Закрыть

Элемент пельтье своими руками: как сделать своими руками, видео

Содержание

как сделать своими руками, видео

В английском языке термин упоминается как ТЕС — термоэлектрический охладитель. Элемент пельтье своими руками представляет собой температурно электрический преобразователь, который работает по принципу возникновения разницы температур в момент подачи электрического тока. Возможно ли собрать его самостоятельно и какое применение ему найти?

Элемент пельтье своими руками

Изготовить устройство в домашних условиях практически невозможно, тем более это не имеет особого смысла, учитывая его невысокую рыночную стоимость.

Но большинство умельцев все же предпочитает мастерить элемент пельтье своими руками, ссылаясь на ряд его достоинств:

  1. Компактность, удобство установки на самодельное электронное плато.
  2. Отсутствие движущихся деталей, что увеличивает сроки его эксплуатации.
  3. Возможность соединения нескольких элементов в каскадной схеме для снижения очень больших температур.

Тем не менее, пельтье своими руками имеет определенные недостатки: низкий коэффициент полезного действия (КПД), необходимость подачи высокого тока для получения заметного перепада температуры, сложность отведения тепловой энергии от охлаждаемой поверхности.

Рассмотрим на примере схем, как сделать пельтье своими руками:

  • Задействовать его в качестве детали термоэлектрического генератора, согласно рисунку подключения.
  • Собрать простой преобразователь на микросхеме ИМС L6920 (рисунок 1).
Рисунок 1. Элемент пельтье своими руками: универсальная схема

Далее стоит следовать простой инструкции, как сделать пельтье своими руками:

  1. Подать на вход получившегося преобразователя напряжение диапазоном 0.8-5.5В, чтобы иметь на выходе стабильные 5В.
  2. При использовании устройства обычного типа — поставить лимит температуры нагреваемой стороны в 150 градусов.
  3. Для калибровки — в качестве источника тепла использовать емкость с кипящей водой, которая точно не нагреется свыше 100 градусов.

Описание технологии и принцип действия

Способ работы термоэлектрического охладителя достаточно прост. Эффект пельтье своими руками основывается на контакте двух проводников тока, обладающих разным уровнем энергии электронов в зоне своей проводимости.

Рисунок 2. Принцип действия элемента

При подаче электротока через такую связь, электрон приобретает высокую энергию, позволяющую ему перейти в более высокоэнергетическую зону проводимости второго полупроводника. Когда эта энергия поглощается, происходит остуживание места охлаждения проводников (рисунок 2).

При протекании процесса в обратном направлении — реакция приводит к нагреванию контактного места и обычному тепловому эффекту.

Посмотрев пельтье своими руками видео, можно сделать определенные выводы о принципе его действия:

  1. Величина подаваемого тока будет пропорциональной степени охлаждения — если с одной стороны модуля сделать хороший теплоотвод, при использовании радиаторных схем, его холодная сторона обеспечит максимально низкую температуру.
  2. При смене полярности тока — нагревающая и охлаждающая плоскости меняются метами.
  3. При контакте объекта с металлической поверхностью, он становится настолько мал, что его нельзя увидеть на фоне омического нагрева, других эффектов теплопроводности, поэтому на практике применяют два полупроводника.
  4. Благодаря разнообразному количеству термопар — от 1 до 100, можно добиться практически любого показателя холодильных мощностей.

Технические характеристики элемента пельтье

Компонент получил широкое применение в различных холодильных схемах.

Читайте также: Как открыть банку без открывалки

Что неудивительно, так как пельтье своими руками имеет следующие технические характеристики:

  1. Способен достигнуть низких температур, что служит отличным решением для охлаждения электрических приборов и тех оборудования, подвергающегося нагреву.
  2. Прекрасно выполняет работу обычного куллера, что делает возможным его установку в современные звуковые и акустические системы.
  3. Абсолютно бесшумен — в процессе работы не издает никаких посторонних и интенсивных звуков.
  4. Обладает мощной теплоотдачей при сохранении нужной температуры на радиаторе достаточно продолжительное время.

Холодильник на элементах пельтье своими руками

Чтобы собрать холодильный агрегат вам понадобятся достаточное количество  электрических проводников и специальные инструменты (рисунок 3).

Холодильник на пельтье своими руками требует особого подхода к сборке и используемым материалам:

  1. Основой для платы должна служить прочная керамика;
  2. Для максимального температурного перепада надо подготовить не менее 20 связей;
  3. Правильные расчеты — залог увеличения коэффициента полезного действия на 70%;
  4. Наибольшую мощность используемому оборудованию даст фреон;
  5. Самодельный модуль устанавливается возле его испарителя, рядом с мотором;
  6. Монтаж производится стандартным набором инструментом с применением прокладок;
  7. Они необходимы для изолирования рабочей модели от пускового реле;
  8. Изоляция понадобится и для самой проводки, перед ее подключением к компрессору;
  9. Чтобы избежать короткого замыкания, сила предельного напряжения звонится тестером.
Рисунок 3. С помощью элемента пельтье можно легко собрать походный холодильник

Подобную схему можно применить для автомобильного охладителя. Автохолодильник пельтье своими руками собирается на керамической плате толщиной не менее, чем 1 миллиметр. В нем используются медные немодульные связи с пропускной способностью в 4А и применяются проводники с маркировкой «ПР20», подходящие для контактов разного типа. Для соединения устройства с конденсатором используют обычный паяльник.

Кондиционер пельтье своими руками

В данном случае, для изделия могут применяться только проводники типа «ПР12» (рисунок 4).

Кондиционер пельтье своими руками собирается только на них, так как они выдерживают аномальные температуры и выдают напряжение до 23В:

  1. Применяется в основном для охлаждения компьютерных видеокарт.
  2. Его сопротивление колеблется в пределах 3 Ом.
  3. Температурный перепад равен 10 градусам, а КПД — 65%.
  4. Для него требуется 14 медных проводничков.
  5. Для подключения задействуется немодульный переходник.
  6. Устройство монтируется рядом с встроенным кулером на видеокарте.
  7. Конструкция крепится металлическими уголками и обычными гайками.
Рисунок 4. Элемент используется и для создания портативных кондиционеров

Если во время работы кондиционера замечаются сильные посторонние шумы, другие нехарактерные звуки — он проверяется на работоспособность мультиметром.

Генератор пельтье своими руками

Самостоятельно собрать подобный прибор не так и сложно. Генератор пельтье своими руками имеет свои особенности: производительность собранного устройства поднимается на 10% за счет большего охлаждения мотора, но нагревать основные комплектующие до показателя свыше 200 градусов не рекомендуется. Прибор выдерживает максимальную нагрузку в 30А, а его сопротивление способно составлять 4Ом благодаря большему количеству проводников (рисунок 5).

Читайте также: Угол заточки ножа

Стоит помнить, что генератор на элементах пельтье своими руками:

  1. Имеет температурное отклонение в системе, примерно равное 13 градусам.
  2. В большинстве случаев сборки и разборки конструкции, статор им не мешает.
  3. Модуль крепится непосредственно к ротору, для чего нужно отсоединять центральный вал.
  4. Во избежание нагрева роторной обмотки от индуктора, следует использовать керамические пластины.
Рисунок 5. Элемент пельтье поможет создать походный генератор

Теплогенератор на пельтье своими руками собирается из двух пластин 10*10см, толщиной в 1мм, закрепленных термопастой, которые закрывают собой четыре искомых модуля. Поверх них ставится консервная банка или любая другая емкость для розжига огня, которая обеспечит 170-180 градусов. К нижней части одной из пластин прикрепляется при помощи винтов медный или алюминиевый радиатор. К нему присоединяется еще одна пластинка 20*12см, к которой крепится еще одна такая деталь. На нее устанавливается заводской кожух от аккумулятора, к которому припаивается разъем для зарядки смартфона.

Осушитель пельтье своими руками

В отличие от того же кондиционера, реализация этой идеи вполне себя оправдывает. Осушитель пельтье своими руками имеет простую конструкцию и низкую себестоимость, а его охлаждающий модуль понижает температуру радиатора ниже точки росы, что приводит к оседанию на нем влаги, содержащейся в воздухе, проходящем через прибор. Далее — осевшая вода отправляется в специальный накопитель (рисунок 6).

Несмотря на невысокий КПД, эффективность такого устройства можно назвать вполне удовлетворительной.

Осушитель воздуха своими руками пельтье:

  1. Подключается без проблем — на провода выходов подается постоянное напряжение, величина которого прописана в его даташит.
  2. Имеет стандартную полярность — красный проводок идет на плюс, черный — на минус, если их перепутать охлаждаемая и нагреваемая поверхности поменяются местами.
  3. Проверяется тактильно — при подключении к источнику напряжения одна сторона будет холодной, вторая — теплой.
  4. Если источника тока поблизости нет — подключаем щупы к выводам модуля и подносим зажженную спичку или зажигалку к одной из сторон, наблюдаем за показаниями прибора.
Рисунок 6. Схема сборки осушителя воздуха

Как подключить элементы пельтье на модуле

Если речь идет о простом регуляторе, сложностей в подключении при наличии схемы возникнуть не должно. Модуль пельтье своими руками состоит из двух металлических пластинок и проводки с контактами. Для ее установки готовят проводники «РР» и располагают их у основания. Для контроля за температурным режимом применяют на выходе полупроводники. Чтобы собрать все компоненты воедино используют паяльник средней мощности. В последнюю очередь подсоединяют два провода, по которым проходит электроток.

Модуль пельтье своими руками имеет следующие нюансы подключения:

  1. Первый токопроводящий провод монтируется у нижнего основания конструкции.
  2. Он фиксируется возле крайнего проводящего звена.
  3. При этом стоит избегать любых соприкосновений с металлической деталью.
  4. Далее крепится второй такой проводок в верхней части.
  5. Его фиксируют аналогично предыдущему.

Тестируем модуль пельтье, собранный своими руками

Учитывая простоту сборки, самостоятельно изготовить приспособление не сложно. Протестировать элемент пельтье своими руками из диодов, как и любой другой, тоже не представляет труда. Главное на начальных этапах использовать правильные материалы — подготовить две металлические пластины и проводку с нужными контактами, полупроводники с маркировкой «РР». Проверить все на исправность можно при помощи мультиметра или обычного тестера, при этом диоды должны светиться при подключении устройства к сети.

Как показывает пельтье своими руками видео, для теста необходимо:

  1. Перед пуском стоит устранить любые сторонние соприкосновения с металлической деталью и проверить надежность крепления проводов, качество пайки схем.
  2. Функциональность готового устройства, проверенного на предмет технических несоответствий, проверяется тестером.
  3. Прибору присоединяется два проводка и проверяется вольтаж — отклонения напряжения будут составлять примерно 23В.
  4. Если в результате, одна из сторон отдает тепло, а другая остается холодной, то ваша конструкция собрана верно.

Поделиться

Элемент Пельтье — Принцип работы, характеристики. Как сделать самостоятельно?

Содержание:

Краткая история открытия и обоснование физики работы

В основе работы элемента Пельтье находится физический принцип прохождения тока через две соприкасающиеся пластины, изготовленные из материалов с различными уровнями энергии тока прохождения, или другими словами — полупроводниками отличающихся типов. В месте их соединения будет наблюдаться нагрев при подаче тока в одну сторону, и понижение температуры при движении его в обратную.

Открыт эффект был еще в 18 веке Жан-Шарлем Пельтье, который получил его случайно, соединив контакты из висмута и сурьмы от источника тока. Капля воды, находящаяся в точке соприкосновения, превратилась в лед, что и вызвало интерес исследователя. Практическое применение открытие не получило по причине слабой распространенности электротехники в указанный период времени. Вспомнили о нем уже позднее, в век развития микроэлектроники, компонентам которой нужно было миниатюрное охлаждение, желательно без жидкостей и подвижных частей (насосов, вентиляторов и прочих).

Элемент Пельтье можно создать не только из полупроводников. Но, к сожалению, эффект от использования различных проводящих металлов будет ниже, и практически полностью потеряется за счёт нагревания их в месте соприкосновения и общей теплопроводности материала.

В общем виде конструкция выглядит как набор электродов кубической формы, изготовленных из полупроводников n- и p-типа. Каждый из них соединен с противоположными проводящими контактами, а все указанные пары соединены между собой последовательно. Причем расположение элементов выполняется так, чтобы связующие металлы между сборками полупроводников одного типа, соприкасались с первой стороной устройства в общем, а второго с противоположной. Сами p- и n- кубы зачастую изготавливаются из теллурида висмута и сплава кремния с германием. Соединительные контакты обычно из меди, алюминия или железа. Здесь главное требование — хорошая теплопроводность. Количество же пар в одной конструкции не ограничивается, и чем их больше, тем эффективнее работает элемент Пельтье. При подаче напряжения на сборку одна ее сторона нагревается, вторая охлаждается.

Принципиальная схема соединений в элементе Пельтье:

Годом нахождения обратного эффекта, выражающегося в выработке тока при охлаждении и нагреве соединенных проводников из разных металлов, принято считать 1821. Открытие было сделано Т. И. Зеебеком, который уже на следующий год опубликовал его в статье, предназначенной для Прусской академии наук, с названием «К вопросу о магнитной поляризации некоторых металлов и руд, возникающей в условиях разности температур».

Хотя согласно его работе, система генерации действует не только при использовании полупроводников, с ними ее КПД намного выше.

Элемент Пельтье, предназначенный целям генерации тока:

Устройство и принцип работы

Современные модули представляет собой конструкцию, состоящую из двух пластин-изоляторов (как правило, керамических), с расположенными между ними последовательно соединенными термопарами. С упрощенной схемой такого элемента можно ознакомиться на представленном ниже рисунке.


Устройство модульного элемента Пельтье

Обозначения:

  • А – контакты для подключения к источнику питания;
  • B – горячая поверхность элемента;
  • С – холодная сторона;
  • D – медные проводники;
  • E – полупроводник на основе р-перехода;
  • F – полупроводник n-типа.

Конструкция выполнена таким образом, что каждая из сторон модуля контактирует либо p-n, либо n-p переходами (в зависимости от полярности). Контакты p-n нагреваются, n-p – охлаждаются (см. рис.3). Соответственно, возникает разность температур (DT) на сторонах элемента. Для наблюдателя этот эффект будет выглядеть, как перенос тепловой энергии между сторонами модуля. Примечательно, что изменение полярности питания приводит к смене горячей и холодной поверхности.


Рис. 3. А – горячая сторона термоэлемента, В – холодная

Зачем нужны и чем отличаются от обычного охлаждения?

К практике предлагаю перейти чуть позже, так как надо вообще вначале определиться, что могут и что не могут элементы пельтье и зачем они нужны.

Допустим есть у вас некоторый процессор, вы в силу желаний улучшения производительности или спортивного интереса начинаете его разгонять и рано или поздно сталкиваетесь с вопросом перегрева процессора. Вы покупаете более производительный кулер, температуры немного снижаются. Вы ставите ещё более производительное охлаждение, температуры ещё чуть-чуть падают. Вы переходите на водяное охлаждение с большим радиатором и температуры падают ещё на пару градусов, потом вы заменяете большой радиатор на 4 радиатора от грузовиков, которые могут рассеять сотню киловатт тепла и получаете ещё выгоду в пол градуса и начинаете подозревать, что вы делаете что-то не так.


Условное изображение графика снижения температур от улучшения охлаждения

Всякие жидкие металлы скальпирования и прочие действия помогут сдвинуть все эти графики вниз на какое-то количество градусов, но суть — не изменится.


Условный график скорректированный для случая минимальных градиентов при передачи тепла от процессора

Проблема тут в том, что мы производим охлаждение относительно температуры воздуха. И не важно обдуваем мы радиатор установленный на процессоре или радиатор к которому подаётся тепло через жидкость. И чтобы мы не обдували воздухом комнатной температуры — рано или поздно мы придём к теоретически наименьшей температуре, которая нас может не устраивать. Конечно другой вопрос, что если процессор выделяет 50 ватт тепла то мы придём к этой температуре на маленьком радиаторе, а если 300 Ватт, то на большом, но суть в том, что предел есть и для процессоров он наступает очень быстро.

Выход из этой ситуации остаётся только один — в качестве среды использовать что-то, что холоднее комнатного воздуха, иначе никак.

И тут есть разные способы. Самый технологически простой — холодная проточная вода.

Есть ещё малозатратные способы — поместить компьютер в холодильник и на обычном кулере вы получите температуры ниже, чем на 4-х радиаторах охлаждения от грузовиков.


Компьютер в холодильнике

Логичным продолжением данной идея стало избавление от холодильника, а использование только самого принципа работы, а именно то, что можно взять некий газ с низкой температурой кипения и заставлять его вскипать там где нам нужно и вскипая он будет забирать тепло.

Проблем в данном решении несколько. Во первых — использование фреона, и опасности связанные с работой с ним, а так же тот факт что одна из частей контура с фреоном находится под высоким давлением. Вторая проблема — шум компрессора, который и обеспечивает нам то самое давление.

Ну и третья — технологически это сложная система состоящая из множества собранных друг с другом элементов. Но зато можно получить целый холодильник который работает не на большую камеру, а на кусок меди который прижат к крышке процессора и этот кусок меди может быть на градусов 60 холоднее окружающего воздуха, что существенно решает вопрос ограничения комнатными температурами, но одновременно с этим создаёт проблемы с конденсатом, так как в жилых помещениях в зависимости от влажности и температуры точка росы составляет от 5 до 20 градусов. Вдобавок данные системы практически неуправляемые, то есть работать в полсилы не могут и мощность отвода тепла закладывается при проектировании самой системы.

Ну и третий глобальный метод отводить тепло относительно более холодной среды — использование модулей Пельтье, о чём далее и будет идти речь.

Технические характеристики

Характеристики термоэлектрических модулей описываются следующими параметрами:

  • холодопроизводительностью (Qmax), эта характеристика определяется на основе максимально допустимого тока и разности температуры между сторонами модуля, измеряется в Ваттах;
  • максимальным температурным перепадом между сторонами элемента (DTmax), параметр приводится для идеальных условий, единица измерения — градусы;
  • допустимая сила тока, необходимая для обеспечения максимального температурного перепада – Imax;
  • максимальным напряжением Umax, необходимым для тока Imax, чтобы достигнуть пиковой разницы DTmax;
  • внутренним сопротивлением модуля – Resistance, указывается в Омах;
  • коэффициентом эффективности – СОР (аббревиатура от английского — coefficient of performance), по сути это КПД устройства, показывающее отношение охлаждающей к потребляемой мощности. У недорогих элементов этот параметр находится в пределах 0,3-0,35, у более дорогих моделей приближается к 0,5.

Маркировка

Рассмотрим, как расшифровывается типовая маркировка модулей на примере рисунка 4.


Рис 4. Модуль Пельтье с маркировкой ТЕС1-12706

Маркировка разбивается на три значащих группы:

  1. Обозначение элемента. Две первые литеры всегда неизменны (ТЕ), говорят о том, что это термоэлемент. Следующая указывает размер, могут быть литеры «С» (стандартный) и «S» (малый). Последняя цифра указывает, сколько слоев (каскадов) в элементе.
  2. Количество термопар в модуле, изображенном на фото их 127.
  3. Величина номинального тока в Амперах, у нас – 6 А.

Таким же образом читается маркировка и других моделей серии ТЕС1, например: 12703, 12705, 12710 и т.д.

Применение

Несмотря на довольно низкий КПД, термоэлектрические элементы нашли широкое применение в измерительной, вычислительной, а также бытовой технике. Модули являются важным рабочим элементом следующих устройств:

  • мобильных холодильных установок;
  • небольших генераторов для выработки электричества;
  • систем охлаждения в персональных компьютерах;
  • кулеры для охлаждения и нагрева воды;
  • осушители воздуха и т.д.

Приведем детальные примеры использования термоэлектрических модулей.

Достоинства элементов Пельтье

Простота конструкции, отсутствие подвижных частей и специальных навыков при построении системы, низкая стоимость в сравнении с фреоном и при этом высокая разница температур сопоставимая с фрионными чиллерами.

Минусы фрионок тут тоже есть — а именно конденсат. Но вопрос с конденсатом частично решается тем, что Модули Пельтье поддаются управлению как по напряжению, так и по току. Но не так просто как хотелось бы. Питание должно быть без пульсаций, так как все переменные составляющие питания дают нагрев, но не дают перенос тепла, то есть и без того низкая эффективность ещё сильнее падает. То есть взять «ардуину», датчик температуры и контроллер каких-нибудь двигателей с ШИМ управлением и всё подключить — не получится. Вернее получится, но работать не будет.

Можно, конечно, питать используя силовые транзисторы в режиме управления, но при управлении всё равно сопротивление транзисторов далеко не бесконечное, так что потери эффективности и необходимость отвода от транзисторов тепла будет. Но в теории управлять этим можно динамически, так чтобы все компоненты были по температуре выше точки росы. Но две проблемы, а именно сложности управления и то, что одного элемента мало — дают и выходы из данной проблемы с управлением.

Во первых есть стандартное решение в вопросе нехватки производительности чего-то одного в «холодильных» или «нагревальных» делах. А решение это — объединение нескольких элементов чего-либо в один контур с общим теплонасителем. Мы не можем поставить модули Пельтье друг на друга, но это не значит, что мы не можем поставить их рядом друг с другом и прогонять через их холодные поверхности жидкость и чтобы они все вместе в сумме эту жидкость охлаждали. Так мы можем решить проблему ограниченности максимального переноса тепла одним элементом. В данном случае тут вопрос только в количестве этих элементов. Если есть желание и возможности можно и 100 элементов объединить в один контур.

И вопрос управления становится проще, так как не надо регулировать питание а можно просто подключать нужное количество элементов. Можно для снижения дискретности ещё поставить один более слабый элемент. Допустим если будет 10 мощных отводящих по 50 Ватт и один слабый на 25, то можно варьировать отбор тепла в пределах от ноля до 525 Ватт с шагом в 25 Ватт. А включать выключать элементы можно разрывая цепи питания, допустим электромеханическими реле, что шумно, либо твердотельными, что дорого для больших токов. Либо использовать транзисторы в ключевом режиме полностью их открывая, и автоматизировав всё это дело, измеряя температуру хладагента, влажность и температуру в помещении (для вычисления температуры точки росы), избавляясь от конденсата и лишней траты энергии в простое системы, то есть частично компенсировать имеющиеся недостатки, при этом в максимальной производительности давая виртуальную более холодную среду, чем окружающий воздух.

Недостатки элементов Пельтье

Во первых элементу Пельтье требуется не бесконечное количество тепла для работы. То есть если подать слишком большой тепловой поток, то элемент Пельтье просто начнёт греться и будет нагреваться до тех пор пока не выйдет из строя.

Вторая проблема — это закон сохранения энергии. И холод, как и тень от света — это не некая отрицательная энергия — а её отсутствие в том или ином месте или меньшее её количество в сравнении с окружающим пространством. То есть тепло процессора и холод элемента пельтье не аннигилируют друг с другом. Та энергия, что нужна была для перевода электронов тоже превращается потом в тепловую и её тоже надо отводить вместе с нагревом от электрического сопротивления.

Вкупе с самим нагревом от сопротивления выходит две вещи. Во первых элементы Петльте надо очень хорошо охлаждать, а иначе они перегреются и выйдут из строя, а во вторых у них крайне низкий КПД. Вернее КПД у них близок к 0. С точки зрения электричества — это нагреватель с интересными особенностями работы, но если считать за работу не сам перенос тепла, а количество переносимого тепла, то некое подобие КПД у этой вещи появляется.

Возвращаясь к элементам Пельте их можно купить и у нас, и вроде как они получше и число полупроводниковых блоков у них на одну и ту же площадь выше, но стоят они чуть ли не в десять раз дороже китайских. Китайские элементы Пельтье называются TEC1, далее указывается число пар полупроводников, для типоразмера 40 на 40 мм это 127 пар и далее указывается ток в Амперах. Чем выше ток — тем больше тепла элемент перетаскивает с одной стороны своего корпуса на другую. Я купил 15 Амперные модули.

Что касается 15 Амперного элемента, то свои 15 Ампер он потребляет на 15 Вольтах и обещается, что выводит он в идеальных условиях при этом около 130 Ватт тепла. В реальных условиях и на 12 Вольтах цифры ожидать стоит порядка 50-60 Ватт.

Как я выше уже писал — при перенасыщении теплом элемент Пельте уходит в разнос. И для мощного процессора одно элемента мало. Именно поэтому большинство экспериментов с элементами Пельтье которые вы можете найти в интернете сводятся к тому, что либо поставив этот элемент на «селрон» он хорошо охлаждается, либо при установки на i7/i9 или 9-тысячный FX всё это дело вообще не работает. Вернее становится всё ещё хуже чем было.

Ставить элементы пельтье «бутербродом» друг на друга когда и так они перегружены тоже не имеет никакого смысла. Если один элемент не может перевести 100 Ватт, то второй ещё сильнее не сможет перевести 250 Ватт уже от первого.


Трёхкаскадный модуль пельтье

Есть двухкаскадные (и даже трёхкаскадные) заводские сборки этих элементов, но они рассчитаны на то, что источник тепла очень слабый и обычно задача просто охладить что-то, допустим датчик какого-то чувствительного прибора.

Практический опыт с элементом Пельтье

Выглядеть он может по-разному, но основной его вид – это прямоугольная или квадратная площадка с двумя выводами.  Сразу же отметил сторону “А” и сторону “Б” для дальнейших экспериментов

Почему я пометил стороны?

Вы думаете, если мы просто тупо подадим напряжение на этот элемент, он у нас будет полностью охлаждаться? Не хочу вас разочаровывать, но это не так… Еще раз внимательно читаем определение про элемент Пельтье. Видите там словосочетание “разности температур”? То то и оно. Значит, у нас какая-то сторона будет греться, а какая-то охлаждаться. Нет в нашем мире ничего идеального.

Для того, чтобы определить температуру каждой стороны элемента Пельтье, я буду использовать мультиметр, который шел в комплекте с термопарой

Сейчас он показывает комнатную температуру. Да, у меня тепло ;-).

Для того, чтобы определить, какая сторона элемента Пельтье греется, а какая охлаждается, для этого цепляем красный вывод на плюс, черный – на минус и подаем чуток напряжения, вольта два-три. Я узнал, что у меня сторона “А” охлаждается, а сторона “Б” греется, пощупав их рукой. Если перепутать полярность, ничего страшного не случится. Просто сторона А будет нагреваться, а сторона Б охлаждаться, то есть они поменяются ролями.

Итак, номинальное (нормальное) напряжение для работы элемента Пельтье – это 12 Вольт. Так как  я подключил на красный  – плюс, а на черный – минус, то у меня сторона Б греется. Давайте замеряем ее температуру.  Подаем напряжение 12 Вольт и смотрим на показания мультиметра:

77 градусов по Цельсию – это не шутки. Эта сторона нагрелась так, что когда ее трогаешь, она обжигает пальцы.

[quads id=1]

Поэтому главной фишкой использования элемента Пельтье в своих электронных устройствах является большой радиатор. Желательно, чтобы радиатор обдувался вентилятором. Я пока что взял радиатор от усилителя, который  дали в ремонт. Намазал термопасту КПТ-8 и прикрепил элемент Пельтье к радиатору.

Подаем 12 Вольт и замеряем температуру стороны А:

7 градусов по Цельсию). Когда трогаешь, пальцы замерзают.

Но также есть и обратный эффект, при котором можно вырабатывать электроэнергию с помощью элемента Пельтье, если одну сторону охлаждать, а другую нагревать. Очень показательный пример – это фонарик, работающий от тепла руки

Элемент пельтье своими руками

Изготовить устройство в домашних условиях практически невозможно, тем более это не имеет особого смысла, учитывая его невысокую рыночную стоимость.

Но большинство умельцев все же предпочитает мастерить элемент пельтье своими руками, ссылаясь на ряд его достоинств:

  1. Компактность, удобство установки на самодельное электронное плато.
  2. Отсутствие движущихся деталей, что увеличивает сроки его эксплуатации.
  3. Возможность соединения нескольких элементов в каскадной схеме для снижения очень больших температур.

Тем не менее, пельтье своими руками имеет определенные недостатки: низкий коэффициент полезного действия (КПД), необходимость подачи высокого тока для получения заметного перепада температуры, сложность отведения тепловой энергии от охлаждаемой поверхности.

Рассмотрим на примере схем, как сделать пельтье своими руками:

  • Задействовать его в качестве детали термоэлектрического генератора, согласно рисунку подключения.
  • Собрать простой преобразователь на микросхеме ИМС L6920 (рисунок 1).


Рисунок 1. Элемент пельтье своими руками: универсальная схема

Далее стоит следовать простой инструкции, как сделать пельтье своими руками:

  1. Подать на вход получившегося преобразователя напряжение диапазоном 0. 8-5.5В, чтобы иметь на выходе стабильные 5В.
  2. При использовании устройства обычного типа — поставить лимит температуры нагреваемой стороны в 150 градусов.
  3. Для калибровки — в качестве источника тепла использовать емкость с кипящей водой, которая точно не нагреется свыше 100 градусов.

Из диодов и транзисторов

Фактически любой элемент Пельтье представляет собой гирлянду из последовательно соединенных диодов, работающих в режиме пробоя. В сущности, любой электронный компонент, пропускающий ток в одном направлении и препятствующий его прохождению в обратном, построен на принципах соединения полупроводников p-n типа. Что в свою очередь наводит на мысли о схожести системы на искомую конструкцию, аналогичную той, которую имеет модуль Пельтье. Если брать во внимание диоды с пластмассовой оболочкой (включая излучающие свет), мешает доступу к самим контактным пластинам из разных металлов только сам корпус устройства.

Вот они, две пластины полупроводника в прозрачном диоде:

Случай транзисторов аналогичен, конечно учитывая то, что в большинстве из них три контакта, два из полупроводника одного типа и один (меньший) другого. Хотя избавиться от корпуса, если он металлический, проще, что довольно распространено у элементов названого типа — достаточно срезать верхнюю крышку и получить доступ к открытым контактным пластинам.

Металлический транзистор со снятой крышкой:

Саму процедуру избавления от корпуса возложим на читателей, с рекомендацией попробовать нагрев, кислоту или механическое снятие преграды. Что касается соединения контактных площадок, здесь некоторые фанаты, судя по имеющейся информации, использовали меднение их верхушек электрическим методом. Впоследствии к подготовленным участкам осуществлялась пайка проводящих контактов.

После получения требуемых металлов, главное, что нужно помнить при их подключении — направление прохождения тока и последовательное соединение, выглядящее, как p-n-p-n-p-n, учитывая тип полупроводников. Кроме того, чем больше будет использовано элементов в конструкции, вне зависимости от их размера, тем и выше КПД получившегося генератора или устройства создающего тепло вместе с холодом.

Как изготовить генератор на основе элемента Пельтье?

Генераторы на основе элемента Пельтье особенно интересуют людей, которые ввиду достаточно продолжительной отрезанности от цивилизации нуждаются в простом и доступном источнике энергии. Также они широко применяются при критическом перегреве деталей персонального компьютера.


Рис.2: Генератор на основе элемента Пельтье.

Элементы Пельтье имеют достаточно интересный принцип действия, но помимо этого обладают одной любопытной особенностью: если к ним прилагается разность температур, то они продуцируют электричество. Один из вариантов генератора на базе этого устройства предполагает следующую конструкцию:

По  двум трубкам (одна для входа, другая для выхода) движется пар, который направляется в полость теплообменника, сконструированный из пластины (материал: алюминий), имеющей толщину 1 см.

К каждому отверстию теплообменника подведено соединение с одним каналом. Габариты теплообменника точно дублируют габариты элементов Пельтье.   Два элемента фиксируются на двух сторонах теплообменника с помощью четырёх винтов (по 2 на каждую сторону). В результате, благодаря отверстиям и канальцам теплообменника формируется полноценная система сообщающихся отделов, через которые проходит пар. Двигаясь вперёд, пар входит в камеру по одной трубке и выходит через другую, двигаясь к следующей камере. Транслируемое паром тепло достаётся элементам Пельтье, когда пар непосредственно соприкасается с их поверхностью , а также с материалом теплообменника.

Чтобы вплотную прижать элементы к корпусу теплообменника , а также для организации отвода тепловой энергии на «холодную» сторону применяются пластины из алюминия на 0,5 см в толщину. На последнем этапе вся конструкция герметизируется силиконовыми  герметиками.

После этого через трубки пускают пар, а конструкция погружается в холодную воду. Вся система целиком начинает работать.  Электрический ток будет образовываться до тех пор, пока разница между температурой «горячей» и «холодной»  сторон не сократится до минимума.

Есть и более элементарный метод.

Элемент Пельтье выводами подсоединённый к зарядному телефонному кабелю закрепляется на алюминиевом радиаторе (который будет контактировать с «холодной» стороной) с помощь герметика. Сверху на устройство ставится любой горячий предмет, например, кружка с горячим чаем. Через пару секунд телефон можно ставить на зарядку. Зарядка будет продолжаться, пока чай не остынет.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта , буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Холодильник на элементах пельтье своими руками

Чтобы собрать холодильный агрегат вам понадобятся достаточное количество  электрических проводников и специальные инструменты (рисунок 3).

Холодильник на пельтье своими руками требует особого подхода к сборке и используемым материалам:

  1. Основой для платы должна служить прочная керамика;
  2. Для максимального температурного перепада надо подготовить не менее 20 связей;
  3. Правильные расчеты — залог увеличения коэффициента полезного действия на 70%;
  4. Наибольшую мощность используемому оборудованию даст фреон;
  5. Самодельный модуль устанавливается возле его испарителя, рядом с мотором;
  6. Монтаж производится стандартным набором инструментом с применением прокладок;
  7. Они необходимы для изолирования рабочей модели от пускового реле;
  8. Изоляция понадобится и для самой проводки, перед ее подключением к компрессору;
  9. Чтобы избежать короткого замыкания, сила предельного напряжения звонится тестером.


Рисунок 3. С помощью элемента пельтье можно легко собрать походный холодильник

Подобную схему можно применить для автомобильного охладителя. Автохолодильник пельтье своими руками собирается на керамической плате толщиной не менее, чем 1 миллиметр. В нем используются медные немодульные связи с пропускной способностью в 4А и применяются проводники с маркировкой «ПР20», подходящие для контактов разного типа. Для соединения устройства с конденсатором используют обычный паяльник.

Кондиционер пельтье своими руками

В данном случае, для изделия могут применяться только проводники типа «ПР12» (рисунок 4).

Кондиционер пельтье своими руками собирается только на них, так как они выдерживают аномальные температуры и выдают напряжение до 23В:

  1. Применяется в основном для охлаждения компьютерных видеокарт.
  2. Его сопротивление колеблется в пределах 3 Ом.
  3. Температурный перепад равен 10 градусам, а КПД — 65%.
  4. Для него требуется 14 медных проводничков.
  5. Для подключения задействуется немодульный переходник.
  6. Устройство монтируется рядом с встроенным кулером на видеокарте.
  7. Конструкция крепится металлическими уголками и обычными гайками.


Рисунок 4. Элемент используется и для создания портативных кондиционеров

Если во время работы кондиционера замечаются сильные посторонние шумы, другие нехарактерные звуки — он проверяется на работоспособность мультиметром.

Как сделать элемент для кулера питьевой воды?

Модуль Пельтье (элемент) своими руками делается для кулера довольно просто. Пластины для него важно подбирать только керамические. Проводников в устройстве используют не менее 12. Таким образом, сопротивление будет выдерживаться высокое. Соединение элементов стандартно осуществляется при помощи пайки. Проводов для подключения к прибору должно быть предусмотрено два. Крепиться элемент обязан в нижней части кулера. При этом с крышкой устройства он может соприкасаться. Для того чтобы исключить случаи коротких замыканий, всю проводку важно зафиксировать на решетке либо корпусе.

Как проверить на работоспособность

При покупке и использовании может возникнуть вопрос, как проверить элемент Пельтье на работоспособность. Самый простой способ проверки — подключить термоэлемент к источнику напряжения и проверить обе его стороны рукой. Одна сторона должна быть холодной, а вторая начать нагреваться.

Если нет возможности использовать источник тока, от которого можно было бы осуществить питание элемента, то придется пойти от обратного. Для этого нужно иметь под рукой мультиметр и источник огня (лучше всего зажигалку). Выводы мультиметра необходимо подключить к проводам от элемента. После этого по одной из сторон нужно провести зажигалкой.

Обратите внимание! Если пластина рабочая, то под действием огня она начнет вырабатывать некоторое количество электричества. Это можно будет увидеть по показаниям электроизмерительного прибора.

Элемент Пельтье может использоваться во многих сферах деятельности обычного человека. Сделать качественный и эффективный элемент самостоятельно в домашних условиях достаточно сложно. Проще купить готовый в магазине и уже из него сооружать множество полезных конструкций дома.

Источники

  • https://ProFazu.ru/elektrooborudovanie/samodelki-oborud/element-pelte-printsip-raboty.html
  • https://www.asutpp.ru/chto-takoe-element-pelte-i-ego-primenenie.html
  • https://pc-01.tech/peltie/
  • https://www.RusElectronic.com/element-peltje/
  • https://nowifi.ru/vyzhivanie-v-dikoy-prirode/105-element-pelte-svoimi-rukami.html
  • https://elektronchic.ru/avtomatika/element-pelte.html
  • https://FB.ru/article/192230/pelte-element-svoimi-rukami-kak-sdelat
  • https://rusenergetics.ru/oborudovanie/element-pelte

Предыдущая

ТеорияПостоянный ток — определение и параметры

Следующая

ТеорияЧто такое абсолютная диэлектрическая проницаемость?

Как собрать мини-холодильник на элементах Пельтье своими руками

Вы когда-нибудь задумывались о том, чтобы иметь небольшой портативный холодильник для охлаждения воды, напитков и соков во время летних прогулок?

AC Охлаждение — наиболее распространенный способ охлаждения в холодильнике или комнате. Но это тяжелый процесс, который требует значительного количества электроэнергии и громоздкого электрического оборудования для выполнения этой задачи.

К счастью, можно сделать холодильник, в котором еда будет оставаться прохладной, используя портативную батарею постоянного тока и то, что называется эффектом Пельтье.

Что такое эффект Пельтье?

Термоэлектрические охладители или устройства на эффекте Пельтье представляют собой сравнительно миниатюрные устройства, используемые для охлаждения или нагревания. Устройства Пельтье используют постоянный ток для охлаждения, в отличие от обычных холодильников или кондиционеров, которые используют переменный ток. Эффект Пельтье — это процесс, при котором, если постоянный ток проходит через цепь, состоящую из двух проводников из разных материалов, тепло от одного соединения отводится, в результате чего оно становится холодным, а другое соединение поглощает тепло, заставляя его нагреваться.

Можно также заметить, что при изменении полярности тока соединение, которое ранее было холодным, становится горячим; в то время как соединение, которое было горячим до изменения полярности тока, становится холодным.

Использование термоэлектрических устройств Пельтье для контроля температуры

Вышеупомянутое явление дает возможность разработать устройство, которое может отводить и отводить тепло. Если вы поместите более холодный спай на горячую поверхность или устройство, от которого требуется отводить тепло, а более горячий спай пойдет на радиатор, вы можете сохранить поверхность или устройство прохладными. Кроме того, вы можете поддерживать постоянную оптимальную температуру для хорошей производительности.

Как собрать мини-холодильник постоянного тока

Мы будем использовать концепцию, упомянутую выше, для проектирования холодильника постоянного тока. Мини-холодильник является целевым дизайном, однако его можно масштабировать до холодильника среднего размера, используя несколько устройств с эффектом Пельтье, используя ту же технику.

Что вам потребуется

Необходимо следующее оборудование:

  • Модуль Пельтье (TEC1-12706) с подключенными проводами.
  • Два радиатора.
  • Аккумулятор постоянного тока 12 В или блок питания постоянного тока.
  • Коробка A (Внутренняя часть должна быть выполнена из непроводящего тепло материала, такого как дерево, картон или пенопласт)
  • Два вентилятора Электроника Delta FFB0412HN на ребрах радиатора для принудительной конвекции
  • Термопаста
  • Электрические провода
здесь используется устройство постоянного тока с оптимальным рабочим напряжением 12 В постоянного тока, которое потребляет ток почти 6 А (72 Вт). Рабочее напряжение не должно превышать 15 В постоянного тока. Не включайте устройство Пельтье без радиатора. Если он используется даже кратковременно, он может превысить максимальную рабочую температуру соединения устройства и привести к снижению производительности или полному отказу устройства.

Шаг 1: Подготовьте коробку

Теперь возьмите пустую коробку из теплоизоляционного материала. Для этой демонстрации мы использовали картон. Сделайте отверстие или полость в соответствии с размерами устройства Пельтье TEC1-12706 (т.е. 40 мм x 40 мм) для конструкции мини-холодильника. Поместите устройство Пельтье прямо в полость, которую вы создали в коробке.

Шаг 2: Разместите радиаторы на устройстве Пельтье

Теперь поместите радиаторы на оба соединения устройства Пельтье. Каждый переход устройства Пельтье прикреплен к радиатору с помощью высокопроводящей термопасты. Термопаста обеспечивает плавный поток тепла между каждым спаем Пельтье и базовой пластиной радиатора, не позволяя горячему спаю стать слишком горячим, а холодному спаю слишком холодным, чтобы повредить любой переход.

Радиатор повышает эффективность устройства Пельтье за ​​счет регулярного поддержания потока воздуха. Это связано с тем, что теплообмен между окружающим воздухом и устройством Пельтье увеличивается из-за большой площади поверхности, предлагаемой радиатором для отвода тепла от внутреннего спая и отвода тепла через внешний спай. Для хорошей конструкции рекомендуются радиаторы с большими ребрами и большей площадью поверхности.

Шаг 3. Прикрепите вентиляторы

Теперь прикрепите выбранный вами вентилятор к каждому ребру радиатора. Принудительная конвекция, обеспечиваемая вентилятором, увеличивает скорость воздушного потока через ребра радиатора, что позволяет увеличить отвод тепла.

В этом проекте используются бесколлекторные вентиляторы постоянного тока 12 В (Delta electronics FFB0412HN) с воздушным потоком 10,6 кубических футов в минуту. Каждый вентилятор потребляет менее одного ватта энергии от батареи. Однако можно использовать вентилятор с большим потоком воздуха для лучшей производительности.

Следите за тем, чтобы соединения устройства не соединялись через металлическую поверхность, такую ​​как винты, закрепленные на радиаторах, во избежание короткого замыкания тепловых соединений. Это может привести к значительному ухудшению характеристик холодильника с устройством Пельтье, поскольку поток тепла может проходить кратчайшим путем через металлический винт и т. д.

В случае, если винты не могут быть установлены из-за теплового замыкания между двумя радиаторами, вы можете использовать клей, чтобы прикрепить радиаторы к коробке. Однако между радиатором и устройством Пельтье обязательно следует использовать пасту для теплоотвода.

Шаг 4: Включение питания с помощью 12 В постоянного тока

Теперь соедините соединения устройства Пельтье и провода вентиляторов с батареей на 12 В постоянного тока. Аккумулятор должен иметь емкость по току, чтобы обеспечить постоянный ток 7А. Для этого одного модуля Пельтье с вентиляторами достаточно батареи емкостью 10 Ач или более. Установите полярность напряжения контактов устройства таким образом, чтобы внутренняя сторона коробки была более холодной, а внешняя – горячей, отводя тепло из коробки для охлаждения.

Теперь соедините провода с батареей, чтобы устройство могло потреблять ток. Внимательно следите за током, потребляемым от батареи. Оно должно находиться в пределах, указанных производителем устройства Пельтье. Позвольте системе принимать ток в течение некоторого времени и наблюдайте за напряжениями и токами в безопасных пределах.

Через несколько секунд вы почувствуете более холодный воздух внутри коробки. Вы можете добавить бутылки с водой и соки, чтобы охладить их. Теперь накройте коробку для использования в качестве мини-холодильника. Для надежной работы можно добавить регулятор температуры, чтобы защитить устройство Пельтье от превышения эксплуатационных пределов.

Вы собрали мини-холодильник своими руками

Теперь вы можете сами собрать мини-холодильник, используя элементы Пельтье и несколько других простых компонентов. Модули с эффектом Пельтье также можно использовать для контроля температуры в таких приложениях, как охлаждение электронных устройств, цепей и систем, где требуется малобюджетная и легкая система охлаждения.

Что такое Пельтье и как сделать термоэлектрический охладитель Пельтье своими руками?

Ознакомьтесь с этим руководством, чтобы узнать, что такое Пельтье, и узнать, как сделать термоэлектрический охладитель Пельтье своими руками. Эти модули Пельтье действительно крутые и простые в использовании!

Идея пришла мне в голову, когда я искал дешевый термоэлектрический холодильник своими руками. Вместо классического компрессора в этих холодильниках для охлаждения используются модули Пельтье. Основным преимуществом этих устройств является то, что в них нет движущихся частей, нет хлорфторуглеродов (ХФУ), они управляются изменением приложенного тока, имеют более длительный срок службы и их легко заменить в случае поломки.

Для этого проекта я использовал свой блок питания ATX с коммутационной платой ATX, чтобы создать самодельный мини-холодильник Пельтье или холодильную камеру Пельтье с цифровым термостатом (W1209).).

Проверьте эти модули Пельтье TEC12706 на Amazon (филиал)

Содержание

Что такое Пельтье?

Модули Пельтье состоят из керамического квадрата, содержащего два различных типа полупроводников. Модуль Пельтье действует как тепловой насос, когда на модуль подается электрический ток. Одна сторона Пельтье охлаждается, а другая нагревается. Есть два основных типа модулей, использующих эффект Пельтье; термоэлектрический охладитель (ТЭО) и термоэлектрический генератор (ТЭГ).

ТЭГ может выдерживать более высокие температуры и имеет тенденцию быть более эффективным при большей разнице температур между горячей и холодной сторонами. Эти модули в основном используются для выработки электрического тока путем нагревания одной стороны при сохранении температуры другой стороны. Они коммерчески используются для создания вентиляторов дровяных печей, работающих на тепле. Для получения дополнительной информации о ТЭГ, проверьте мой другой пост о термоэлектрических генераторах. С другой стороны, модуль Пельтье, который я буду использовать в этом проекте, представляет собой термоэлектрический охладитель (ТЭО). Существуют различные типы TEC, и я решил использовать TEC1 12706.

К вашему сведению, ТЭ относится к термоэлектрическим. C обозначает нормальный размер по сравнению с маленьким размером (S). Цифра 1 обозначает номер этапа, который обычно равен одному. Следующие числа используются для определения количества пар и текущего рейтинга. Число 127 означает, что существует 127 пар полупроводников. Чем выше это число, тем более проводящим и эффективным будет этот модуль. Последнее число 06 относится к текущей емкости этого модуля Пельтье. Таким образом, в этом случае номинальный ток TEC1-12706 составляет 6 ампер. Дополнительную информацию об этих устройствах Пельтье можно найти в Википедии.

Эффективны ли термоэлектрические охладители?

Эффективность модуля зависит от разницы температур между горячей и холодной сторонами элемента Пельтье. Эти модули TEC более эффективны, когда разница температур между обеими сторонами ближе друг к другу. Таким образом, важно эффективно рассеивать тепло и холод, производимые с каждой стороны.

Как сделать охладитель Пельтье или мини-холодильник с помощью термоэлектрического модуля ?

Для этого проекта я использую радиаторы, которые я взял со своего старого компьютера, но вы можете использовать любой тип радиаторов, который сможете найти. Для повышения энергоэффективности радиаторы и модуль Пельтье следует собирать с использованием термопасты или теплопроводящих силиконовых прокладок. Таким образом, тепло и холод будут свободно рассеиваться на радиаторах и повышать эффективность охладителя Пельтье.

Я также использую компьютерные вентиляторы для рассеивания энергии на обоих радиаторах. Я использовал горячий клей, чтобы закрепить вентиляторы. Меньший нужно разместить над маленьким радиатором. Я использовал вентилятор на 24 В для внутренней стороны кулера, хотя я использую источник питания на 12 В. Таким образом, скорость вентилятора снижается, а также выделяемое им тепло. Таким образом, ваш холодильник будет работать немного эффективнее.

Обязательно проверьте модуль Пельтье, прежде чем все подключать. Вы можете использовать батарею 1,5 В, чтобы увидеть, какая сторона горячая, а какая холодная. Вы должны подключить большой радиатор и вентилятор к горячей стороне и использовать меньший радиатор и меньший вентилятор для холодной стороны. Чтобы построить мини-холодильник на Пельтье, я использовал старую транспортировочную коробку из пенополистирола, которая была у меня под рукой. Опять же, чем больше изоляция, тем эффективнее будет ваш самодельный холодильник. Я выбрал этот, потому что было легко разрезать крышку и поместить в нее термоэлектрический модуль Пельтье.

AliExpress.com Продукт – Элемент Пельтье TEC1-12706 термоэлектрический модуль Пельтье 12706 TEC 12V холодильник своими руками Кулер Пельтье TEC1-12706 самодельный электронный

Для контроля температуры моего самодельного холодильника Пельтье я использую цифровой термостат W1209. Этот переключатель контроля температуры дешев и прост в использовании. Вы можете установить желаемую температуру с точностью до 0,1 градуса. Датчик будет контролировать питание, включая и выключая модуль Пельтье, в зависимости от настроек.

Посмотрите на электрическую схему в конце этого поста, чтобы увидеть, как все подключить к датчику Пельтье и источнику питания. Модуль Пельтье TEC-12706 теоретически может потреблять до 6 ампер, поэтому ему нужен хороший источник питания. Я использовал старый блок питания ATX от своего компьютера и преобразовал его в настольный блок питания с помощью переходника ATX.

Эффективность охладителя Пельтье своими руками

Я использовал горячий клей, чтобы закрепить вентиляторы. Меньший нужно разместить над маленьким радиатором. Я использовал вентилятор на 24 В для внутренней стороны кулера, хотя я использую источник питания на 12 В. Таким образом, скорость вентилятора снижается, а также выделяемое им тепло. Таким образом, ваш холодильник будет работать немного эффективнее. Вы можете ожидать разницу в 10-15 градусов по Цельсию между температурой кулера и температурой окружающей среды. По Фаренгейту она поднялась с 70 до 50 градусов.

Общие выводы о самодельном холодильнике Пельтье

Этот холодильник явно не так эффективен, как классический компрессорный холодильник, но это крутая электронная штука, дешевая и простая в сборке! Посмотрите мои инструкции по монтажной плате ATX или мое видео на YouTube, чтобы получить дополнительную информацию об источнике питания лабораторного стола, используемом в этом проекте, и о том, как преобразовать блок питания вашего компьютера ATX. Я надеюсь, что вы найдете эту информацию полезной.

Материал, необходимый для изготовления охладителя Пельтье своими руками

Самодельный холодильник на Пельтье:

— Модуль Пельтье TEC1 12706 (eBay) (AliExpress) (Amazon)
— Переключатель контроля температуры W1209, цифровой термостат (eBay) (AliExpress) (Amazon)
— Теплопроводящая силиконовая прокладка (eBay) (AliExpress) )
— Компьютерный вентилятор 8 см (eBay) (AliExpress)
— 4 см Компьютерный вентилятор 24 В (eBay) (AliExpress)
— Транспортировочная коробка из пенополистирола (или любой тип кулера, который у вас есть под рукой)
— Малый и большой радиаторы от старого ПК компьютер или любые радиаторы, которые у вас могут быть
— Электрические провода (я использую провода AWG14 и кабели Dupont)
— Пистолет для горячего клея

Преобразование блока питания ATX в лабораторный стол:

— Разделительная плата ATX (eBay) (AliExpress)
— Блок питания ATX (eBay)

Пожалуйста, посетите мою страницу Instructables, чтобы узнать больше об этом самодельном холодильнике Пельтье.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *