Закрыть

Электропрогрев бетона при зимнем бетонировании: Технологии прогрева бетона в зимнее время

Содержание

Технологии прогрева бетона в зимнее время



Данная статья посвящена описанию и обзору технологии электропрогрева бетона с помощью электрических кабелей в зимнее время.

Ключевые слова: зимнее бетонирование; греющий провод; электропрогрев бетона; набор прочности; монолитные конструкции.

Keywords: cold-weather concreting; electrical thread; electrical curing; strength set;monolithic construction.

Одной из проблем монолитного строительства является бетонирование в зимнее время. Проблема связана с набором необходимой проектной прочности при отрицательных температурах окружающей среды. Российский климат диктует свои условия при проведении бетонирования, увеличивая сроки схватывания раствора и удлинения цикла строительно-монтажных работ в осенне-весенний и зимний периоды. Основные постулаты современной технологии проведения бетонных работ в зимний период сформулированы еще в советское время и позволили накопить серьезные практические сведения о преимуществах и недостатках тех или иных технологических операций по прогреву бетона.

В настоящее время развитие направлено на усовершенствование свойств присадочных добавок при применении уже ранее сформировавшихся основных принципов.

Актуальность статьи обусловлена климатическими условиями строительства на большей части территории России и наличием большого количества методов по прогреву бетона, влияющих на свойства получаемого материала, остаются актуальными [1].

При отрицательной температуре содержащая в бетонном растворе свободная вода переходит в другое агрегатное состояние, образуются кристаллы льда довольно большого объема, вызывающие повышение порового давления в цементе, и, как следствие — разрушение структуры не затвердевшего бетона и значительное снижение его конечной прочности, особо опасное непосредственно в период схватывания.

Для нивелирования воздействия низких окружающих температур и повышения прочности бетона важнейшее значение имеет оптимальный температурный режим, необходимый для поддержания в период его твердения. Поэтому при бетонировании монолитных конструкций в зимний период, требуется поддерживать необходимые влажностно-температурные условия, позволяющие набрать необходимую прочность конструкции в кратчайшие сроки.

В зависимости от различных факторов (наружная температура воздуха, тип конструкции, экономическая обоснованность применения и т. д.) на практике применяются виды бетонирования в зимний период:

– термос или термос с противоморозными добавками;

– обогрев в греющей опалубке;

– прогрев электродами;

– инфракрасный или индукционный обогрев;

– обогрев нагревательными проводами.

Рассмотрим вышеперечисленные способы чуть более подробно:

  1. Термос или термос с противоморозными добавками

Метод термоса, наиболее простой и экономичный, нашел широкое распространение при бетонировании самых различных конструкций.

Сущность выдерживания бетона по методу термоса состоит в следующем: доставленную на площадку бетонную смесь температурой 25. ..45°С укладывают в опалубку. Сразу после окончания бетонирования все открытые поверхности конструкции укрывают слоем теплоизоляционного материала. Изолированный от холодного воздуха бетон твердеет за счет тепла, внесенного в бетонную смесь при ее приготовлении, а также тепла, выделяемого в процессе экзотермической реакции твердения цементного теста.

Не все конструкции можно выдерживать методом термоса. Более всего он подходит для массивных конструкций с относительно небольшой площадью охлаждения.

Зимой эффективней применять высокоактивные быстротвердеющие цементы, а также вводить в обычные цементы химические добавки — ускорители твердения.

В качестве утеплителей применяют доски с прокладкой толя, доски и фанеру с прокладкой пенопласта, картон, опилки, шлаковату и др. Предпочтение отдают тюфякам, покрытым с двух сторон непродуваемым, водоотталкивающим материалом.

Конструкции, имеющие сечения различной толщины, тонкие элементы, углы и другие быстро остывающие части, следует утеплять особенно тщательно.

  1. Обогрев в греющей опалубке

Обогрев с помощью термоактивной (греющей) опалубки, состоящей из многослойных утепленных щитов, оснащенных нагревательными элементами основан на принципе передачи тепла от опалубки в поверхностный слой бетона, а затем распространяется по всей его толщине. Обогрев бетона таким способом не зависит от температуры наружного воздуха. Греющую опалубку применяют при возведении тонкостенных и среднемассивных конструкций, а также при замоноличивании стыков и швов при температуре наружного воздуха до — 40

0С.

Конструкции греющей опалубки многообразны. Основное требование, предъявляемое к ним — равномерность распределения температуры по опалубке щита.

В качестве нагревательных элементов применяют трубчатые электронагреватели (ТЭНы), греющие провода и кабели, гибкие тканевые ленты, а также нагреватели, изготовленные из нихромовой проволоки, композиции полимерных материалов с графитом (углеродные ленточные нагреватели) и токопроводящими элементами и др.

Размещают нагреватели на щите опалубки в зависимости от режимов обогрева и мощности: греющие провода и кабеля устанавливают вплотную к палубе, ТЭНы — на небольшом расстоянии от нее.

Перед бетонированием прогревают арматуру и ранее уложенный бетон. Для этого на непродолжительное время включают термоактивную опалубку, предварительно укрыв сверху блок бетонирования брезентом или полиэтиленовой пленкой.

  1. Прогрев бетона электродами

Суть прогрева бетона электродами состоит в использовании электродов, представляющих собой отрезки арматуры или проволоки катанки 8–10 мм. Прогрев бетона происходит за негревания бетона при пропускании электрического тока по влаги в растворе. На электроды подаются три фазы с понижающего трансформатора. При прогреве колоны достаточно воткнуть один электрод, прогрев будет осуществляться за счет фазы трансформатора и земли от арматуры колоны.

Электродный прогрев удобен для заливки вертикали (колон, стен, диафрагм). После заливки необходимой конструкции в неё монтируются металлические стержни, являющиеся проводниками, на которые подается пониженное напряжение с понижающего трансформатора. Интервал между электродами, в зависимости от погоды, может быть разный от 0,6–1 метра.

Преимуществами электродного метода являются простота использования и быстрый монтаж системы прогрева.

Среди недостатков можно выделить большие энергозатраты, т. е. высокая стоимость прогрева. Также добавляются затраты на закупку арматуры или проволоки катанки, т. к. они являются одноразовыми и остаются в теле бетона [2].

Используемые электроды для электропрогрева:

– Стержневые электроды. Они изготавливаются из арматуры (6–12мм диаметра) и располагают их в теле бетона с расчетным шагом. Данные электроды позволяют прогревать конструкции самой сложной формы.

– Пластинчатые электроды навешиваются на внутреннюю сторону опалубки и в результате подключения противоположных пластинчатых электродов к разным фазам, в бетонной смеси образуется электрическое поле, под воздействием которого масса разогревается до требуемой температуры и его теплота поддерживается необходимое время.

– Струнные электроды, как правило, применяются для прогрева бетона колон.

– Полосовые электроды можно располагать как с одной стороны конструкции, так и с двух сторон.

  1. Инфракрасный или индукционный обогрев;

Источником инфракрасных (тепловых) лучей служат ТЭНы (трубчатые электронагреватели) мощностью 0,6…1,2 кВт с рабочим напряжением 127, 220 и 380 В, керамические стержневые излучатели диаметром 6…50 мм, мощностью 1…10 кВт, кварцевые трубчатые излучатели и другие средства.

Для создания направленного потока инфракрасных лучей применяют отражатели параболического, сферического и трапецеидального типа. Инфракрасные установки в комплекте с отражателями и поддерживающими устройствами используют для прогрева конструкций, возводимых в скользящей опалубке, тонкостенных элементов стен, подготовке под полы, плитных конструкций, стыков крупнопанельных зданий.

При обогреве плитных конструкций используют излучатели с отражателями коробчатого типа, которые или устанавливают на бетонную поверхность, или подвешивают на расстоянии от нее. Чтобы предотвратить быстрое испарение влаги, поверхность бетона покрывают пленкой.

При возведении стен в щитовой и объемно — переставной опалубке применяют односторонний обогрев излучателями сферического типа. Для обеспечения прогрева всей плоскости стены отражатели располагают на разных уровнях на телескопических стойках и на расчетном расстоянии от стены.

Инфракрасные установки располагают на таком расстоянии друг от друга, чтобы прогревалась вся поверхность бетона. Инфракрасный обогрев обеспечивает хорошее качество термообработки бетона при условии соблюдения теплового режима выдерживания бетона.

Преимущества — высокая эффективность метода, простота использования, малые энергозатраты.Недостатки — высокая стоимость инфракрасной установки, что невыгодно при больших объемах бетонирования

  1. Прогрев нагревательными проводами

Сегодня технология прогрева бетона нагревательными проводами, освоена и широко применяется на практике многими крупнейшими отечественными и зарубежными строительными фирмами. Следует отметить, что при строительстве многих масштабных объектов на территории РФ, использовался в зимний период стройки именно этот способ.

Метод прогрева нагревательными проводами заключается в закреплении на арматурном каркасе провода нагревательного определенной длины непосредственно перед укладкой массы в опалубку. При данном способе подогрева в большинстве случаев используется провод ПНСВ 1,2. Он представляет собой токопроводящую жилу с изоляционным покрытием из поливинилхлорида или полиэстера (благодаря хорошей изоляции не происходит возгорание). А также у него минимальна вероятность перегибов или переломов внутренних жилок [3].

Выделяемая теплота такими проводами, при прохождении по ним тока, передается бетону и равномерно распределяется в нем путем теплопроводимости, что и позволяет разогреть бетон до +40С — +50С. Электропитание проводов ПНСВ осуществляется через подстанции типа КТП-63/ОБ или КТП ТО — 80/86, имеющие несколько ступеней пониженного напряжения. Одной такой подстанцией можно обогреть до 20–30м3 бетона. Для подогрева 1м3требуется приблизительно 60м провода нагревательного марки ПНСВ-1,2. Метод обогрева при помощи нагревательных проводов позволяет обогревать любой конструкции сложности при температуре воздуха до -30С [4].

Укладка провода для прогрева бетона является крайне ответственной процедурой, требующая пристального контроля. В упрощенном виде порядок выполнения работ имеет вид:

  1. Поверхность будущего пола зачищается от строительного мусора, который может повредить изоляционную обмотку кабеля;
  2. В процессе укладки кабель должен быть уложен без перегибов для недопущения переломов токопроводящих жил. Наиболее распространенным является способ «змейка».
  3. В период пуска и эксплуатации необходимо минимизировать вероятность перепадов напряжения, иначе провод перегорит и его демонтаж будет невозможен.
  4. После этого нагревательный кабель подводится к источнику питания и подключается к сети по схеме «звезда» или «треугольник».

Инструкция по прогреву:

  1. Первый отрезок времени — бетон разогревается, при этом скорость должна быть не выше 10 градусов по Цельсию за 2 часа времени;
  2. Нагрев по изотерме, это самый важный период, здесь нужно следить за тем, чтобы температура не достигла 80 градусов;
  3. Последний — период остывания. Скорость остывания нагретого бетона должна быть не выше 5 градусов в час.

Несмотря на проработанность данного метода, разработки и научные исследования не прекращаются. Производится сравнительная характеристика различных греющий проводов, различных материалов в токопроводящих жилах, режимах прогрева и т. п. Это связано с появлением новых программных комплексов, способных достаточно точно смоделировать весь процесс прогрева с рассмотрением температурных кривых и выбора наиболее оптимальных режимов.

Заключение

В заключении хотелось бы отметить, что наиболее распространенным методом является комбинация методов обогрева. Целесообразность применения того или иного метода обогрева или же их комбинации зависит от таких факторов, как массивность конструкции, требуемой прочности, от метеорологических условий, а также от наличия энергоресурсов на строительной площадке.

Только набравший определенную прочность бетон, может отлично противостоять действию разрушительных «морозных сил» без малейшего разрушения его структуры, что и позволяет ему после оттаивания продолжить набор прочности.

Литература:

  1. А. Б. Вальт, А. А. Овчинников. Способы термообработки бетона при возведении монолитных конструкций // Известия КГТУ. — 2008. — № 13. — С. стр. 109–112.
  2. Т. А. Краснова, Т. А. Затворницкая, С. И. Усков, Д. А. Игнатьев, Б. Г. Носкин. Круглый стол: Зимнее бетонирование — продолжение сезона // Технологии бетонов. —2012. —С.стр. 11‐12.
  3. М. О. Дудин, Н. И. Ватин, Ю. Г. Барабанщиков. Моделирование набора прочности бетона в программе ELCUT при прогреве монолитных конструкций проводом //Magazine of Civil Engineering. — 2015. —№ 2.—С.стр. 33–45.
  4. М. О. Дудин, Ю. Г. Барабанщиков.Специфика монтажа электрического провода в технологии прогрева бетона // Строительство уникальных зданий и сооружений. —2015. —№ 9. —С.стр. 47–61.

Основные термины (генерируются автоматически): прогрев бетона, бетон, греющая опалубка, зимний период, конструкция, провод, электрод, метод термоса, обогрев, прогрев.

Электропрогрев бетона в зимнее время, способы прогрева электродами

Прогрев является одной из обязательных операций процесса бетонирования при отрицательных температурах. При замерзании воды в составе смеси вся масса медленнее наращивает прочность. Более того, замерзая, влага разрушает структуру цемента, что ведет к разлому конструкции. В связи с этим остро этот вопрос встаёт при работах в не сезон.

Способы зимнего бетонирования

Зимний прогрев практикуется на этапе твердения в опалубке. Для сохранения температурного режима пользуются различными агрегатами и методами. Наиболее эффективные способы:

  • термос;
  • термос с ускорителями твердения и противоморозными добавками;
  • электродное нагревание;
  • предварительный разогрев смеси;
  • обогрев греющей опалубки;
  • инфракрасное нагревание;
  • индукционный нагрев;
  • использование нагревательных проводов.

Прогрев бетона электродами считается самым эффективным. Но часто для гарантированного результата используют комплексный приём.

Технология термоса подразумевает утепление опалубки. Тип и степень утепления выбирают исходя из температур окружающей среды и качества смеси. В основе расчетов лежит требование критической прочности при охлаждении массы до 0 оС.

Ускорители твердения и противоморозные добавки затормаживают процесс замораживания и ускоряют твердение. Таким образом, утепление опалубки комбинируется с действием химических реактивов. Но они эффективны до определённых пределов. Поскольку вода вступает в реакцию с цементом только в жидком состоянии, то электропрогрев бетона с противоморозными добавками заключается в сохранении её консистенции. Часто в качестве химнаполнителей используются хлорид кальция, натрия или карбонат калия.

Электронный прогрев представляет собой пускание электрического тока, благодаря которому нагреваются металлические элементы (например, арматура), а через них и сам бетон.

Метод инфракрасного обогрева основан на нагревании поверхности под воздействием инфра-лучей.

Индукционный способ объясняется образованием тепла вследствие вихревых потоков от электромагнитного индуктора.

Также часто используется зимний прогрев бетона тепловыми пушками. В этом случае создают временных деревянный каркас, на него укладывают плёнку ПВХ и тем самым создают палатку или шатер. Чем выше температура, тем быстрее масса будет набирать прочность и тем меньше времени займёт процедура нагрева. Обычно для набора 50% прочности достаточно от 1 до 3 суток работы пушек.

Подробное описание каждого из способов

Электродный прогрев

Электропрогрев конструкций из бетона в зимнее время подразумевает введение тока через противоположные электроды, соединённые с проводами разных фаз. Они располагаются на поверхности и внутри уложенного материала. Для нагрева используют пониженные (50-127 В) и повышенные (220-280 В) напряжениях. 127 В можно применять только на неармированных конструкциях, иначе возникнет перегрев, влага испарится, и пострадает прочность. Железобетонные следует греть на пониженных напряжениях, которые обеспечивают возможность соблюдать заданный режим более точно.

1. Подготовительные операции

  • установка комплектной трансформаторной подстанции;
  • подключение её к питающей сети, пробы на холостых ходах;
  • изготовление инвентарных сецкий шинопроводов и их установка;
  • выполнение мероприятий по безопасности;
  • соединение шинопроводов при помощи кабеля и подсоединение их к подстанции
  • установление арматуры и опалубки в рабочее положение, очистка от снега наледи и мусора;

2. укрытие поверхности полиэтиленовой пленкой и минватой сразу после укладки смеси.

3. установка через тепло- и гидроизоляцию стальных стержней длиной 1 м и диаметром 6 мм, которые будут выполнять роль электродов. Концы должны выступать на 10-20 см.

4. коммутация электродов между собой и подключение к секции шинопроводов.

5. соединение конструкции с питающей сетью, проверка и подача напряжения.

Через каждые 120 минут требуется измерение температуры бетона при помощи специальных скважин.

Инфракрасный

Суть метода заключается в установке оборудования, работающего в инфракрасном диапазоне. Излучение превращается в тепловую энергию, которая поглощается материалом и далее передается вглубь конструкции, согласно свойствам теплопроводности. Обязательно накрыть поверхность прозрачной пленкой. Инфракрасный подогрев смеси бетонной может также представлять собой электромагнитные колебания со скоростью распространения волны 2,98*108 м/с и длиной волны 0,76-1 000 мкм.

Часто роль генераторов излучения выполняют металлические и кварцевые трубки. Преимуществом этой технологии является возможность питания от обычного переменного тока. Уровни мощности при инфракрасном методе могут быть различными. Они зависят от необходимой температуры нагревания. При помощи лучей энергии может передаваться на более глубокие слои. Важно производить нагрев плавно и постепенно. Нельзя работать на высокой мощности, потому что верхний слой достигнет чрезмерно высоких температур, что снизит его прочностные характеристики.

Инфракрасный метод применяется в случаях, когда требуется разогреть тонкие слои конструкции либо при подготовке раствора для ускорения времени сцепления.

Индукционный

Оуществляется посредством энергии переменного тока, преобразующейся в тепловую в стальной опалубке или арматуре, а далее передающейся материалу. Этот способ эффективен для повышения температуры в железобетонных каркасных конструкциях (колоннах, ригелях, балках, прогонах и других).

Индукционный нагрев по наружным поверхностям опалубки элемента подразумевает укладывание последовательных витков изолированных проводов и индукторов, число и шаг которых определяется расчетами. По результатам подсчетов изготавливаются шаблоны с пазами.

Следующим этапом после установки индуктора является обогрев арматурного каркаса или стыка с целью удаления наледи до начала бетонирования. А после открытые поверхности опалубки и конструкции рекомендуется укрывать теплоизоляционными материалами и устраивать скважины замера состояния, а затем приступать к работе. После того, как смесь достигает нужной температуры, процедуру прекращают. Разница с расчетной при этом не должна быть меньше 5 оС. Скорость остывания должна сохраняться в пределах 5-15 оС/ч.

Использование трансформаторов

Одна трансформаторная подстанция способна обогреть от 40 до 80 м3 смеси. Этим способом пользуются в условиях 30-градусных морозов, когда требуется прогреть монолитные конструкции. 60 м провода в среднем достаточно для 1 м массы.

Прогрев монолитного бетона в зимних условиях трансформаторным методом происходит следующим образом: внутрь заливки прокладывают нагревательный провод, который подсоединяют к станции или выводам трансформатора. Электрическим током массу разогревают до состояния, позволяющей ему нормально затвердеть. Благодаря тому, что материал обладает хорошими свойствами теплопроводности, тепло с высокой скоростью распространяется по всему массиву.

Кабель для прогрева, заложенный внутрь бетонного раствора, способен повышать до 80 оС. Электропитание осуществляется при помощи трансформаторных подстанций КТП ТО-80 и ТСДЗ-63, имеющих несколько ступеней низкого напряжения. Это позволяет регулировать мощность нагревательных проводов и подгонять её в соответствии с изменениями температуры воздуха.

Как производить прогрев бетона при строительстве в зимнее время

Сегодня зимнее бетонирование – одна из актуальных проблем в строительном производстве. Ежегодно в мире при возведении зданий и сооружений используется около 15 млрд м3 бетона. При этом около 75% общего объема применяется при строительстве конструкций и сооружений в зимних условиях, то есть при отрицательных температурах воздуха.
Теоретически строительные работы должны проводиться до наступления зимних холодов или при температуре воздуха, не превышающей +350 C. В таких случаях никаких дополнительных условий ухода за твердеющим бетоном не требуется. Но даже в нормальных температурных условиях, учиты­вая, что для твердения бетона необходима постоянная влажность, во избежание раннего высыхания его укрывают от прямых солнечных лучей.

Территория СНГ включает районы, например в Сибири, где колебания температур воздуха в разные сезоны года происходят в диапазоне от +500 C до –500 C, при этом зимний период составляет 6 или даже 8 месяцев. Такие суровые климатические условия крайне неблагоприятны для строительства. Не следует забывать и о том, что существуют зоны вечной мерзлоты, которые занимают почти четверть поверхности земного шара. Однако в таких районах также ведется интенсивное строительство. В странах Северной Европы зимнее строительство – обычная практика. Так, в Финляндии половина объема строительных работ приходится на зиму, то есть на тот период, когда постоянная средняя температура воздуха немного ниже 00 C.

Морозостойкость бетона

Бетон, уложенный в строительную конструкцию, должен в процессе затвердения набрать прочность, а для этого необходимы свойства морозостойкости.

Морозостойкость – способность строительного материала выдерживать в состоянии насыщенности водой многократное попеременное замораживание и оттаивание без видимых признаков разрушения и понижения прочности. При зимнем бетонировании в суровых климатических условиях морозостойкость бетона является главным фактором качественного возведения конструкций.

Мороз опасен для свеже­уложенного бетона, прежде всего, по причине воздействия низких температур воздуха на процессы схватывания и твердения цементов. Так, при снижении температуры с +20° C до +5° C схватывание бетона замедляется в 2–5 раз. Замедление процесса твердения особенно заметно при дальнейшем снижении температуры до 00 C. При восстановлении нормальных температурных условий выдерживания твердение продолжается с достаточной скоростью. При температуре бетона ниже 00 C данный процесс полностью прекращается. Это объясняется тем, что при замерзании бетона свободная вода, содержащаяся в его порах, превращается в лед и, соответственно, увеличивается в объеме.

Льдистость

Для того чтобы оценить степень влияния температуры на процесс твердения, используют такой термин, как льдистость. Льдистость – это отношение количества льда к массе химически не связанной воды. У образцов, находящихся на морозе в первые часы после изготовления, большая часть воды переходит в лед при температуре ниже –20 C, а у помещенных на мороз через 24 часа нормального твердения – при температуре –50 C. Большое влияние на льдистость оказывает продолжительность твердения до начала замерзания, или степень гидратации цемента, а также активность цемента и водоцементное отношение. Чем выше прочность бетона до замерзания, чем больше в нем продуктов гидратации, тем больше количество незамерзшей воды.

В результате замерзания замедляется образование цементного камня. Происходит частичное или полное прекращение процесса гидратации цемента. Следовательно, прекращается и твердение бетона. Процессы гидратации протекают не полностью, и бетон не успевает приобрести требуемые физико-механические свойства. Вследствие этого получается бетон с дефектной структурой.

Замерзая в бетоне, вода увеличивается в объеме на 9%. По этой причине в порах бетона развивается большое давление, которое вызывает разрушение структуры еще не затвердевшего бетона. Скопившаяся на поверхности зерен крупного заполнителя вода при замерзании образует тонкую ледяную пленку, которая препятствует соприкосновению поверхности заполнителя с цементным тестом. В итоге ухудшается монолитность бетона. Если бетон замораживается в раннем возрасте, то лед разрушает большое количество кристалликов цементного клея. Если затворе­ние бетона было проведено до замораживания, а твердение бетона еще не началось, то оно не начнется и после замерзания.

В тот период, когда свободная вода находится в состоянии льда, твердение приостанавливается. При оттаивании бетона лед превращается в жидкость, и твердение бетона возобновляется. В нем происходят те же процессы, что и до замерзания, но уже при изменившейся структуре. По причине изменений, происходящих в структуре бетона, уменьшаются его прочность и сцепление с арматурой. Чем раньше бетон подвергся замораживанию, тем ниже его конечная прочность. Наиболее значительно сказывается на качестве бетона его замерзание в период схватывания цемента. Также способствует ухудшению характеристик бетона и его многократное замерзание и оттаивание в начальный период твердения во время оттепелей и заморозков.

Прогрев бетона

Для обеспечения качественного строительства в зимних условиях были разработаны методы, с помощью которых создаются благоприятные условия для твердения бетона даже в самые сильные морозы.

В течение срока, который определяется достижением заданной прочности бетона, необходимо поддерживать соответствующие температуру и влажность, используя для этого внутреннее тепло бетона или же дополнительно обогревая твердеющий бетон. Разработаны и внедрены в практику несколько методов прогрева, которые используются при зимнем бетонировании. Наиболее эффективными являются способы термоса, электронагрева и паропрогрева.

На месте бетонную смесь укладывают в опалубку из деревянных или металлических щитов, соответствующих форме будущей конструкции. В опалубке устанавливают стальной каркас-арматуру.

Бетонную смесь укладывают с максимально возможной скоростью, без перерывов. Твердение бетона зависит от химических реакций цемента с водой. Основными факторами, определяющими ход данных процессов, являются температура и влажность воздуха. Поэтому в зимнее время при низких температурах опалубку утепляют, причем сразу же после окончания бетонирования; щитами и матами укрывают и верхнюю, открытую, поверхность бетона.

Способ термоса

Данный метод широко применяется в промышленном и гражданском строительстве. По способу термоса бетон твердеет под слоем теплоизоляционных материалов (шлак, опилки, камышит). Такие материалы плохо проводят тепло, и во многих случаях их количество оказывается достаточным для того, чтобы во время остывания бетон приобрел необходимую прочность. При такой прочности можно распалубливать конструкцию, не боясь замораживания, – после оттаивания бетон не разрушится. Способ термоса является наиболее экономичным и простым по сравнению с другими методами прогрева бетона. Для его реализации не требуется специальное оборудование, но применять его можно только при бетонировании массивных конструкций, так как тонкостенные очень быстро остывают. Применение способа термоса позволяет создать нормальные условия для производства работ и, соответственно, увеличить интенсивность укладки бетона.

Если при применении способа термоса невозможно достичь требуемой прочности в установленные сроки, рекомендуется использовать искусственный прогрев бетона электрическим током или паром. Высокотемпературное воздействие на бетон является эффективным спо­собом ускорения его твердения. Такой прогрев бетона в конструкции выполняется при применении электрического тока. В этом случае подача электрического тока к месту использования производится просто, при этом ее легко регулировать и контролировать, к тому же возможна автоматизация процесса тепловой обработки бетона.

Существуют три способа прогрева бетона: электродный прогрев (электропрогрев), электрообогрев с помощью электронагревательных устройств и индукционный прогрев (прогрев в электромагнитном поле). Каждый из этих способов не универсален и эффективен только для определенных конструкций и условий строительной площадки. Наиболее распространенными способами прогрева бетона являются электропрогрев и электрообогрев.

Электропрогрев

Данный способ основан на принципе нагрева проводника при прохождении через него переменного тока. Постоянный ток для этих целей не под­ходит, так как при его применении происходит электролиз воды, коррозия и экранирование поверхности электродов выделяемыми газами.

В свежеуложенный бетон вводят металлические электроды, через которые пропускают переменный электрический ток. С помощью электродов бетон прогревают при пониженных (50–127 В), а иногда и повышенных (220–380 В) напряжениях. Электропрогрев бетона при напряжении свыше 127 В можно применять только при сооружении неармированных конструкций, при этом должна тщательно соблюдаться техника безопасности. В армированном бетоне при повышенных напряжениях тока возникают значительные местные перегревы, вызывающие интенсивное испарение влаги, что снижает прочность бетона. По этой причине электропрогрев железобетонных конструкций следует выполнять при пониженных напряжениях, обеспечивающих возможность более точного соблюдения заданного режима.

Электрическое сопротивление свежеприготовленного бетона, уложенного в опалубку, увеличивается по мере затвердевания бетона. На ранней стадии твердения бетон обладает достаточно хорошей электропроводностью, так что его можно отнести к проводникам второго рода с ионной проводимостью. Включенный в электрическую цепь, он нагревается при прохождении электрического тока. Выделяющееся тепло способствует интенсификации химического взаимодействия воды с минералами цементного клинкера, что вызывает твердение бетона. Электрический ток, протекающий по бетону, вызывает его нагревание и твердение. Чем больше сопротивление, тем выше напряжение тока.

Однако значительное увеличение сопротивления бетона может сказаться на качестве прогрева бетона. При достижении критического сопротивления ток используемого напряжения не в состоянии «преодолеть» это возросшее сопротивление, поэтому цепь прерывается и электрообогрев прекращается. Следовательно, необходимо обеспечить такой режим защиты бетона от влагопотерь, чтобы бетон успел прогреться и набрать требуемую прочность.

Расход электроэнергии при электронагреве не превышает 80–100 кВт/ч на 1 м2 бетона и зависит от температуры окружающего воздуха и продолжительности прогрева. Максимальное значение температуры прогрева и его продолжительность зависят от вида применяемого цемента и требуемой прочности, причем температура не должна превышать +600 C. Качество прогрева в значительной степени зависит от размеров электродов. Диаметр стержневых электродов должен быть не менее 5 мм, а ленточных – не менее 15 мм. Для прогрева бетона также используется специализированный греющий провод, который укладывается в саму конструкцию еще до начала ее бетонирования. Для прогрева монолитного бетона и железобетона используется нагревательный провод ПНСВ, имеющий стальную жилу и изоляцию из ПВХ-пластиката или полиэтилена. Он применяется в напольных нагревателях при напряжении переменного тока до 380 В и номинальной частоте 50 Гц.

Нагреваемые электроды создают температурное поле в бетоне. Важным фактором нормального режима прогрева является равномерность температурного поля, которая достигается при правильной расстановке электродов.

Все вышесказанное относится и к неармированному бетону. При прогреве бетона в железобетонной конструкции необходимо учитывать характер и густоту армирования, расположение арматуры и ее диаметр. Стальная арматура и хомуты влияют на формирование электрического поля и искажают его. Главное условие нормального электрообогрева – это обеспечение равномерности и электрического поля в бетоне. Поэтому электроды следует располагать на максимальном расстоянии от элементов арматуры. Иногда при прогреве железобетонных конструкций в качестве одного из электродов можно использовать арматуру. В этом случае в качестве другого электрода используют уложенные на поверхности бетона пластины, что позволяет прогревать элементы, имеющие нормальное армирование (ненапрягаемую арматуру).

Сегодня электропрогрев часто применяется для ускорения твердения бетона на объектах зимнего строительства. Ежегодно при применении данного способа прогревается свыше 12 млн м3 бетона. Электропрогрев используют как при возведении монолитных конструкций, так и в заводском производстве сборного железобетона вместо пропаривания. К тому же это один из высокоэкономичных способов тепловой обработки бетона.

Электрообогрев

Данный способ может при­меняться для электротермообработки бетона в любых конструкциях независимо от их армирования, конфигурации, вида бетона и цемента. Принцип состоит в том, что тепло к бетону подводится с поверхности, а во внутренние слои тепло переносится за счет теплопроводности. Нагрев внутренних слоев необходимо производить постепенно, учитывая экзотермию цемента. С особой осторожностью данный способ следует применять для обогрева массивных конструкций. Необходимо учитывать, что внутренние слои прогреваются медленнее, чем поверхностные, и разница температур между слоями может быть велика. В таких условиях создается неблагоприятное термонапряженное состояние конструкции. Глубина эффективного прогрева бетона в конструкции при применении этого способа обычно составляет около 20 см. Однако, в случае если выполняется односторонний подвод тепла к конструкциям небольшой толщины, глубина эффективного прогрева может уменьшиться до 15 см. Данная величина зависит в зимнее время от температуры наружного воздуха и теплозащиты необогреваемой поверхности конструкции.

Имеются две разновидности способа электрообогрева: обогрев высокотемпературными нагревателями (генераторы инфракрасного излучения), имеющими температуру поверхности выше 2500 С, и низкотемпературными, имеющими температуру поверхности до 2500 С. Высокотемпературные нагреватели используются, как правило, в заводских условиях при изготовлении сборных железобетонных изделий и для прогрева бетона в монолитных конструкциях применяются редко. Низкотемпературные нагреватели применяются в построечных условиях для обогрева бетона, причем электронагреватели монтируются в опалубку или же изготовляются в виде греющих щитов.

Для электрообогрева применяют электрический ток напряжением 110–220 В, при этом необходимо соблюдать требования технической безопасности. Расход электроэнергии для зон с температурой наружного воздуха –200 С составляет примерно 100–120 кВт ч. на 1 м3 бетона.

Паропрогрев

Прогрев бетона паром высокоэффективен – его часто применяют на стройках, а также на заводах железобетонных изделий. В опалубке с внутренней стороны вырезают каналы, через которые пропускают пар. Можно также изготовить двойную опалубку и вводить пар в промежутки между стенками. Часто пар пропускают по трубам, уложенным внутри бетона, и нагревают его до +50–800 С. При высоких температурах, которые создаются при паропрогреве бетона, и нормальной влажности воздуха твердение происходит значительно быстрее. Например, через двое суток можно получить необходимую прочность бетона, которая при обычных условиях достигается в течение 7 суток твердения. Однако паропрогрев бетона требует больших дополнительных затрат на оборудование и рекомендуется в первую очередь для сооружения тонкостенных конструкций.

П. Л. Шумра, главный конструктор УГК «МЭТЗ им. В. И. Козлова»

Зимний прогрев бетона. Проводами и электродами.

В зависимости от показателей температуры окружающей среды и вида конструкции выбирается один из способов бетонирования в зимнее время: электродный прогрев бетона, доставка бетона с ускорителями твердения и специальными противоморозными добавками, инфракрасный обогрев бетонных конструкций, а также прогрев бетона в греющей опалубке, обогрев при помощи индукционного нагрева, предварительный прогрев либо прогрев бетона специальными нагревательными проводами. На некоторых способах, которые связаны с тепловой обработкой железобетона и монолитного бетона зимой, следует остановиться подробнее.

Электродный прогрев бетона.

 Данный способ бетонирования в зимнее время требует обязательного присутствия на строительной площадке источника (трансформатор для прогрева бетона) электричества мощностью свыше тысячи киловатт, который будет использован для прогрева бетонной смеси. Электропрогрев бетона происходит за пять-десять минут до шестидесяти градусов при помощи электрического тока, напряжение которого составляет двести двадцать-триста восемьдесят вольт. Затем горячая бетонная смесь укладывается в опалубку и там остывает с соблюдением определенного режима.   В зависимости от схемы подключения и расстановки всех электродов, такой прогрев можно условно разделить на периферийный, сквозной, а также с использованием вместо электродов арматуры. Прогрев бетона электродами хорошо зарекомендовал себя в производстве слабоармированных конструкций: колонн, перегородок и стен, фундаментов, бетонных оснований и плоских покрытий.   В монолитных конструкциях прогрев бетона трансформатором, расположенного в греющей опалубке, происходит путем передачи тепла к бетонной смеси от греющей поверхности опалубки. Нагревателями для опалубки служат греющие провода, электроды, ТЭНы, слюдопластовые и сетчатные нагреватели либо другие элементы. 

Инфракрасный прогрев бетона.

  Инфракрасный обогрев бетона представляет собой использование тепловой энергии, которая выделяется специальными инфракрасными излучателями и направлена на открытые конструкции либо поверхности с опалубкой. К задачам, которые решаются с помощью инфракрасного прогрева бетона, можно отнести следующие: создание тепловой защиты недоступных для утепления поверхностей, ускорение твердения бетона при заделке различных стыков, предварительный отогрев зон стыков железобетонных конструкций, удаление снега и отогрев промороженных закладных деталей, арматуры, бетонных оснований и опалубки. 

Индукционный прогрев бетона.

 При индукционном прогреве различных монолитных конструкций в стальной опалубке или арматуре сначала происходит преобразование энергии переменного магнитного поля, а затем оно передается бетонной смеси. Такой способ прогрева бетона зимой применяется к конструкциям с замкнутым контуром, в которых длина превышает размеры сечения, коэффициент армирования их составляет более пяти десятых и имеется возможность изготовления индуктора либо произвести зимнее бетонирование в опалубке из металла. 

Прогрев бетона проводами (трансформатором).

  Перед тем, как произвести укладку бетонной смеси в опалубку, на каркасе из арматуры закрепляются нагревательные провода, количество и длина которых предварительно необходимо рассчитать. Например, для прогрева бетона ПНСВ — 1,2 используются провода в поливинилхлоридной изоляции с оцинкованной стальной жилой, диаметр которой составляет одна целая и две десятых миллиметра. Электропитание проводов осуществляется через трансформаторы, имеющие несколько ступеней понижения напряжения и позволяющие отрегулировать тепловую мощность при изменении показателей температуры окружающей среды. Один трансформатор способен прогреть около тридцати кубов бетона.    Прогрев бетона проводом позволяет обогревать разные монолитные конструкции при температуре воздуха не ниже минус тридцать градусов, при этом для прогрева одного метра кубического монолитного бетона достаточно всего шестьдесят метров провода ПНСВ — 1,2.    Технология прогрева бетона в зимнее время при помощи нагревательных проводов сейчас очень популярна и нашла широкое применение как среди российских строительных компаний, так и зарубежных.   Хотя преимущества некоторых способов прогрева при бетонирование в зимнее время и являются очевидными, рекомендуется при возведении зданий воспользоваться не одним, а несколькими способами. При этом нельзя забывать про устройство ветрозащитных ограждений, утепление опалубки, а также укрытие поверхностей монолитных бетонных конструкций тепло- и гидроизолирующими материалами, которые сохранят тепло в уложенном бетоне и облегчат дальнейшую работу с ним.

преимущества и недостатки, советы по выбору

Основной целью прогрева бетона является соблюдение правильных условий вывода влаги при проведении работ в зимнее время или при их ограниченных сроках. Принцип действия технологии заключается в поддержке внутри или вокруг толщи раствора повышенной температуры (в пределах 50-60 °С), методы реализации зависят от типа и размера конструкций, марки прочности смеси, бюджета и условий внешней среды. Для достижения нужного эффекта обогрев должен быть равномерным и экономически обоснованным, лучшие результаты наблюдаются при комбинировании.

Обзор методов обогрева

1. Электроды.

Простой и надежный способ электропрогрева, заключающийся в размещении арматуры или катанки толщиной в 0,8-1 см во влажном растворе, образуя с ним единый проводник. Выделение тепла происходит равномерно, зона воздействия достигает половины расстояния от одного электрода к другому. Рекомендуемый интервал между ними варьируется от 0,6 до 1 м. Для запуска работы цепи концы подключают к ИП с пониженным напряжением от 60 до 127 В, превышение этого диапазона возможно только при бетонировании неармированных систем.

Сфера применения включает конструкции с любым объемом, но максимальный эффект достигается при подогреве стен и колонн. Расход электроэнергии в этом случае значительный – 1 электрод требует не менее 45 А, число подключаемых стержней к понижающему трансформатору ограничено. По мере высыхания раствора подаваемое напряжение и затраты возрастают. При заливке ЖБИ технология прогрева электродами требует согласования со специалистами (составляется проект их размещения, исключающий контакт с металлическим каркасом). По окончании процесса стержни остаются внутри, повторная эксплуатация исключена.

2. Закладка проводов.

Суть метода заключается в расположении в толще раствора электрического провода (в отличие от электродов – изолированного), нагреваемого при пропускании тока и равномерно отдающего тепло. В качестве рабочих элементов используется один из следующих видов:

  • ПНСВ – изолированный поливинилхлоридом стальной кабель.
  • Саморегулирующие секционные разновидности: КДБС или ВЕТ.

Применение проводов считается самым эффективным при необходимости заливки перекрытий или фундамента зимой, они практически без потерь преобразуют электрическую энергию в тепловую и обеспечивают ее равномерное распределение.

ПНСВ обходится дешевле, при необходимости он закладывается по всей площади конструкции (длина ограничена только мощностью понижающего трансформатора), для данных целей подойдет сечение от 1,2 до 3 мм. К особенности технологии обогрева относят потребность в использовании установочных проводов с алюминиевой жилой на открытых участках. Подходящими характеристиками обладает кабель АПВ. Схема ПНСВ 1.2 исключает перехлесты, рекомендуемый шаг между соседними кольцами и линиями составляет 15 см.

Саморегулирующие секции (КДБС или ВЕТ) эффективны при обогреве зимой без возможностей задействования трансформатора или подачи 380 В. Их изоляция лучше, чем у ПНСВ, но стоят они дороже. Схема укладки провода в целом аналогична предыдущей, но его длина ограничена, она подбирается из учета размеров конструкции, разрезать его нельзя. При добавлении в нее устройства контроля за силой тока прогрев осуществляется более плавно и экономно. В целом, оба варианта считаются эффективными при бетонировании зимой, к недостаткам относят лишь сложность укладки и невозможность повторного применения.

3. Тепловые пушки.

Суть технологии заключается в повышении температуры воздуха с помощью электрических, газовых, дизельных и других обогревателей. Обрабатываемые элементы закрывают от холода брезентом, создание такого шатра позволяет достичь внутри условий от +35 до 70 °C. Обогрев осуществляется за счет внешнего источника, который без проблем переносится на другое место без потребности в расходе провода или специальной аппаратуры. Из-за сложностей с закрытием крупных объектов и воздействия только на внешние слои этот способ чаще используется при небольших объемах бетонирования или при резком падении температуры. Энергозатраты в сравнении с электродами или ПНСВ приемлемые, при задействовании дизельных пушек возможен обогрев на объектах без электроснабжения.

4. Термоматы.

Принцип действия этой технологии основан на покрытии свежезалитого раствора полиэтиленом и полотнами инфракрасной пленки во влагостойкой оболочке. Термоматы подключаются к обычной сети, величина энергопотребления варьируется в пределах 400-800 Вт/м2, при достижении границы в +55 °С они выключаются, что позволяет снизить затраты на электропрогрев бетона. Максимальный эффект от применения достигается зимой, в том числе при комбинировании с химическими добавками.

Риск замерзания влаги внутри ЖБИ исключается через 12 часов, процесс полностью автономный. В отличие от проводов ПНСВ термоматы без проблем контактируют с открытым воздухом и влагой, помимо бетонных конструкций они успешно используются для прогрева грунта.

При правильном уходе (отсутствие нахлестов, выполнение изгибов строго по отведенным линиям, защите полиэтиленом) ИК-пленки выдерживают не менее 1 года активной эксплуатации. Но при всех плюсах технология плохо подходит для обогрева массивных монолитов, воздействие матов локальное.

5. Греющая опалубка.

Принцип действия аналогичен с предыдущим: между двумя листами влагостойкой фанеры размещается инфракрасная пленка или изолированные асбестом провода, выделяющие тепло при подключении к сети. Этот способ обеспечивает прогрев в зимнее время на глубину до 60 мм, благодаря локальному воздействию исключен риск растрескивания или перенапряжения. По аналогии с матами эти нагревательные элементы имеют термозащиту (биметаллические датчики с автовозвратом). Сфера применения включает конструкции с любым наклоном, лучшие результаты наблюдаются при заливке монолитных объектов, в том числе при ограниченных сроках строительства, но простой технологию назвать нельзя. При бетонировании фундамента в греющую опалубку заливают раствор с температурой не ниже +15 °C, грунт нуждается в предварительном обогреве.

6. Индукционный метод.

Принцип действия основан на образовании тепловой энергии под воздействием вихревых токов, способ хорошо подходит для колонн, балок, опор и других вытянутых элементов. Индукционная обмотка размещается поверх металлической опалубки и создает электромагнитное поле, в свою очередь оказывающее влияние на арматурные стержни каркаса. Обогрев бетона осуществляется равномерно и качественно при среднем расходе энергии. Подойдет также для предварительной подготовки щитов опалубки зимой.

7. Пропаривание.

Промышленный вариант, для реализации этого способа требуется двухстенная опалубка, не только выдерживающая массу раствора, но и подводящая к поверхности горячий пар. Качество обработки более чем высокое, в отличие от остальных методов, при пропарке обеспечиваются максимально подходящие условия для гидратации цемента, а именно – влажная горячая среда. Но из-за сложности эта методика используется редко.

Сравнение преимуществ и ограничений технологий прогревания

СпособОптимальная сфера примененияПреимуществаНедостатки, ограничения
ЭлектродамиЗаливка вертикальных конструкцийБыстрый монтаж и прогрев, достаточно размещения электрода в бетоне и подключения его к источнику переменного токаЗначительные энергозатраты – от 1000 кВт на 3-5 м3
ПНСВФундаменты и перекрытия при бетонировании зимойВысокая эффективность, равномерность. Обогрев проводом позволяет достичь 70% прочности за несколько днейПотребность в понижающем трансформаторе и проводе для холодных концов
ВЕТ или КДБСТо же, плюс работа от простой сетиВысокая стоимость кабеля, ограничение в длине секций
Тепловыми излучателямиКонструкции с небольшой толщинойВозможность контроля температуры, применение при резком похолодании, минимум проводов, относительно низкие энергозатратыВоздействие осуществляется локально, качественный обогрев происходит только во внешних слоях
ТермоматамиГрунт перед заливкой раствора, перекрытияМногократное применение, возможность контроля за температурой смести, достижение 30% марочной прочности в течении сутокВысокая стоимость матов, наличие подделок
Греющей опалубкойОбъекты быстрого возведения (совмещение с технологией скользящей опалубки)Обеспечение равномерного прогрева, возможность качественного замоноличивания стыковТиповые размеры, высокая цена, средний КПД
Индукционной обмоткойКолонны, ригели, балки, опорыРавномерностьНе подходит для перекрытий и монолитов
ПропариваниеОбъекты промышленного строительстваХорошее качество прогреваСложность, дороговизна

Прогрев бетона в зимнее время по СНИПу: технологическая карта, виды

Если вам требуется залить фундамент или провести иные подобные работы при отрицательных температурах, то без обогревательных процедур не обойтись. Причем они должны проводиться по строительным нормативам. О том, как производится  прогрев бетона в зимнее время по СНИПу №3_03_01-87, вы сейчас и узнаете.

Подготовка к прогреву

Для чего нужно подогревать бетон

Как уже было отмечено, заливка бетона производится не только летом, но также и зимой. Разница заключается в том, что в зимний период цементному составу требуется подогрев, цена которого может быть довольно высокой.

Данный процесс необходим по следующим причинам:

  • при отрицательных температурах бетон не набирает прочности;
  • происходит разрушение структуры материала, из-за чего на нем образуются деформированные участки, и он в итоге становится менее долговечным.

Совет! Удалить выступающие неровности вам поможет резка железобетона алмазными кругами. При этом обязательно нужно применять защитные средства в виде респиратора и специальных очков. Что касается небольших впадин, то для их зачистки потребуется алмазное бурение отверстий в бетоне и последующее заполнение углублений  цементным раствором.

Указанных процессов можно избежать, но для этого потребуется оборудование для прогрева бетона в зимнее время. Обойтись без него можно лишь в том случае, если до появления низких температур состав  успел набрать определенную прочность. Для удобства данные внесены в таблицу:

Состав маркиПроцент от проектного значения
М-150Не ниже 50%
М-200Не ниже 40%
М-300Не ниже 40%
М-400Не ниже 30%
М-500Не ниже 30%

Виды прогрева бетона

СНиП под номером 3_03_01-87 устанавливает, какие способы прогрева бетона в зимнее время должны применяться для тех или иных сооружений.

К данным методам относится:

  • термос;
  • предварительный разогрев состава;
  • обогрев в опалубке;
  • индукционный способ;
  • электродный прогрев;
  • использование нагревательных проводов;
  • термос с противоморозными компонентами;
  • инфракрасный обогрев.

Мы рассмотрим наиболее распространенные из них.

Обогрев бетона нагревательным проводом

Чтобы свести к минимуму время прогрева бетона в зимнее время применяется специальный нагревательный провод – ПНСВ.

Его составными частями являются:

  1. стальная жила, состоящая из одной проволоки;
  2. изоляционный слой, выполненный из полиэтилена или ПВХ.

Данный метод обогрева основан на использовании трансформаторных подстанций, которые сильно нагревают провода. От них происходит передача тепла бетонному составу. Следует отметить, что такой способ весьма удобен, поскольку он позволяет регулировать уровень нагрева в зависимости от погодных условий.

Чтобы смонтировать подобную систему потребуется технологическая карта прогрева бетона в зимнее время. Ее обычно составляет специалист-энергетик, являющийся сотрудником строительной организации. Также существуют  типовые образцы такого документа.

Данная карта определяет количество и расположение станций прогрева, а также порядок размещения и число нагревательных проводов. Как показывает расчет прогрева бетона в зимнее время, для нагревания 1м³ раствора требуется в среднем 50-60 метров кабеля.

Часть технологической карты

Реализуется данная технология следующим образом:

  1. нагревательный провод размещается внутри возводимой конструкции — делается это так, чтобы проводники размещались равномерно, не касались опалубки, не выходили за края бетона и не соприкасались друг с другом;

На фото — укладка провода

  1. к греющему проводу припаиваются холодные концы – после этого они выводятся за пределы зоны нагрева;

Присоединение и вывод холодных концов

  Совет! Чтобы в зоне пайки сохранялось тепловое поле, следует обернуть данную область фольгой.

  1. выводы проводов подключаются к трансформаторному оборудованию в соответствии с предписаниями, содержащимися в технологических картах:
  2. собранная электрическая цепь проверяется мегаомметром;
  3. в созданную систему подается напряжение и начинается процесс обогрева, для правильного проведения которого потребуется температурный график прогрева бетона в зимнее время, содержащийся в технологической карте.

Пример графика прогрева

Способ «термос»

Метод «термос»

Как понятно из названия, данный метод предназначен не для передачи, а для сохранения тепла. Он заключается в защите бетона с помощью теплоизоляционных материалов, размещаемых снаружи него. Благодаря ним применяемая смесь медленнее теряет тепло и быстрее приобретает прочность (узнайте здесь, как использовать трансформатор прогрева бетона при работе в зимний период).

Преимущество рассматриваемого способа заключается в его доступной стоимости, ведь в качестве утеплителя могут быть использованы даже обычные опилки. Однако следует отметить, что одного лишь пассивного сохранения тепла может оказаться недостаточно. В этом случае придется вдобавок к нему применять дополнительные методы прогрева бетона в зимнее время.

Инфракрасный прогрев бетонных конструкций

Применение инфракрасных излучателей

Этот способ основан на использовании инфракрасных нагревателей. Они устанавливаются таким образом, чтобы исходящее от них излучение было направлено на открытую бетонную поверхность или на опалубку. Передаваемая ими энергия вызывает нагрев цементного раствора и его ускоренное отвердение.

Совет! Не используйте данный метод для прогревания конструкции, имеющей большой объем.  Инфракрасные лучи не смогут нагреть ее равномерно, что приведет к уменьшению прочности материала. Поэтому для массивных изделий лучше использовать иные виды прогрева бетона в зимнее время.

Способ прогреваЦели
Инфракрасное облучение железобетонных изделий·        прогревание замерзшего грунтового основания, арматуры и опалубки, а также удаления с них снега и льда;·        ускорение процессов отвердения цементной смеси;

·        предварительное прогревание мест соединения сборных бетонных элементов и интенсификация процесса затвердения состава, используемого для заделки своими руками стыков плит;

·         прогрев конструкций, недоступных для утепления иными методами.

 

Индукционный нагрев

Принцип индукционного нагревания

В данном методе в целях получения тепла используется явление электромагнитной индукции.  С ее помощью энергия электромагнитного поля видоизменяется и становится тепловым излучением, которое передается обрабатываемому материалу. Указанное превращение происходит в стальной опалубке или на арматуре.

Инструкция по реализации данного способа устанавливает, что он может быть использован только в тех конструкциях, которые имеют замкнутый контур. Кроме того, у них должна быть густая арматура, у которой коэффициент армирования составляет свыше 0,5. Еще одно необходимое условие – наличие металлической опалубки или возможности обмотать конструкцию кабелем в целях создания индуктора.

Вывод

При проведении железобетонных работ в морозную погоду нужно обязательно использовать прогрев. Без него полученная в итоге конструкция будет менее прочной и долговечной (узнайте также как работает трансформатор для прогрева бетона).

К наиболее распространенным способам нагрева относится использование нагревательных проводов, инфракрасных излучателей, применение электромагнитной индукции, а также теплоизоляции. Подробнее о том, как осуществляется прогрев бетона в зимнее время, вам расскажет видео в этой статье.

Прогрев бетона, электропрогрев в зимних условиях

При бетонировании в зимних условиях, применяется принудительный прогрев бетона в опалубке во время набора критической прочности. Эта необходимость продиктована остановкой процесса набора прочности бетона при замерзании воды в растворе смеси. Кроме того, замерзшая вода расширяется и разрушает образовавшуюся структуру бетона изнутри, что сказывается на прочности конструкции.

Прогрев бетона в зимних условиях

При бетонировании в зимних условиях для сбережения теплоты бетона выделяют метод термоса основанный на сбережении теплоты выделяемой цементом при твердении, и методы прогрева бетона основанные на применении искуственных источников теплоты. Рассмотрим их подробнее.

Электропрогрев бетона

Из искусственных методов наиболее распространенным является прогрев бетона электродами. Он основан на выделении теплоты в бетоне при пропускании через него электрического тока. Чтобы подвести ток к бетонной смеси используются следующие виды электродов.

  • Пластинчатые электроды
    Выполнены в виде пластин, навешанных на внутреннюю сторону опалубки для контактирования с бетонеом. В результате подключения противоположных пластин к разным фазам электрисеской сети, в бетонной смеси образуется электрическое поле. Под действием электрического поля, бетон разогревается до требуемой температуры и поддерживается необходимое время.
  • Полосовые электроды
    Принцип действия тот же, но в качестве электродов используются полосы шириной 20-50 мм. Возможно располагать полосовые электроды как с двух сторон конструкции, так и с одной. Во-втором случае, электроды подключаются к разным фазам поочередно и электрическое поле образуется в примыкающем к ним тонком слое бетона, прогревая смесь у контактной поверхности.
  • Стержневые электроды
    Изготавливают из арматуры диаметром 6-12 мм. Их располагают в теле бетона с рассчетным шагом. Электроды крайнего ряда располагают на расстоянии 3 см от опалубки. Ими можно осуществить прогрев бетона конструкций сложной формы. Схему прогрева бетона стержневыми электродами смотрите в таблице.
  • Струнные электроды
    Применяются в основном для прогрева бетона колонн. В центре конструкции устанавливается струнный электрод. Электрическое поле возникает между струной и опалубкой, обитой токопроводящим листом и подключенной к другой фазе электрической сети.

Схемы подключения электродов при электропрогреве бетона приведены в таблице.

ЭлектродыСхема установки и подключения электродов при прогреве бетона
Пластинчатые
Полосовые
Стержневые
Струнные

Контактный прогрев бетона

Контактный метод прогрева бетона основан на применении греющей опалубки.

В тело опалубки встроены нагреватели работающие от электрического тока. Через контактную поверхность, опалубка передает теплоту бетонной смеси.

Инфракрасный прогрев бетона

Используется свойство инфракрасных волн поглощаться раствором и преобразовываться в теплоту. Этоявление широко известено в быту, оно используется в микроволновых печах.

Для практической реализации метода инфракрасного прогрева бетона, на строительной площадке используются специальные излучатели волн. Они направляются на массив уложенного бетона и воздействуют на него. Инфракрасные установки используют энергию электрической сети. Обычно она поступает от трансформаторной подстанции по низковольтным кабелям к распределительному шкафу и далее к каждой установке.

Индукционный метод прогрева бетона

Используется эффект нагревания металлической арматуры и элементов опалубки в электромагнитном поле. Поле создается обмоткой изолированного электрического провода вокруг конструкции (например, колонны). По проводу пропускается переменный электрический ток, что приводит к образованию электромагнитного поля.

Электромагнитное поле создает вихревые токи в металлических элементах конструкции. Это вызывает нагрев металла. Далее через контактную поверхность с бетонной смесью, тепло передается в тело конструкции.

Это может быть интересно — как построить дачный дом.

Бетонирование для холодной погоды | Одеяла для отверждения бетона Powerblanket

При заливке бетона в холодную погоду очень важна температурная защита. Падение температуры и влажные элементы увеличивают время отверждения бетона и вызывают дорогостоящие задержки в ожидании его схватывания. Задержки практически всегда приводят к потере денег, поэтому крайне важно найти решение, которое поможет вашему бетону быстрее схватиться, когда погода говорит об обратном.

Американский институт бетона определяет бетонирование в холодную погоду как:

«Период, когда более трех дней подряд средняя дневная температура воздуха опускается ниже 40 ° F и остается ниже 50 ° F более 21 часа.”

Низкие температуры означают, что бетон схватывается дольше из-за попадания влаги в бетон. Это связано с тем, что холодная погода препятствует испарению воды из бетонной смеси. Чем быстрее испаряется вода, тем быстрее затвердевает бетон. Чем меньше воды испаряется, тем дольше бетон будет стоять до полного затвердевания.

Сколько времени нужно для схватывания бетона?

Время, необходимое для схватывания бетона, зависит от того, были ли добавлены добавки в бетон, но обычно это занимает 28 дней.На этом этапе бетон считается полностью затвердевшим, но на самом деле бетон никогда не перестает затвердевать. Бетон, по которому не прошло 28 дней, по-прежнему можно ходить, начиная с 48 часов после заливки, и достигнет 70% прочности на сжатие через 7 дней.

Какая температура слишком низкая для заливки бетона?

В нормальных условиях укладку бетона в холодную погоду лучше всего производить при температуре воздуха 50-60 ° F. Попробуйте затвердеть ниже этого, и вода в бетоне начнет замерзать, что ослабит общую прочность бетона.

Что произойдет с бетоном, если он замерзнет?

Вода, которая замерзает в бетоне, не только затвердевает дольше, но и неизбежно приводит к растрескиванию. Хотя ожидается, что весь бетон со временем потрескается, это можно контролировать и направлять при установке в идеальном диапазоне температур для отверждения. Замерзший бетон приводит к неконтролируемому растрескиванию, и его необходимо смягчить, подведя тепло к бетону на ранних стадиях отверждения.

Какие существуют варианты отверждения бетона в холодную погоду?

Есть несколько вариантов укладки бетона в холодную погоду, чтобы помочь ему затвердеть, когда температура не в вашу пользу:

  • Химические добавки: добавки в жидкой или порошковой форме добавляются в цементную смесь для лучшего контроля твердения.
  • Покрытия для отверждения бетона: эти покрытия создают слой тепла над бетоном, позволяя воде в бетонной смеси испаряться быстрее и увеличивая время отверждения без ущерба для прочности.
  • Системы водяного отопления: нагретый пропиленгликоль поддерживает твердение бетона при стабильных, равномерных температурах.
  • Покрытие из поли / брезента с принудительной подачей тепла воздухом: изолирующий брезент покрывает бетон, чтобы не допустить холода, в то время как прикрепленный нагревательный элемент продувает горячим воздухом застывающий бетон.

Дорогостоящие последствия холода

В некоторых ситуациях есть возможность отложить проект в пользу улучшения температуры климата. Однако в большинстве случаев графики и сроки вынуждают укладывать бетон в менее чем благоприятные условия. Штрафы и штрафы за несоблюдение установленных графиков могут быть разницей между прибыльной и убыточной работой. В этих случаях необходимо учитывать все факторы. Обеспечение надлежащего отверждения бетона при сохранении прочности и долговечности имеет решающее значение.

Как ускорить отверждение бетона?

Хранить бетон в тепле может быть сложно, когда температура ниже идеальной для схватывания. Однако холодную погоду можно смягчить, если вы готовы с ней справиться. Важно помнить, что температура бетона должна быть высокой, чтобы вода внутри него испарилась.

Покрытие для отверждения бетона Powerblanket — это идеальное решение для многих зимних бетонных слоев.

Powerblanket рекомендует следующие советы по защите бетона от мороза:

  • Используйте обогреватели или бетонные покрытия для оттаивания поверхностей, на которые будет заливаться бетон.Заливка бетона на мерзлую землю быстро охладит бетон до температуры ниже идеальной. Использование обогревателя или одеяла для подготовки поверхностей предотвратит слишком быстрое охлаждение или замерзание и поможет поддерживать необходимые реакции в бетоне.
  • Смешайте цемент с горячей водой, чтобы повысить температуру бетона.
  • Храните материалы в теплом месте или используйте переносной термобокс для поддержания постоянной температуры материалов.
  • В холодную погоду используйте быстросхватывающийся цемент.Она может схватываться медленнее, чем указано в инструкции, но затвердеть быстрее, чем традиционная цементная смесь.
  • Добавьте добавки, ускоряющие время отверждения.
  • Используйте дополнительное количество цемента, чтобы сделать реакцию более горячей и вызвать более быстрое увлажнение бетона.
  • Используйте скребок или вакуум для удаления стекающей воды, которая с трудом испаряется в холодную погоду.

Используя эти советы при заливке бетона зимой, вы можете предотвратить повреждение в результате замерзания на ранней стадии отверждения, своевременно сохранить достаточную прочность, обеспечить долговечность и долговременную структурную целостность, а также сохранить ваш проект по графику.

Для получения дополнительной информации о процедурах холодного отверждения бетона ознакомьтесь с этой статьей о том, как температура влияет на бетон, который все еще затвердевает на плотине Гувера в Неваде.

Решения для отверждения бетона от Powerblanket

Не ждите до последней минуты, чтобы выбрать подходящее решение для обогрева. Доказано, что покрытия для отверждения бетона от Powerblanket ускоряют время отверждения и сохраняют защиту бетона во время отверждения.

Как защитить бетон во время холодной погоды

Есть три основных цели бетонирования в холодную погоду: 1) защитить только что уложенный бетон от замерзания в раннем возрасте, 2) защитить бетон, чтобы обеспечить соответствующее развитие прочности, и 3) защитить бетон от термический удар и растрескивание в конце периода защиты.

Согласно Руководству ACI 306 по бетонированию в холодную погоду, холодная погода существует, когда температура воздуха упала до или, как ожидается, упадет ниже 40 ° F в течение периода защиты. Период защиты — это время, необходимое для предотвращения воздействия на бетон воздействия холода. (См. Дополнительную информацию об этом определении на боковой панели.)

Беречь от раннего замерзания

Если только что уложенный бетон замерзнет, ​​это может привести к немедленному и необратимому повреждению; последующее отверждение не восстановит свойства бетона.Повреждение происходит из-за того, что при замерзании вода увеличивается в объеме на 9 процентов. Образование кристаллов льда и возникающее в результате расширение пасты может снизить прочность на сжатие и увеличить пористость затвердевшего бетона. Снижение прочности может достигать 50 процентов, если замерзание происходит в первые несколько часов после укладки бетона или до того, как бетон достигнет прочности на сжатие примерно 500 фунтов на квадратный дюйм.

Вновь уложенный бетон должен быть защищен от раннего замерзания до тех пор, пока количество воды для затворения или степень насыщения не будут в достаточной степени снижены в процессе гидратации, термин, используемый для описания химической реакции между портландцементом или вяжущими материалами и водой. .Во время гидратации степень насыщения постоянно снижается, поскольку вода для смешивания смешивается с вяжущими материалами, а бетон становится жестким и твердеющим. Из-за процесса гидратации количество доступной воды для смешивания, которая образует кристаллы льда, постоянно уменьшается, поэтому риск необратимого повреждения в случае замерзания бетона снижается.

Когда нет внешних источников воды, критическая степень насыщения, чтобы один цикл замерзания не приводил к необратимому повреждению бетона, возникает, когда бетон достигает прочности примерно 500 фунтов на квадратный дюйм.При заданных температурах отверждения бетонные смеси с хорошими порциями должны достичь этой прочности в течение 24-48 часов. Следовательно, очень важно, чтобы вновь уложенный бетон был защищен от замерзания в течение первых 24-48 часов или до тех пор, пока бетон не достигнет прочности примерно 500 фунтов на квадратный дюйм.

Когда бетон достигает прочности не менее 500 фунтов на квадратный дюйм, он может выдержать один цикл замораживания-оттаивания без повреждений, если бетон является воздухововлекающим и не подвергается воздействию внешнего источника воды.Для воздействия повторяющихся циклов замораживания и оттаивания новый бетон должен достичь прочности не менее 3500 фунтов на квадратный дюйм или 4000 фунтов на квадратный дюйм, если он будет подвергаться повторяющимся циклам замораживания и оттаивания и химикатов для борьбы с обледенением. Чтобы избежать повреждений в раннем возрасте из-за холодной погоды, защитите бетон как можно скорее после укладки, уплотнения и отделки.

Температура и периоды защиты

Для защиты от замерзания в раннем возрасте поддерживайте соответствующую температуру бетона, указанную в строке 1 таблицы 1, в течение периодов времени, указанных в строке 1 таблицы 2.Бетон с ускоренным схватыванием может быть получен путем включения ускоряющих химических добавок, уменьшения водоцементного отношения материала (Вт / см), увеличения содержания цемента, уменьшения количества дополнительных вяжущих материалов или замены цементов общего назначения на цементы типа III (высокий -ранний) цемент. Минимальные температуры бетона в строке 1 таблицы 1 являются функцией минимального размера секции, потому что чем массивнее секция, тем медленнее она теряет тепло.

Согласно строке 1 в таблицах 1 и 2, минимальная температура бетона при укладке и поддержании составляет 55 ° F для бетонной секции с минимальным размером 12 дюймов, а минимальные периоды защиты составляют два и один день для нормального схватывания и бетонные смеси ускоренного схватывания соответственно.Строка 1 в таблицах 1 и 2 обеспечивает минимальную температуру бетона и продолжительность, чтобы вода для смешивания во вновь уложенном бетоне не замерзла.

В строках 2, 3 и 4 таблицы 1 указаны минимальные температуры бетона в смеси для указанных температур воздуха. По мере снижения температуры воздуха рекомендуемые температуры бетонной смеси повышаются, чтобы компенсировать потери тепла между смешиванием и укладкой бетона. Рекомендации по температуре смеси помогают обеспечить достижимую минимальную температуру бетона при размещении и поддержании (строка 1, таблица 1).

Защитить, чтобы обеспечить достаточный прирост силы

Скорость затвердевания и набора прочности бетона зависит от температуры бетона. Низкие температуры бетона снижают скорость гидратации и, следовательно, замедляют скорость набора прочности. Чтобы гарантировать, что вновь уложенный бетон приобретает необходимую прочность для безопасного снятия опалубки, берегов и перекладин, а также для безопасной загрузки конструкции во время и после строительства, необходимо поддерживать адекватную температуру бетона в течение периода защиты или отверждения.

Если есть требования к прочности в раннем возрасте, используйте Таблицу 2, чтобы определить минимальные периоды защиты для следующих условий эксплуатации: 1) без нагрузки, без нагрузки; 2) без нагрузки, без нагрузки; 3) частичная нагрузка, выставленная; и 4) полная нагрузка. В зависимости от требований к нагрузке и условий воздействия может потребоваться увеличить период защиты сверх минимумов, перечисленных в строке 1 таблицы 2

«Без нагрузки, незащищенный» означает, что бетонный элемент не будет нести значительных нагрузок в течение периода защиты и не будет подвергаться воздействию замерзания при эксплуатации.«Нагрузка без нагрузки» означает, что бетонный элемент не будет нести значительных нагрузок в течение периода защиты и будет подвергаться воздействию низких температур в процессе эксплуатации. «Частичная нагрузка, подверженная воздействию» означает, что бетонный элемент будет нести нагрузки, меньшие, чем доступная несущая способность для раннего возраста в течение периода защиты, и будет подвергаться воздействию низких температур в процессе эксплуатации. Элементы, требующие перешоривания для несения строительных нагрузок до достижения указанной прочности, имеют рабочее состояние «Полная нагрузка» и обычно требуют от подрядчика определения прочности бетона на месте.

Например, условием эксплуатации 6-дюймового бетонного покрытия для стоянки на коммерческой строительной площадке, которое будет подвергаться воздействию зимних условий и отлито из бетона с ускоренным схватыванием, будет «Неполная нагрузка, незащищенная» и требующая минимальной защиты. срок 4 дня. Согласно строке 1 таблицы 1, минимальная температура бетона 55 ° F должна поддерживаться в течение четырехдневного периода защиты.

Методы защиты

Методы поддержания минимальных температур, которые размещены и поддерживаются, как показано в строке 1 таблицы 1, включают изоляцию (одеяла и плиты), системы обогрева, такие как электрические одеяла и системы водяного отопления, неотапливаемые или обогреваемые корпуса или комбинацию этих методов.

Изоляция является наиболее экономичным средством поддержания адекватных температур отверждения, поскольку в этом методе используется тепло гидратации или тепло, генерируемое химической реакцией между цементом и водой. В зависимости от массы бетона, содержания цемента и условий окружающей среды (например, температуры воздуха и ветра) изоляция обычно может поддерживать адекватную температуру отверждения, улавливая тепло гидратации.

Как можно скорее накройте бетон одеялом, чтобы уловить как можно больше тепла гидратации.Улавливание раннего тепла гидратации поможет поддерживать температуру отверждения, но также способствует гидратации, которая, в свою очередь, дает дополнительное тепло. Обязательно защитите углы и поверхности, поскольку эти области наиболее подвержены замерзанию и повреждению в раннем возрасте.

В экстремальных зимних условиях иногда тепла гидратации недостаточно для поддержания адекватной температуры отверждения, и требуется дополнительное тепло. Дополнительное тепло можно подавать с помощью электрических бетонных одеял, водонагревателей и обогреваемых шкафов.Конечно, использование дополнительного тепла увеличивает стоимость бетонирования в холодную погоду.

Гидравлические нагреватели обеспечивают циркуляцию нагретой водно-гликолевой жидкости через систему шлангов теплопередачи, размещенных на бетоне или формах. Обычно шланги покрывают бетонными изоляционными покрытиями для улавливания и удержания тепла.

Топочные обогреватели для обогреваемых помещений должны иметь вентиляцию и не должны располагаться таким образом, чтобы непосредственно нагревать или сушить бетон. Свежие бетонные поверхности, подверженные воздействию углекислого газа от невентилируемых обогревателей, могут быть повреждены карбонизацией бетона.Карбонизация происходит, когда углекислый газ реагирует с продуктами гидратации цемента, создавая мягкие и меловые поверхности. Невентилируемые обогреватели внутреннего сгорания также производят окись углерода. Конечно, высокие уровни концентрации этих газов опасны для рабочих.

Защищать от термического удара и растрескивания

В конце периода защиты постепенно снимайте изоляцию или другую защиту, чтобы температура поверхности постепенно снизилась в течение последующих 24 часов. В противном случае поверхность бетона может остыть слишком быстро, создавая температурные градиенты между поверхностью и внутренними частями бетона, и возникающие термические напряжения могут вызвать растрескивание поверхности.Оставьте изоляцию на месте и постепенно уменьшайте количество источников тепла, пока температура бетона не остынет до средней температуры воздуха. Строка 5 в Таблице 1 показывает максимально допустимое падение температуры поверхности в первые 24 часа после окончания защиты во избежание термического растрескивания поверхности.

Предварительное планирование — залог успешного бетонирования в холодную погоду. При разработке следующего плана бетонирования в холодную погоду рассмотрите три основные цели: защитить бетон от раннего замерзания, защитить, чтобы обеспечить достаточный прирост прочности, и защитить от теплового удара и растрескивания.

Список литературы

ACI 301-10 «Спецификации конструкционного бетона», Американский институт бетона, www.concrete.org

ACI 306R-10 Руководство по бетонированию в холодную погоду, Американский институт бетона, www.concrete.org

Косматка, S.H. и Уилсон, М.Л., Проектирование и контроль бетонных смесей , 15 -е издание , 2011 г., Portland Cement Association, www.cement.org

Защита бетона в холодную погоду

Защита бетона в холодную погоду — постоянная проблема для бетонные подрядчики и супервайзеры.Укладка бетона в условиях холода требует специальной подготовки и защиты. Следует принять все необходимые меры предосторожности, чтобы уменьшить негативное влияние холода. В большинстве случаев требуется специальное лечение и защита. В моей предыдущей статье мы рассмотрели, что считается холодным для бетонных конструкций и что нужно сделать перед укладкой бетона. В этой статье я рассмотрю некоторые из широко используемых методов и стратегий защиты, а также проблемы защиты бетона от сильного холода.Но сначала давайте посмотрим, что означает холод для бетона:

Почему низкая температура имеет решающее значение

Гидратация цемента — это химическая реакция. Крайне низкие температуры, а также заморозки могут значительно замедлить реакции, что повлияет на рост прочности. Фактически, отрицательные температуры в течение первых 24 часа (или когда бетон все еще находится в пластичном состоянии) могут снизить прочность на более чем на 50% .

Защита бетона в холодную погоду

CSA A23.1 указано, что защита должна обеспечиваться с помощью:

1) Обогреваемых шкафов
2) Покрытий
3) Изоляции

Защита должна продолжаться до тех пор, пока не будут достигнуты требуемые структурные свойства, такие как прочность. Минимальная прочность перед воздействием сильного холода на бетон составляет 500 фунтов на квадратный дюйм (3,5 МПа) . CSA A 23.1 определил прочность на сжатие 7,0 МПа , что считается безопасным для воздействия замерзания.Традиционно для оценки прочности через определенные промежутки времени используются отлитые на месте цилиндры для выталкивания. Метод зрелости набирает популярность в связи с последними достижениями в технологии беспроводных датчиков. Следует избегать влажного отверждения в этот период.

Покрытие — отверждающие одеяла без утеплителя

Покрытие с отверждающими заготовками широко применяется на стройплощадках в холодное время года. Тепла, выделяемого при гидратации цемента, обычно достаточно для многих случаев, если одеяла используются должным образом.Одеяла должны оставаться пару дней. Требуемый уровень теплоизоляции зависит от толщины бетона, количества цемента и ожидаемой температуры холода. Подробную информацию об изоляции см. В главе 7 ACI 306.

Руководители участка и инженеры несут ответственность за оценку того, достиг ли бетон желаемой прочности. Для принятия лучшего решения можно использовать мониторинг температуры с помощью инфракрасной термографии с поверхности бетона или метод зрелости.


Тепла, выделяемого в процессе гидратации, должно хватить в большинстве случаев, если используются соответствующие изоляционные покрытия из полиэтиленовых листов.В зависимости от площади и температуры может потребоваться дополнительный источник тепла.


При покрытии одеялом особое внимание следует уделять углам и краям плит. Эти области часто требуют дополнительных изоляционных слоев. Если покрытие не может поддерживать температуру бетона на желаемом уровне, следует использовать внешний источник тепла, например, электрические одеяла или трубы водяного отопления.

Обогреваемые шкафы

Если одеяла не обеспечивают достаточной защиты или если погода очень холодная (даже до укладки бетона), следует использовать отапливаемые шкафы.Этот метод включает ограждение строительной площадки (например, строящегося этажа) и обогрев помещения. Необходимо решить определенные проблемы:

1- Углекислый газ-Карбонизация

Одной из распространенных проблем с отапливаемым помещением является проблема карбонизации. Углекислый газ, выделяемый некоторыми коммерчески доступными обогревателями, увеличивает вероятность карбонизации свежеуложенного бетона. Это может привести к образованию слабого слоя бетона, что часто недопустимо.Рекомендуется использовать системы отопления, выводящие воздух за пределы шкафа.

2- Быстрое высыхание / неравномерный нагрев

Использование нагревателей может привести к очень быстрому высыханию бетона, что увеличивает вероятность пластической усадки и может привести к получению бетона низкого качества (если вода, необходимая для процесса гидратации, испарится). Рекомендуется сместить расположение и направление источника тепла для более равномерного нагрева.

3- Fire

Особое внимание следует уделять обогревателям, использующим пропан.

Отверждение бетона в любых погодных условиях

Итак, вы хотите отверждать бетон, но на улице очень холодно. У вас есть проект, который нельзя больше откладывать, но почва заморожена. Вам необходимо поддерживать рабочие бригады в рабочем состоянии, но температура здесь минусовая. Звучит знакомо? Список причин конкретных остановок работ и опозданий с графиком может быть бесконечным.

К счастью, холодная погода и отрицательные температуры больше не должны диктовать ваш рабочий график.Новые технологии, разработанные специально для строительства и бетонной промышленности, меняют методы работы подрядчиков в холодную погоду.

Итак, сначала давайте начнем с нескольких основ … Бетон для холодной погоды можно классифицировать как период продолжительностью более трех дней, когда определенные условия возникают при определенных температурах. Например, Американский институт бетона определяет, что бетон будет подвергаться воздействию холода при наличии следующих условий:

* Средняя дневная температура воздуха ниже 5 ° C (40 ° F)
* Температура воздуха не выше 10 ° C (50 ° F) в течение более половины любого 24-часового периода

Поэтому, когда бетон обрабатывается в этих условиях, он должен быть защищен от замерзания вскоре после заливки.Весь бетон должен быть защищен от замерзания до тех пор, пока он не достигнет минимальной прочности в 500 фунтов на квадратный дюйм (psi), что обычно происходит в течение первых 24 часов. Стандартных изолирующих покрытий для отверждения может быть достаточно, когда вы имеете дело с температурами, близкими к этим пороговым значениям … но когда ртуть опускается ниже нуля, стандартные одеяла не справятся. И чем ниже падает ртуть, тем больше потребность в отверждающем растворе, выделяющем тепло. Ни в коем случае нельзя допускать замерзания бетона в течение первых 24 часов после его укладки.Поскольку гидратация цемента является экзотермической реакцией, бетонная смесь выделяет некоторое количество тепла самостоятельно. Защита от выхода тепла из системы с помощью полиэтиленовой пленки или изоляционных покрытий может быть всем, что требуется для хорошего качества бетона. Более суровые температуры потребуют дополнительного нагрева (электрические одеяла CureMAX или Powerblanket), которые позволяют проводить влажное отверждение. Обогреваемые помещения непригодны для просушки нового бетона.

Цель состоит в том, чтобы произвести качественный продукт с максимальным уровнем PSI в кратчайшие сроки БЕЗ добавления вредных добавок и отвердителей.Решение — это одеяла Insulated Curing с электронагревательным элементом (когда это возможно). Есть несколько производителей, которые производят эти специальные строительные покрытия … такие названия, как Powerblanket, Curemax и RapidThaw (для применения в условиях сильного нагрева, когда землю необходимо быстро разморозить перед заливкой). Разработанные специально для холодных, влажных и морозных сред … эти производители производят одни из лучших решений для отверждения и оттаивания, доступных на рынке. ETL сертифицирован в соответствии со стандартами безопасности UL / CSA, сварка, кажется, защищает нагревательный элемент от влаги.винил рип-стоп для суровых условий эксплуатации вне помещений и заглушки GFI для максимальной безопасности. Проверьте их, вы не будете разочарованы. Технология отверждения и оттаивания для нового поколения строителей. Выдерживайте бетон при любых погодных условиях (горячих или холодных). Бетон требует влажной полимеризации, не высыхая. Не вызывает выцветания или изменения цвета бетона. Обеспечивает максимальные уровни PSI, до 3 раз быстрее, чем при использовании стандартных изолированных бетонных покрытий. Позвоните сегодня, чтобы узнать цены и наличие.

Советы по отверждению бетона в холодную погоду

Процесс отверждения бетона становится более сложным в холодную погоду, поскольку для правильного схватывания и достижения максимальной прочности свежий бетон необходимо защищать от замерзания по крайней мере в течение первых 24 часов или до тех пор, пока он не достигнет минимальной прочности 500 фунтов на квадратный дюйм ( фунтов на квадратный дюйм).Бетон, замерзающий в раннем возрасте, может потерять большую часть своей прочности. Но бетон можно успешно заливать и укладывать в холодных погодных условиях, если принять правильные меры для устранения проблем, связанных с низкими температурами. По определению Американского института бетона (ACI) бетонирование в холодную погоду — это «период, когда в течение более трех дней подряд средняя дневная температура воздуха опускается ниже 40 градусов по Фаренгейту и остается ниже 50 градусов по Фаренгейту более половины из любых 24-х дней. часовой период.«В этих условиях необходимо применять специальные методы.

Нет причин избегать заливки бетона в холодную погоду, если вы примете соответствующие меры. Правильно сделанный бетон, заливаемый в прохладную погоду, на самом деле прочнее, чем бетон, заливаемый в жаркую погоду, благодаря медленному периоду отверждения.

Когда температура наружного воздуха ниже 20 градусов по Фаренгейту, лучше просто отказаться от идеи размещения бетона на открытом воздухе, поскольку при таких температурах гидратация полностью прекращается.При очень низких температурах наружного воздуха становится очень трудно поддерживать температуру на рабочем месте на достаточно высоком уровне, чтобы обеспечить хорошие результаты, даже с кожухами и изолирующими одеялами.

Если бетон замерзнет слишком быстро

Бетон, который замерзает в свежем виде или до того, как он затвердеет до прочности, способной противостоять расширению, связанному с замерзающей водой, будет иметь безвозвратную потерю прочности. Раннее замораживание может снизить окончательную прочность бетона до 50%. Если температура воздуха во время заливки и укладки ниже 40 градусов по Фаренгейту и если в течение первых 24 часов ожидается отрицательная температура, подрядчики следует соблюдать ряд рекомендуемых методов бетонирования в холодную погоду.

Советы по подготовке

Правильное отверждение бетона в холодную погоду можно улучшить с помощью определенных методов подготовки:

  • В холодную погоду предварительный нагрев одного или нескольких составляющих материалов (воды и заполнителя) может гарантировать поддержание надлежащей температуры бетона во время заливки. Вместо того, чтобы нагревать портландцемент, это делается путем нагревания воды и / или песка и гравия перед смешиванием. Компании по производству готовой смеси могут иметь такую ​​возможность; Обычно бетон покидает завод в грузовиках при температуре около 65 градусов по Фаренгейту.Смешивание небольшого количества бетона на месте может включать использование горячей воды или хранение заполнителя в теплом помещении перед смешиванием.
  • Может потребоваться корректировка компонентов смеси. Чаще всего это включает увеличение соотношения содержания цемента в бетоне или использование ускоряющей химической добавки, такой как хлорид кальция, в соотношении до 2%.
  • Используйте портландцемент типа III, цемент, который помогает схватываться без ухудшения качества бетона.Это важно, поскольку высокое содержание влаги может вызвать проблемы с коррозией стальной арматуры.
  • Избегайте использования золы-уноса или шлакового цемента в холодную погоду. Эти материалы затвердевают медленнее и выделяют меньше внутреннего тепла.

Наконечники для заливки и укладки

Дополнительные приемы во время заливки и укладки также могут помочь бетону правильно схватиться и застыть в холодную погоду:

  • Убедитесь, что бригады будут на месте на более длительный срок.Бетону, подвергающемуся воздействию низких температур, потребуется больше времени для достижения первоначального схватывания, что может означать, что бригаде отделочных работ потребуется более длительное время.
  • Ветрозащитные полосы могут помочь защитить бетон (и рабочих) от ветра, который может вызвать быстрое падение температуры и слишком быстрое испарение. Обычно достаточно ветрозащитных полос высотой около 6 футов.
  • Могут потребоваться шкафы с подогревом. Они могут быть сделаны из дерева, брезента или полиэтиленовых листов или вы можете использовать коммерческие корпуса из жесткого пластика.Нагрев внутри шкафа лучше всего осуществлять с помощью электронагревателей. Если используются обогреватели, работающие на топливе, наилучшим вариантом является использование обогревателей косвенного нагрева, в которых теплый воздух направляется в кожух из расположенного снаружи блока горелки. Другой вариант — гидронная система, в которой теплая смесь гликоля и воды циркулирует по корпусу через трубы или шланги.

Цель состоит в том, чтобы убедиться, что бетон заливается и помещается при температуре не менее 40 градусов по Фаренгейту и выдерживается там в течение периода времени, соответствующего типу бетона и его предполагаемому использованию.Для высокопрочного бетона, который не будет подвергаться циклам замораживания-оттаивания, достаточно одних суток при температуре выше 40 градусов. Но для бетонного фундамента или другой конструкции, которая в раннем возрасте будет нести высокие нагрузки, требуется 20 дней и более при минимальной температуре 50 градусов. Помните, что отверждение цемента — это экзотермическая реакция, которая сама по себе выделяет некоторое количество тепла, и часто достаточно накрыть бетон полиэтиленовой пленкой или изолирующими одеялами, чтобы удержать тепло.

Ни при каких обстоятельствах нельзя допускать замерзания бетона в течение первых 24 часов после заливки и укладки.Взаимодействие с другими людьми

Советы по отверждению

Наконец, есть методы, которые вы можете использовать в процессе отверждения, чтобы обеспечить максимальную прочность бетона:

  • Если используются формы, оставьте их на месте как можно дольше, так как они сохранят тепло и помогут предотвратить слишком быстрое высыхание бетона. Углы и края наиболее уязвимы, а формы помогут в процессе отвода тепла.
  • Острый пар можно закачивать в ограждение вокруг бетона, чтобы предотвратить его слишком быстрое высыхание при низких уровнях влажности, которые являются обычными в холодную погоду.
  • Перед завершением подождите, пока вся стекающая вода не испарится. Бетон, залитый и уложенный в холодную погоду, схватывается и затвердевает гораздо медленнее, поэтому кровотечение также начнется позже, чем ожидалось. Будьте готовы к большему количеству стекающей воды, чем при обычной укладке бетона.
  • Пока бетон застывает, проверьте температуру бетона с помощью инфракрасного термометра. Убедитесь, что бетон поддерживает температуру не менее 40 градусов в течение периода отверждения.
  • Если активный нагрев прекращается, следите за тем, чтобы бетон не остыл слишком быстро. Это можно сделать, постепенно снижая температуру внутри ограждения или накрыв бетон изолирующими покрытиями. Для больших структур рекомендуется несколько дней или даже недель постепенного охлаждения. Внезапное удаление одеял в холодную погоду может вызвать перепад температур между внешней стороной бетона и его серединой, что приведет к растрескиванию.
  • Убедитесь, что бетон выдержан в течение периода времени, рекомендованного для используемого типа цемента.Комитет ACI 308 рекомендует следующие минимальные периоды выдержки:
    Цемент ASTM C 150 Тип I, 7 дней
    Цемент ASTM C 150 Тип II, 10 дней
    Цемент ASTM C 150 Тип III, 3 дня
    Цемент ASTM C 150 Тип IV или V, 14 дней
    Цементы ASTM C 595, C 845, C 1157, переменная
  • Герметизируйте только что затвердевший бетон, нанеся герметик, чтобы предотвратить просачивание наружной воды в бетон. Бетонные герметики продлят срок службы бетона и уменьшат вероятность разрушения при отверждении. В очень холодных регионах используйте только воздухопроницаемый герметик для бетона, который позволяет испарять влагу.

Контроль температуры укладки и отверждения бетона — ключ к успеху.

Бетонирование в холодную погоду преследует три основные цели: 1) защитить только что уложенный бетон от повреждений из-за раннего замерзания; 2) Поддерживайте условия отверждения, чтобы обеспечить адекватный прирост прочности; и 3) Защитите бетон от теплового удара и связанного с ним растрескивания в конце периода защиты.

Если свежеуложенный бетон замерзнет, ​​это может вызвать немедленное и необратимое повреждение.Повреждение происходит из-за того, что вода (т.е. вода для замеса или смешивания) расширяется на 9% в объеме при замерзании. Образование кристаллов и линз льда, в результате чего происходит расширение пасты и микротрещины, может снизить прочность на сжатие и увеличить пористость затвердевшего бетона (рис. 1). Снижение прочности до 50% может произойти, если замерзание произойдет в первые несколько часов после укладки или до того, как бетон достигнет прочности на сжатие примерно 500 фунтов на квадратный дюйм. Последующее отверждение не заживет повреждений и не восстановит свойства бетона в затвердевшем состоянии.

Свежеуложенный бетон необходимо защищать от раннего замерзания до тех пор, пока количество воды для затворения или степень насыщения не будут в достаточной степени снижены за счет процесса гидратации, который описывает химическую реакцию между портландцементом или вяжущими материалами и водой. Во время гидратации степень насыщения бетонной смеси постоянно снижается, так как вода для смешивания соединяется с вяжущими материалами, и смесь начинает затвердевать и затвердевать. Из-за процесса гидратации количество доступной воды для смешивания, которая образует кристаллы и линзы льда, уменьшается, поэтому риск необратимого повреждения в случае замерзания бетона снижается.

Когда нет внешних источников воды, критическая степень насыщения — так, чтобы один цикл замерзания не повредил бетон необратимо — возникает, когда бетон достигает прочности не менее 500 фунтов на квадратный дюйм. При заданных температурах отверждения бетонные смеси с правильными пропорциями должны достичь этой прочности в течение примерно 24 часов. Для богатых цементом смесей или смесей с горячей водой и химическими ускорителями прочность 500 фунтов на квадратный дюйм может быть достигнута намного раньше. Поэтому очень важно, чтобы свежеуложенный бетон был защищен от замерзания в течение первых 24 часов или до тех пор, пока бетон не достигнет прочности не менее 500 фунтов на квадратный дюйм.

Когда бетон достигает прочности не менее 500 фунтов на квадратный дюйм, он может выдержать один цикл замораживания-оттаивания без повреждений, если бетон является воздухововлекающим и не подвергается воздействию внешнего источника воды. Для воздействия повторяющихся циклов замораживания и оттаивания новый бетон должен достигать минимальной прочности на месте не менее 3500 фунтов на квадратный дюйм, если подвергается повторяющимся циклам замораживания и оттаивания, и 4500 фунтов на квадратный дюйм, если также подвергается воздействию химикатов для борьбы с обледенением. Кроме того, недавно уложенный бетон, или, точнее, вода для смешивания в порах бетона, не замерзает до тех пор, пока температура не упадет ниже 32 ° F из-за щелочей внутри поровой воды и других факторов.Поэтому не паникуйте и предполагайте, что бетон замерз, если измеренная температура бетона составляет 32 ° F или на несколько градусов меньше. Чтобы избежать необратимого повреждения в раннем возрасте из-за холодной погоды, защитите бетон от замерзания как можно скорее после укладки, уплотнения и отделки.

Рисунок 1. Крупный план отпечатков ледяных кристаллов в замороженном бетоне. Для этого образца повреждение от замерзания или микротрещина распространялась на бетон примерно на 2 дюйма. Фото предоставлено Дэвидом Ротштейном, DRP, Twining Company Рисунок 2.Сравнение прочности на сжатие в раннем возрасте для бетонов, изготовленных из цементов типов I и III и отвержденных при 40 ° F и 73 ° F. Изображение предоставлено: Клигер, П. Влияние температур смешивания и отверждения на прочность бетона, RDB RX103, Portland Cement Association, 1958, www.cement.org

Защита для обеспечения адекватного увеличения прочности

Скорость затвердевания и набора прочности бетона зависит от температуры бетона. Как показано на рисунке 2, низкие температуры отверждения бетона снижают скорость гидратации и, следовательно, замедляют скорость набора прочности.Чтобы гарантировать, что вновь уложенный бетон приобретает необходимую прочность для безопасного снятия опалубки, опор и перекладин, а также для безопасной загрузки конструкций во время и после строительства, необходимо поддерживать адекватную температуру бетона в течение периода защиты или отверждения.

Температура укладки и отверждения бетона: Все поверхности для укладки свежего бетона не должны иметь снега, льда и стоячей воды. Не кладите свежий бетон на замерзшие основания или основания. Избегайте разницы температур, превышающей 20 ° F между свежим бетоном и основным материалом для плит на земле; в противном случае может произойти непостоянное схватывание, быстрая потеря влаги, расслоение и растрескивание при пластической усадке.

Обычно в спецификациях для бетонирования в холодную погоду устанавливаются минимальные температуры укладки бетона, минимальные температуры отверждения бетона и периоды отверждения для защиты бетона как от раннего замерзания, так и для обеспечения соответствующего увеличения прочности. Наиболее распространенные минимальные температуры укладки и отверждения бетона, указанные в DOT, составляют 50 ° F и 55 ° F, но некоторые из них достигают 40 ° F. Некоторые DOT имеют понижающуюся или понижающую минимальную температуру схватывания бетона в зависимости от времени.

Большинство инспекторов будут измерять температуру свежего бетона в месте доставки или размещения.Однако некоторые могут измерить бетон после укладки или в формах. Для некоторых DOT указаны только минимальные температуры укладки бетона. Вместо указания минимальных температур отверждения в этих DOT указывается минимально необходимая изоляция (значение R) или температура обогреваемого корпуса на основе минимального размера сечения и температуры окружающего воздуха. Несмотря на то, что каждый DOT отличается, каждый DOT имеет спецификации начинать отверждение сразу после окончания, чтобы поддерживать температуру только что уложенного бетона, чтобы защитить его от замерзания в раннем возрасте и обеспечить соответствующий прирост прочности.На следующей работе обязательно знайте минимальную температуру укладки и выдержки бетона; Кроме того, не забудьте учесть падение температуры бетона во время доставки.

Периоды защиты: DOT по-разному определяют период времени отверждения. Некоторые требуют минимальных периодов времени с минимальной температурой отверждения, в то время как другие основывают минимальный период отверждения на основе прочности на сжатие или изгиб, в первую очередь определяемой методом созревания. Зрелость бетона — это косвенный способ оценки прочности бетона на месте путем сочетания температуры и времени (рис. 3).

Некоторые DOT требуют минимального периода отверждения в 5, 7 или 14 дней с указанной минимальной температурой отверждения для различных типов структурных элементов, в то время как другие основывают продолжительность периода отверждения на набранной прочности бетона, определяемой методом зрелости. Например, DOT часто требуют, чтобы подрядчик поддерживал температуру дорожного покрытия на уровне 40 ° F или выше, пока бетон не достигнет прочности на сжатие на месте не менее 2000 фунтов на квадратный дюйм, или указать минимальный период отверждения с момента бетонирования. укладку до тех пор, пока бетон не достигнет заданного процента от требуемой прочности.Если разрешено, всегда используйте метод зрелости для оценки прочности на месте, потому что это, как правило, самый безопасный и экономичный способ.

Методы защиты: Изоляция или одеяла для зимнего отверждения являются наиболее экономичным средством поддержания адекватных температур отверждения бетона, поскольку в этом методе используется теплота гидратации или тепло, выделяемое в результате химической реакции между вяжущими материалами и водой (Рисунок 4 ). В зависимости от массы бетона, содержания вяжущих материалов, температуры бетона и условий окружающей среды изоляция обычно может поддерживать адекватную температуру отверждения.

Как можно скорее накройте бетон одеялом, не повреждая поверхность, чтобы улавливать как можно больше тепла гидратации. Улавливание раннего тепла поможет поддерживать температуру отверждения, но также способствует гидратации, что, в свою очередь, дает дополнительное тепло. Обязательно защитите края, углы и поверхности, поскольку эти области наиболее подвержены замерзанию и повреждению в раннем возрасте. Обязательно перекрывайте и закрепляйте одеяла, чтобы ветер и проезжающие грузовики не сдували их с бетона.

В экстремальных зимних условиях иногда тепла гидратации недостаточно для поддержания адекватной температуры отверждения, и требуется дополнительное тепло. Дополнительное тепло можно подавать с помощью бетонных одеял с электрическим обогревом, водяных обогревателей с одеялами зимнего отверждения и обогреваемых шкафов. Конечно, использование дополнительного тепла может значительно увеличить стоимость бетонирования в холодную погоду.

Рис. 3. Система зрелости в пробуренной стволе опоры моста, обеспечивающая оперативный, удаленный или беспроводной доступ к температуре и прочности бетона (данные о зрелости).Фото: Джон Гнэдинджер, Con-CureFigure 4. Установите зимние одеяла как можно скорее, чтобы уловить исходное тепло бетона и тепло гидратации.

Защита от теплового удара и трещин

В конце периода защиты постепенно снимайте изоляцию или другую защиту, чтобы температура поверхности постепенно снизилась в течение последующих 24 часов. В противном случае поверхность бетона может остыть слишком быстро, создавая большие температурные градиенты между поверхностью и внутренними частями бетона, и возникающие термические напряжения могут вызвать случайное растрескивание поверхности.По сути, поверхность бетона термоусадочная, но внутренняя часть остается теплой и не дает усадки, поэтому поверхность трескается. Рассмотрите возможность постепенного уменьшения количества источников тепла или оставьте изоляцию на месте, пока температура бетона не остынет до средней температуры воздуха. Некоторые подрядчики снимают защиту днем, когда температура выше, и заменяют ее ночью, когда температура падает; однако это дорогостоящий подход с точки зрения рабочей силы.

Спецификации обычно ограничивают максимальное падение температуры поверхности до 50 ° F в течение 24 часов.Однако ваши характеристики могут отличаться (менее 50 ° F) или основываться на минимальных размерах бетонной секции, поэтому проверьте максимальное падение температуры поверхности, допустимое после снятия защиты.

Предварительное планирование — залог успешного бетонирования в холодную погоду. При разработке или реализации вашего следующего плана бетонирования в холодную погоду рассмотрите три основные цели: защитить бетон от раннего замерзания, защитить, чтобы обеспечить достаточный прирост прочности, и защитить от теплового удара и растрескивания.

Заливка бетона в холодную погоду

Процесс заливки и выдержки бетона становится более сложным в холодном климате. Свежий бетон должен быть защищен от замерзания в течение первых 24 часов, чтобы он схватился должным образом, поскольку он потеряет большую часть своей прочности, если ему дать замерзнуть. Однако при соблюдении надлежащих мер безопасности и предосторожностей бетон можно успешно заливать даже в холодных погодных условиях.

Бетонирование для холодной погоды

Бетонирование в холодную погоду определяется Американским институтом бетона (ACI) как «период, когда в течение более трех дней подряд средняя дневная температура воздуха опускается ниже 40 градусов по Фаренгейту и остается ниже 50 градусов по Фаренгейту более половины из 24 дней. -часовой период.Бетон лучше всего схватывается при 50-60 ° F, но зимой температура окружающей среды, скорее всего, будет ниже этого диапазона. В результате замедляются экзотермические реакции, которые превращают влажный цемент в бетон.


Услуги по управлению строительством помогут вам управлять погодными условиями и другими факторами риска.


Если бетон замерзнет до того, как он затвердеет до прочности, допускающей расширение льда, конечная прочность может снизиться до 50%. Вода в бетонной смеси замерзнет и расширится, из-за чего она станет хрупкой и хрупкой.К счастью, есть несколько шагов, которые можно предпринять для эффективной заливки и отверждения бетона в зимнее время. В этой статье описаны лучшие практики и советы по бетонированию в холодную погоду.

Советы по подготовке

Чтобы достичь нужных температур для отверждения бетона в холодную погоду, на этапе подготовки можно принять несколько мер.

Предварительный подогрев воды и заполнителей: Нагрев некоторых компонентов бетонной смеси поможет достичь нужной температуры во время заливки.Компании по производству товарных смесей могут производить бетон, который покидает завод при температуре примерно 65 ° F. На месте можно смешать небольшое количество бетона с горячей водой, а также хранить заполнители в теплых помещениях.

Регулировка компонентов бетона: В бетонной смеси можно использовать повышенное соотношение цемента или добавить ускоряющую химическую добавку для улучшения процесса отверждения.

Использование портландцемента типа III: Этот цемент помогает схватываться без ущерба для качества бетона.Он более мелкий и реагирует быстрее, чем Тип I, быстрее набирая силу.

Насадки для заливки

При заливке бетона в холодную погоду можно предпринять дополнительные меры для обеспечения надлежащего твердения и схватывания.

Проверить поверхность заливки: Заливка бетона на мерзлый грунт быстро изменит его температуру. Поверхность можно подготовить с помощью нагревателя, чтобы предотвратить быстрое охлаждение и обеспечить протекание надлежащих реакций.

Используйте ветрозащитные полосы: Ветрозащитные полосы защищают строительную площадку от ветров, вызывающих резкие перепады температуры.Ветер может вызвать быстрое испарение воды из свежего незащищенного бетона, что приведет к повреждению. Системы мониторинга погоды на строительных площадках полезны для руководителей проектов, особенно зимой.

Рассмотрите возможность установки обогреваемых шкафов: Шкафы могут быть из дерева, полиэтиленовых листов, холста или пластика. Внутри корпуса можно использовать электрические или топливные обогреватели. Самыми безопасными обогревателями являются обогреватели с косвенным обогревом, когда горелка находится за пределами корпуса.Существуют также гидравлические системы, в которых смесь гликоля и воды циркулирует по корпусу с помощью труб или шлангов.

Целью является обеспечение температуры бетона не менее 40 ° F во время заливки и поддержание этой температуры столько, сколько необходимо. Конкретные требования меняются в зависимости от области применения, но бетон не должен замерзать в течение первых 24 часов ни при каких обстоятельствах.

Советы по отверждению

После заливки бетона есть несколько советов, которые можно использовать в процессе отверждения.Цель состоит в достижении максимальной прочности в течение рекомендованного периода времени в зависимости от типа используемого цемента.

Держите формы прикрепленными: Если в формы заливается бетон, оставьте их на месте как можно дольше. Они помогают сохранять тепло, особенно по углам и краям.

Используйте пар: В холодную погоду уровень влажности обычно снижается. Пар может закачиваться в ограждение вокруг бетона, чтобы поддерживать необходимый уровень влажности и температуры для отверждения.

Используйте тепловизор: Когда бетон застывает, убедитесь, что его температура составляет не менее 40 ° F.

Проверьте, не просачивается ли бетон: Хотя просачивание b является обычным явлением в бетоне и не должно быть проблемой, убедитесь, что вода испаряется перед отделкой поверхности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *