — это скорость вращения вала (ротора) и момент вращения, развиваемый на валу. В общем плане оба этих параметра зависят от напряжения, подаваемого на двигатель и тока в его обмотках.

Принцип работы коллекторного двигателя постоянного тока.

Прямоугольная рамка (ротор), свободно вращающаяся вокруг своей оси, помещена между постоянными магнитами. Если через рамку пропустить ток, то на обе ее стороны начнут действовать электродинамические силы. Действие этих сил, приводит рамку в движение. Рамка будет двигаться до тех пор, пока не достигнет положения, когда щетки попадут на диэлектрический зазор между пластинами коллектора. Рамка по инерции проскочит это положение, направление тока в рамке поменяется на противоположное, но силы действующие на рамку не поменяют своего направления, и она продолжит свое вращение в том-же направлении.

Разновидности коллекторных двигателей постоянного тока :

Малой мощности (единицы Ватт), рабочее напряжение 3-9 В:
• трёхполюсной ротор на подшипниках скольжения;
• коллекторный узел из двух щёток — медных пластин;
• двухполюсной статор из постоянных магнитов.

Более мощные (десятки Ватт), рабочее напряжение 12–24 В:
• многополюсный ротор на подшипниках качения;
• коллекторный узел из двух или четырёх графитовых щёток;
• четырёхполюсный статор из постоянных магнитов.

Высокой мощности (сотни Ватт):
• Четырех полюсный статор из электромагнитов.

Подключение обмотки статора

Обмотки статора могут подключаться несколькими способами:

1. Последовательно с ротором (так называемое последовательное возбуждение, см. рис. 4

Преимущество: большой максимальный момент;

Недостаток: большие обороты холостого хода, способные повредить двигатель.

2. Параллельно с ротором (параллельное возбуждение), см. рис. 5

Преимущество: большая стабильность оборотов при изменении нагрузки;

Недостаток: меньший максимальный момент.

3. Часть обмоток параллельно с ротором, часть последовательно (смешанное возбуждение), см. рис. 6.

До некоторой степени совмещает достоинства предыдущих типов.

4. Отдельным источником питания (независимое возбуждение), см. рис. 7.

Общие достоинства коллекторных двигателей постоянного тока — простота изготовления, эксплуатации и ремонта, достаточно большой ресурс.
К недостаткам можно отнести то, что эффективные конструкции (с большим КПД и малой массой) таких двигателей являются низкомоментыми и быстроходными (сотни и тысячи оборотов в минуту), поэтому для большинства приводов (кроме вентиляторов и насосов) необходимы редукторы.

Управление коллекторными двигателями постоянного тока.

Для работы двигателя достаточно подать на него напряжения питания постоянного тока. Проблемы начинают возникать, когда появляется необходимость в регулировке скорости вращения вала такого двигателя. Нужно учитывать, что при вращении на малых скоростях, крутящий момент на валу будет то же мал. Если требуются низкие скорости вращения, то применяются редуктора.

В коллекторных двигателях постоянного тока ярко выражен пусковой ток, который превышает номинальный в несколько раз (10-40 раз). Почему это происходит? Это работает противоэдс. Когда двигатель стоит, то ток который через него может пройти зависит только лишь от двух параметров — напряжения питания и сопротивления якорной обмотки, (8).

Ioя — ток обмотки якоря;
U — напряжение питающей сети;
∑r — сопротивление обмоток якоря;

Как только двигатель начнет движение, то возникает противоЭДС — Епр. Обмотка якоря движется поперек магнитного поля статора и в ней наводится ЭДС, как в генераторе, но направлена она встречно той, что вращает двигатель. И в результате, ток через якорь резко снижается, тем больше, чем выше скорость, формула 9.

Снижение пускового тока можно добится уменьшением напряжения питания или повышением сопротивления обмотки якоря. Для повышения сопротивления обмотки якоря применяется ввод дополнительного сопротивления Rд, формула (10).

Таким образом, можно добиться величины пускового тока, в нужном диапазоне, безопасном для двигателя. Добавочное сопротивление может быть как в виде реостата, так и в виде нескольких резисторов. Это нужно для того, чтобы в процессе запуска двигателя, менять сопротивление в якорной цепи.

Епр — противоэдс, зависит от конструкции двигателя, и оборотов, формула 11.

Ce — одна из конструктивных констант. Они зависят от конструкции двигателя, числа полюсов, количества витков, толщин зазоров между якорем и статором. Нам она не особо нужна, при желании ее можно вычислить экспериментально. Главное, что она константа и на форму кривых не влияет.
Ф — поток возбуждения. т.е. сила магнитного поля статора. В моторах, где она задается постоянным магнитом это тоже константа, а в двигателях с обмоткой возбуждения, этот параметр можно менять.
n — обороты якоря.

Зависимость момента M от тока и потока, формула 12.

См — конструктивная константа.

Вот тут стоит обратить внимание, что зависимость момента от тока совершенно прямая. Т.е. просто замеряя ток, при неизменном потоке возбуждения, мы можем совершенно точно узнать величину момента.

Импульсный способ управления.

Следующий метод управления, как более перспективный, основан на применении широтно-импульсной модуляции (ШИМ). Он, действительно, самый распространенный. К двигателю подводятся импульсы неизменного по амплитуде напряжения управления U у.ном, в результате чего его работа состоит из чередующихся периодов разгона и торможения, рис 14. Если эти периоды малы по сравнению с полным временем разгона и остановки ротора, то угловая скорость ротора не успевает к концу каждого периода достигать установившихся значений и установится некоторая средняя угловая скорость. Значение при неизменных моменте нагрузки и напряжении возбуждения однозначно определяется относительной продолжительностью импульсов ε

tи — длительность импульса;
Ти — период.

С увеличением относительной продолжительности импульсов угловая скорость ротора растет (ωср>ωср).В период паузы tп ротор обязательно должен тормозиться. Если это условие не будет выполняться, то угловая скорость ротора при любом значении ω будет непрерывно увеличиваться, пока не достигнет значения угловой скорости х.х., так как во время импульса угловая скорость будет возрастать, а во время паузы — оставаться практически неизменной.
С ростом частоты управляющих импульсов амплитуда колебаний скорости уменьшается; среднее значение угловой скорости остается при этом неизменным.

Коллекторный электродвигатель постоянного тока

Конструкция коллекторного электродвигателя постоянного тока

Статор — неподвижная часть двигателя.

Индуктор (система возбуждения) — часть коллекторной машины постоянного тока или синхронной машины, создающая магнитный поток для образования момента. Идуктор обязательно включает либо постоянные магниты либо обмотку возбуждения. Индуктор может быть частью как ротора так и статора. В двигателе, изображенном на рис. 1, система возбуждения состоит из двух постоянных магнитов и входит в состав статора.

Якорь — часть коллекторной машины постоянного тока или синхронной машины, в которой индуктируется электродвижущая сила и протекает ток нагрузки [2]. В качестве якоря может выступать как ротор так и статор. В двигателе, показанном на рис. 1, ротор является якорем.

Щетки — часть электрической цепи, по которой от источника питания электрический ток передается к якорю. Щетки изготавливаются из графита или других материалов. Двигатель постоянного тока содержит одну пару щеток или более. Одна из двух щеток соединяется с положительным, а другая — с отрицательным выводом источника питания.

Коллектор — часть двигателя, контактирующая со щетками. С помощью щеток и коллектора электрический ток распределяется по катушкам обмотки якоря [1].

Типы коллекторных электродвигателей

По конструкции статора коллекторный двигатель может быть с постоянными магнитами и с обмотками возбуждения.

Коллекторный двигатель с постоянными магнитами

Коллекторный двигатель постоянного тока (КДПТ) с постоянными магнитами является наиболее распространенным среди КДПТ. Индуктор этого двигателя включает постоянные магниты, которые создают магнитное поле статора. Коллекторные двигатели постоянного тока с постоянными магнитами (КДПТ ПМ) обычно используются в задачах не требующих больших мощностей. КДПТ ПМ дешевле в производстве, чем коллекторные двигатели с обмотками возбуждения. При этом момент КДПТ ПМ ограничен полем постоянных магнитов статора . КДПТ с постоянными магнитами очень быстро реагирует на изменение напряжения. Благодаря постоянному полю статора легко управлять скоростью двигателя. Недостатком электродвигателя постоянного тока с постоянными магнитами является то, что со временем магниты теряют свои магнитные свойства, в результате чего уменьшается поле статора и снижаются характеристики двигателя.

    Преимущества:
  • лучшее соотношение цена/качество
  • высокий момент на низких оборотах
  • быстрый отклик на изменение напряжения
    Недостатки:
  • постоянные магниты со временем, а также под воздействием высоких температур теряют свои магнитные свойства

Коллекторный двигатель с обмотками возбуждения

    По схеме подключения обмотки статора коллекторные электродвигатели с обмотками возбуждения разделяют на двигатели:
  • независимого возбуждения
  • последовательного возбуждения
  • параллельного возбуждения
  • смешанного возбуждения

Двигатели независимого и параллельного возбуждения

В электродвигателях независимого возбуждения обмотка возбуждения электрически не связана с обмоткой якоря (рисунок выше). Обычно напряжение возбуждения UОВ отличается от напряжения в цепи якоря U. Если же напряжения равны, то обмотку возбуждения подключают параллельно обмотке якоря. Применение в электроприводе двигателя независимого или параллельного возбуждения определяется схемой электропривода. Свойства (характеристики) этих двигателей одинаковы [3].

В двигателях параллельного возбуждения токи обмотки возбуждения (индуктора) и якоря не зависят друг от друга, а полный ток двигателя равен сумме тока обмотки возбуждения и тока якоря. Во время нормальной работы, при увеличении напряжения питания увеличивается полный ток двигателя, что приводит к увеличению полей статора и ротора. С увеличением полного тока двигателя скорость так же увеличивается, а момент уменьшается. При нагружении двигателя ток якоря увеличивается, в результате чего увеличивается поле якоря. При увеличении тока якоря, ток индуктора (обмотки возбуждения) уменьшается, в результате чего уменьшается поле индуктора, что приводит к уменьшению скорости двигателя, и увеличению момента.

    Преимущества:
  • практически постоянный момент на низких оборотах
  • хорошие регулировочные свойства
  • отсутствие потерь магнетизма со временем (так как нет постоянных магнитов)
    Недостатки:
  • дороже КДПТ ПМ
  • двигатель выходит из под контроля, если ток индуктора падает до нуля

Коллекторный электродвигатель параллельного возбуждения имеет механическую характеристику с уменьшающимся моментом на высоких оборотах и высоким, но более постоянным моментом на низких оборотах. Ток в обмотке индуктора и якоря не зависит друг от друга, таким образом, общий ток электродвигателя равен сумме токов индуктора и якоря. Как результат данный тип двигателей имеет отличную характеристику управления скоростью. Коллекторный двигатель постоянного тока с параллельной обмоткой возбуждения обычно используется в приложениях, которые требуют мощность больше 3 кВт, в частности в автомобильных приложениях и промышленности. В сравнении с КДПТ ПМ, двигатель параллельного возбуждения не теряет магнитные свойства со временем и является более надежным. Недостатками двигателя параллельного возбуждения являются более высокая себестоимость и возможность выхода двигателя из под контроля, в случае если ток индуктора снизится до нуля, что в свою очередь может привести к поломке двигателя [5].

Двигатель последовательного возбуждения

В электродвигателях последовательного возбуждения обмотка возбуждения включена последовательно с обмоткой якоря, при этом ток возбуждения равен току якоря (Iв = Iа), что придает двигателям особые свойства. При небольших нагрузках, когда ток якоря меньше номинального тока (Iа &lt Iном) и магнитная система двигателя не насыщена (Ф

Iа), электромагнитный момент пропорционален квадрату тока в обмотке якоря:

,

  • где M – момент электродвигателя, Н∙м,
  • сМ – постоянный коэффициент, определяемый конструктивными параметрами двигателя,
  • Ф – основной магнитный поток, Вб,
  • Ia – ток якоря, А.

С ростом нагрузки магнитная система двигателя насыщается и пропорциональность между током Iа и магнитным потоком Ф нарушается. При значительном насыщении магнитный поток Ф с ростом Iа практически не увеличивается. График зависимости M=f(Ia) в начальной части (когда магнитная система не насыщена) имеет форму параболы, затем при насыщении отклоняется от параболы и в области больших нагрузок переходит в прямую линию [3].

Способность двигателей последовательного возбуждения развивать большой электромагнитный момент обеспечивает им хорошие пусковые свойства.

    Преимущества:
  • высокий момент на низких оборотах
  • отсутствие потерь магнетизма со временем
    Недостатки:
  • низкий момент на высоких оборотах
  • дороже КДПТ ПМ
  • плохая управляемость скоростью из-за последовательного соединения обмоток якоря и индуктора
  • двигатель выходит из под контроля, если ток индуктора падает до нуля

Коллекторный двигатель последовательного возбуждения имеет высокий момент на низких оборотах и развивает высокую скорость при отсутствии нагрузки. Данный электромотор идеально подходит для устройств, которым требуется развивать высокий момент (краны и лебедки), так как ток и статора и ротора увеличивается под нагрузкой. В отличии от КДПТ ПМ и двигателей параллельного возбуждения двигатель последовательного возбуждения не имеет точной характеристики контроля скорости, а в случае короткого замыкания обмотки возбуждения он может стать не управляемым.

Двигатель смешанного возбуждения

Двигатель смешанного возбуждения имеет две обмотки возбуждения, одна из них включена параллельно обмотке якоря, а вторая последовательно. Соотношение между намагничивающими силами обмоток может быть различным, но обычно одна из обмоток создает большую намагничивающую силу и эта обмотка называется основной, вторая обмотка называется вспомогательной. Обмотки возбуждения могут быть включены согласовано и встречно, и соответственно магнитный поток создается суммой или разностью намагничивающих сил обмоток. Если обмотки включены согласно, то характеристики скорости такого двигателя располагаются между характеристиками скорости двигателей параллельного и последовательного возбуждения. Встречное включение обмоток применяется, когда необходимо получить неизменную скорость вращения или увеличение скорости вращения с увеличением нагрузки. Таким образом, рабочие характеристики двигателя смешанного возбуждения приближаются к характеристикам двигателя параллельного или последовательного возбуждения, смотря по тому, какая из обмоток возбуждения играет главную роль [4].

    Преимущества:
  • хорошие регулировочные свойства
  • высокий момент на низких оборотах
  • менее вероятен выход из под контроля
  • отсутствие потерь магнетизма со временем
    Недостатки:
  • дороже других коллекторных двигателей

Двигатель смешанного возбуждения имеет эксплуатационные характеристики двигателей с параллельным и последовательным возбуждением. Он имеет высокий момент на низких оборотах, так же как двигатель последовательного возбуждения и хороший контроль скорости, как двигатель параллельного возбуждения. Двигатель смешанного возбуждения идеально подходит для устройств автомобилей и промышленности (таких как генераторы). Выход двигателя смешанного возбуждения из под контроля менее вероятен, так как для этого ток параллельной обмотки возбуждения должен уменьшиться до нуля, а последовательная обмотка возбуждения должна быть закорочена.

Характеристики коллекторного электродвигателя постоянного тока

Эксплуатационные свойства двигателей постоянного тока определяются их рабочими, электромеханическими и механическими характеристиками, а также регулировочными свойствами.

Основные параметры электродвигателя постоянного тока

Постоянная момента

Для коллекторного электродвигателя постоянного тока постоянная момента определяется по формуле:

,

  • где Z — суммарное число проводников,
  • Ф – магнитный поток, Вб [1]

Работа коллекторного электродвигателя переменного тока

В бытовой технике, ручном электроинструменте, автомобильном электрооборудовании и системах автоматики очень часто применяется коллекторный электродвигатель переменного тока, схема подключения которого, как и устройство схожи с двигателями постоянного возбуждения постоянного тока.

Столь распространенное применение их объясняется компактностью, небольшим весом, невысокой стоимостью и простотой управления. В этом сегменте наиболее востребованы двигатели с высокой частотой и малой мощностью.

Принцип работ и конструктивные особенности

Устройство это достаточно специфичное, обладающее в силу схожести с машинами постоянного тока, похожими характеристиками и присущими им достоинствами.

Отличие от двигателей постоянного тока состоит в материале корпуса статора, изготовленном из листов электротехнической стали, благодаря чему удается добиться снижения потерь на вихревые токи.

Чтобы двигатель мог работать от обычной сети, т.е. 220 в, обмотки возбуждения соединяются последовательно.

Эти двигатели, называемые универсальными благодаря тому, что работают они от переменного и постоянного тока, бывают одно- и трехфазными.

Видео: Универсальный коллекторный двигатель

Из чего состоит конструкция?

Устройство электродвигателя переменного тока включает помимо ротора и статора:

  • тахогенератор;
  • щеточно-коллекторный механизм.

Ток якоря взаимодействует с магнитным потоком обмотки возбуждения, вызывая в коллекторном механизме вращение ротора. Ток подается через щетки на коллектор, являющийся узлом ротора и соединенным с обмоткой статора последовательно. Он собран из пластин, имеющих в сечении форму трапеции.

Продемонстрировать принцип работы такого двигателя можно с помощью хорошо известного со школьной программы опыта с вращающейся рамкой, которую поместили между разноименными полюсами магнитного поля. Она вращается под воздействием динамических сил, когда по ней протекает ток. При изменении направления тока, рамка не меняет направления вращения.

Примести к выходу из строя механизма могут высокие обороты холостого хода, вызванные максимальным моментом при последовательном подсоединении обмоток возбуждения.

Схема подключения (упрощенная)

Типовая схема подключения предусматривает вывод на контактную планку до десяти контактов. Протекающий по одной из щеток ток L поступает на коллектор и якорь, затем переходит на обмотки статора через вторую щетку и перемычку, выходя на нейтраль N.

Реверса мотора подобный способ подключения не предусматривает, поскольку подсоединение обмоток параллельное приводит к одновременной смене полюсов магнитных полей. В итоге, направление момента всегда одинаково.

Рекомендуем:

Изменить направление вращения возможно, если поменять на контактной планке местами выхода обмоток. Напрямую двигатель включают, когда вывода ротора и статора подсоединены щеточно-коллекторный механизм. Для включения второй скорости используются выводы половины обмотки. Нельзя забывать, что с момента такого подключения мотор работает на максимальную мощность, поэтому время его эксплуатации не может превышать 15 секунд.

Видео: Подключение и регулировка оборотов двигателя от стиральной машины

Управление двигателем

На практике применяют различные способы регулирования работы двигателя. Это может быть электронная схема, где регулирующим элементом выступает симистор, который на мотор «пропускает» заданное напряжение. Работает он как мгновенно срабатывающий ключ, открываясь, когда на его затвор поступает управляющий импульс.

В основе принципа действия, реализованного в схемах с симистором, лежит двухполупериодное фазовое регулирование, где к импульсам, которые поступают на электрод, привязано напряжение, подаваемое на двигатель. При этом, частота, с которой вращается якорь, прямо пропорциональна напряжению, подаваемому на обмотки.

Упрощенно этот принцип можно описать такими пунктами:

  • на затвор симистора подается сигнал от электронной схемы;
  • затвор открывается, ток течет по обмоткам статора, вызывая вращение якоря мотора М;
  • мгновенные величины частоты вращения преобразуются тахогенератором в электрические сигналы, формируя с импульсами управления обратную связь;
  • как следствие, вращение ротора при любых нагрузках, остается равномерным;
  • с помощью реле R и R1 осуществляется реверс мотора.

Другая схема – тиристорана фазоимпульсная.

Преимущества машин и недостатки

К достоинствам относят:

  • небольшие размеры;
  • универсальность, т.е. работу на напряжении постоянном и переменном;
  • большой пусковой момент;
  • независимость от сетевой частоты;
  • быстроту;
  • мягкую регулировку оборотом в широком диапазоне при варьировании напряжением питания.

Недостатки связаны и использованием щеточно-коллекторного перехода, влекущего:

  • уменьшение срока службы механизма;
  • возникновение между щетками и коллектором искры;
  • высокий уровень шума;
  • большое число коллекторных элементов.

Основные неисправности

Искрение, возникающее между щетками и коллектором – самый главный вопрос, требующий внимания. Чтобы избежать неисправностей более серьезных, таких как их отслаивание и деформация или перегрев ламелей, сработавшуюся щетку необходимо заменить.

Помимо этого, возможно замыкание между обмотками якоря и статора, вызывающее сильное искрение на переходе коллектор-щетка или значительное падение магнитного поля.

Чтобы продлить срок службы двигателя, необходимо соблюдение двух условий – профессиональный изготовитель и грамотный пользователь, т.е. строгое соблюдение режима работы.

Видео: Коллекторный электрический двигатель

Коллекторный двигатель: Устройство, виды и принцип работы

Большое количество оборудования имеет силовые установки, работающие от электрической сети питания. Коллекторный двигатель это силовая установка, преобразующая электрическую энергию в физическую силу. Отличие коллекторного двигателя от бесколлекторного состоит в наличии коллекторно-щеточного узла.

Виды коллекторных двигателей

В зависимости от источника тока, к которому подключается мотор, коллекторные установки делят на два вида:

  • Работающий от источника постоянного тока. Используются в автомобилях, самоходной технике, детских игрушках и т.д. Отличаются простотой конструкции. Подключаются только к источнику постоянного тока;
  • Универсальный коллекторный двигатель. Работает как от постоянного, так и от переменного тока. Применяется в бытовых электрических приборах.

СПРАВКА: Универсальный коллекторный силовой агрегат отличается простотой конструкции и небольшими габаритно массовыми параметрами. Благодаря этому может быть использован в качестве силовой установки ручного инструмента.

В зависимости от максимальной мощности силовые установки делятся на три типа:

  1. Небольшой мощности. Используются в детских игрушках, аудио – видеотехнике и т.д. Напряжение питания таких установок составляет от 1.5 до 9 Вольт. Оси якоря устанавливаются на специализированные втулки. Они играют роль подшипников скольжения. Токопроводящие щетки выполнены в виде двух пластин;
  2. Средней мощности. Якорь устанавливается на втулках или подшипниках. Применяются на автомобильной и самоходной технике. Напряжение питания составляет от 12 до 24 вольта;
  3. Высокой мощности. Отличаются высокими показателями мощности и наличием электрических магнитов.

Устройство коллекторного двигателя

Для того чтобы понять как работает коллекторный двигатель, необходимо разобраться в его конструкции. Независимо от вида силового агрегата он состоит из следующих основных элементов:

  • Якорь. Состоит из металлического вала, на который установлены обмотки. Вал устанавливается на подшипниках скольжения или качения в корпусе мотора. Якорь является движущейся частью мотора, которая передаёт крутящий момент к необходимому оборудованию;
  • Коммутатор (коллектор). Необходим для определения положения якоря. Располагается на роторе. Выполнен в виде медных контактов трапециевидного сечения;

  • Щётки. Изготовлены из графита. Щетки используются для подачи напряжения к обмоткам ротора;
  • Держатели щёток. Изготавливаются из металла или пластика. Держатели щёток устанавливаются на корпус мотора при помощи не проводящих ток прокладок. Такая конструкция исключает подачу напряжения на корпус мотора;

ВАЖНО: Щётки или держатели оснащаются пружинами. Они необходимы для прижимания щетки к коллектору во время работы силовой установки.

  • Подшипники. На небольших моторах используются пластиковые или металлические втулки. Мотор оборудован двумя подшипниками. Они необходимы для нормального вращения вала якоря;
  • Сердечник статора. Изготавливается из большого количества металлических пластин;
  • Обмотки. Необходимы для создания магнитного поля.

Принцип работы коллекторного двигателя

Коллекторный двигатель переменного тока 220 Вольт и мотор постоянного тока, преобразуют электрическую энергию в физическую силу. Создание физической силы осуществляется путём раскручивания якоря, установленного на двух подшипниках в корпусе мотора.

Ротор и статор силового агрегата имеют обмотки. Они изготовлены из провода. Во избежание замыкание витков обмотки между собой провод выполнен в изолирующей оболочке. Напряжение подается на обмотку статора при помощи провода.

Якорь коллекторного мотора подвижный. Для передачи напряжения на обмотку якоря используется коллектор.

Он выполнен в виде медных контактов. На них передаётся напряжение через графитовые щетки. Такая конструкция позволяет передавать напряжение на обмотку якоря независимо от скорости его вращения.

При прохождении электрического тока через обмотки возникает магнитное поле. Обмотка якоря имеет магнитное поле противоположной полярности полю обмотки статора. Под воздействием электромагнитных полей разной полярности якорь двигателя начинает вращаться.

ВНИМАНИЕ: Коллекторный двигатель может быть использован в качестве генератора постоянного тока.

Варианты обмоток возбуждения

Подключить коллекторный двигатель постоянного тока можно несколькими способами. Возбуждение мотора зависит от способа подключения обмоток.

  • Независимое подключение. Обмотки мотора постоянного тока подключаются отдельно. Для подключения используется два источника постоянного тока. Обмотка статора оснащается реостатом. Он необходим для установки необходимой частоты вращения ротора. Обмотка ротора оборудуется пусковым реостатом. Он нужен для контроля над силой тока в обмотке ротора при запуске силовой установки;
  • Параллельное подключение. Питание обмоток якоря и статора осуществляется от одного и того же источника питания. Обмотки оснащены регуляторами;
  • Последовательно-соединенное. Электродвигатель такой конструкции имеет обмотку статора, последовательно подключенную с обмоткой якоря. Ротор может быть оснащен регулятором, необходимым для ограничения силы тока при запуске. Статор оснащается реостатом, регулирующим в частоту вращения вала.

ВАЖНО: Использование коллекторного мотора с последовательным подключением без нагрузки, может привести к выходу его из строя.

  • Смешанное возбуждение. Данная конструкция использует две катушки подключенные параллельно, и последовательно одновременно.

Преимущества и недостатки коллекторного двигателя

Однофазный коллекторный двигатель переменного тока или аналогичный работающий от источника постоянного тока имеют плюсы и минусы.

  1. Однофазный мотор коллекторного типа ( универсальный), можно подключить к любой сети питания. Такая конструкция позволяет использовать мотор от источника питания переменного тока, без использования выпрямителей;
  2. В отличие от бесколлекторных двигателей, модели с коллекторами имеют небольшие размеры. Это позволяет использовать силовые установки для монтажа на электрический инструмент, детские игрушки, и т.п;
  3. Небольшая сила тока при запуске. Позволяет использовать моторы от бытовой сети питания;
  4. Простота регулировки вращения вала ротора. Для управления оборотами применяется реостат. При выходе из строя регулятора, мотор останется работоспособным;
  1. Необходимость регулярного обслуживания. Графитовые щетки при длительной работе стираются. Необходимо вовремя менять щетки на новые. Нарушение этого правила может привести к выходу из строя коллектора;
  2. Отсутствие стабильности показателей мощности. При изменении нагрузки на якорь показатели мощности силового агрегата могут изменяться.

Возможные поломки и способы их ремонта

В результате работы коллекторного двигателя могут возникнуть неисправности. Большинство из них самостоятельно сможет устранить человек не имеющий специализированных технических знаний и оборудования. Ниже представлены наиболее часто возникающие неисправности.

Повышенный шум при работе узла. Сильный уровень шума при работе мотора может свидетельствовать о выходе из строя подшипников, на которые установлен якорь.

При выходе из строя подшипников качения необходимо заменить изношенные детали новыми.

Износ щёток. Критическая изношенность щёток сопровождается повышенным уровнем шума при работе. Несвоевременная замена может привести к поломке коллектора. При возникновении неисправности необходимо заменить графитовые щётки. При выборе щёток необходимо обратить внимание на их толщину. Новые детали не должны застревать в держателях.

Отсутствие вращения якоря при подключении мотора к сети питания. Отсутствие вращения может возникнуть в результате обрыва цепи питания. Обрыв может произойти в результате поломки пружины прижимающей щётку к коллектору или при обрыве провода. При поломке пружины необходимо заменить ее новой деталью. При обрыве провода необходимо восстановить его целостность.

Отсутствие вращения ротора может возникнуть в результате выхода из строя предохранителя. Для восстановления работоспособности необходимо установить новый предохранитель. Перед установкой предохранителя необходимо определить причину, по которой старое устройство вышло из строя. После устранения причины можно установить предохранитель и провести испытание двигателя.

Отсутствие регулировки вращения вала якоря. После запуска агрегат работает на максимальных оборотах. Такая неисправность возникает в результате поломки реостата. Для восстановления работоспособности двигателя необходимо заменить регулятор.

Медленное вращение ротора. Снижение частоты вращения вала может возникнуть в результате низкого напряжения в сети питания. Необходимо проверить напряжение. Снижение оборотов якоря может быть спровоцировано высокой нагрузкой. Необходимо снизить нагрузку на якорь.

Из вышеперечисленного следует, что коллекторный мотор преобразовывает электрическую энергию в физическую силу. Для передачи напряжения к обмоткам якоря используются щётки. Моторы отличаются простотой конструкции и небольшими габаритно массовыми параметрами.

Коллекторный двигатель постоянного и переменного тока

В бытовом электрооборудовании, где используются электродвигатели, как правило, устанавливаются электромашины с механической коммутацией. Такой тип двигателей называют коллекторными (далее КД). Предлагаем рассмотреть различные виды таких устройств, их принцип действия и конструктивные особенности. Мы также расскажем о достоинствах и недостатках каждого из них, приведем примеры сферы применения.

Что такое коллекторный двигатель?

Под таким определением подразумевается электромашина, преобразовывающая электроэнергию в механическую, и наоборот. Конструкция устройства предполагает наличие хотя бы одной обмотки подсоединенной к коллектору (см. рис. 1).

Рисунок 1. Коллектор на роторе электродвигателя (отмечен красным)

В КД данный элемент конструкции используется для переключения обмоток и в качестве датчика, позволяющего определить положение якоря (ротора).

Виды КД

Классифицировать данные устройства принято по типу питания, в зависимости от этого различают две группы КД:

  1. Постоянного тока. Такие машины отличаются высоким пусковым моментом, плавным управлением частоты вращения и относительно простой конструкцией.
  2. Универсальные. Могут работать как от постоянного, так и переменного источника электроэнергии. Отличаются компактными размерами, невысокой стоимостью и простотой управления.

Первые, делятся на два подвида, в зависимости от организации индуктора он может быть на постоянных магнитах или специальных катушках возбуждения. Они служат для создания магнитного потока, необходимого для образования вращательного момента. КД, где используются катушки возбуждения, различают по типам обмоток, они могут быть:

  • независимыми;
  • параллельными;
  • последовательными;
  • смешанными.

Разобравшись с видами, рассмотрим каждый из них.

КД универсального типа

На рисунке ниже представлен внешний вид электромашины данного типа и ее основные элементы конструкции. Данное исполнение характерно практически для всех КД.

Конструкция универсального коллекторного двигателя

Обозначения:

  • А – механический коммутатор, его также называют коллектором, его функции были описаны выше.
  • В – щеткодержатели, служат для крепления щеток (как правило, из графита), через которые напряжение поступает на обмотки якоря.
  • С – Сердечник статора (набирается из пластин, материалом для которых служит электротехническая сталь).
  • D – Обмотки статора, данный узел относится к системе возбуждения (индуктору).
  • Е – Вал якоря.

У устройств данного типа, возбуждение может быть последовательным и параллельным, но поскольку последний вариант сейчас не производят, мы его не будем рассматривать. Что касается универсальных КД последовательного возбуждения, то типовая схема таких электромашин представлена ниже.

Схема универсального коллекторного двигателя

Универсальный КД может работать от переменного напряжения благодаря тому, что когда происходит смена полярности, ток в обмотках возбуждения и якоря также меняет направление. В результате этого вращательный момент не изменяет своего направления.

Особенности и область применения универсальных КД

Основные недостатки данного устройства проявляются при его подключении к источникам переменного напряжения, что отражается в следующем:

  • снижение КПД;
  • повышенное искрообразование в щеточно-коллекторном узле, и как следствие, его быстрый износ.

Ранее КД широко применялись, во многих бытовых электроприборах (инструмент, стиральные машины, пылесосы и т.д.). На текущий момент производители практически престали использовать данный тип двигателей отдав предпочтение безколлекторным электромашинам.

Теперь рассмотрим коллекторные электромашины, работающие от источников постоянного напряжения.

КД с индуктором на постоянных магнитах

Конструктивно такие электромашины отличаются от универсальных тем, что вместо катушек возбуждения используются постоянные магниты.

Конструкция коллекторного двигателя на постоянных магнитах и его схема

Этот вид КД получил наибольшее распространение по сравнению с другими электромашинами данного типа. Это объясняется невысокой стоимостью вследствие простоты конструкции, простым управлением скорости вращения (зависит от напряжения) и изменением его направления (достаточно изменить полярность). Мощность двигателя напрямую зависит от напряженности поля, создаваемого постоянными магнитами, что вносит определенные ограничения.

Основная сфера применения – маломощные приводы для различного оборудования, часто используется в детских игрушках.

КД на постоянных магнитах с игрушки времен СССР

К числу преимуществ можно отнести следующие качества:

  • высокий момент силы даже на низкой частоте оборотов;
  • динамичность управления;
  • низкая стоимость.

Основные недостатки:

  • малая мощность;
  • потеря магнитами своих свойств от перегрева или с течением времени.

Для устранения одного из основных недостатков данных устройств (старения магнитов) в системе возбуждения используются специальные обмотки, перейдем к рассмотрению таких КД.

Независимые и параллельные катушки возбуждения

Первые получили такое название вследствие того, что обмотки индуктора и якоря не подключаются друг к другу и запитываются отдельно (см. А на рис. 6).

Рисунок 6. Схемы КД с независимой (А) и параллельной (В) обмоткой возбуждения

Особенность такого подключения заключается в том, что питание U и UK должны отличаться, в противном случае н возникнет момент силы. Если невозможно организовать такие условия, то катушки якоря и индуктора подключается параллельно (см. В на рис. 6). Оба вида КД обладают одинаковыми характеристиками, мы сочли возможным объединить их в одном разделе.

Момент силы у таких электромашин высокий при низкой частоте вращения и уменьшается при ее увеличении. Характерно, что токи якоря и катушки независимы, а общий ток является суммой токов, проходящих через эти обмотки. В результат этого, при падении тока катушки возбуждения до 0, КД с большой вероятностью выйдет из строя.

Сфера применения таких устройств – силовые установки с мощностью от 3 кВт.

Положительные черты:

  • отсутствие постоянных магнитов снимает проблему их выхода из строя с течением времени;
  • высокий момент силы на низкой частоте вращения;
  • простое и динамичное управление.

Минусы:

  • стоимость выше, чем у устройств на постоянных магнитах;
  • недопустимость падения тока ниже порогового значения на катушке возбуждения, поскольку это приведет к поломке.

Последовательная катушка возбуждения

Схема такого КД представлена на рисунке ниже.

Схема КД с последовательным возбуждением

Поскольку обмотки включены последовательно, то ток в них будет равным. В результате этого, когда ток в обмотке статора становится меньше, чем номинальный (это происходит при небольшой нагрузке), уменьшается мощность магнитного потока. Соответственно, когда нагрузка увеличивается, пропорционально увеличивается мощность потока, вплоть до полного насыщения магнитной системы, после чего эта зависимость нарушается. То есть, в дальнейшем рост тока в обмотке катушки якоря не приводит к увеличению магнитного потока.

Указанная выше особенность проявляется в том, что КД данного типа непозволительно запускать при нагрузке на четверть меньше номинальной. Это может привести к тому, что ротор электромашины резко увеличит частоту вращения, то есть, двигатель пойдет «в разнос». Соответственно, такая особенность вносит ограничения на сферу применения, например, в механизмах с ременной передачей. Это связано с тем, что при ее обрыве электромашина начинает работать в холостом режиме.

Указанная особенность не распространяется на устройства, чья мощность менее 200 Вт, для них допустимы падения нагрузки вплоть до холостого режима работы.

Преимущества КД с последовательной катушкой, такие же, как у предыдущей модели, за исключением простоты и динамичности управления. Что касается минусов, то к ним следует отнести:

  • высокую стоимость в сравнении с аналогами на постоянных магнитах;
  • низкий уровень момента силы при высокой частоте оборотов;
  • поскольку обмотки статора и возбуждения подключены последовательно, возникают проблемы с управлением скоростью вращения;
  • работа без нагрузки приводит к поломке КД.

Смешанные катушки возбуждения

Как видно из схемы, представленной на рисунке ниже, индуктор на КД данного типа обладает двумя катушками, подключенных последовательно и параллельно обмотке ротора.

Схема КД со смешанными катушками возбуждения

Как правило, одна из катушек обладает большей намагничивающей силой, поэтому она считается, как основная, соответственно, вторая – дополнительная (вспомогательная). Допускается встречное и согласованное включение катушек, в зависимости от этого интенсивность магнитного потока соответствует разности или сумме магнитных сил каждой обмотки.

При встречном включении характеристики КД становятся близкими к соответствующим показателям электромашин с последовательным или параллельным возбуждением (в зависимости от того, какая из катушек является основной). То есть, такое включение актуально, если необходимо получить результат в виде неизменной частоты оборотов или их увеличению при возрастании нагрузки.

Согласованное включение приводит к тому, что характеристики КД будут соответствовать среднему значению показателями электромашин с параллельными и последовательными катушками возбуждения.

Единственный недостаток такой конструкции – самая высокая стоимость в сравнении с другими типами КД. Цена оправдывается благодаря следующими положительными качествами:

  • не устаревают магниты, за отсутствием таковых;
  • малая вероятность выхода из строя при нештатных режимах работы;
  • высокий момент силы на низкой частоте вращения;
  • простое и динамичное управление.

Как устроен автомобильный стартер, принципы работы

Большинство водителей очень быстро переходят от желания просто ездить к желанию проводить самостоятельно некоторые ремонтные работы своего авто. Для того чтобы совершенствовать свой автомобиль нужно знать принцип его работы и внутренне устройство. А приступить к изучению лучше с самого начала, то есть со стартера автомобиля – то, без чего движение ТС изначально невозможно.

Стартер, его назначение

Стартер – это устройство относительно маленьких размеров, которое, в силу своей конструкции, преобразовывает электрический поток энергии в механический. Из самого названия следует, что служит деталь для запуска двигателя.

Визуально, стартер – это небольшой мотор постоянного тока, который имеет механический привод. Он запускает первичное движение коленвала с частотой, необходимой для запуска ДВС и является обязательно составляющей электрического оборудования транспортного средства.

Если разбирать структуру стартера более детально, то можно понять, что он выглядит как четырехполюсный двигатель. Питает такой мотор аккумулятор автомобиля – сразу после поворота ключа зажигания, на клемму реле поступает ток. Мощность у элемента бывает разная, но производители предусматривают для большинства бензиновых ДВС стартеры на 3кВт. Напряжение от АКБ автомобиля значительно усиливает работу электромотора.

Поскольку, в идеале, стартер – единственный способ завести двигатель, автомобильные производители изобретают массу дополнительных функций и блокирующие механизмы для повышения безопасности при запуске двигателя и снижения риска угона.

К примеру, некоторые модели автомобиля предусматривают запуск двигателя только при выжатом сцеплении. При АКПП включение стартера происходит, только если селектор находится в положении «parking».

Виды стартеров

Среди всего спектра автомобильных деталей выделяют только два типа стартеров двигателя:

  1. Без редуктора. Не имея редуктора, такие детали обладают возможностью прямого воздействия на шестерню. Кроме того, после момента получения тока на контроллер, стартер обеспечивает более быстрое зажигание, за счет мгновенной цепкости шестерни и маховика. Такие устройства имеют большое преимущество в виде простой конструкции, легкой возможности ремонта и очень низкой вероятности поломки из-за влияния электричества. Однако среди недостатков автомобилисты выделяют иногда перебойную работу в условиях низкой температуры.
  1. С редуктором. Казалось бы, после большого списка преимуществ безредукторного стартера, выбор можно остановить, но нет. Большинство специалистов настаивают на эксплуатации стартера с редуктором. За счет последнего эффективная работа возможна, даже если заряд АКБ на исходе. Сниженная потребность тока усиливается наличием постоянных магнитов. Подобный тандем снижает вероятность проблем с обмоткой практически к нулю. С другой стороны, продолжительная эксплуатация такого устройства чревата поломками основной шестерни. Хотя чаще к этому приводит производственный брак.

Внутреннее устройство и особенности

ДВС генерирует энергию для работы при помощи оборотов коленвала. Другие электрические системы транспортного средства работают от этой же энергии. Чтобы запустить ТС с неподвижной точки необходимо правильное взаимодействие электродвигателя и внешнего источника – аккумулятора.

Общий тандем обеспечивается благодаря некоторым составляющим:

  • Якорь. Имеет запрессованный сердечник и несколько коллекторных пластин. Основа изготовляется из легированной стали.
  • Щетки и держатели. По ходу главного цикла, щетки способствую повышению мощности. В первую очередь, служат для подачи рабочего напряжения на набор пластин якоря.
  • Реле. Главное назначение втягивающего реле – подача питания от зажигания и выталкивание обгонной муфты. Производители предусмотрели в структуре несколько силовых контактов и специфичную перемычку.
  • Непосредственно электромотор. Включает несколько сердечников и обмотки возбуждения; имеет форму цилиндра.
  • Бендикс и шестерня. Главный рабочий механизм стартера, который перенаправляет момент вращения на венец маховика ДВС через шестерню при помощи роликового механизма. После запуска система разрывает связь венца маховика и приводной шестерни, сохраняя работоспособность всего устройства.

Подобным образом устроено большинство автомобильных стартеров, хотя могут быть некоторые отличия. В целом, если разобрать элемент, можно насчитать порядка 50 различных составляющих компонентов.

Чаще всего отличия между разными устройствами заключаются в механизме рассоединения шестерен.

В автомобилях с АКПП стартер может иметь несколько дополнительных обмоток, чтобы предотвратить запуск мотора при ходовой позиции селектора.

Принцип работы автомобильного стартера

Автомобильный стартер относится к ряду электромеханических приспособлений ТС. В основе лежит преобразование природы одной энергии в другую, и чтобы в итоге завести двигатель, происходят следующие процессы:

  1. Ток попадает на обмотку тягового реле после прохождения по реле стартера, исключительно после замыкания контакта замка зажигания.
  2. Якорь взаимодействует с бендиксом. Через втягивающее реле внутри мотора бендикс заставляет венец маховика и шестерню сцепиться.
  3. При достижении верхней точки, контакты взаимодействуют для передачи напряжения к обмотке стартера.
  4. Движение вала провоцирует запуск ДВС. В момент, когда скорости маховика и вала отличаются в положительную сторону, зацепление прекращается и бендикс возвращается в стартовую позицию за счет пружины.
  5. Подача энергии прекращается при повороте ключа.

С виду может показаться, что механизм работы стартера достаточно запутан, но это чувство преследует водителя до первого самостоятельного ремонта элемента.

Возможные проблемы стартера

Естественно, что на стартер приходится гораздо меньше нагрузки, чем на многие другие узлы транспортного средства, но даже при лояльных нагрузках полностью исключить вероятность поломки невозможно.

  • Стартер «отказывается» запускаться. Причин для такого поведения устройства может быть несколько, и все они напрямую связаны с внутренней конструкцией элемента – неисправности реле, нарушение контактов или обмотки.
  • Медленное движение коленвала. Возможной основой для замедленного вращения вала может стать повышенная вязкость масла, снижение заряда внешнего источника питания или окислением контактов проводов.
  • Вращение якоря не приводит в движение коленчатый вал. Скорее всего, подобная неприятность возникает из-за буксировки муфты свободного хода привода или помехи в передвижении элемента по винтовой нарезке вала.
  • Скрежет шестерни. За нехарактерным поведением шестерен стоит неправильно отстроенное замыкание контактов или задиры на зубчиках венца маховика ДВС. Маловероятной, но все-таки причиной, может быть ослабление пружины привода.
  • Излишне продолжительная работа стартера. Специалисты считают, что причина кроется в заедании замка зажигания или обмотки в структуре стартера, неправильная работа контактов.
  • Усиление шума. Нехарактерные громкие звуки появляются по причине ослабевания креплений деталей стартера или из-за медленного выхода шестерни из зацепления.

Проблем в работе стартера лучше не допускать. Естественно, что практически любую его поломку можно компенсировать грамотным ремонтом, но правильнее будет приобрести новое исправное устройство, не стараясь при этом сэкономить на стоимости элемента.

Чтобы разбираться в пусковой системе автомобиля, необходимо не только знать устройство стартера, но и разбираться в его технических характеристиках: напряжение, мощность, потенциальная скорость движения вала, величина крутящего момента и необходимый ток. Естественно, что любые знания лучше закрепить практикой. Для начала можно ознакомиться с некоторыми видео в сети:

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Мой мир

Для чего нужен пусковой конденсатор в электродвигателе

Если требуется присоединить трехфазный электродвигатель к обычной электросети, то потребуется создать электросхему для сдвига фаз. Основой такой схемы может служить конденсатор. Применяется он и для однофазного двигателя с целью облегчения его пуска.

Что такое конденсатор

Это устройство для накопления электрического заряда. Он состоит из пары проводящих пластин, находящихся на малом отстоянии друг от друга и разделенных слоем изолирующего материала.

Широко распространены следующие виды накопителей электрического заряда:

  • Полярные. Работают в цепях с постоянным напряжением, подключаются в соответствии с указанной на них полярностью.
  • Неполярные. Работают в цепях с переменным напряжение, подключать можно как угодно
  • Электролитические. Пластины представляют собой тонкие оксидные пленки на листе фольги.

Электролитические лучше других подходят на роль конденсатора для пуска электродвигателя.

Описание разновидностей конденсаторов

Различным типам электродвигателей соответствуют подходящие им по своим характеристикам накопители.

Так, для низкочастотных высоковольтных (50 герц, 220-600 вольт) двигателей хорошо подходит электролитический конденсатор. Такие устройства обладают высокой емкостью, доходящей до 100 тысяч микрофарад. Нужно внимательно следить за соблюдением полярности, в противном случае из-за перегрева пластин возможно возгорание.

Неполярные накопители не имеют таких ограничений, но стоят они с несколько раз дороже.

Различные виды конденсаторов

Кроме перечисленных выше, производятся также вакуумные, газовые, жидкостные устройства, но как пусковой или рабочий конденсатор в схеме подключения электромотора, они не применяются.

Выбор емкости

С целью максимизации эффективности электродвигателя нужно рассчитать ряд параметров электроцепи, и прежде всего емкость.

Для рабочего конденсатора

Существуют сложные и точные методы расчета, однако в домашних условиях вполне достаточно оценить параметр по приближенной формуле.

На каждые 100 ватт электрической мощности трехфазного электродвигателя должно приходиться 7 микрофарад.

Недопустимо также подавать на фазовую статорную обмотку напряжение, превышающее паспортное.

Для пускового конденсатора

Если электродвигатель должен запускаться при наличии высокой нагрузки на приводном валу, то рабочий конденсатор не справится, и на время запуска потребуется подключать пусковой. После достижения рабочих оборотов, что происходит в среднем за 2-3 секунды, он отключается вручную или устройством автоматики. Доступны специальные кнопки включения электрооборудования, автоматически размыкающие одну из цепей через заданное время задержки.

Недопустимо оставлять пусковой накопитель подключенным в рабочем режиме. Фазовый перекос токов может привести к перегреву и возгоранию двигателя. Определяя емкость пускового прибора, следует принимать ее в 2-3 раза выше, чем у рабочего. При этом при запуске крутящий момент электродвигателя достигает максимального значения, а после преодоления инерции механизма и набора оборотов он снижается до номинального.

Для набора требуемой емкости конденсаторы для запуска электродвигателя подключают в параллель. Емкость при этом суммируется.

Простые способы подключения электродвигателя

Самый простой способ подключения трехфазного электродвигателя к бытовой электросети – применение частотного преобразователя. Потери мощности будут минимальны, но стоит такое устройство зачастую дороже самого двигателя.

Частотный преобразователь станет экономически эффективным лишь при большом объеме использования оборудования.

При другом способе для преобразования питающего напряжения используется обмотка самого асинхронного электродвигателя. Схема получится громоздкая и массивная. Конденсатор для запуска электродвигателя подключают по одной из двух популярных схем

Подключение двигателя по схемам «звезда» и «треугольник»

При реализации подключения этими способами важно свести к минимуму потери по мощности.

Схема подключения «треугольник»

Схема достаточно простая, для облегчения понимания обозначим контакты мотора символами A — ноль, B — рабочий и C — фазовый

Сетевой шнур подсоединяется коричневым проводником к контакту A, туда же следует подсоединить один из выводов конденсатора. К контакту И подсоединяется второй вывод прибора, а синий проводник сетевого шнура — к контакту С.

В случае небольшой мощности электромотора, не превышающей 1,5 киловатта, допустимо подключать только один конденсатор, пусковой при этом не нужен.

Если же мощность выше и нагрузка на валу значительная, то используют два параллельно соединенных прибора.

Схема подключения «звезда»

В случае если на клеммнике электродвигателя 6 выводов — следует их прозвонить по отдельности и определить, какие выводы связаны друг с другом. В паспорте мотора нужно найти назначение выводов. После этого схема переподключается, формируя привычный «треугольник».

С этой целью снимаются перемычки и контактам присваивают условные обозначения от A до F. Далее последовательно соединяются контакты: A и D, B и E, C и F.

Теперь контакты D, E и F станут соответственно нулевым, рабочим и фазовым проводом. Конденсатор присоединяют к ним точно так же, как в предыдущем случае.

При первом включении нужно внимательно следит за тем, чтобы обмотки не перегревались. В этом случае следует немедленно отключить устройство и определить причину перегрева.

Рабочее напряжение

После емкости напряжение является важнейшим параметром. Если взять слишком большой запас по напряжению — сильно вырастут габариты, вес и цена всего устройства. Еще хуже – взять устройства, которым не хватает рабочего напряжения. Такое использование приведет к их быстрому износу, выходу из строя, пробою. При этом возможно возгорание или даже взрыв.

Оптимальный запас по напряжению — 15-20%.

Важно! Для конденсаторов с диэлектриком из бумаги в цепях с переменным напряжением номинальное напряжение, указанное для постоянного тока, нужно поделить на 3.

Если указано 600 вольт, то в цепях переменного тока безопасно применять такие конденсаторы можно до 300 вольт.

Использование электролитических конденсаторов

Конденсаторы с диэлектриком из бумаги отличаются малой удельной емкостью и значительными габаритами. Для двигателя даже не самой большой мощности они будут занимать много места. Теоретически их можно заменить электролитическими, обладающими в несколько раз более высокой удельной емкостью.

Разновидности устройства электролитического конденсатора

Для этого электрическую схему придется дополнить несколькими элементами: диодами и резисторами. Такой вариант неплох для эпизодически работающего двигателя. Если же планируются продолжительные нагрузки, то от экономии места и веса лучше отказаться — при случайном выходе диода из строя он начнет пропускать на накопитель переменный ток, что приведет к его пробою и взрыву.

Выходом могут служить полипропиленовые конденсаторы с металлическим напылением серии СВВ, разработанные для использования в качестве пусковых.

Как подобрать конденсатор для трехфазного электродвигателя

Для вычисления емкости основного конденсатора применяют формулу:

  • k- коэффициент, принимаемый за 4800 при схеме «треугольник» и 2800 при схеме «звезда»;
  • Iφ-ток статора, его берут из паспорта или таблички на корпусе;
  • U- напряжение сети.

Результат получается в микрофарадах. Вместо точной формулы можно применять правило: на каждые 100 ватт мощности — 7 микрофарад емкости.

Если при старте двигателю приходится преодолевать большой момент инерции подключенного к валу оборудования, то в помощь основному на время запуска и набора номинальных оборотов подключают пусковой конденсатор.

Емкость пускового накопителя принимают в 2-3 раза больше основного.

Подключение трехфазного электродвигателя к сети

После выхода на режим его обязательно отключают — вручную или с помощью автоматики. Если на рассчитанную емкость нет точно подходящего по номиналу прибора, конденсаторы можно подключать параллельно.

Как подобрать пусковой конденсатор для однофазного электромотора

До использования в пусковой цепи конденсатор проверяют тестером на исправность. При подборе рабочего конденсатора можно применять такое же приближенное правило а-7 микрофарад на 100 ватт номинальной электрической мощности. Емкость пускового также берется в 2-3 раза выше.

При подборе конденсатора на 220 вольт следует выбирать модели с номиналом не менее 400. Это объясняется переходными электромагнитными процессами при запуске, дающими кратковременные пусковые броски напряжения до 350-550 вольт.

Однофазные асинхронные электромоторы часто применяются в домашних электроприборах и электроинструменте. Для пуска таких устройств, особенно под нагрузкой, требуется пусковая обмотка и сдвиг фазы. Для этого используется конденсатор, подключаемый по одной из известных схем.

Конструкция асинхронного однофазного электродвигателя

Если запуск осуществляется с преодолением большого момента инерции, подсоединяют пусковой конденсатор.

Почему однофазный электродвигатель запускают через конденсатор

Статор электродвигателя с единственной обмоткой при пропускании переменного тока не сможет начать вращение, а лишь начнет подрагивать. Чтобы начать вращение, перпендикулярно основной обмотке размещают пусковую. В цепь этой обмотки включают компонент для сдвига фазы, такой, как конденсатор. Электромагнитные поля этих двух обмоток, прикладываемые к ротору со сдвигом по фазе, и обеспечат начало вращения.

В трехфазном двигателе обмотки и так размещены под углами 120 ° . Соответственно сориентированы и наводимые ими в роторе электромагнитные поля. Для начала вращения достаточно обеспечить сдвиг их работы по фазе, чтобы обеспечить пусковой момент вращения.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Для чего нужен пусковой конденсатор?

Пусковой и рабочий конденсаторы служат для запуска и работы элетродвигателей работающих в однофазной сети 220 В.

Поэтому их ещё называют фазосдвигающими.

Место установки – между линией питания и пусковой обмоткой электродвигателя.

Условное обозначение конденсаторов на схемах

Графическое обозначение на схеме показано на рисунке, буквенное обозначение-С и порядковый номер по схеме.

Основные параметры конденсаторов

Ёмкость конденсатора-характеризует энергию,которую способен накопить конденсатор,а также ток который он способен пропустить через себя. Измеряется в Фарадах с множительной приставкой (нано, микро и т.д.).

Самые используемые номиналы для рабочих и пусковых конденсаторов от 1 мкФ (μF) до 100 мкФ (μF).

Номинальное напряжение конденсатора- напряжение, при котором конденсатор способен надёжно и долговременно работать, сохраняя свои параметры.

Известные производители конденсаторов указывают на его корпусе напряжение и соответствующую ему гарантированную наработку в часах,например:

  • 400 В – 10000 часов
  • 450 В – 5000 часов
  • 500 В – 1000 часов

Проверка пускового и рабочего конденсаторов

Проверить конденсатор можно с помощью измерителя ёмкости конденсаторов, такие приборы выпускаются как отдельно, так и в составе мультиметра- универсального прибора, который может измерять много параметров. Рассмотрим проверку мультиметром.

  • обесточиваем кондиционер
  • разряжаем конденсатор, закоротив еговыводы
  • снимаем одну из клемм (любую)
  • выставляем прибор на измерение ёмкости конденсаторов
  • прислоняем щупы к выводам конденсатора
  • считываем с экрана значение ёмкости

У всех приборов разное обозначение режима измерения конденсаторов, основные типы ниже на картинках.

В этом мультиметре режим выбирается переключателем, его необходимо поставить в режим Fcх.Щупы включить в гнёзда с обозначением Сх.

Переключение предела измерения ёмкости ручное. Максимальное значение 100 мкФ.

У этого измерительного прибора автоматический режим, необходимо только его выбрать, как показано на картинке.

Измерительный пинцет от Mastech также автоматически измеряет ёмкость, необходимо только выбрать режим кнопкой FUNC, нажимая её, пока не появится индикация F.

Для проверки ёмкости, считываем на корпусе конденсатора её значение и ставим заведомо больший предел измерения на приборе. (Если он не автоматический)

К примеру, номинал 2,5 мкФ (μF), на приборе ставим 20 мкФ (μF).

После подсоединения щупов к выводам конденсатора ждём показаний на экране, к примеру время измерения ёмкости 40 мкФ первым прибором – менее одной секунды, вторым – более одной минуты, так что следует ждать.

Если номинал не соответствует указанному на корпусе конденсатора, то его необходимо заменить и если нужно подобрать аналог.

Замена и подбор пускового/рабочего конденсатора

Если имеется оригинальный конденсатор, то понятно, что просто-напросто необходимо поставить его на место старого и всё. Полярность не имеет значения, то есть выводы конденсатора не имеют обозначений плюс «+» и минус «-» и их можно подключить как угодно.

Категорически нельзя применять электролитические конденсаторы (узнать их можно по меньшим размерам, при той же ёмкости, и обозначению плюс и минус на корпусе). Как следствие применения – термическое разрушение. Для этих целей производители специально выпускают неполярные конденсаторы для работы в цепи переменного тока, которые имеют удобное крепление и плоские клеммы, для быстрой установки.

Если нужного номинала нет, то его можно получить параллельным соединением конденсаторов. Общая ёмкость будет равна сумме двух конденсаторов:

То есть, если соединить два конденсатора по 35 мкФ, получим общую ёмкость 70 мкФ, напряжение при котором они смогут работать будет соответствовать их номинальному напряжению.

Такая замена абсолютно равноценна одному конденсатору большей ёмкости.

Если во время замены перепутались провода, то правильное подключение можно посмотреть по схеме на корпусе или здесь: Схема подключения конденсатора к компрессору

Типы конденсаторов

Для запуска мощных двигателей компрессоров применяют маслонаполненные неполярные конденсаторы.

Корпус внутри заполнен маслом для хорошей передачи тепла на поверхность корпуса. Корпус обычно металлический, аллюминиевый.

Самые доступные конденсаторы такого типа CBB65.

Для запуска менее мощной нагрузки, например двигателей вентиляторов, используют сухие конденсаторы, корпус которых, обычно, пластмассовый.

Наиболее распространённые конденсаторы этого типа CBB60, CBB61.

Клеммы для удобства соединения сдвоенные или счетверённые.

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Есть 2 типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Их различие в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это нужно потому, что после разгона она снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная, они смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Схема подключения однофазного двигателя через конденсатор

При подключении однофазного конденсаторного двигателя есть несколько вариантов схем подключения. Без конденсаторов электромотор гудит, но не запускается.

  • 1 схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже.
  • 3 схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском, а с рабочим конденсором — если нужны хорошие рабочие характеристики.
  • 2 схема — подключения однофазного двигателя — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и используется чаще всего. Она на втором рисунке. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Схема подключения трёхфазного двигателя через конденсатор

Здесь напряжение 220 вольт распределяется на 2 последовательно соединенные обмотки, где каждая рассчитана на такое напряжение. Поэтому теряется мощность почти в два раза, но использовать такой двигатель можно во многих маломощных устройствах.

Максимальной мощности двигателя на 380 В в сети 220 В можно достичь используя соединение типа треугольник. Кроме минимальных потерь по мощности, неизменным остается и число оборотов двигателя. Здесь каждая обмотка используется на свое рабочее напряжение, отсюда и мощность.

Важно помнить: трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 В. Поэтому если есть ввод на 380 В — обязательно подключайте к нему — это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковики и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к сети 380 В.

Онлайн расчет емкости конденсатора мотора

Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

Рабочий конденсатор берут из расчета 0,8 мкФ на 1 кВт мощности двигателя;
Пусковой подбирается в 2-3 раза больше.

Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.

Пусковые конденсаторы для моторов

Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

При нормальной работе трехфазных асинхронных электродвигателей с конденсаторным пуском, включенных в однофазную сеть предполагается изменение (уменьшение) емкости конденсатора с увеличением частоты вращения вала. В момент пуска асинхронных двигателей (особенно, с нагрузкой на валу) в сети 220 В требуется повышенная емкость фазосдвигающего конденсатора.

Реверс направления движения двигателя

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Такую операцию может делать двухпозиционный переключатель, на центральный контакт которого подключается вывод от конденсатора, а на два крайних вывода от «фазы» и «нуля».

Что такое статор? (с рисунками)

Статор — статическая часть вращающихся электромагнитных устройств, таких как электродвигатели, генераторы переменного тока и генераторы. Он представляет собой один из двух основных компонентов устройства, другой — подвижный ротор, обеспечивающий рабочую мощность. В зависимости от конструкции устройства статор может выступать в качестве якоря или обмотки возбуждения конкретного устройства. В любом случае он все время остается неподвижным, пока ротор вращается вокруг него или внутри него.

Генераторы содержат статор.

Вращающиеся электромагнитные машины, такие как электродвигатели и генераторы, состоят из двух основных компонентов, которые, в зависимости от конкретной рассматриваемой конструкции, выполняют одну из двух важнейших функций.Два основных компонента — это вращающийся ротор и неподвижный статор. В случае двигателя ротор — это часть устройства, которая обеспечивает рабочее движение, на которое рассчитана машина. В генераторах переменного тока и генераторах ротор — это элемент, к которому прикладывается рабочее движение внешнего источника энергии, как это видно в автомобильном генераторе переменного тока. В обоих случаях статор остается неподвижным по отношению к вращающемуся ротору все время во время работы.

Стационарной частью электромагнитной цепи двигателя является статор.

Независимо от того, является ли соответствующая машина устройством вывода движения, таким как двигатель, или источником выходной электроэнергии, например генератором, статор и ротор выполняют одну из двух основных функций в рабочем цикле. Первый — это устройство полевого устройства или катушки возбуждения, как ее часто называют.Эта часть устройства создает сильное магнитное поле благодаря массиву постоянных магнитов или электрической катушке. Второй элемент рабочего цикла выполняет функцию арматуры. Это часть машины, с которой магнитное поле взаимодействует для обеспечения выходной мощности устройства.

Во многих устройствах обе части могут выполнять роль полевого устройства или якоря.Например, большой промышленный двигатель будет иметь катушку возбуждения, расположенную внутри статического внешнего компонента статора, при этом якорь будет представлен многослойным стальным сердечником, окружающим ротор, который вращается внутри статора. С другой стороны, небольшой бесщеточный двигатель постоянного тока (DC), приводящий в движение вентилятор охлаждения компьютера, будет иметь катушку возбуждения, намотанную вокруг расположенного в центре статора. Компонент ротора, в отличие от предыдущего примера, будет вращаться вокруг статического компонента.Однако в обоих случаях статор всегда является статическим элементом машины.

Генератор автомобильного двигателя по сути служит электрическим генератором.

Что такое автомобильный генератор переменного тока и как он работает?

ПРЕДУПРЕЖДАЮЩАЯ ЛАМПА

Это возвращает нас обратно к исходной точке — контрольной лампе генератора. Как видно на рис. 5, схематическом изображении действующего генератора переменного тока, от входа источника тока возбуждения [1] до регулятора есть путь к земле. В результате, когда ключ включен, ток течет через контрольную лампу, через резисторы, транзисторы и катушку возбуждения, а затем на землю, в результате чего лампа загорается.Как только генератор перейдет на полную мощность, напряжение от трио диодов, также приложенное к [1], будет равно напряжению батареи. В это время по 12 вольт с обеих сторон лампа погасла.

Если генератор выйдет из строя, напряжение на тройке диодов упадет, и лампа снова загорится от напряжения батареи. Если мощность генератора немного низкая, лампа будет тускло гореть. Если генератор выйдет из строя полностью и выходное напряжение упадет до нуля, лампа будет гореть с полной яркостью.И наоборот, если батарея выйдет из строя, и напряжение батареи упадет, с выходным напряжением генератора переменного тока с одной стороны и низким напряжением батареи с другой, лампа также загорится.

Как указывалось ранее, если свет становится тусклее при увеличении частоты вращения двигателя, это связано с тем, что напряжение генератора переменного тока растет вместе с числом оборотов в минуту, создавая большее напряжение на стороне генератора переменного тока лампы. Чем ближе выходное напряжение к напряжению аккумулятора, тем ярче становится лампа. Точно так же, если свет становится ярче с увеличением числа оборотов, это потому, что по мере увеличения напряжения генератора оно становится выше, чем напряжение аккумулятора.Чем выше напряжение по отношению к напряжению батареи, тем больше разница напряжений на лампе и тем ярче она становится.

СУММИРОВАНИЕ

Таким образом, можно сказать, что ток возбуждения через катушки ротора создает магнитное поле, которое передается на катушки статора, создавая переменное напряжение. Это переменное напряжение преобразуется выходными диодами в пульсирующее постоянное напряжение, которое заряжает аккумулятор.

Ток возбуждения подается либо от аккумулятора, через контрольную лампу, либо от трио диодов.Величина тока возбуждения, которая может проходить через регулятор к ротору или катушке возбуждения, контролируется обратной связью по напряжению от батареи.

Вот и все — вкратце — полная работа генератора переменного тока. В следующий раз, когда вы увидите маленький красный огонек, вы точно будете знать, что он пытается вам сказать.

«,» parseFromString «,» body «,» children «,» outerHTML «,» getOwnPropertyDescriptor «,» innerHTML «,» set «,» get «,» defineProperty «,» handleInterceptions «, ‘[data-ad -unit = «LEFT_RAIL_DYNAMIC»] {display: none! important} ‘, «head», «textContent»,’ [data-ad-unit = «LEFT_RAIL»] {display: none! important} ‘, «documentElement», » data-style «,» data-css-selector «,» display «,» inherit! important «,» initial! important «,» visible! important «,» target «,» attributes «,» createTextNode «,» insertRule » , «{«, «addRule», «лист», «cssRules», «cloneNode», «querySelector», «.= ‘google_ads_iframe _’] «,» / notify? «,» bidt «, «uctionId», «pubId», «siteId», «placeId», «adRequestTime», «Winner», «bidderCode», «cpm», » size «,» width «,» height «,» originUrl «,» adm «,» & code = «,» adUnitCode «,» & t = bidt-sra &uctionId = «,» isPassback «,» addEventListener «,» message «,» data »,« type »,« sra »,« success »,« обслужено »,« clearThrough »,« bidt-sra-bids »,« bidObjs »,« assign »,« apiHost »,« bid »,« bidt- sra-render «,» https://mrb.upapi.net/org?o=5635927334453248&upapi=true «,» https://mrb.upapi.net/org?o=5658536637890560&upapi=true «,» https: // mrb.upapi.net/org?o=5721652430110720&upapi=true»,»https://mrb.upapi.net/org?o=6315858775244800&upapi=true»,»https://mrb.upapi.net/org?o=5660793657884672&upapi true «,» https://mrb.upapi.net/org?o=5135749131272192&upapi=true «,» https://mrb.upapi.net/org?o=4797599863275520&upapi=true «,» https: // mrb. upapi.net/org?o=5688297061875712&upapi=true»,»https://mrb.upapi.net/org?o=5668060692217856&upapi=true»,»https://mrb.upapi.net/org?o=631682151

  • 44&upapi= true «,» https: //mrb.upapi.net / org? o = 5698835837878272 & upapi = true «,» https://mrb.upapi.net/org?o=5662751368151040&upapi=true «,» https://mrb.upapi.net/org?o=5765527509139456&u

    Что такое подключение электродвигателей?

    Обычно существует три типа электрического торможения двигателей: рекуперативное торможение, динамическое торможение и заглушка. Из трех методов заглушка обеспечивает наиболее быструю остановку, но она может быть опасной как для электрических, так и для механических компонентов. По этой причине это наименее используемый метод торможения, но он подходит для некоторых приложений.

    Забивание электрических и механических компонентов может быть более опасным, но оно обеспечивает более быструю остановку, чем методы динамического торможения.
    Изображение предоставлено: secs.oakland.edu

    Подключение — иногда называемое «торможением обратным током» — возможно как на двигателях постоянного тока, так и на асинхронных двигателях переменного тока. Для двигателей постоянного тока включение достигается изменением полярности напряжения якоря. Когда это происходит, напряжение обратной ЭДС больше не противодействует напряжению питания. Вместо этого обратная ЭДС и напряжение питания работают в одном направлении, противодействуя вращению двигателя и заставляя его почти мгновенно останавливаться.Обратный ток, создаваемый объединенным напряжением питания и обратной ЭДС, чрезвычайно высок, поэтому в цепи помещено сопротивление для ограничения тока.

    Цепи двигателя постоянного тока для нормальной работы двигателя (слева) и для подключения (справа). Обратите внимание, что для операции включения напряжение якоря меняется на противоположное, и к цепи добавляется сопротивление.

    Для асинхронных двигателей переменного тока напряжение статора реверсируется путем переключения любых двух проводов питания. Затем поле вращается в противоположном направлении, и скольжение двигателя (разница между скоростью вращающегося магнитного поля статора и скоростью ротора) становится больше единицы (s> 1).Другими словами, ротор вращается быстрее, чем вращающееся магнитное поле в статоре. Крутящий момент развивается в направлении, противоположном вращению двигателя, что дает сильный тормозной эффект.


    Скольжение, которое представляет собой разницу между скоростью вращающегося магнитного поля статора и скоростью ротора, является фундаментальным свойством асинхронных двигателей переменного тока. При нормальной работе двигателя ротор вращается с меньшей скоростью, чем вращающееся магнитное поле статора.


    Когда скорость двигателя достигает нуля, если он не отключен от источника питания, он начинает реверсировать или вращаться в противоположном направлении. В некоторых приложениях целью является изменение направления двигателя. Но когда используется для торможения двигателя, выключатель нулевой скорости или подключаемый контактор используется для отключения двигателя от источника питания, когда его скорость достигает нуля.

    Одна из потенциальных проблем, связанных с закупоркой в ​​качестве метода торможения (особенно при коротком времени торможения), заключается в том, что может быть трудно затормозить двигатель точно на нулевой скорости.Еще одним недостатком заглушки является то, что она может вызвать высокие механические ударные нагрузки на двигатель и подключенное оборудование из-за резкой остановки, которую оно вызывает. Заглушка также является очень неэффективным методом остановки и, следовательно, выделяет значительное количество тепла.

    Несмотря на эти недостатки, закупорка используется в таком оборудовании, как лифты, краны, прессы и мельницы, где требуется быстрая остановка двигателя (с реверсированием или без него).

    PPT — Stators PowerPoint Presentation, free download

  • Stators Ryan Markwood

  • Что будет рассмотрено • Что такое статор • Основные термины и идеи • Особые части статора • Как он работает в генераторе Вопросы могут быть заданы во время презентации

  • Что такое статор? • Статор генератора — это стационарная часть генерирующей энергии половины генератора

  • Ключевые термины и идеи • Магнитная индукция: • Магнитная индукция — это явление, которое возникает, когда токопроводящий материал, такой как медь или другие провода проходят через магнитное поле, что этот конкретный провод будет приобретать положительный или отрицательный заряд в зависимости от направления • Пример магнитной индукции

  • Переменный ток против постоянного тока • Переменный или переменный ток — это ток, чей заряд чередуется с положительного на отрицательный в грехе шаблон.Это то, что используется в домах и в большинстве коммерческих приложений. • Постоянный или постоянный ток — это когда ток имеет только одну полярность.

  • RE: Что такое статор? • Статор — это часть генератора, на которой расположены токопроводящие провода, окружающие вращающийся ротор с множеством постоянных магнитов или электромагнитов, которые используются для создания тока. • Упрощенно: провода стоят на месте • Магниты движутся для создания тока • Наглядный пример системы генератора

  • RE: Что такое статор? (2) • Статор — это часть генератора, которая содержит множество постоянных магнитов или электромагнитов, которые содержат переменный ток для создания вращающегося тока, который окружает ротор, содержащий проводящие провода для выработки электричества • Упрощенно: магниты неподвижны • Провода движутся для создания тока • Визуальный пример системы генератора

  • Статор для генератора постоянного тока • Очень похож на генератор переменного тока за одним исключением, добавление Commuter • Commuter используется для искусственного «сброса» тока, чтобы только положительный или отрицательный ток

  • Вопросы? • Библиография: • Дэвидсон, Майкл В.

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *