Закрыть

Электрические схемы для начинающих условные обозначения: Графическое обозначение электрических элементов по схеме ГОСТ. Обзор и характеристика условно-графических обозначений, используемых в электрических схемах

Содержание

Как научиться читать электрические (принципиальные) схемы начинающему

Содержание:

Что такое электрическая схема

Обозначение тиристоров и операционных усилителей показано на рисунке. Определяют по надписям на схеме, таблицам или примечаниям уставки аппаратов и, наконец, оценивают зону защиты каждого из них. Поэтому они изображаются в виде треугольника и пересекающей его линии электрической связи. Вторая группа элементов преобразует электричество в другие виды энергии.
Через вторичные цепи осуществляется контроль, измерения и учет электроэнергии. Для вторичной обмотки может использоваться окружность при упрощенном способе или две полуокружности при развернутом способе изображения.

Как правило, экран соединяют с общим проводом схемы.

Давайте перейдем еще более сложным схемам и познакомимся с другими элементами электрических цепей.

Существуют различные виды электрических схем, различающиеся по своему целевому назначению. Пересечение не соединенных проводов изображается следующим образом: В местах соединения линий связи ставят точку.

Как правильно читат ь электрические схемы Принципиальная схема представляет собой графическое изображение всех элементов, частей и компонентов, между которыми выполнено электронное соединение с помощью токоведущих проводников.

Виды электрических схем

Для того чтобы правильно пользоваться электрическими схемами, нужно заранее ознакомиться с основными понятиями и определениями, затрагивающими эту область.

Любая схема выполняется в виде графического изображения или чертежа, на котором вместе с оборудованием отображаются все связующие звенья электрической цепи. Существуют различные виды электрических схем, различающиеся по своему целевому назначению.

В их перечень входят первичные и вторичные цепи, системы сигнализации, защиты, управления и прочие. Кроме того, существуют и широко используются принципиальные и монтажные электрические схемы, однолинейные, полнолинейные и развернутые.

Каждая из них имеет свои специфические особенности.

К первичным относятся цепи, по которым подаются основные технологические напряжения непосредственно от источников к потребителям или приемникам электроэнергии. Первичные цепи вырабатывают, преобразовывают, передают и распределяют электрическую энергию.

Они состоят из главной схемы и цепей, обеспечивающих собственные нужды. Цепи главной схемы вырабатывают, преобразуют и распределяют основной поток электроэнергии. Цепи для собственных нужд обеспечивают работу основного электрического оборудования.

Через них напряжение поступает на электродвигатели установок, в систему освещения и на другие участки.

Вторичными считаются те цепи, в которых подаваемое напряжение не превышает 1 киловатта. Они обеспечивают выполнение функций автоматики, управления, защиты, диспетчерской службы. Через вторичные цепи осуществляется контроль, измерения и учет электроэнергии. Знание этих свойств поможет научиться читать электрические схемы.

Полнолинейные схемы используются в трехфазных цепях. Они отображают электрооборудование, подключенное ко всем трем фазам. На однолинейных схемах показывается оборудование, размещенное лишь на одной средней фазе. Данное отличие обязательно указывается на схеме.

На принципиальных схемах не указываются второстепенные элементы, которые не выполняют основных функций. За счет этого изображение становится проще, позволяя лучше понять принцип действия всего оборудования.

Монтажные схемы, наоборот, выполняются более подробно, поскольку они применяются для практической установки всех элементов электрической сети.

К ним относятся однолинейные схемы, отображаемые непосредственно на строительном плане объекта, а также схемы кабельных трасс вместе с трансформаторными подстанциями и распределительными пунктами, нанесенными на упрощенный генеральный план.

В процессе монтажа и наладки широкое распространение получили развернутые схемы с вторичными цепями. На них выделяются дополнительные функциональные подгруппы цепей, связанных с включением и выключением, индивидуальной защитой какого-либо участка и другие.

Основные обозначения

Для удобства понимания детали источники питания провода и их соединения имеют графические обозначения. Буквенные символы распространенных радиодеталей приведены в таблице:

ДетальОбозначение
РезисторR
КонденсаторC
Катушка индуктивностиL
ПолупроводникV
ПредохранительF
Элемент питанияG

Обозначение источников питания

Любое радиоэлектронное устройство способно выполнять свои функции только при наличии электроэнергии. Принципиально выделяют два типа источников электроэнергии: постоянного и переменного тока. В данной статье рассматриваются исключительно источниках постоянного тока. К ним относятся батарейки или гальванические элементы, аккумуляторные батареи, различного рода блоки питания и т.п.

В мире насчитывается тысячи тысяч разных аккумуляторов, гальванических элементов и т.п., которые отличаются как внешним видом, так и конструкцией. Однако всех их объединяет общее функциональное назначение – снабжать постоянным током электронную аппаратуру. Поэтому на чертежах электрических схем источники они обозначаются единообразно, но все же с некоторыми небольшими отличиями.

Электрические схемы принято рисовать слева на право, то есть так, как и писать текст. Однако такого правила далеко не всегда придерживаются, особенно радиолюбители. Но, тем не менее, такое правило следует взять на вооружение и применять в дальнейшем.


Гальванический элемент или одна батарейка, неважно «пальчиковая», «мизинчиковая» или таблеточного типа, обозначается следующим образом: две параллельные черточки разной длины. Черточка большей длины обозначает положительный полюс – плюс «+», а короткая – минус «-».

Также для большей наглядности могут проставляться знаки полярности батарейки. Гальванический элемент или батарейка имеет стандартное буквенное обозначение G.


Однако радиолюбители не всегда придерживаются такой шифровки и часто вместо G пишут букву E, которая обозначает, что данный гальванический элемент является источником электродвижущей силы (ЭДС). Также рядом может указываться величина ЭДС, например 1,5 В.

Иногда вместо изображения источника питания показывают только его клеммы.

Группа гальванических элементов, которые могут повторно перезаряжаться, аккумуляторной батареей. На чертежах электрических схем они обозначается аналогично. Только между параллельными черточками находится пунктирная линия и применяется буквенное обозначение GB. Вторая буква как раз и обозначает «батарея».

Обозначение проводов и их соединений на схемах

Электрические провода выполняют функцию объединения всех электронных элементов в единую цепь. Они выполняют роль «трубопровода» — снабжают электронные компонент электронами. Провода характеризуются множеством параметров: сечением, материалом, изоляцией и т.п. Мы же будем иметь дело с монтажными гибкими проводами.

На печатных платах проводами служат токопроводящие дорожки. Вне зависимости от вида проводника (проволока или дорожка) на чертежах электрических схем они обозначаются единым образом – прямой линией.

Например, для того, что бы засветить лампу накаливания необходимо напряжение от аккумуляторной батареи подвести с помощью соединительных проводов к лампочке. Тогда цепь будет замкнута и в ней начнет протекать ток, который вызовет нагрев нити лампы накаливания до свечения.

Проводник принять обозначать прямой линией: горизонтальной или вертикальной. Согласно стандарту, провода или токоведущие дорожки могут изображаться под углом 90 или 135 градусов.

В разветвленных цепях проводники часто пересекаются. Если при этом не образуется электрическая связь, то точка в месте пересечения не ставится.

Если в месте пересечения проводников образуется электрическая связь, то это место обозначается точкой, называемой электрическим узлом. В узле могут пересекаться одновременно несколько проводников. Здесь я советую познакомиться с первым законом Кирхгофа.

Обозначение общего провода

В сложных электрических цепях с целью улучшения читаемости схемы часто проводники, соединенные с отрицательной клеммой источника питания, не изображают. А вместо них применяют знаки, обозначающие отрицательных провод, который еще называют общий или масса или шасси или земля.

Рядом со знаком заземления часто, особенно в англоязычных схемах, делается надпись GND, сокращенно от GRAUND – земля.

Однако следует знать, что общий провод не обязательно должен быть отрицательным, он также может быть и положительным. Особенно часто за положительный общий провод принимался в старых советских схемах, в которых преимущественно использовались транзисторы p—n—p структуры.

Поэтому, когда говорят, что потенциал в какой-то точке схемы равен какому-то напряжению, то это означает, что напряжение между указанной точкой и «минусом» блока питания равен соответствующему значению.

Например, если напряжение в точке 1 равно 8 В, а в точке 2 оно имеет величину 4 В, то нужно положительный щуп вольтметра установить в соответствующую точку, а отрицательный – к общему проводу или отрицательной клемме.

Таким подходом довольно часто пользуются, поскольку это очень удобно с практической точки зрения, так как достаточно указать только одну точку.

Особенно часто это применяется при настройке или регулировке радиоэлектронной аппаратуре. Поэтому учиться читать электрические схемы гораздо проще, пользуясь потенциалами в конкретных точках.

Условное графическое обозначение радиодеталей

Основу любого электронного устройства составляют радиодетали. К ним относятся резисторы, светодиоды, транзисторы, конденсаторы, различные микросхемы и т. д. Чтобы научиться читать электрические схемы нужно хорошо знать условные графические обозначения всех радиодеталей.

Для примера рассмотрим следующий чертеж. Он состоит из батареи гальванических элементов GB1, резистора R1 и светодиода VD1. Условное графическое обозначение (УГО) резистора имеет вид прямоугольника с двумя выводами. На чертежах он обозначается буквой R, после которой ставится его порядковый номер, например R1, R2, R5 и т. д.

Поскольку важным параметром резистора помимо сопротивления является мощность рассеивания, то ее значение также указывается в обозначении.

УГО светодиода имеет вид треугольника с риской у его вершины; и двумя стрелочками, острия которых направлены от треугольника. Один вывод светодиода называется анодом, а второй – катодом.

Светодиод, как и «обычный» диод, пропускает ток только в одном направлении – от анода к катоду. Данный полупроводниковый прибор обозначается VD, а его тип указывается в спецификации или в описании к схеме. Характеристики конкретного типа светодиода приводятся в справочниках или «даташитах».

Резисторы

Мощность сопротивлений обозначается в соответствии с таблицей:

СимволМощность
2 косые черты0,125 Вт
1 косая черта0,25 Вт
Длинная горизонтальная черта0,5 Вт
1 вертикальная черта1 Вт
2 вертикальные черты2 Вт
Римская цифра «5»5 Вт

Символ резистора — сплошной прямоугольник.

Конденсаторы

a) общее обозначение конденсатора

б) вариконд

в) полярный конденсатор

г) подстроечный конденсатор

д) переменный конденсатор

Диоды

Символ этой детали — равносторонний треугольник, пересеченный подведенным к нему проводником. Одна из его вершин, к которой добавлена короткая риска, обозначает анод. Соответственно, сторона треугольника, пересеченная проводом, — это катод. В зависимости от разновидности полупроводника, символ дополняется вспомогательными метками.

Например, светодиод отличается 2 параллельными стрелками, идущими под углом 135°.

Правила чтения

Соблюдение рекомендаций по чтению ПС поможет разбираться с принципом работы устройств. Существует несколько правил изучения схем:

  1. Вначале надо ознакомиться с общим расположением деталей на ПС, примечаниями и пояснениями.
  2. Правильно определить систему питания. Для этого следует искать общие провода, выявлять наличие оксидных конденсаторов, полярность их подключения, а также структуру транзисторов. В цепях переменного тока надо обязательно установить фазировку.
  3. Потенциал в выбранной точке замеряется относительно отрицательного полюса, если в примечании не указано иное.

Кроме того, имеются дополнительные правила чтения, характерные для высоковольтных и магистральных цепей, схем автоматики и вычислительной техники.

Как научиться читать

Чтобы научиться читать электрические схемы, следует вначале изучить основные законы электротехники и правила соединения деталей. Их знание поможет добиваться нужных результатов при сборке действующих устройств и их работоспособности. Когда законы будут изучены, разбираются со стандартами по условному обозначению деталей и способами их подключения. Затем обращают внимание на тип элементов и их номиналы.

Добавляем радиодетали

Рассмотрим следующую схему, состоящую из четырех параллельных ветвей. Первая представляет собой лишь аккумуляторную батарею GB1, напряжением 4,5 В. Во второй ветви последовательно соединены нормально замкнутые контакты K1. 1 электромагнитного реле K1, резистора R1 и светодиода VD1. Далее по чертежу находится кнопка SB1.

Третья параллельная ветвь состоит из электромагнитного реле K1, шунтированного в обратном направлении диодом VD2.

В четвертой ветви имеются нормально разомкнутые контакты K1.2 и бузер BA1.

Здесь присутствуют элементы, ранее нами не рассмотрены в данной статье: SB1 – это кнопка без фиксации положения. Пока она нажата ее, контакты замкнуты. Но как только мы перестанем нажимать и уберем палец с кнопки, контакты разомкнутся. Такие кнопки еще называют тактовыми.

Следующий элемент– это электромагнитное реле K1. Принцип работы его заключается в следующем. Когда на катушку подано напряжение, замыкаются его разомкнутые контакты и размыкаются замкнутые контакты.

Все контакты, которые соответствуют реле K1, обозначаются K1.1, K1.2 и т. д. Первая цифра означает принадлежность их соответствующему реле.

Бузер

Следующий элемент, ранее не знакомый нам, — это бузер. Бузер в какой-то степени можно сравнить с маленьким динамиком. При подаче переменного напряжения на его выводы раздается звук соответствующей частоты. Однако в нашей схеме отсутствует переменное напряжение. Поэтому мы будем применять активный бузер, который имеет встроенный генератор переменного тока.

Пассивный бузер – для переменного тока.

Активный бузер – для постоянного тока.

Активный бузер имеет полярность, поэтому следует ее придерживаться.

Теперь мы уже можем рассмотреть, как читать электрическую схему в целом.

В исходном состоянии контакты K1.1 находятся в замкнутом положении. Поэтому ток протекает по цепи от GB1 через K1.1, R1, VD1 и возвращается снова к GB1.

При нажатии кнопки SB1 ее контакты замыкаются, и создается путь для протекания тока через катушку K1. Когда реле получило питание ее нормально замкнутые контакты K1.1 размыкаются, а нормально замкнутые контакты K1.2 замыкаются. В результате гаснет светодиод VD1 и раздается звук бузера BA1.

Теперь вернемся к параметрам электромагнитного реле K1. В спецификации или на чертеже обязательно указывается серия применяемого реле, например HLS‑4078‑DC5V. Такое реле рассчитано на номинальное рабочее напряжение 5 В. Однако GB1 = 4,5 В, но реле имеет некоторый допустимы диапазон срабатывания, поэтому оно будет хорошо работать и при напряжении 4,5 В.

Для выбора бузера часто достаточно знать лишь его напряжение, однако иногда нужно знать и ток. Также следует не забывать и о его типе – пассивный или активный.

Диод VD2 серии 1N4148 предназначен для защиты элементов, которые производят размыкание цепи, от перенапряжения. В данном случае можно обойтись и без него, поскольку цепь размыкает кнопка SB1. Но если ее размыкает транзистор или тиристор, то VD2 нужно обязательно устанавливать.

Как научиться читать принципиальные схемы

На самом деле есть только несколько способов. Это теория и практика. Если вы выучите обозначение радиодеталей, это еще не значит, что вы выучили схемотехнику. Это все равно, что выучить азбуку, но без грамматики и практики вы не выучите язык.

Теория — это схемотехника, книги, описание принципа работы схемы. Практика — это сборка устройств, ремонт и пайка.

Например простая схема усилителя на одном транзисторе.

Вход X1 плюс (левый или правый канал), X2 минус. Звуковой сигнал поступает на электролитический конденсатор C1. Он защищает транзистор VT1 от замыкания, поскольку транзистор VT1 постоянно открыт при помощи делителя напряжения на R1 и R2. Делитель напряжения устанавливает рабочую точку на базе транзистора VT1, и транзистор не искажает входной сигнал. Резистор R3 и конденсатор C2, которые подключены к эмиттеру транзистора VT1, выполняют функцию термостабилизации рабочей точки при повышении температуры транзистора. Электролитический конденсатор C3 накапливает и фильтрует питающее напряжение. Динамическая головка BF1 служит выходом звукового сигнала.

Можно ли это понять, только выучив обозначения радиодеталей без схемотехники и теории? Навряд-ли.

Еще сложнее дело обстоит с цифровой техникой.

Что это за микроконтроллер, какие он функции выполняет, какая прошивка и какие фьюзы в нем установлены? А вторая микросхема, какой это усилитель? Без даташитов и описания к схеме не получится понять ее работу.

Изучайте схемотехнику, теорию и практику. Просто выучив название деталей не получится разобраться в схемотехнике. Обозначение радиодеталей выучиться само по себе по мере практики и накопления знаний. Еще все зависит от выбранной отрасли. У связистов одна схемотехника, у ремонтников мобильной техники другая. А те, кто занимается звуком, не очень поймут электриков. Как и наоборот. Чтобы понять другую отрасль, ее схемотехнику и принципы работы нужно в нее погрузиться.

Принципиальные схемы это своего рода язык, у которого есть разные диалекты.

Поэтому, не следует строить иллюзии. Изучайте схемотехнику и собирайте схемы.

Принципиальные схемы помогают собирать устройства, и при изучении теории, понимать работу устройства. Без знаний и опыта, схема это просто схема.

Учимся читать схемы с транзисторами

На данном чертеже мы видим транзистор VT1 и двигатель M1. Для определенности будем применять транзистор типа 2N2222, который работает в режиме электронного ключа.

Чтобы транзистор открылся, нужно на его базу подать положительный потенциал относительно эмиттера – для n–p–n типа; для p–n–p типа нужно подавать отрицательный потенциал относительно эмиттера.

Кнопка SA1 с фиксацией, то есть он сохраняет свое положение после нажатия. Двигатель M1 постоянного тока.

В исходном состоянии цепь разомкнута контактами SA1. При нажатии кнопки SA1 создается несколько путей протеканию тока. Первый путь – «+» GB1 – контакты SA1 – резистор R1 – переход база-эмиттер транзистора VT1 – «-» GB1. Под действием протекающего тока через переход база-эмиттер транзистор открывается и образуется второй путь току – «+»GB1 – SA1 – катушка реле K1 – коллектор-эмиттер VT1 – «-» GB1.

Получив питание, реле K1 замыкает свои разомкнутые контакты K1. 1 в цепи двигателя M1. Таким образом, создается третий путь: «+» GB1 – SA1 – K1.1 – M1 – «-» GB1.

Теперь давайте все подытожим. Для того чтобы научиться читать электрические схемы, на первых порах достаточно лишь четко понимать законы Кирхгофа, Ома, электромагнитной индукции; способы соединения резисторов, конденсаторов; также следует знать назначение всех элементом. Также поначалу следует собирать те устройства, на которые имеются максимально подробные описания назначения отдельных компонентов и узлов.

Как правильно составлять схему

Электросхему для начинающих следует рисовать на клетчатом листе, чтобы ровно вычерчивать все линии и символы. Чаще всего общий провод соединен с отрицательным полюсом источника постоянного тока. Линейные элементы рисуются слева направо. Не рекомендуется изображать более 3 параллельных проводников подряд, это затруднит чтение схемы.

Для составления ПС, МС и чертежей можно воспользоваться приложениями для компьютера. Одно из них — Microsoft Visio — входит в состав офисного пакета. В наборе функций этой программы доступно более 100 символов для деталей, проводников и механизмов. Поддерживается автоматическая привязка концов рисуемых элементов, что обеспечивает целостность диаграммы при редактировании.

Еще одно приложение для правильного составления схем — это отечественный sPlan. Программа распространяется бесплатно и имеет русифицированные интерфейс и справку. С помощью sPlan создают электросхемы, соответствующие ГОСТу. Кроме того, имеется встроенный графический редактор, позволяющий создать монтажную диаграмму.

Что такое даташит и для чего он нужен

Даташит (Datasheet) — это техническая спецификация, в которой указывается полная информация о радиодетали. Вся техническая информация, основная схема включения, параметры и типы корпусов указываются именно в этом документе.

Даташиты бывают на разных языках, в основном на английском. Есть и переведенные варианты.

Документация на микросхему NE555. Нарисован корпус и внешний вид детали.

Здесь подробно описывается микросхема, ее параметры и условия работы.

Такая документация есть на любую деталь. Это очень удобно и информативно, особенно при поиске аналогов. А помощью интернета поиск аналога деталей или схемы стал еще проще.

Еще даташит позволяет опознать неизвестную деталь или микросхему. Достаточно написать ее название в поисковике, добавить слово даташит, и в результатах поиска будет вся документация.

Советы начинающему электрику

Использование электричества сегодня позволяет решать огромное количество задач. Это приводит к тому, что многие начинают интересоваться данным явлением и изучать его досконально.

Основные моменты

Чтобы стать хорошим электриком, необходимо придерживаться нескольких основных правил:

  1. В первую очередь следует ознакомиться с основами. Изучите теорию электричества, чтобы понять основные процессы, происходящие в таких системах.
  2. Старайтесь практиковаться у опытных специалистов. Это поможет вам получить определенные навыки и научит вас работать в «боевых» условиях.
  3. Обязательно читайте специальную литературу и изучайте рынок новых материалов или методик в данной сфере.

Пособие для начинающего электрика

На сегодняшний день существует огромное количество ресурсов, на которых каждый желающий сможет получить базовые знания по электротехнике, а также углубить уже имеющиеся. Особенно полезны такие курсы, как электрика для начинающих видео – уроки. В них не только рассказывается теоретический материал, но и демонстрируется, как применить его на практике.

Также большую роль в освоении профессии электрика является умение чертить схемы, ведь именно по ним производятся все монтажные и ремонтные работы. Для этого необходимо освоить такое направление, как черчение, а также более узкую его специализацию – составление электросхем.

Для получения этих знаний лучше всего воспользоваться услугами специальных курсов или образовательных учреждений, но для старта достаточно просто освоить пособие «Электрика для начинающих – схемы». Комплексный подход в изучении физики, черчения и электротехники, а также постоянная практика позволят стать настоящим профессионалом своего дела.

Предыдущая

РазноеДля чего и в каких случаях измеряют сопротивление изоляции. Измерение сопротивления изоляции мегаомметром

Следующая

РазноеСистемы заземления TN-C, TN-S, TN-C-S, TT, IT со схемами (ПУЭ). Системы заземлений — преимущества и недостатки

виды принципиальных электросхем, обучение читать для начинающих

Когда при выезде на рыбалку вдруг под вечер не загораются фары на личном авто, некоторые водители хватаются за голову. Они не умеют читать электрические схемы автомобиля и поломка такого рода сразу становится неразрешимой проблемой. По этой причине обучение грамоте чтения электросхем не просто прихоть, а необходимость для нормального использования железного коня.

  • Виды электросхем
  • Условные обозначения
  • Порядок чтения

Виды электросхем

Обучение всему неизвестному обычно начинают с азов или начальных понятий. Чтобы научиться читать электрические принципиальные схемы, узнают, что они из себя представляют и зачем нужны. Вот основные виды:

  • Первичные. Это цепи, обеспечивающие поступление напряжения от источника электроэнергии непосредственно к потребителю этой энергии.
  • Вторичные. Цепи с напряжением не более 1 квТ, которые служат в основном для установки контрольного и сигнального оборудования.
  • Системы защиты, сигнализации, управления и прочие. Разновидности вторичных электросхем.
  • Принципиальные. Упрощённые изображения, где указаны только основные элементы, а второстепенные опущены.
  • Монтажные. Подробные изображения с учётом второстепенных узлов. Применяются для монтажа электрооборудования.
  • Однолинейные. Схематичный план с указанием последовательности подключения на основную фазу.
  • Полнолинейные. Схематичное изображение, которое используются для обозначения трёхфазных линий. На нём указывают последовательность соединений на всех трёх фазах.
  • Развернутые. Подробные чертежи полной оснастки электрооборудования на объекте.

Тип таких изображений определяют по его предназначению. Например, для сборки требуется один план, для понятия принципа действия — другой, для ремонта — третий и так далее.

Условные обозначения

Столкнувшись впервые с электрической схемой, новичок может подумать, что перед ним китайская грамота. Однако, освоив основные обозначения и принципы построения, очень скоро чтение электросхем для начинающих может стать привычным делом. Для начала определяются с основными частями любой документации такого толка. Это три группы общих по функциям составляющих элементов:

  1. Источники электроэнергии — приборы, агрегаты и приспособления, вырабатывающие ток.
  2. Приёмники электричества — приборы, узлы, оборудование, которое преобразует или использует электроток.
  3. Передатчики электричества — провода, переключатели, другие проводники тока, а также приборы измерения, усиления, ослабления, контроля и другие, то есть всё, что помогает передавать ток от источника к потребителю.

Для всех составляющих электроцепи придуманы условные обозначения. Значки расставляются в той последовательности, как они соединены электропроводкой, а не по буквальному расположению. То есть две лампочки могут располагаться на приборе рядом, а на схеме — в противоположных друг от друга частях. Элементы, подсоединённые к одному напряжению цепи, называются ветвью. Они соединены узлами. Узлы на схеме выделяют точками. Замкнутые контуры могут содержать несколько ветвей. Самые простые электросхемы — это изображения одноконтурных цепей. Самые сложные — многоконтурные.

Для изучения расшифровки условных обозначений пользуются специальными справочниками. Кроме условных обозначений, на схемах применяют пояснительные надписи и указания маркировок используемого электрооборудования и деталей.

Порядок чтения

По сути, электросхема — это чертёж. На ней с помощью условных обозначений изображено устройство электрооборудования. Зная основные принципы построения таких чертежей и условные обозначения, можно освоить чтение электрических схем. Для начинающих это именно то, что нужно. Так, легче всего тренироваться на упрощённых чертежах, чем на тех, где показаны все детали.

Для правильного чтения схем усваивают простой алгоритм действий, который поможет не упустить важных мелочей. Вот последовательность изучения электросхемы:

  1. Определяют количество контуров и ветвей в каждом контуре.
  2. Выделяют условные обозначения всех составляющих схемы.
  3. По порядку исследуют каждое обозначение. Находят в справочнике, чему оно соответствует, и узнают всю возможную информацию об элементе. При необходимости записывают, чтобы не забыть и не искать её снова.
  4. Для наглядности находят нужный узел или деталь на своём автомобиле, если изучают электросхему автомашины.
  5. Стараются понять принцип действия и техническое предназначение того или иного элемента. Некоторые задаются вопросом о том, что будет, если элемент убрать из цепи, можно ли его заменить чем-то другим.
  6. Скрупулёзно читают дополнительную информацию в описании схемы или в маркировках рядом с элементами. Иногда на схемах приводятся маркировочные таблицы, которые требуют дополнительного внимания.

Научившись читать простые схемы, переходят к более сложным. Электрооборудование современных автомобилей становится всё сложнее и сложнее. Очень многие блоки содержат электронную начинку.

Понять такие схемы начинающему электрику очень трудно. Однако, зная азы, они могут сделать простой ремонт электрооборудования, используя электросхему своего автомобиля.

Как читать электрические схемы автомобиля (краткая версия для начинающих) — Rustyautos.com

Автомобильная электрическая схема может показаться пугающей, но как только вы поймете несколько основ, вы увидите, что они на самом деле очень просты.

Электросхема автомобиля представляет собой карту. Чтобы прочитать его, идентифицируйте рассматриваемую цепь и, начиная с ее источника питания, следуйте по ней до земли. Используйте легенду, чтобы понять, что означает каждый символ на схеме.

Я работаю автомехаником более двадцати лет, и мне всегда нравилась электрическая часть авторемонта. Прочитав этот пост, вы поймете, как читать базовую электрическую схему, которая, как вы знаете, является ключом к быстрому поиску электрических проблем.

Вы также можете найти этот пост полезным:

Если вам интересно, что такое земля, посмотрите этот пост «Заземление такое же, как и отрицательное?» (простое руководство для начинающих с иллюстрациями)

Ознакомьтесь с этим руководством для начинающих по диагностике датчика массового расхода воздуха с помощью DVOM (вольтметра)

Ознакомьтесь с этим простым кратким постом по поиску электрических характеристик с цветными иллюстрациями. Я написал массу других распространенных проблем и ремонтов автоэлектрики, все они написаны для новичков, и вы можете ознакомиться с ними прямо здесь, в разделе блога автоэлектрики.

Понимание базовой схемы

Здесь я объясню основной принцип работы схемы. Этот материал прост, и если вы уже знакомы, вы можете пропустить его.

Цепь проводки называется так потому, что проводка должна описывать полный круг, чтобы напряжение могло течь. Разрыв или ограничение в круге вызовет прерывистую или постоянную ошибку.

Заземляющий путь обратно к минусовой клемме аккумулятора отмечен черным цветом

Питание покидает положительную (красный знак плюс) сторону автомобильного аккумулятора через силовой кабель и всегда активно ищет кратчайший возможный обратный путь к отрицательной (знак минус на клемме кожух аккумулятора) сторона автомобильного аккумулятора.

Путь обратно к отрицательному полюсу батареи после нагрузки известен как путь заземления. Нагрузка — это то, чем является потребитель; в случае с приведенной выше диаграммой это свет.

Принципиальная электрическая схема

Очевидно, что будут более сложные схемы, в которых будут реле и блоки управления, но помните, что все они работают по одной и той же основной идее.

Питание оставляет положительный заряд батареи и ищет кратчайший путь к заземлению цепи.

Символ заземления указывает на соединение шасси.

Типичная базовая цепь состоит из пяти важных частей:

  1. Источник питания (плюс от батареи)
  2. Предохранитель (защищает цепь от перегрузки)
  3. Выключатель (ручной или управляемый)
  4. Нагрузка (лампа, двигатель и т. д.) .)
  5. Земля (Обратный путь к отрицательной стороне аккумулятора)

Что такое питание?

Питание — это напряжение батареи, и в любой цепи путь к нагрузке от плюса батареи может быть описан как силовая сторона цепи.

Что за земля?

Как вы знаете, напряжение любит проходить через любой металл, а не только металл внутри проводов. Таким образом, заземление — это любая металлическая часть шасси или двигателя, которая подключена к отрицательному выводу аккумулятора.

Наземный путь выделен синим цветом.

Обратный путь после нагрузки называется заземлением цепи. И обычно не изображается на диаграмме как провод, идущий к отрицательной стороне батареи. Вместо этого используется символ земли.

Что такое реле?

Реле не сильно изменились за эти годы, они есть и в старых машинах и в новых, хорошая идея никогда не устареет.

Функция реле заключается в управлении цепями с высоким током, такими как стартер или фары, с помощью цепи переключения с низким током.

Пропускание больших токов через небольшой переключатель может привести к его перегоранию и выходу из строя, что может привести к возгоранию.

Реле обычно используются в цепях, а также размещаются в блоках управления. Когда они встроены в блок управления, схема часто будет ссылаться на него, но это не будет исправное реле.

Традиционно релейные клеммы нумеровались двузначными цифрами, но в последних версиях используются однозначные цифры, я отметил обе цифры на схеме ниже.

Как это работает?

Реле представляет собой электромагнитный переключатель, он имеет две отдельные цепи: цепь управления и цепь нагрузки. Переключатель управляется либо вручную, либо блок управления подает питание через клемму 2/86, которое проходит на землю через клемму 4/85.

Это приводит к тому, что катушка реле становится магнитной, что замыкает подвижный якорь внутри реле. В закрытом состоянии (открытый на приведенной выше схеме) он позволяет питанию переходить от батареи к фонарю. (через 30 и 87 контакты)

Если вам нужна помощь в понимании DVOM, также известного как мультиметр, ознакомьтесь с инструкциями по использованию мультиметра Kindle по ссылке ниже на Amazon.

Amazon Как пользоваться мультиметром

Когда переключатель выключен (батарея отключена), катушка больше не является магнитной, и подпружиненный подвижный якорь возвращается в открытое положение (положение по умолчанию).

Профессиональный совет: при поиске неисправностей в цепях качество DVOM имеет решающее значение. Дешевые вольтметры подходят для определения питания и заземления, но современным автомобилям потребуются точные показания сопротивления, чтобы правильно диагностировать неисправную цепь или компонент.

Неправильные показания счетчика могут вызвать массу неприятностей. Если вы покупаете вольтметр, купите что-нибудь вроде Klein MM400, он идеально подходит для новичка или ветерана и удобно продается и доставляется на Amazon.com.

Реле цепи стартера на рисунке выше работает идентично. При повороте ключа зажигания для запуска напряжение проходит через контакт 86 и заземляется на контакте 85. Это намагничивает катушку, что, в свою очередь, приводит к замыканию якоря (контакты с 30 по 87), замыкая цепь на стороне нагрузки, и двигатель запускается.

Что такое блок управления?

Вы здесь, чтобы научиться читать электрические схемы, поэтому наверняка столкнетесь с модулями управления (компьютерами). Современные автомобили, как известно, напичканы модулями управления. Как правило, они также известны как блоки управления, CU, контроллеры, модули, CM, электронные блоки управления и компьютеры.

Различные блоки управления системой будут иметь разные названия, и у каждого производителя будет своя аббревиатура; вот некоторые из наиболее распространенных названий PCM — модуль управления силовой передачей, также известный как ECU и блок управления трансмиссией в сочетании, ECU — блок управления двигателем, CEM — центральный электронный модуль, EBCM — электронный модуль управления тормозом, BCM — модуль управления кузовом и т. д.

Я не буду здесь углубляться в сорняки, но будет полезно иметь представление о том, как работают блоки управления.

Классические автомобили докомпьютерной эпохи имели простую схему подключения — например, нажатие переключателя посылает питание по проводу на электродвигатель стеклоподъемника, и стекло перемещается.

Современные автомобили справляются с этим немного по-другому – нажатие переключателя посылает сигнал по проводу на блок управления (компьютер), который, в свою очередь, подает питание на электродвигатель стеклоподъемника.

Блок управления или контроллер подает питание на электродвигатель стеклоподъемника только в том случае, если выполняются определенные предварительно запрограммированные условия. Могут быть условия, при которых модуль управления не подает питание на окно. Например, если он запрограммирован на экономию энергии при низком заряде батареи.

Конечно, окно может не двигаться по другим причинам, может быть неисправен блок управления, проблемы с проводкой, неисправность двигателя и т. д.

Так почему же они пошли и усложнили и усложнили ремонт? Что ж, блоки управления предлагают значительные преимущества, некоторые из которых включают в себя:

  • Требуется меньше проводки
  • Автомобили более экономичны
  • Автомобили чище
  • Автомобили безопаснее
  • Позволяет использовать больше электронных модулей, таких как информационно-развлекательные системы и средства помощи водителю
  • Коды неисправностей системы можно считать

Все блоки управления соединены между собой витой парой проводов; система связи известна как CAN (локальная сеть контроллеров).

При чтении электрических схем технический специалист не видит внутренних схем блоков управления, поэтому их работа нас не интересует.

Вместо этого используем подход Шерлока Холмса – Проверяем всю проводку к блоку управления и от него; если все проверки закончились, а неисправность осталась — единственный логический вывод — неисправный модуль.

Конечно, неверно интерпретировать данные легко, особенно если тестер не понимает параметры контроллера.

Например, понимание того, что блок климат-контроля не включит кондиционер не потому, что есть проблема с системой кондиционирования, а потому, что ECM обнаруживает, что система охлаждения слишком горячая.

При неправильном понимании очень легко предположить, что это проблемы там, где их нет.

Вот почему я советую всем механикам-любителям приобрести электрическую схему и руководство по ремонту. Он окупит себя в несколько раз.

Понимание легенды

У каждой схемы есть легенда, это ключ к пониманию электрической схемы. Обычно он показывает набор символов и краткое описание.

Не обязательно знать эти символы в лицо, вы можете ссылаться на легенду, когда встречаете различные символы вместе со схемами, которые вы читаете. И в любом случае, вы обнаружите, что символы варьируются от одного производителя к другому.

Совет: Некоторые схемы легче понять, чем другие, но неправильная схема подключения может застать врасплох даже профессионалов. Чтобы избежать разочарований, убедитесь, что ваша электрическая схема подходит для вашего автомобиля.

Держите легенду под рукой, когда будете читать электрическую схему. Не зная, что означает каждый из различных символов, вы быстро запутаетесь.

Информация в легенде может включать:

  • Код цвета проводки
  • Значение символов
  • Коды модулей
  • Коды групп систем
  • Аббревиатуры компонентов
  • Обозначения обычно
  • Любые специальные примечания

    8 продуманно, логично , и легко следовать.

    Чтение электрической схемы

    Электрические схемы традиционно печатались в виде книг; Диаграммы, как вы знаете, большие, если уместить их все на одной странице, они станут нечитаемыми.

    Решение – номер в конце каждой схемы указывает страницу, на которой можно найти остальную часть схемы.

    Это может быть немного громоздко, особенно при одновременном обращении к множеству различных цепей.

    Другие решения включают отображение на странице схемы подключения только одной системы, например, просто отображение схемы подключения фар. Это работает довольно хорошо и было перенесено в цифровую эпоху.

    Цифровые электрические схемы более эффективны и просты в использовании, поэтому, если возможно, всегда выбирайте цифровые схемы.

    Теперь вы знаете, что такое легенда, и имеете краткое представление о том, что означают различные символы, пришло время прочитать электрическую схему.

    Почти на всех современных диаграммах сила находится вверху страницы/экрана, а земля внизу. Это естественный поток, и это лучший способ их прочесть.

    На приведенной ниже схеме показана базовая схема автомобильного освещения. на первый взгляд это может показаться сложным, но когда вы разберетесь с потоком, станет понятно.

    Помните, заряд батареи (напряжение) в верхней части страницы пытается упасть на землю в нижней части диаграммы.

    Начиная с верхней части прилагаемой схемы, вы можете видеть потоки энергии по двум путям: (1) вниз к реле света (слева) и (2) к центральному электронному модулю (CEM), который является блоком управления.

    Схема нарисована при зажигании в положении 0 – положение «ВЫКЛ» .

    Путь (1) – Реле света получает напряжение, но так как якорь находится в положении разомкнуто/закрыто, оно останавливается в этой точке.

    Путь (2) — Модуль управления получает напряжение, и этот путь заканчивается.

    Изображение меняется, но когда ключ зажигания находится во втором положении «Вкл.».

    Модуль CEM запрограммирован на заземление на X при включенном зажигании. Это, как известно, намагничивает катушку реле и вызывает замыкание якоря. Замкнутая арматура, в свою очередь, обеспечивает путь для передачи мощности к переключателю.

    Теперь коммутатор включен. Нажатие выключателя света теперь позволяет напряжению проходить через катушку реле выключателя света и заземлять через интегрированный заземляющий контур CEM .

    Катушка светового реле , как вы знаете, теперь намагничена, и поэтому она замыкает якорь реле, пропуская энергию от пути 1 до земли в нижней части диаграммы, питая огни, как это происходит. Схема завершена.

    Вот и все; вы прочитали схему, и некоторые схемы будут более сложными, но чем больше вы будете практиковаться, тем лучше у вас будет получаться.

    Вам также могут понравиться эти посты:

    Разрядка автомобильного аккумулятора – простое руководство для начинающих с картинками

    Как найти короткое замыкание в проводке – как профессионал!

    Автомобильный предохранитель продолжает перегорать

    Аккумулятор вспыхнул, теперь не заводится – Ого!

    Симптомы неисправности датчика массового расхода воздуха

    OBD не подключается к ЭБУ

    Как проверить предохранитель топливного насоса

    Чтобы увидеть все инструменты, которые я использую, посетите страницу инструментов для ремонта автоэлектрики.

    В чем разница между диаграммой и схемой? Диаграмма — это подробная карта системы, а схема — это более упрощенное представление.

    • Об авторе
    • Последние сообщения

    Джон Каннингем

    Джон Каннингем — автомобильный техник и писатель на Rustyautos.com. Он работает механиком более двадцати пяти лет и работал в дилерских центрах GM, Volvo, Volkswagen, Land Rover и Jaguar.

    Джон использует свои ноу-хау и опыт для написания простых статей, которые помогают коллегам-редукторам во всех аспектах владения автомобилем, включая техническое обслуживание, ремонт и устранение неполадок.

    Основы чтения панелей ПЛК и электрических схем

    bydosupply

    В промышленных применениях электрическая панель представляет собой в основном сервисную коробку, которая соединяет основную линию электроснабжения с электрическим устройством и распределяет электрические токи по различным другим цепям в системе. В промышленных условиях вы не просто подключаете контроллер ПЛК к настенной розетке, вместо этого используется электрическая панель. Панель ПЛК — это просто электрическая панель управления, состоящая из электрических компонентов, которые используют электроэнергию для управления различными механическими функциями промышленных машин или оборудования.

    Для того чтобы промышленные машины и оборудование выполняли свои различные технологические задачи, им требуются определяемые пользователем функции и хорошо организованное управление. Таким образом, электрические панели управления, такие как панель ПЛК, используются для выполнения этих функций в производственном оборудовании. Любая электрическая панель управления, с которой вы когда-либо сталкивались, всегда будет состоять из двух основных категорий: структура панели и электрические компоненты. Точно так же панель ПЛК состоит из специальной коробки из нержавеющей стали, содержащей электрические компоненты, необходимые для запуска машины или процесса в заводских условиях. Электрические компоненты бывают двух типов: силовые и управляющие.

    Структура панели ПЛК представляет собой комбинацию корпуса и задней панели. Вы можете связать панель управления ПЛК с электрическим выключателем в офисе или дома.

    • Панельный корпус: обычно представляет собой металлический ящик из нержавеющей стали или алюминия и бывает разных размеров. В большинстве промышленных применений размер корпусов определяется номерами на дверцах корпусов панели ПЛК. Кроме того, все корпуса имеют рейтинг безопасности UL, рейтинг IP и/или классификацию NEEMA, которая напечатана на металлической табличке, прикрепленной к корпусу.
    • Задняя панель: это металлический лист, который монтируется внутри корпуса для обеспечения структурной поддержки кабельных каналов и монтажа на DIN-рейку. Каналы для проводки обеспечивают варианты прокладки и позволяют аккуратно организовать используемые провода, помогая контролировать электрические помехи между электрическими компонентами внутри панели ПЛК.
      DIN-рейки имеют стандартные размеры и обеспечивают монтажную конструкцию для электрических компонентов.

    Как указывалось ранее, панель ПЛК состоит из двух типов электрических компонентов: силовых компонентов и компонентов управления. Чтобы иметь возможность читать электрическую схему панели ПЛК, вы должны иметь представление об этих компонентах. Рассмотрим эти два типа электрических компонентов: 

    A) Компоненты питания панели ПЛК   

    • Поворотный разъединитель: Используется для подключения входящих линий/проводов питания. Он может включать предохранители или нет. Чтобы включить или выключить питание, его обычно поворачивают с помощью черной или желтой дверной ручки панели ПЛК.
    • Блок распределения питания: в основном изготовлен из обработанного алюминия. В верхней части этого блока есть пара отверстий для больших соединительных проводов, а в его нижней части есть несколько отверстий для меньших соединительных проводов. Блок распределения питания используется для разделения большого соединительного провода на более мелкие провода, которые будут использоваться со многими другими электрическими компонентами на панели ПЛК.
    • Реле и контакторы: Это переключатели ВКЛ/ВЫКЛ, которые управляют механизированными функциями на основе команд управления от контроллера ПЛК. Меньшие реле управляют простыми функциями, такими как вентиляторы и освещение. Реле большего размера известны как контакторы и управляют более сложными функциями, такими как трехфазные двигатели.
    • Главный автоматический выключатель: Все мы знакомы с основным отключением электрических цепей в наших домах или офисах. Что ж, главный автоматический выключатель в панели ПЛК похож на такой электрический разъединитель. В большинстве промышленных систем управления главные автоматические выключатели в панелях ПЛК рассчитаны на напряжение от 120 до 480 В.
    • Отводные автоматические выключатели: обеспечивают защиту от короткого замыкания, а в некоторых случаях предотвращают перегрузку для каждого типа нагрузки, управляемой ПЛК, например нагревателя, двигателя и т. д. 
    •  Ограничители перенапряжения: используются для предотвращения скачки напряжения или удары молнии из-за повреждения электрических компонентов внутри панели ПЛК из-за перенапряжения.
    • Трансформатор: Обычно понижающий трансформатор используется для снижения входного переменного напряжения до 120 В для различных компонентов, а в других случаях он используется для понижения входного напряжения до 24 В. Это применимо в тех случаях, когда панель ПЛК подключена к сети переменного тока 120 В.
    • Блок питания: используется для преобразования переменного напряжения высокой мощности, обычно 120 В или 240 В переменного тока, в более низкое и безопасное управляющее напряжение постоянного тока (24 В постоянного тока) для различных компонентов управления на панели ПЛК, таких как ЧМИ или контроллер ПЛК.
    • Контакты питания: они используются для ручного отключения/включения подачи питания на машину с помощью кнопок аварийного останова.
    • Стартер двигателя: также известный как контактор двигателя, он включает двигатели на полной скорости и полном напряжении.
    • Преобразователь частоты (VFD): Это тип контроллера двигателя, который используется для регулировки скорости двигателя, а также для контроля других параметров двигателя.
    • Устройство плавного пуска двигателя: это также тип контроллера двигателя, который используется для постепенного пуска двигателя с течением времени, а затем разгона до полной скорости двигателя.
    • Заземление: Это соединение необходимо, так как оно обеспечивает путь прохождения тока в случае электрической неисправности.

    B) Компоненты управления панели ПЛК  

    • Дополнительный автоматический выключатель: используется для защиты высокопроизводительных и дорогих устройств управления и компонентов панели ПЛК.
    • Главное реле управления (MCR): используется для реализации цепи безопасности, которая передает питание от всех выходных устройств в случае аварийной ситуации. В большинстве случаев MCR представляет собой пару грибовидной кнопки «Стоп».
    • Сетевые коммутаторы: Они составляют коммуникационный центр панели ПЛК. Они облегчают связь между системой ПЛК и множеством других сетевых устройств на сборочной линии. Примером сетевого коммутатора является коммутатор Ethernet, который используется для сетевой связи между ПЛК, ЧМИ и другими интеллектуальными устройствами.
    • Программируемый логический контроллер (ПЛК). По сути, это ЦП ПЛК, находящегося внутри панели. Этот блок имеет арифметико-логический блок (ALU), который отвечает за манипулирование данными, арифметические функции и логические операции. Блок управления также включен для регулирования времени операций управления ПЛК.
    • Человеко-машинный интерфейс (HMI): HMI предоставляют графический интерфейс пользователя (GUI), который позволяет операторам взаимодействовать с системой управления ПЛК. Таким образом, оператор может использовать графический дисплей HMI для мониторинга и просмотра вводимых и рабочих данных в режиме реального времени или для настройки и управления определенными функциями оборудования или процесса. Примеры ЧМИ включают в себя клавиатуры, текстовые считыватели, джойстики, видеомониторы или большие сенсорные панели, такие как жидкокристаллические дисплеи (ЖК-дисплеи).
    • Модуль ввода/вывода: Модули ввода/вывода обеспечивают интерфейс от ПЛК к полевым устройствам ввода и управляемым компонентам или устройствам. Модуль вывода соединяет ПЛК с устройствами ввода, такими как датчики, кнопки пуска/останова и переключатели. С другой стороны, модуль вывода используется ПЛК для управления выходными полевыми устройствами, такими как реле, электромагнитные клапаны, двигатели, насосы и электрические нагреватели. Вы можете иметь либо аналоговые, либо цифровые модули ввода/вывода.
    • Кнопка оператора: расположена на передней панели панели ПЛК и используется оператором для управления процессом или машиной.
    • Клеммные колодки: они используются для соединения и сращивания проводки полевых устройств и внутренней проводки панели ПЛК. Они также помогают организовать и распределить множество проводов, исходящих из различных источников, к различным электрическим устройствам.

    Также известная как электрическая схема, принципиальная схема, элементарная схема или электрическая схема, электрическая схема представляет собой просто графическое представление электрической цепи. Принципиальная электрическая схема представляет электрические компоненты и взаимосвязи цепи с использованием стандартных символов, в то время как наглядная электрическая схема использует простые изображения для представления компонентов цепи. В этой статье мы обсудим как принципиальные, так и наглядные электрические схемы панели ПЛК.

    Все компоненты питания и управления панели ПЛК, описанные выше, существуют на электрической схеме. Они определяют и организуют различные функции, выполняемые панелью ПЛК. На электрической схеме эти компоненты представлены стандартными электрическими символами. Следовательно, для того, чтобы иметь возможность прочитать схему подключения панели ПЛК, необходимо заранее знать, какой символ представляет какой компонент.

    Зная различные электрические компоненты, содержащиеся в панели ПЛК, и символы, обозначающие их на схеме соединений, мы теперь можем научиться читать схемы соединений панели ПЛК, используя несколько примеров. Но перед этим, вот несколько правил, которым нужно следовать всякий раз, когда вы читаете электрическую схему панели ПЛК:
    Правило №1: Вы должны читать схему подключения панели ПЛК слева направо и сверху вниз, как если бы вы читали книгу.
    Правило № 2: Чтобы понять систему адресации схемы подключения панели ПЛК, используйте комбинацию предоставленных номеров столбцов и номеров страниц. Например, если вы найдете число 38,7 ниже или рядом с электрическим компонентом на электрической схеме панели ПЛК, это означает, что компонент использовался на странице 38, столбец 7. Это правило применяется, когда вы читаете реальную панель ПЛК. схема подключения в буклете на нескольких страницах.
    Хорошо, теперь давайте посмотрим на несколько примеров схем подключения панели ПЛК.

    В этом примере двигатель должен работать в обоих направлениях, что возможно только с помощью логической схемы управления вперед/назад или релейной схемы. Простая логика прямого/обратного управления ПЛК была бы наиболее жизнеспособным решением в этом случае. Таким образом, система ПЛК используется для прямого и обратного управления трехфазным асинхронным двигателем.

    Два реле или контактора для управления двигателем используются, потому что необходимы два разных направления. Первый контактор предназначен для управления прямым направлением, а второй контактор — для управления обратным направлением двигателя. Кроме того, три кнопки используются для функций остановки, движения вперед и назад двигателя. Таким образом, оператор будет использовать кнопку прямого хода (FWD PB) для работы двигателя вперед, кнопку реверса (REV PB) для работы двигателя назад и кнопку остановки (STOP PB) для функции остановки. В результате электрическая схема выглядит так, как показано ниже:

    Рис. 1. Наглядная электрическая схема двигателя, управляемого ПЛК

    Примечание: Пунктирные линии на приведенной выше схеме подключения (рис. 1) обозначают один приобретаемый компонент, которым в данном случае является система ПЛК.

    В этой системе контроллера двигателя трехфазное питание переменного тока подключается к клеммной колодке, а затем подается на прерыватель питания (главный автоматический выключатель). После чего все три фазы (L1, L2 и L3) подаются на пускатель двигателя с тремя контактами, обозначенными буквой М. Далее к нему подключаются три тепловых реле перегрузки (отводные автоматические выключатели). Затем две фазы (L2 и L3) трехфазного переменного тока подключаются к понижающему трансформатору, который подключается к системе ПЛК для питания логики. Получившаяся электрическая схема показана ниже:

    Рис. 2. Электрическая схема системы управления двигателем на основе ПЛК

    Чтобы лучше понять логическое управление, обеспечиваемое системой ПЛК, в электрическую схему двигателя на рис. 2 вместо системы ПЛК включена схема многоступенчатой ​​логики. Как правило, схему соединений панели ПЛК в Ladder Logic можно разделить на две отдельные части. Первая часть — это силовая цепь, которая показывает поток энергии в систему. Цепь питания обычно обозначается жирными линиями. Вторая часть обычно обозначается тонкими линиями и представляет собой схему управления. В случаях, когда для питания панели управления ПЛК используется внешний источник питания, это обычно не отображается. На рисунке ниже показан хороший пример монтажной схемы релейной логики с цепью питания и цепью управления:  

    Рис. 3: Электрическая схема и схема лестничной логики двигателя, управляемого ПЛК

    В приведенном выше примере (рис. 3) силовая цепь показывает, как трехфазное напряжение переменного тока (L1, L2 и L3) поступает на двигатель; сначала он поступает на клеммы, затем подключается к силовому прерывателю (главному автомату защиты), затем три фазы подаются на три контакта М и три тепловых реле перегрузки (отводные автоматические выключатели). В этом случае внешний источник питания ПЛК не требуется, так как две фазы (L2 и L3) трехфазной сети переменного тока подключены к понижающему трансформатору, питающему систему ПЛК. Рисунок 3 также включает в себя схему управления (показанную в виде схемы лестничной логики), которая фокусируется на том, как управляется двигатель.

    В части схемы управления на основе ПЛК на рис. 3 используются стандартные символы лестничной диаграммы. Однако электрические компоненты, такие как предохранители и устройства отключения, также могут использоваться в цепях управления. На рисунке 3 схема управления включает предохранитель. Посмотрите на некоторые стандартные символы лестничной диаграммы, показанные ниже, которые будут полезны при чтении схемы управления на основе ПЛК на рисунке 3.

    Рисунок 4: Наиболее распространенные символы лестничной диаграммы

    На рисунке 3 силовая цепь может быть прочитана, как описано выше, но чтобы иметь возможность прочитать схему управления на основе ПЛК, нам придется рассмотреть несколько правил чтения лестничных диаграмм.

    Как следует из названия, физический макет лестничной диаграммы (LD) напоминает лестницу; при этом две вертикальные шины питания построены среди ряда горизонтальных перекладин.

    A) На лестничной диаграмме вертикальные линии обозначают шины питания, между которыми подключена схема ПЛК. В крайнем левом углу находится положительная полоса, а справа — отрицательная или нейтральная полоса питания. Таким образом, поток электрического тока идет от вертикальной шины питания на левом конце через горизонтальную перекладину к правой вертикальной шине.

    B) Горизонтальные ступени показывают кнопочные выключатели, катушки реле, контакты реле, контакты переключателей и элементы, которыми управляет ПЛК, такие как лампы, двигатели и электромагнитные катушки. Все эти компоненты показаны между вертикальными шинами питания.

    C) Входы расположены с левой стороны каждой горизонтальной ступени, и они должны быть верными для подачи питания на подключенные выходы. Следовательно, каждая горизонтальная ступенька начинается с входа и заканчивается выходом.

     D) Еще одно очень важное соглашение заключается в том, что программа на лестничной диаграмме читается слева направо и сверху вниз. Процессор ПЛК сначала считывает верхнюю цепочку слева направо, затем вторую цепочку также считывает слева направо и так далее. Этот процесс называется циклом сканирования программы ПЛК.

    E) Каждая горизонтальная ступень схемы релейной логики определяет одну операцию управления ПЛК. Таким образом, при чтении схемы соединений релейной логики вы должны иметь возможность логически визуализировать процесс, управляемый ПЛК, по горизонтальным звеньям; по мере того, как данные передаются от входов на левом конце к компонентам управления и к управляемым устройствам вывода.

    F) Наконец, в схемах лестничной логики физические электрические компоненты электрической цепи изображаются в их нормальном состоянии. Например, если релейный контактный переключатель обычно является нормально разомкнутым (НО) до тех пор, пока не будет выполнено определенное условие для его закрытия, то на схеме лестничной схемы он будет отображаться как нормально разомкнутый. Точно так же нормально закрытый (NC) компонент будет отображаться как нормально закрытый.

    Поняв правила чтения лестничной диаграммы, теперь мы можем интерпретировать схему управления на основе ПЛК на рис. 5 (показанная ниже) следующим образом: 

    Рисунок 5: Схема управления на базе ПЛК

    Во-первых, на рис. 5, показанном выше, показана одноступенчатая лестничная схема с вертикальными направляющими, указывающими на подачу питания от понижающего трансформатора к системе ПЛК. Вертикальная шина питания на левом конце защищена от перегрузки по току с помощью предохранителя, а вертикальная шина питания на правом конце заземлена.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *