Закрыть

Емкость формулы: Ёмкость между двумя сферами

Содержание

значение формулы заряда, принцип работы

 

 

Конденсаторы часто встречающийся элемент в электрических схемах.
Они нужны для накопления заряда, сглаживания пульсаций электрического тока, фильтрация отдельных видов частот,
создание фазовых сдвигов обеспечивающих работу электрических двигателей и для других технических решений.

Содержание

  1. Что такое конденсатор
  2. От чего зависит емкость и заряд конденсатора
  3. Как устроен конденсатор
  4. Виды конденсаторов
  5. Плоский
  6. Сферический
  7. Цилиндрический
  8. Полярные
  9. Танталовые
  10. Ионисторы
  11. Электролитические
  12. Неполярные
  13. Керамические
  14. Пленочные
  15. Smd
  16. Переменные
  17. Максимальное рабочее напряжение на конденсаторе
  18. Величина и значение потери у конденсатора
  19. Конденсатор в цепи электрического тока
  20. Постоянного
  21. Переменного
  22. Сопротивления конденсатора в зависимости от
  23. Частоты и сдвига фаз
  24. Номинала конденсатора
  25. Последовательное и параллельное соединение конденсаторов
  26. Формулы для вычисления
  27. Посредством математических выражений
  28. Как зависит емкость от среды диэлектрика
  29. Как измерить емкость
  30. Мультиметром
  31. Осциллографом
  32. Тестером не имеющим прямой функции
  33. Мостовыми измерителями
  34. Единицы расчета
  35. Математическое выражение фарада
  36. Диэлектрическая проницаемость
  37. Маркировка конденсаторов
  38. Способы обозначения конденсатора
  39. Код конденсаторов импортных
  40. Кодовая для конденсаторов поверхностного монтажа

Что такое конденсатор

Конденсаторы — это компоненты в электронике, которые могут накапливать электрические заряды.

Эти детали используются в любом электронном устройстве.

Свойство конденсатора – это накопление заряда и последующая его отдача.

От чего зависит емкость и заряд конденсатора

Емкость конденсатора это физическая величина по которой производится оценка его возможностей выполнять свои функциональные задачи.

Практическое значение емкости выражается в способности электрического устройства к накоплению заряда.

Величина напряжения на пластинах в прямой пропорции влияет на количественные характеристики заряда на обкладках.
Формула определения емкости выглядит как

C = q/U,

где С — емкость конденсатора,

q — означает количество заряда на одной из пластин,

U — разница потенциалов на обкладках.
Приведенная формула расчета имеет в большей степени теоретический характер.

Существует иное определение емкости, которое полезнее в практическом смысле.

В формуле C = єS/d обозначена ее связь с площадью S обкладок, расстоянием между пластинами d и свойствами диэлектрика є.

Из формулы следует, что чем больше площадь обкладок, тем больший заряд может на них разместиться и чем больше расстояние между пластинами,
тем слабее заряженные частицы будут притягиваться друг к другу, увеличивая их шансы покинуть обкладку.

Максимальная диэлектрическая проницаемость материала, расположенного между пластинами, увеличивает емкость конденсатора без изменения габаритных характеристик.

Как устроен конденсатор

Конденсатор состоит из двух или нескольких металлических пластин, между которыми располагается диэлектрический материал.
Электроны начинают двигаться, но не в состоянии преодолеть диэлектрик, из-за этого между пластинами накапливается электрический заряд.

Хорошими диэлектрическими свойствами обладают бумага покрытая оксидом алюминия, слюда, электролит, керамика и подобные материалы.

Заряды на разных обкладках одинаковые по величине, но противоположные по знаку.

Виды конденсаторов

Конденсаторы различаются по целому ряду параметров: по конфигурации, по типу диэлектрика,
по материалу обкладок, по виду изменения емкости (постоянные, переменные, подстрочные),
по рабочему напряжению.
Ниже на рисунке рассмотрим основные виды электрических устройств различной конфигурации.

Плоский

Плоский вид устройства, – это две пластины, которые располагаются параллельно друг против друга.
Они отличаются компактностью, сохраняя при этом большую емкость.

Емкость плоского конденсатора возрастает по мере увеличения площади пластин и при уменьшении расстояния между ними.

Для расчета емкости плоского конденсатора следует пользоваться формулой C = εεS / d

Сферический

Сферический конденсатор это две концентрично расположенные сферы с находящимся между ними тонким диэлектриком.
Наружную поверхность внешней обкладки заземляют для создания электрического поля непосредственно между обкладками.
С учетом геометрии обкладок расчет емкости сферического конденсатора производится по формуле

C = 4πεε0 Rr/ R — r, где R — радиус наружной обкладки, r — радиус внутренней.

Цилиндрический

Цилиндрический конденсатор выполнен из двух полых цилиндров с разными радиусами образующих их окружностей с общей осью.
Между наружной поверхностью малого цилиндра и внутренней поверхностью большого находится диэлектрик.
Для расчета емкости цилиндрического конденсатора можно воспользоваться формулой
C = 2πєє0L/ ln (R2/R1),

где L — длина цилиндрических обкладок,

R2 — радиус наружного цилиндра,

R1 — радиус внутреннего цилиндра,

ln — обозначение логарифмического действия.

Полярные

Полярные конденсаторы – это приборы, имеющие полярность, а именно плюс и минус.
Важно чтобы плюсовой контакт был соединен с «плюсом» источника питания, а минусовой с его «минусом».
Нарушение полярности может привести даже к взрыву конденсатора.
К полярным принадлежат танталовые, ионисторы, конденсаторы с электролитическим диэлектриком.

Танталовые

В танталовых конденсаторах, относящихся к электролитическому типу, в качестве диэлектрика используется спеченный танталовый порошок оксид тантала, отсюда происходит их название.
Такой диэлектрик сводит практически к нулю ток утечки.

Недостаток заключается в невозможности работать в электрических цепях с высоким напряжением.

Танталовый конденсатор включает в себя 4 элемента – анод, диэлектрик, электролит и катод.

В отличие от электролитических танталовые имеют меньшую собственную индуктивность, благодаря чему их можно применять на высоких частотах.

Компактность танталовых устройств позволяет их использовать в качестве составляющих монтажных схем.

Ионисторы

Ионисторы принадлежат к разряду электрохимических конденсаторов.
Особенность конструкции заключается в сочетании свойств обычного конденсатора и аккумуляторной батареи.
Пространство между электродами заполняется твердым электролитом на основе рубидия и аналогичных материалов.
Такая конструкция исключает самопроизвольный разряд ионистора.

Быстрая разрядка и зарядка делают возможным его использование в некоторых видах электрических схем вместо аккумулятора.

Аккумулятор, в отличие от ионистора, потребует значительное время для своей зарядки.
Емкость ионистора отличается повышенным значением среди всех электролитических устройств.

Работает ионистор только с источником постоянного напряжения.

Электролитические

Большое распространение получили электролитические конденсаторы, у которых одна из обкладок выполнена в виде алюминиевой фольги.
Другой обкладкой служит твердый или жидкий электролит обеспечивающий движение заряженных частиц для сохранения оксидной пленки.

Емкость электролитического конденсатора на сегодняшний день является наибольшей при соотношении емкости и объема элемента.

Электролитические элементы устанавливаются в фильтрах, но важно соблюдение полярности.

По сравнению с танталовыми конденсаторами в электролитических  идут значительный ток утечки.

Процессы переноса заряженных частиц происходят медленно, что увеличивает количество выделяемого тепла.
Отсюда перегрев и низкий срок службы.

Неполярные

Неполярные конденсаторы корректно работают при любых вариантах подключения их в электрическую схему.

Это связано с похожей структурой материалов образующих границу между обкладкой и диэлектриком.
Стороны одинаковы. Все это приводит к тому, что во время установки конденсатора нет необходимости соблюдать полярность.
В качестве неполярных электрических устройств в основном используются сухие, реже электролитические, изготовленные по измененной технологии.

Керамические

Керамические конденсаторы имеют высокие электрические показатели, маленькие габариты и приемлемую стоимость.

Устанавливаются элементы в контурах радиоаппаратуры.
Керамические конденсаторы подразделяются на

  • с постоянной емкостью
  • подстроечные.

Элементы с постоянной емкостью – устанавливают в контурах генераторов и гетеродинов.
Подстроечные – используются для подгонки параметров колебательных контуров.
Широкое распространение получили благодаря разнообразию емкостей, широкому диапазону рабочих напряжений,
стандартными типоразмерами аналогичными керамическим устройствам разных производителей.

Пленочные

Особенностью таких устройств будет диэлектрик в виде пленки.
Пленка изготавливается из фторопласта, металлизированной бумаги, полипропилена, поликарбоната и подобных материалов.
Металлическая пленка или фольга напыляются или напрессовываются на диэлектрик.

Благодаря большому количества слоев – получается увеличение площади, соответственно, существенно увеличивается емкость.

Из достоинств пленочного конденсатора следует отметить сравнительно высокую надежность, стабильность теплового состояния при действии нагрузок вызванных переменным током.

К недостаткам можно отнести невысокое значение диэлектрической проходимости.

Пленочные конденсаторы используются в цепях постоянного тока, всевозможных фильтрах и резонансных схемах.

Smd

В цепях управления некоторых видов плат используются небольшие по размерам Smd конденсаторы, имеющие форму маленьких кирпичиков.
На плату радиоэлемент устанавливается посредством правила поверхностного монтажа.
Smd устройства бывают следующих видов:

  • электролитические
  • керамические;
  • танталовые.

Керамические SMD конденсаторы, имеющие диэлектрик с высокой проницаемостью, маркируются тремя буквами.
Первыми двумя буквами обозначается нижняя и верхняя предельно допустимая граница рабочего диапазона температур,
третья буква используется при обозначении отклонений изменения емкости для измеряемых диапазонов.

Маленькие размеры Smd конденсаторов не всегда позволяют нанести маркировку на корпус или она будет очень мелкая.

В таких случаях без специального измерительного прибора, например, мультиметра не обойтись.

Переменные

Конденсаторы переменной емкости (КПЕ) состоят из части секций металлических пластин.
Одна из них двигается плавно по отношению ко второй.
Во время передвижения получается, что подвижные пластины (ротора), попадают в зазоры неподвижной пластины (статора).
Благодаря процессу площадь перекрытия одних пластин другими изменяется, в результате чего изменяется у конденсатора емкость.
Слоем диэлектрика в этом случае является воздух.

В конденсаторах, установленных в небольших устройствах, используется твердый диэлектрик, например, фторопласт или полиэтилен.

В старых радиоприемниках устройство применялось для настройки на определенную частоту колебательного контура работающей радиостанции.

Максимальное рабочее напряжение на конденсаторе

Напряжение, подаваемое на конденсатор, не должно превышать максимальное, так как может произойти пробой диэлектрика и выход элемента из строя.

Для анализа работы конденсатора в цепи переменного тока, критерием для сравнения следует брать максимальную амплитудную величину напряжения.

Это значит, что если на нем обозначено какое то максимальное напряжение DC WV , то в действительности при включении в сеть оно должно быть на 1,4 меньше.

Величина и значение потери у конденсатора

Ток утечки конденсатора – критический фактор для использования, особенно если его применяют для силовой электроники.
Потеря напрямую завязана со свойствами диэлектрика.

Никакой диэлектрик не способен гарантировать на 100% изоляцию металлических обкладок.

Через изолятор всегда будет проходить ток, меньший или больший в зависимости от свойств диэлектрика и теряться энергия.
Кроме изолирующих способностей диэлектрика на ток утечки влияют факторы:

  • температура окружающего пространства;
  • срок годности конденсатора без напряжения, температура;
  • величина тока утечки прямо пропорциональна приложенному к обкладкам напряжению.

Восстановить работоспособность конденсатора после длительного хранения можно, приложив к нему рабочее напряжение с выдержкой в течение нескольких минут.

При этом этапе окислительный слой заново накапливается и восстанавливает работоспособность конденсатора.

Конденсатор в цепи электрического тока

Принцип работы конденсатора простой – подается напряжение и накапливается заряд.
Накопитель по-разному ведет себя в двух вариантах электрической цепи.

Постоянного

Если в цепь с присоединенным к ней конденсатором подать ток, то стрелка на амперметре придет в движение и быстро вернется в предыдущее положение.
Это связано с тем, что прибор быстро заряжается и ток исчез.
Через обкладки разделенные диэлектриком постоянный ток проходить не может.
Практическое применение конденсатора в такой цепи вызывает много вопросов.
В условиях постоянного тока конденсатор функционирует, но непродолжительное время.
Переходные процессы в виде зарядки и разрядки снимают все сомнения.
В электронных схемах на постоянном токе конденсаторы один из самых распространенных компонентов.

Переменного

При подключении переменного напряжения полюса конденсатора меняют плюс на минус с частотой подачи напряжения.
В данном случае электроны передвигаются сначала в одну, а потом в другую.
На обкладках при такой смене остаются излишки заряда, которые собственно и создают ток во внешней цепи.

Конденсатор в цепи переменного тога выступает в качестве резистора.

Сопротивления конденсатора в зависимости от

Сопротивление конденсатора зависит от частоты подаваемого на него напряжения и показателя емкости.

Частоты и сдвига фаз

Устройство накопления зарядов одинаковой емкости на разных частотах оказывает различный уровень сопротивления.
Оно растет или уменьшается.

При повышении частоты входного напряжения сопротивление, называемое емкостным уменьшается.

На низких частотах имеется сдвиг по фазе входного напряжения и напряжения на нагрузке.

С увеличением частоты сдвиг по фазе уменьшается.

При достижении частоты определенного уровня фазовый сдвиг стремиться к нулю.

Хс = 1/ωС,

где ω — круговая частота, равная произведению 2πf,

С—емкость цепи в фарадах.

Номинала конденсатора

Емкость конденсатора влияет на процесс зарядки и разрядки при прохождении через него переменного тока.

Устройство с меньшей емкостью будет быстрее отдавать заряд и вновь заряжаться.

Сопротивление переменному току будет выше, чем при медленной зарядке и разрядке.

Отсюда вывод: емкостное сопротивление находится в обратной зависимости от номинала конденсатора.

Последовательное и параллельное соединение конденсаторов

Наиболее популярным типом соединения конденсаторов является параллельное.
При этом подключении электроемкость повышается, а напряжение остается исходным.

К одной точке может подключаться несколько конденсаторов.

Так как электрическая емкость конденсаторов равна площади обкладок, общая емкость при таком виде соединения пропорциональна сумме емкостей всех конденсаторов в цепи.

Собщ.= C1+C2.

При последовательном соединении конденсаторов общая емкость снижается, а напряжение работы конденсатора возрастает.

Конденсаторы подключены так, что только первый и последний имеют доступ к источнику ЭДС/тока одной из своих пластин.
Заряд одинаковый на всех пластинах, но наружные получают заряд от источника, а внутренние образуются благодаря разделению зарядов ранее нейтрализовавших друг друга.
Емкость последовательного соединения двух конденсаторов мы можем вычислить по формуле

Собщ.= С1*С2/ C1+C2.

Формулы для вычисления

Измерения емкости осуществляется по специально выведенной формуле.
Электрическая емкость (С) — это отношение сообщенного заряда (Q) к образующему в результате этого потенциалу (U).
Формулу, которую используют, чтобы измерить емкость, выглядит следующим образом:
C=Q/V .
Единицей измерения служит фарада, которая обозначается буквой Ф.
Емкость величиной 1 фарада будет хранить заряд q = 1 кулон при напряжении на обкладках U =1 Вольт.
Так как конденсаторы имеют разные виды, формулы также используются разные.

Посредством математических выражений

Математическое выражение для определения емкости конденсатора С = q*U в единицах измерения в системе СИ каждой из входящих в формулу
физических величин определяет значение 1 фарады.

Как зависит емкость от среды диэлектрика

Влияние изолятора на емкость конденсатора зависит от проводящих свойств вещества внутри этой прокладки.
Способность межпластинного проводника на изоляцию называют диэлектрической проницаемостью.
С учетом характеристик диэлектрика формула емкости плоского устройства станет:
С = є0є S/d,
где под буквой є стоит значение диэлектрической проницаемости изолятора,
а є0 — постоянная величина равная диэлектрической проницаемости вакуума (воздуха).

На практике применяется коэффициент, обозначающий во сколько раз применяемый диэлектрик уменьшает электрическое поле по сравнению с воздухом.

Таблица:

Как измерить емкость

Существует некоторое количество способов измерения емкости конденсатора с помощью приборов и различных методик.
В статье описывается использование мультиметра, осциллографа, тестера и мостовых измерителей.

Мультиметром

В начале, прежде чем начать измерение емкости конденсатора, его необходимо разрядить до полного исчезновения тока.

Как пример: сделать это с путем замыкания выводов отверткой.

Если пренебречь этим нюансом, то мультиметр может поломаться.

Измерить емкость с помощью мультиметра можно следующим образом:
активируйте режим «Сх» и установите предел замера 2000 пФ, если он есть.
На стандартном устройстве он равный 20 мкФ;
Установите конденсатор в соответствующие гнезда в мультиметре или используйте щупы для подключения конденсатора.
На экране прибора будет отображено значение емкости.

Осциллографом

Для измерения понадобиться кроме осциллографа собрать схему из тестируемого конденсатора, резистора и генератора синусоидальных колебаний.

Точки подключения осциллографа к схеме находятся до резистора и после конденсатора.

Частота колебаний генератора изменяется до получения на экране осциллографа одинаковых по амплитуде синусоидальных кривых.
Это делается для точности измерений.
Представьте как рассчитать емкость конденсатора с помощью амплитудных значений напряжений?
Для этого  требуется воспользоваться формулой UR/UC*2πfR подставив в нее измеренные значения.
С его помощью также рассчитывается ток утечки конденсатора косвенным способом – через снижение напряжения на предварительно известном сопротивлении.
Осциллограф способен вычислить емкость конденсаторов от 20 pF до 200 mkF.

Тестером не имеющим прямой функции

Для нахождения варианта определения емкости с помощью тестера, но без функции замера емкости,
обратите внимание на формулу мгновенного значения тока во время его зарядки или разрядки i = С dU/dt.

Здесь дело в том, что кроме тестера, секундомера следует собрать схему с источником питания,

конденсатором и резистором с большим сопротивлением для увеличения времени процесса зарядки или разрядки.
После снятия всех показаний с тестера и секундомера можно, достаточно приближенно вычислить и узнать емкость.
Зная, как определить емкость конденсатора современными приборами, будет несложно разобраться и с устройством со времен СССР.
На экране происходит вывод не цифр, а отклонения стрелки, за которой важно внимательно следить.
Измерение емкости осуществляется только на разряженном конденсаторе.
Щупы выведите к контактам конденсатора, если он рабочий, то стрелка изначально отклонится и по мере заряда займет исходную позицию.
Скорость передвижения стрелки зависит от объема емкости.
Если стрелка тестера не сдвинулась с места, либо эта величина минимальная или отклонилась и зависла в одном положении – это показатель неисправности конденсатора.

Мостовыми измерителями

Емкость конденсатора измеряется методом сравнения с эталонной емкостью.
Для чего выполняется мостовая схема, где одно плечо работает с образцовым электрическим устройством, другое с тестируемым.
Показания моста могут быть реализованы на цифровых носителях.

Единицы расчета

Математическое выражение фарада

C=Q/V, где С – электрическая емкость, Q – сообщенный заряд, V – приложенное напряжение.

Диэлектрическая проницаемость

D = εF, где D – электрическая индукция в среде, ε — диэлектрическая проницаемость среды, F — сила взаимодействия между зарядами в вакууме.

Маркировка конденсаторов

На корпусе каждого конденсатора имеется специальная маркировка – буква и цифра.
По сравнению с резисторами, маркировка конденсатора, обозначающая емкость и код отклонения емкости, довольно-таки сложная и разнообразная.
Иногда обозначения наносятся прописными буквами – MF (микрофарады), fd – фарады.
Также на корпусе указаны положительные и отрицательные символы, помогающие определить полярность конденсатора.

Способы обозначения конденсатора

Единицей измерения емкости конденсатора является фарад, поэтому на корпусе элемента обязательно присутствует буква Ф или F:

  • 1 миллифарад = 10-3 фарад = 1мФ;
  • 1 микрофарад = 10-6 фарад = 1 мкФ;
  • 1 нанофарад = 10-9 фарад = 1 нФ;
  • 1 пикофарад = 10-12 фарад = 1 пФ.

Если на элементе не обозначен номинал, то целое значение свидетельствует о том, что емкость указана в пикофарадах.
На корпусе емкость указывается с отклонением, если указана буква J – то диапазон отклонения менее 5%, буква М – 20%.

Код конденсаторов импортных

Устройства зарубежного производства, так же как и российские, имеют маркировку согласно международных стандартов.
Данный нормативный документ предполагает нанесение кода из трех цифр. Первые две цифры обозначают емкость в пикофарадах.
Третья цифра говорит о количестве нулей, например, если емкость будет меньше 1 пикофарады, цифра будет выглядеть как «0».

Кодовая для конденсаторов поверхностного монтажа

Маркировка электролитических SMD конденсаторов состоит из емкости и рабочего напряжения.
Например,108V, где закодирована электроемкость 10 пф и рабочее напряжение 8 Вольт.
Знак плюс находится рядом с полоской.
Есть три основных способа кодировки:
код из двух или трех знаков (буквы или цифры), которые указывают на рабочее напряжение и номинальную емкость.
Показатели указываются буквой, а цифра является множителем;
четыре знака, обозначающие напряжение и номинальную емкость.
Первая буква – это рабочее напряжение, следующие символы – емкость в пикофарадах, последняя цифра – количество нулей;

если площадь корпуса большая, кода располагают на две строки.
Верхняя строка – номинал емкости, нижняя – рабочее напряжение.

 

определение, основные понятия и примеры решений

Содержание:

  • Плоские конденсаторы
  • Конденсатор сферического типа
  • Конденсатор цилиндрического типа
  • Расчёт емкостных батарей, соединений конденсаторов

Определение 1

Конденсатором называют любые два проводника, разделённые диэлектрическим слоем. Такие проводники должны обладать зарядами одинаковыми по величине, но противоположными по знаку. 

Возникающее электрическое поле будет полностью расположено внутри, между проводниками. По этой причине на электрическую ёмкость конденсатора не влияет его внешнее окружение. А на разность потенциалов между пластинами не влияет величина заряда.

Выражение для электроёмкости выглядит так:

$ C=\frac{q}{\phi_1-\phi_2} = \frac{q}{U} $

Величины $ {\phi_1-\phi_2=U}$ определяют разность потенциалов, которая также носит название «напряжение» и обозначается «U».

Как следует из определения, ёмкость — положительная величина.  Её размер определяется габаритами пластин конденсатора, их взаимным расположением, типом диэлектрика. Форма пластин, конструкция конденсатора создаются таким образом, чтобы максимально снизить влияние на внутреннее поле со стороны любых внешних сил или полей. Электрическое поле конденсатора начинается на обкладке с зарядом «+» и заканчивается на обкладке со знаком «-». Ёмкость конденсаторов измеряют так же, как и ёмкость проводников, в международной системе СИ для этого используют Фарады (Ф). Один Фарад — ёмкость конденсатора, где при заряде 1 Кельвин, разность потенциалов 1 Вольт.

Существуют три основных типа конденсаторов: плоские, сферические, цилиндрические. Вычислить ёмкость можно, если найти напряжение на обкладках и определить величину заряда.  

Плоские конденсаторы

Определение 2

Плоский конденсатор — элемент состоящий из двух или нескольких плоских пластин, расположенных друг напротив друга, имеющих одинаковый по величине, но разный по знаку заряд. Чтобы не возникало воздушного разряда, пластины разделяют слоем диэлектрика.

Для вычисления ёмкости плоского конденсатора используется выражение: 

$C=\frac{\epsilon\epsilon_0 S}{d}$. 

Здесь S — площадь пластин, чем она больше, тем выше ёмкость. Величина зазора между пластинами — d. Чем меньше d, тем больше ёмкость. Диэлектрическая проницаемость — ε. Она также оказывает значительное влияние на величину ёмкости.

Пример 1

Возьмём конденсатор состоящий из двух пластин, между которыми воздух, и определим его ёмкость. Затем поместим между пластинами диэлектрик, параметр ε которого выше, чем у воздуха. Измерения показывают, что ёмкость конденсатора увеличивается существенно, прямо пропорционально повышению диэлектрической проницаемости.

Чаще всего, при создании плоских конденсаторов делают не две пластины, а «пакет» обкладок в несколько слоёв. Электрическая ёмкость такого элемента, имеющего n слоёв, вычисляется с учётом толщины каждого i-го слоя $d_i$, а также диэлектрической проницаемости каждого слоя $ε_i$.

Конденсатор сферического типа

Определение 3

Сферический конденсатор отличается формой обкладок, у него они представляют собой сферы. И внешняя, и внутренняя — обе оболочки выполнены в виде сфер.

В отличии от плоского конденсатора, в сферическом площадь поверхности разнозаряженных пластин отличается. И формула для вычисления ёмкости элемента изменится: 

$ C = 4\pi\epsilon\epsilon_0\frac{R_1 R_2}{R_2-R_1} $, 

где $ R_1 $ и $ R_2 $ являются радиусами обкладок. 

Конденсатор цилиндрического типа

Отдельная формула используется для вычисления параметров конденсатора цилиндрической формы:

$ C = 2\pi\epsilon\epsilon_0 \frac{l}{ln{\frac{R_2}{R_1}}} $.

В уравнении использованы следующие параметры: l — высота, $R_1 и R_2$ – радиусы пластин. Конденсатор цилиндрического вида выполнен в виде вложенных друг в друга соосных цилиндрических пластин. Они выполнены из проводящего материала, а между ними находится диэлектрик.

Определение 4

Параметр, характеризующий конденсаторы — пробивное напряжение. 4 \frac{В}{м}$

Как рассчитать мощность?

Вместимость контейнера — это другое слово для обозначения объема материала, который он может вместить. Обычно измеряется в литрах или галлонах. Это не то же самое, что контейнер вытеснил бы его, если бы вы погрузили его в воду. Разница между этими двумя величинами и есть толщина стенок контейнера. Эта разница незначительна, если контейнер сделан из тонкого материала, но для деревянных или бетонных контейнеров со стенками толщиной в несколько дюймов это не так. При измерении емкости всегда лучше измерять внутренние размеры. Если у вас нет доступа внутрь, вам нужно знать толщину стенок контейнера, чтобы получить точный результат.

TL;DR (слишком длинный; не читал)

Рассчитайте вместимость контейнера, измерив его размеры и используя формулу объема, соответствующую форме контейнера. Если вы измеряете снаружи, вы должны принять во внимание толщину стен.

Прямоугольные контейнеры

Объем V прямоугольного контейнера можно найти, измерив его длину (l), ширину (w) и высоту (h) и умножив эти величины.

В=л\раз ш\раз ч

Вы выражаете результат в кубических единицах. Например, если вы измеряете в футах, результат будет в кубических футах, а если вы измеряете в сантиметрах, результат будет в кубических сантиметрах (или миллилитрах). Поскольку емкость обычно выражается в литрах или галлонах, вам, вероятно, придется преобразовать результат, используя соответствующий коэффициент преобразования.

Если у вас есть доступ внутрь контейнера, вы можете измерить внутренние размеры и рассчитать вместимость напрямую, используя формулу для объема. Если вы можете измерить только внешние размеры, но знаете, что стенки, основание и верх имеют одинаковую толщину, вы должны сначала вычесть из каждого из этих измерений удвоенную толщину стенки и удвоенную толщину основания. Если толщина стенки и основания равна t, вместимость определяется как:

\text{вместимость} = (л-2т)(вт-2т)(ч-2т)

Если вы знаете, что стенки, дно и верх контейнера имеют разную толщину, используйте их вместо 2т. Например, если вы знаете, что у контейнера есть основание толщиной 1 дюйм и крышка толщиной 2 дюйма, высота будет равна h — 3.

Кубический контейнер: Куб – это особый тип прямоугольного контейнера. у которого три стороны одинаковой длины l.​ Таким образом, объем куба равен л 3 ​. Если мерить снаружи, а толщина стен равна t, вместимость определяется как: 93

Пирамиды и конусы

Объем пирамиды с размерами основания l и w и высотой h равен:

V=\frac{Ah}{3}=\frac{lwh}{3}

Если пирамида имеет стенки толщиной t, и вы измеряете снаружи, ее вместимость приблизительно определяется как:

\text{capacity}=\frac{(l-2t)(w-2t)(h-2t)}{ 3}

Это приблизительно, потому что стены расположены под углом, и вы должны учитывать угол при расчете t. В большинстве случаев разница настолько мала, что ею можно пренебречь. 92 (h-t)}{3}

Расчет емкости

Страница загрузки Расчет емкости.

Емкость ваших ресурсов рассчитывается на основе Планов рабочей нагрузки и нерабочих дней, полученных в результате Планов отпусков и отдельных Отсутствий.

На приведенной ниже диаграмме показана механика алгоритма разделения рабочих и нерабочих дней.

 Нажмите здесь, чтобы развернуть…

Индивидуальная вместимость

Формула для расчета емкости Отдельного Ресурса:

В настоящее время не проводится проверка доступности по разным командам — в результате общая доступность по разным командам может превышать 100%.

Мощность = рабочие часы, указанные в Плане рабочей нагрузки – нерабочие дни (другими словами, сколько общей работы может выполнить ресурс за период. Если Катя работает восемь часов в день, ее стандартная мощность рабочего дня составляет восемь часов. Если понедельник является национальным праздником и у нее выходной, ее вместимость в понедельник равна 0 часов).

При расчете индивидуальной производительности учитывается доступность членов команды во всех командах (если Кейт назначается 50% доступности в команде Agile, ее индивидуальная производительность в течение стандартного рабочего дня, упомянутого выше, составляет четыре часа. Команда Agile получает четыре часа производительности. Другими словами, половина возможностей Кэти была направлена ​​на работу в команде.Ее способности как личности были снижены).

Команда GT1 состоит из двух человек. Каждый из них работает по восемь часов в день, но доступность их команды различается.

Индивидуальная производительность = Значение плана рабочей нагрузки — Распределение команды + 8h*50%) = 12h

Мощность = 0

Мощность равна 0, когда ресурс недоступен в данный день (из-за планов рабочей нагрузки, планов отпусков или отдельных отсутствий).

Вместимость может равняться 0 для человека или группы.

В этом случае в сетке ресурсов (модуль ресурсов) и на панели ресурсов (модуль Ганта) приложение использует следующий алгоритм (применяется только для задач с режимом автоматического контурирования):

  • трудоемкость задачи распределено между нерабочими днями ресурса если все дни из периода задачи нерабочие дни (сумма мощностей этого периода равна 0),
  • Трудоемкость задачи не распределяется между нерабочими днями ресурса , если только часть периода задачи состоит из нерабочих дней (сумма мощностей за этот период >0).
    В этом случае трудозатраты по задаче распределяются только между рабочими днями.

В результате, если мощность (ресурса или команды) равна 0 и в этот период есть задачи с оценкой трудозатрат:

  • в сетке Ресурс ячейка Рабочая нагрузка становится красной и отображает распределенную рабочую нагрузку по вышеописанному алгоритму.
  • На панели ресурсов ячейка рабочей нагрузки отображается красным цветом и отображает рабочую нагрузку, распределенную в соответствии с описанным выше алгоритмом.

В приведенном ниже примере мощность ресурса = 0 (из-за недельного отсутствия)

Но рабочая нагрузка распределяется, поскольку ресурс отсутствует на протяжении всей задачи.

Этот алгоритм полезен для отображения перегрузки ресурсов в следующих случаях:

  1. «Неправильное» выделение Ресурса в Ящик (Доступность Члена Команды не совпадает с назначением задачи этого Участника в этом Ящике , например, Доступность=0%).
  2. Задачи назначены Ресурсу с длительным отсутствием (например, больничный, декретный отпуск и т. д.)
  3. В команде нет участников

Сведения о емкости

После нажатия на ячейку емкости появляется всплывающее окно вставка с информацией об основных факторах, влияющих на дневную производительность:

  • Планы рабочей нагрузки
  • Эффективность
  • Планы отпусков и их влияние
  • Отсутствия
  • Доступность в командах

Сведения о емкости можно просмотреть непосредственно в модуле «Ресурсы». Чтобы использовать эту функцию, настройте данные модуля следующим образом:

  • Вы должны быть в  Индивидуальном представлении .

  • В раскрывающемся списке Вид необходимо выбрать Емкость.
  • Агрегирование периода времени должно быть установлено на Daily .

Выдвижные элементы

.0258
элемент описание
дата

Емкость всегда проверяется на определенный день – информация о дате указана в верхнем правом углу.

Рабочий день/
выходной день

Информация о том, работает ли ресурс на данный день

Факторы и детали

Перечислены соответствующие элементы, которые приводят к определенной мощности.

Факторы

Окно с информацией о мощности разделено на разделы, представляющие каждый фактор — некоторые разделы не отображаются, если они не имеют значения в данном случае.

  • План рабочей нагрузки и разделы членства в команде отображаются только в том случае, если нет Отсутствий и в Плане выходных не запланировано ничего, что сделало бы этот день выходным.
  • Отсутствия Раздел отображается только в том случае, если на этот день запланировано отсутствие.
    • Пользователь не информируется о виде отсутствия и приложенных комментариях, так как они могут содержать личные данные.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *