Закрыть
Меню

Фаза тока: Фаза тока, что это такое. Простым и понятным языком.

Фаза тока, что это такое. Простым и понятным языком.

Содержание

Давайте рассмотрим, что же все таки такое – фаза тока. ⚡ Практически все новички и собственники домов часто сталкиваются с проблемой: 🛑 что же такое фаза тока в обычной электрической проводке?

Что такое фаза в электричестве — определение понятия

Фаза в электричестве — это разговорное название провода, находящегося под напряжением относительно другого, который называют нуль. Это название произошло из-за того что вырабатываемый на подстанциях ток, подающийся в дома, является переменным, то есть ЭДС, создаваемые на подстанциях, имеют одну и ту же частоту (для России и стран СНГ она составляет 50 Гц), но сдвинуты относительно друг друга во времени на определённый фазовый угол.

В дома обычно подаются все три фазы и нет никакого значения, к какой фазе подключена ваша квартира.

Рисунок 1. Электрика и электричество – схематическое изображение фазы, нуля и земли

На рис. 1 схематично нарисована схема проведения электрического тока в квартиру от общей системы. Буквами $L1$, $L2$, $L3$ обозначены 1-3 фазы, а буквой $N$ — нулевой провод.

На рис. 2 показано схематическое подключение тока к квартире от трасформатора, буквой $L_T$ обозначена фаза на трансформаторе, буквой $L$ — фаза в квартире, а буква $R_H$ — это подключенный электроприбор, обладающий некоторым сопротивлением $R_H$.

От трансформатора идёт 2 провода, один — так называемый фазовый провод с напряжением, а другой – нулевой провод, от которого отведено заземление, осуществляемое помещением контакта в землю. Существуют и другие источники заземления помимо собственно земли, на данных рисунках заземление обозначено буквами $Змл$.

На рис. 3 изображён случай, когда нулевой заземлённый провод не проведён в квартиру от подстанции, а заземлён непосредственно в квартире. Напряжение $L_T$ между нулём и фазой будет одинаково для рисунков 2 и 3, однако, не рекомендуется заземлять напряжение от трансформатора непосредственно в квартире.

Принцип работы сети переменного тока

Чтобы понять, что такое фаза в электричестве, нужно представлять особенности переменного тока. От постоянного он отличается периодическими изменениями, как по значению, так и по направлению. Его характеристики – напряжение в данный момент времени и частота (отношение числа циклов к единице времени). Переменный ток находится в розетках и прямых подключениях к электрическому щиту.

Виды тока

Ток может быть постоянным и переменным. Ток, по величине не изменяющийся во временном промежутке — ток постоянного значения. Ток, величина которого, как и направление, меняется с течением времени, называется переменным.

Постоянные источники тока — аккумуляторы, батарейки и так далее. Переменный же ток «подходит» к бытовым и промышленным розеткам домов и предприятий. Основная причина этого кроется в том, что данный тип тока намного легче получать физически, преобразовывать в разные уровни напряжений, передавать по электропроводам на огромные расстояния без существенных потерь.

Однофазный ток

Переменный ток, который получают при помощи вращения в магнитном потоке проводника или системы проводников, соединенных в одну катушку, называется однофазным переменным током. Как правило, для передачи однофазного тока используют 2 провода. Называются они фазным и нулевым соответственно. Напряжение между этими проводами составляет 220 В.

Однофазное электропитание. Однофазный ток можно подвести к потребителю двумя различными способами: 2-проводным и 3-проводным. При первом (двухпроводном), для подведения однофазного тока используют два провода. По одному протекает фазный ток, другой предназначен для нулевого провода. Таким образом электропитание подведено почти во все, построенные в бывшем СССР, дома. При втором способе для подведения однофазного тока — добавляют ещё один провод. Называется такой провод заземлением (РЕ). Он предназначен для предотвращения поражения человека электрическим током, а так же для отвода токов утечки и предотвращения приборов от поломки.

Двухфазный ток

Под понятием двухфазный электрический ток все понимают – слияние двух однофазных токов, которые имеют сдвиг по фазе друг к другу. Угол сдвига может быть Pi2 либо 90 °.

Рассмотреть образование двухфазного тока можно на примере. Необходимо взять две индуктивные катушки и разместить их в пространстве так, чтобы оси этих катушек были перпендикулярны друг у другу. Затем нужно подключить обе катушки к двухфазному току. В итоге мы будем иметь систему, в которой образовалось 2 обособленных магнитных поля. В результирующем магнитном поле вектор будет вращаться с одной и той же скоростью и под одинаковым углом.

В результате такого вращения и образуется магнитное поле. Ротор с обмотками, которые произведены в форме короткозамкнутого «беличьего колеса» либо металлического цилиндра на валу, будут вращаться и тем самым приводить в движение различные частицы. Передача двухфазного тока осуществляется при помощью двух проводов: двумя фазными и двумя нулевыми.

Трехфазный ток

Здесь конструкция состоит уже из трех фаз тока, каждая из последующих смещена относительно предыдущей на 120 °. По жилым домам такой ток распределяют четырьмя проводами (три фазы и ноль) либо пятью (указанные плюс заземление). После прохождения через распределительный щит розетки в квартире им питают через одну фазу и ноль.

Маркировка кабелей по цвету

Это один из наиболее простых методов. Чтобы определить, что такое фаза и ноль по цвету, необходимо четко знать какие оттенки и чему соответствуют. Можно воспользоваться информацией о принятых в стране стандартах.

Не секрет, что каждый провод имеет индивидуальный цвет. Поэтому распознавание нуля не должно составлять особых проблем. Полученные знания позволят легко справиться с монтажом осветительного прибора или установкой розетки. Особенно актуален этот способ для новостроек. Ведь там, как правило, провода протягиваются опытными специалистами, которые четко соблюдают нормы и стандарты. Принятый на территории Российской Федерации в 2004 году стандарт IEC 60446 жестко регламентирует разделение фазы, заземления и нуля по цвету.

Стоит учесть, что:

  • если провод имеет синий либо сине-белый оттенок, можно смело говорить о том, что это – рабочий ноль
  • защитный ноль представлен кабелями в желто-зеленой оболочке
  • другие цвета характерны для фазы. Это могут быть красный, коричневый, белый либо черный. Возможны и другие варианты.

Такое обозначение успешно применяется в большинстве случаев. Но если проводка старая, или есть сомнения в профессионализме электриков, целесообразнее пользоваться дополнительными методами.

Структура электросети, основные элементы

Электросеть является связующим звеном между генераторами и реципиентами электрической энергии. Источниками энергии во внутренних сетях производственных и жилых помещений являются ВРУ (вводно-распределительные устройства). К ним посредством коммутаторов и предохранителей подключаются кабели, осуществляющие запитку электрического оборудования либо группы приемников через шинопроводы и ящики коммутации.

Устройство бытовой электропроводки.

Вначале электроэнергия вырабатывается на электростанции. Затем через промышленную электросеть она попадает на трансформаторную подстанцию, где напряжение преобразуется в 380 вольт. Соединение вторичных обмоток понижающего трансформатора выполнено по схеме «звезда»: три контакта подключены к общей точке «0», а три оставшихся присоединены к клеммам «A», «B» и «C» соответственно. Для наглядности приводится картинка.

Объединенные контакты «0» подсоединяются к заземлительному контуру подстанции. Также здесь ноль расщепляется на:

  • Рабочий ноль (на картинке изображен синим)
  • PE-проводник, выполняющий защитную функцию (линия желто-зеленого цвета)

Нули и фазы тока с выхода понижающего трансформатора подводятся к распределительному щитку жилого дома. Полученная трехфазная система разводится по щиткам в подъездах. В конечном итоге, в квартиру попадает фазовое напряжение 220 В и проводник PE, выполняющий защитную функцию.

Итак, что же такое и нольфаза тока ? Нулем называют проводник тока, присоединенный к заземлительному контуру понижающего трансформатора и служащий для создания нагрузки от фазы тока, подсоединенной к противоположному концу обмотки трансформатора. Кроме того, существует так называемый «защитный ноль» — это PE-контакт, описанный ранее. Он служит для отвода токов при возникновении технической неисправности в цепи.

Этот метод подключения жилых домов к городской электросети отработан десятилетиями, но все же он не идеален. Иногда в вышеописанной системе появляются неисправности. Чаще всего, они связаны с низким качеством соединения на определенном участке цепи или полным обрывом электрического провода.

Фаза и ноль: их значение в сети питания

Электроэнергия подается к потребительским розеткам от подстанций, которые уменьшают поступающее напряжение до 380 В. Вторичная обмотка такого трансформатора имеет соединение «звезда» — три его контакта связываются между собой в точке «0», остальные три вывода идут к клеммам «А»/«В»/«С».

Соединенные в точке «0» провода подсоединяются к «земле». В этой же точке происходит деление проводника на «ноль» (обозначен синим цветом) и защитный «РЕ»-кабель (желто-зеленая линия).

Данная модель прокладки проводов пользуются во всех возводимых ныне домах. Она называется — система «TN-S». Согласно этой схеме к распределительному оборудованию дома подходят три кабеля фазы и два указанных нуля.

В домах, на предприятиях и зданиях старой застройки зачастую нет «РЕ»-проводника и поэтому, схема получается не пятипроводной, а четырех (она обозначается как «TN-C»).

Все электропровода с подстанций подсоединяются к щитку, образуя систему из трех фаз. Далее уже происходит разделение по отдельным подъездам. В каждую из квартир подъезда подается напряжение лишь одной фазы — 220 В (провода «О»/«А») и защитный «РЕ»-кабель.

Вся возникающая нагрузка на систему электроснабжения при такой схеме распределяется в равномерном количестве, поскольку на каждом этаже дома выполняется разводка и подключение конкретных щитков к определенной электролинии напряжением в 220 В.

Схема подводимого напряжения представляет собой «звезду», которая в точности повторяет все векторные характеристики питающей подстанции. Когда в розетках нет никаких потребителей, то ток в данной цепи не протекает.

Данная схема соединения отработана годами. Она подтвердила свое право на использование тем, что признана оптимальной из всех существующих. Однако, в ней, как и в любом приборе, механизме или устройстве, периодически могут появляться всевозможные поломки и неисправности. Как правило, они бывают связаны с плохим качеством электросоединения или же полным обрывом кабелей в каких-либо местах схемы.

Что происходит в нуле и фазе при обрыве провода.

Обрывы на линии достаточно часто возникают по вине мастеров – они забывают подключить фазу либо ноль. Такие поломки достаточно распространены. Так же довольно часто происходит процесс отгорания нуля на подъездном щитке например, из-за высокой нагрузки в системе.

Если происходит порыв на любом участке цепи, то прекращает функционировать вся цепь, т.к. она размыкается. В таких ситуациях совершенно не важно, какой провод поврежден – фаза или ноль. То же самое случается и при порыве между распределительным щитом многоэтажки и щитком в подъезде. При таком порыве все потребители, которые были подключены к данному щитку, будут без электроэнергии.

Все ситуации, которые мы попытались описать выше, имеют место быть. Они могут показаться сложными, но не несут никакой опасности для человечества. Ведь обрыв произошел только одного провода, поэтому это совершенно не опасно.

Очень тревожная ситуация – когда пропадает контакт между контуром заземления на подстанции и средним пунктом, к которому поступает все напряжение внутридомового щитка.

Именно в таком варианте электрический ток движется по контурам AB, BC, CA. Совокупное напряжение этих контуров 380В. Именно по этой причине и возникает достаточно опасная ситуация – один щиток может вообще не иметь напряжения, потому что хозяин отключит все электроприборы, а на другом образуется очень высокий уровень напряжения, около 380В. Это может способствовать выходу из строя многих приборов, потому что для них необходимо напряжение в 220В.

Естественно, появление данной ситуации можно избежать. Имеется масса недорогого/дорогостоящего оборудования, которое защитит вашу технику от скачков напряжения. К такому оборудованию относится и стабилизатор напряжения. Различают такие виды стабилизаторов:

  1. Однофазный;
  2. Трехфазный.

Как определить ноль и фазу собственными силами

Для определения нуля и фазы тока существуют специальные отвертки-тестеры.

Она работает по принципу прохождения тока низкого напряжения через тело человека, использующего ее. Отвертка состоит из следующих частей:

  • Наконечник для подключения к фазовому потенциалу розетки;
  • Резистор, снижающий амплитуду электротока до безопасных пределов;
  • Светодиод, загорающийся при наличии потенциала фазы тока в цепи;
  • Плоский контакт для создания цепи сквозь тело оператора.

Принцип работы с отверткой-тестером показан на картинке ниже.

Кроме тестовых отверток, существуют и другие способы определить, к какому контакту розетки подключена фаза тока, а к какому – ноль. Некоторые электрики предпочитают пользоваться более точным тестером, используя его в режиме вольтметра.

 Показания стрелки вольтметра означают:

  1. Наличие напряжения 220 В между фазой и нулем
  2. Отсутствие напряжения между землей и нулем
  3. Отсутствие напряжения между фазой и нулем

Вообще-то, в последнем случае стрелка должна показывать 220 В, но в данном конкретном случае центральный контакт розетки не подключен к потенциалу земли.

Зануление в квартире

Это соединение зануляющего кабеля с нулевым проводником электросети и корпусом прибора. Предполагается, что процедура обеспечивает ускорение отключения устройства от сети при прикосновении к опасному месту, если напряжение выше некоторого порога. Но она сопряжена с дополнительной опасностью: при разрыве нуля все приборы, подключенные в этот момент к сети квартиры, будут на поверхности иметь фазу (а не ноль), что создает существенную угрозу для здоровья жильцов. Поэтому проведение таких монтажных работ жестко регламентируется.

Знать, что именно называется фазой в электросети, и как ее обнаружить, чрезвычайно важно при проведении электромонтажных работ. В противном случае высок риск нанести ущерб здоровью квартирантов или состоянию электроприборов.

Как различить фазу, ноль, землю

Проще всего определить назначение проводников по цветовой маркировке. В соответствие с нормами, фазный проводник может иметь любой цвет, нейтраль – голубую маркировку, земля – желто-зеленого цвета. К сожалению, при монтаже электрики цветовая маркировка соблюдается далеко не всегда. Нельзя забывать и вероятности того, что недобросовестный или неопытный электрик легко может перепутать фазу и ноль или подключить две фазы. По этим причинам всегда лучше воспользоваться более точными способами, чем цветовая маркировка.

Определить фазный и нулевой проводники можно с помощью индикаторной отвертки. При соприкосновении отвертки с фазой загорится индикатор, так как по проводнику проходит электроток. Ноль не имеет напряжения, поэтому индикатор загореться не может.

Отличить ноль от земли можно с помощью прозвонки. Сначала определяется и маркируется фаза, затем щупом прозвонки нужно прикоснуться к одному и проводников и клемме заземления в электрощитке. Ноль звониться не будет. При прикосновении к земле раздастся характерный звуковой сигнал.

Определение сопротивления петли фаза-ноль

Для обеспечения нормального функционирования электрических приборов и проверки автоматов необходимо периодически проводить замеры сопротивления петли фаза-ноль. Потому как первоочередными причинами поломок осветительных приборов являются перегрузки сети и короткое замыкание. Измерение сопротивления позволяет в кратчайшие сроки выявить неисправность и предотвратить подобную ситуацию.

Далеко не все знают, что представляет собой понятие «петля фаза-ноль». Под этой фразой скрывается контур, образованный в результате соединения нулевого провода, находящегося в заземленной нейтрали. Замыкание этой электрической сети образует петлю фаза-ноль.

Измеряют сопротивление в этом контуре следующими методами:

  • падением уровня напряжения в отключенной цепи
  • падением уровня напряжения в результате сопротивления возрастающей нагрузки
  • использованием профессионального инструмента, интерпретирующего короткое замыкание в цепи

Второй способ используется чаще всего, так как отличается удобством, возможностью быстро измерить сопротивление, а также безопасностью.

Электри́чество

(от лат. electricus, далее из др.-греч. ἤλεκτρον) — совокупность явлений, обусловленных существованием, взаимодействием и движением электрических зарядов. Термин введён английским естествоиспытателем Уильямом Гильбертом в его сочинении «О магните, магнитных телах и о большом магните — Земле» (1600 год), в котором объясняется действие магнитного компаса и описываются некоторые опыты с наэлектризованными телами. Он установил, что свойством наэлектризовываться обладают и другие вещества.

История

Задолго до того, как появились какие-либо знания об электричестве, люди знали о свойствах электрических рыб. Древнеегипетские тексты, датируемые 2750 годом до н. э., упоминают этих рыб как «Громовержцев Нила» и описывают их как «защитников» всех других рыб. Тысячелетия спустя об электрических рыбах вновь сообщали древнегреческие, римские и арабские естествоиспытатели и врачи. Некоторые древние писатели, такие как Плиний Старший и Скрибоний Ларг, свидетельствовали о парализующем действии электрических разрядов, производимых электрическими сомами и электрическими скатами, и знали, что такие разряды могут перемещаться вдоль проводящих объектов.

Пациентам, страдающим от таких недугов, как подагра или головная боль, предписывалось дотрагиваться до электрических рыб — в надежде, что мощный разряд излечит их.

Древние культуры Средиземноморья знали, что некоторые предметы, такие как янтарные палочки, можно натереть кошачьим мехом, чтобы привлечь легкие предметы, такие как перья. Фалес Милетский сделал ряд наблюдений статического электричества около 600 г. до н. э., из которых он заключил, что трение делает янтарь магнитным — в отличие от минералов, таких как магнетит, которые не нуждаются в натирании. Фалес был неправ, полагая, что притяжение вызвано магнитным эффектом, но позже наука докажет связь между магнетизмом и электричеством.

Долгое время знание об электричестве не шло дальше подобных представлений. Хотя и существует основанная на открытии в 1936 году так называемой багдадской батареи полемическая теория, предполагающая использование гальванических элементов ещё в древности, однако неясно, был ли упомянутый артефакт электрическим по своей природе.

В 1600 году Уильям Гилберт ввёл в обращение сам термин электричество («янтарность», от др.-греч. ἤλεκτρον: [электрон] — янтарь), а в 1663 году магдебургский бургомистр Отто фон Герике создал электростатическую машину в виде насаженного на металлический стержень серного шара, которая позволила наблюдать не только эффект притягивания, но и эффект отталкивания. В 1729 году англичанин Стивен Грей провёл опыты по передаче электричества на расстояние, обнаружив, что не все материалы одинаково передают электричество. В 1733 году француз Шарль Дюфе установил существование двух типов электричества, стеклянного и смоляного, которые выявлялись при трении стекла о шёлк и смолы о шерсть. В 1745 году голландец Питер ван Мушенбрук создаёт первый электрический конденсатор — Лейденскую банку. Примерно в эти же годы работы по изучению атмосферного электричества вели и русские учёные — Г. В. Рихман и М. В. Ломоносов.

Первую теорию электричества создаёт американец Бенджамин Франклин, который рассматривает электричество как «нематериальную жидкость», флюид («Опыты и наблюдения с электричеством», 1747 год). Он также вводит понятие положительного и отрицательного заряда, изобретает молниеотвод и с его помощью доказывает электрическую природу молний. Изучение электричества переходит в категорию точной науки после открытия в 1785 году закона Кулона.

Майкл Фарадей — основоположник учения об электромагнитном поле

Далее, в 1791 году, итальянец Гальвани публикует «Трактат о силах электричества при мышечном движении», в котором описывает наличие электрического тока в мышцах животных. Другой итальянец Вольта в 1800 году изобретает первый источник постоянного тока — гальванический элемент, представляющий собой столб из цинковых и серебряных кружочков, разделённых смоченной в подсоленной воде бумагой. В 1802 году Василий Петров обнаружил вольтову дугу.

С этого открытия русского ученого началась история электрической лампочки или лампы накаливания. В дальнейшем основной вклад в создание электрической лампочки внесли русские инженеры Павел Николаевич Яблочков и Александр Николаевич Лодыгин.

Лодыгин после долгих экспериментов создал «Товарищество электрического освещения Лодыгин и компания» и в 1873 году продемонстрировал лампы накаливания своей системы. Академия наук присвоила Лодыгину Ломоносовскую премию за то, что его изобретение приводит к «полезным, важным и новым практическим применениям». Тогда же собственную конструкцию лампы параллельно разрабатывал Павел Яблочков. В 1876 году он получил патент за лампочку своей системы, которая получила название «свеча Яблочкова». После грандиозного успеха свечи Яблочкова на Парижской выставке 1878 года, которую посетило много русских, ею заинтересовались в России. Лодыгину, наоборот, не удалось наладить в России широкое производство своих ламп. Он уехал в Америку, и там узнал, что изобретенная им лампочка носит имя Эдисона. Но русский инженер не стал доказывать свой приоритет, а продолжал работу над усовершенствованием своего изобретения.

В 1820 году датский физик Эрстед на опыте обнаружил электромагнитное взаимодействие. Замыкая и размыкая цепь с током, он увидел колебания стрелки компаса, расположенной вблизи проводника. Французский физик Ампер в 1821 году установил, что связь электричества и магнетизма наблюдается только в случае электрического тока и отсутствует в случае статического электричества. Работы Джоуля, Ленца, Ома расширяют понимание электричества. Гаусс формулирует основную теорему теории электростатического поля (1830).

Опираясь на исследования Эрстеда и Ампера, Фарадей открывает явление электромагнитной индукции в 1831 году и создаёт на его основе первый в мире генератор электроэнергии, вдвигая в катушку намагниченный сердечник и фиксируя возникновение тока в витках катушки. Фарадей открывает электромагнитную индукцию (1831) и законы электролиза (1834), вводит понятие электрического и магнитного полей. Анализ явления электролиза привёл Фарадея к мысли, что носителем электрических сил являются не какие-либо электрические жидкости, а атомы — частицы материи. «Атомы материи каким-то образом одарены электрическими силами», — утверждает он. Фарадеевские исследования электролиза сыграли принципиальную роль в становлении электронной теории. Фарадей создал и первый в мире электродвигатель — проволочка с током, вращающаяся вокруг магнита. Венцом исследований электромагнетизма явилась разработка британским (шотландским) физиком Д. К. Максвеллом теории электромагнитных явлений. Он вывел уравнения, связывающие воедино электрические и магнитные характеристики поля в 1873 году.

  • В 1880 году Пьер Кюри открывает пьезоэлектричество. В том же году Д. А. Лачинов показал условия передачи электроэнергии на большие расстояния. Герц экспериментально регистрирует электромагнитные волны (1888 год).
  • В 1897 году Джозеф Томсон открывает материальный носитель электричества — электрон, место которого в структуре атома указал впоследствии Эрнест Резерфорд.
  • В XX веке была создана теория Квантовой электродинамики. В 1967 году был сделан очередной шаг на пути изучения электричества. С. Вайнберг, А. Салам и Ш. Глэшоу создали объединённую теорию электрослабых взаимодействий.

Заключение

В этом материале мы подробно ответили на вопрос, что собой представляют фаза и ноль в современной электрике, для чего они нужны, а также разобрались, какими способами можно определить, где в проводке находится фазная жила. Какой из этих способов предпочтительнее, решать вам, но помните, что вопрос определения фазы, ноля и заземления очень важен. Неправильные результаты проверки могут стать причиной сгорания приборов при подключении, или, что еще хуже – причиной поражения электрическим током.

Вольтметр ВРТ-М02 с функцией мониторинга тока короткого замыкания и сопротивления цепи фаза-ноль сети и сравнения с током срабатывания вводного автомата

 Цифровой одномодульный вольтметр прямого включения ВРТ-М02, совмещённый с измерителем тока короткого замыкания и сопротивления цепи фаза-ноль и контролем состояния защитного провода РЕ, предназначен для постоянного мониторинга напряжения сети. Кроме постоянного мониторинга напряжения сети, прибор позволяет оценить способность срабатывания установленных автоматических выключателей (правильность выбора их номинала) на вводе в дом или квартиру при коротком замыкании, т. е. хватит ему тока КЗ для мгновенного срабатывания или нет.

 Все имеющиеся сегодня приборы защиты от обрыва нуля реагируют только на перекос фазных напряжений, возникающий при не симметричных нагрузках на фазы при обрыве нуля. При обрыве нуля и при симметричных нагрузках на фазы (электродвигатели и пр.) они не срабатывают. Основная задача данного прибора — постоянная проверка соответствия состояния электрической сети и сравнение с установленным автоматом защиты, это гарантирует мгновенное срабатывание установленного автомата при коротком замыкании. Является средством контроля. Периодической поверке не подлежит.

 

 ВНИМАНИЕ: Устанавливать прибор ТОЛЬКО до УЗО!

 

КОНСТРУКЦИЯ

 Измерители выпускаются в унифицированном пластмассовом корпусе с передним присоединением проводов питания и коммутируемых электрических цепей. Крепление осуществляется на монтажную рейку-DIN шириной 35мм (ГОСТ Р МЭК 60715-2003) или на ровную поверхность. Для установки Измерителя на ровную поверхность замки необходимо раздвинуть. Конструкция клемм обеспечивает надёжный зажим проводов сечением до 2,5мм2. На лицевой панели приборов  расположен цифровой индикатор отображающий величину напряжения питания и кнопка считывания информации и сброса показаний.

 

 ВНИМАНИЕ: Момент затяжки винтового соединения должен составлять 0,4 Нм. Следует использовать отвертку

0,6*3,5мм

 

РАБОТА

 При включении прибор ВРТ-М02 показывает текущее напряжение сети. Через 1 минуту после включения производится автоматическое измерение тока КЗ и сравнение с запрограммированным значением автоматического выключателя. Если измеренное значение меньше допустимого (достаточного для мгновенного срабатывания) — включается звуковой сигнал и загорается светодиод «КЗ». Выключить звуковой сигнал можно нажатием кнопки, светодиод будет гореть до устранения неисправности. Автоматическое измерение тока КЗ производится каждые 24 часа. Запуск измерения тока КЗ вручную возможен не ранее 30 секунд после предыдущего измерения.

 Просмотр параметров:

 1-е нажатие — индикация максимального напряжения с момента последнего сброса.

 2-е нажатие — индикация минимального напряжения с момента последнего сброса.

 3-е нажатие — индикация количества включений (пропаданий сетевого напряжения) с момента последнего сброса.

 4-е нажатие — индикация усреднённого тока КЗ с момента последнего сброса (сопровождается миганием светодиода «КЗ»).

 5-е нажатие — индикация запрограммированного значения тока и характеристики автомата защиты.

 6-е нажатие — напряжение PE (сопровождается миганием светодиода «РЕ»). При напряжении PE более 100В — индикация Err. Если при работе выбран режим PE0, то будут прочерки.

 7-е нажатие — возврат в начало (режим индикации напряжения)

 Без нажатия кнопки через 10с выход в режим индикации напряжения.

 

    Программирование прибора:

 Длительное нажатие кнопки (5 секунд) — сброс всей накопленной информации.

 Задание порога срабатывания защиты осуществляется кнопкой. Удерживать кнопку 10с. На 5-й секунде произойдёт сброс накопленной информации. На 10-й — появится установленное значение автомата (по умолчанию С16).

 Последующими нажатиями (см таблицу ниже), установить и двойным кликом выбрать характеристику (B, C или D), затем одинар-

ными кликами установить и двойным кликом выбрать ток автомата (через 10 секунд запоминание и выход в рабочий режим).

 Следующее нажатие кнопки переключит в режим задания контроля «РЕ». РЕ0 — контроль отключён (для работы прибора в

двухпроводных сетях без провода РЕ). РЕ1 — контроль включён.

 Выбранный режим работы будет сохранен в памяти микроконтроллера и вольтметр переключится в рабочий режим автоматически.

 

Пороги срабатывания ВРТ-М02 по току короткого замыкания:
Номинал автомата, А
Максимальный ток срабатывания электромагнитного расцепителя автомата с учётом характеристики, А Порог срабатывания ВРТ-М02 по току КЗ, А (Iкз макс + 20%)
B C D B C D
10 50 100 200 60 120 240
16 80 150 320 96 192 384
25 125 250 500 150 300 600
32 160 320 640 192 384 768
40 200 400 800 240 480 960
50 250 500 1000 300 600 1200
63 315 630 1260 378 756 1512
80 400 800 480 960
100 500 1000 600 1200

 

 При токе КЗ больше 999А — циклический вывод бегущей строкой.

 Прибор ВРТ-М02 фиксирует в реальном времени изменение тока короткого замыкания в цепи фаза-ноль (при обрыве нуля оно резко возрастает) и в случае его повышения сигнализирует об этом.

 Прибор программируется пользователем на конкретный тип автомата защиты (от 10 до 100А, характеристики B, C или D, заводская настройка — С16). Периодически проверяет ток КЗ, сравнивает с допустимым током для данного автомата, с учётом его характеристики (B, C или D), т.е. кратности тока срабатывания (примерно на 20% больше максимального тока). При недостаточности тока КЗ для мгновенного срабатывания — выдаёт звуковой и световой сигнал (мигание красного светодиода «авария КЗ») до восстановления цепи (устранения неисправности) или перепрограммирования на меньший ток автомата. По нажатию кнопки на передней панели показывает измеренный ток КЗ в сети и сопротивление цепи фаза-ноль, максимальное, минимальное зафиксированное напряжение и количество пропаданий сетевого напряжения.

 Также ВРТ-М02 проверяет целостность защитного провода РЕ.

При появлении на нём напряжения или его обрыве — срабатывает звуковая и световая (горит красный светодиод «авария РЕ») сигнализация.

 Применение этого прибора позволит вовремя обнаружить неисправность электропроводки и, тем самым, снизит вероятность

возникновения пожара при коротком замыкании в сети, а также снизит вероятность поражения человека электрическим током при

появлении напряжения на корпусе оборудования при аварии защитного проводника РЕ.

 

ВНИМАНИЕ:  Сохранения параметров не происходит при просмотре событий.

 

 Самая главная задача этого прибора, это постоянная проверка соответствия состояния электрической сети и сравнение с установленным автоматом защиты. Это гарантирует мгновенное срабатывание установленного автомата при коротком замыкании.

Сегодняшняя фаза луны | Текущий лунный цикл на сегодня и сегодня вечером

7 апреля
Убывающая Луна
98%

8 апреля
Убывающий Гиббус
94%

9 апреля
Waning Gibbous
Освещенность: 88%

10 апреля
Угасающий горбатый
80%

11 апреля
Убывающий Гиббус
71%

Текущая фаза Луны сегодня и сегодня вечером — Убывающая Луна. Во время этой фазы Луну можно увидеть в ранние утренние дневные часы на западном горизонте. Это первая фаза после Полнолуния. Он длится примерно 7 дней, при этом освещенность Луны уменьшается с каждым днем, пока Луна не станет Луной последней четверти с освещенностью 50%. Средний восход Луны для этой фазы составляет от 9pm и полночь в зависимости от возраста фазы. Луна восходит все позже и позже каждую ночь после восхода солнца утром.

Посетите Календарь фаз Луны на апрель 2023 г., чтобы увидеть все фазы луны за этот месяц.

Сегодняшняя фаза Угасающей Луны

Угасающая Луна 9 апреля имеет освещенность 88%. Это процент Луны, освещенной Солнцем. Освещенность постоянно меняется и может варьироваться до 10% в сутки. 9 апреля Луне 18,06 дня. Это относится к тому, сколько дней прошло с момента последнего новолуния. Требуется 290,53 дня, чтобы Луна совершила оборот вокруг Земли и прошла лунный цикл всех 8 лунных фаз.

8 лунных фаз

Луна проходит 8 лунных фаз за свой 29,53-дневный лунный цикл. Четыре основных фазы Луны: полнолуние, новолуние, первая четверть и последняя четверть. Между этими основными фазами есть 4 второстепенных: Прибывающий Полумесяц, Прибывающий Полумесяц, Ослабевающий Полумесяц и Ослабевающий Полумесяц. Для получения дополнительной информации о лунном цикле и о каждой фазе посетите страницу лунных фаз Википедии.

ПРЕДЫДУЩИЙ

СЛЕДУЮЩИЙ ДЕНЬ

ФАЗА ЛУНЫ НА СЕГОДНЯ

Сведения о фазе — 9 апреля

Фаза: Убывающая луна
Освещенность: 88%
Moon Age: 18.06 days

Moon Angle: 0.53
Moon Distance: 376,658.49 km
Sun Angle: 0.53
Sun Distance: 149,852,931.80 km


Waning Gibbous Moonrise and Moonset

average moon rise

Average Mid-phase

Средний заход Луны

  • Сегодняшняя фаза Луны
  • Календарь фаз Луны
  • Апрель Полнолуние
  • Календарь полнолуния
  • Родился в полнолуние?

Нажмите здесь, чтобы подписаться
на получение обновлений луны по электронной почте.


Вы родились в полнолуние?
Щелкните здесь, чтобы узнать

Фазовый сдвиг

  • Изучив этот раздел, вы сможете описать:
  • • Фазовый сдвиг в общих компонентах переменного тока.

Рис. 5.1.1 Сопротивление в цепях переменного тока

Сопротивление в цепях переменного тока

В чисто резистивных цепях ток и напряжение изменяются одинаково и одновременно, как описано в Модуле 4.1. Это соотношение верно независимо от того, является ли приложенное напряжение постоянным или переменным. Основное отличие цепей переменного тока состоит в том, что напряжение продолжает изменяться в зависимости от формы входной волны. Когда к чисто резистивной цепи прикладывается синусоидальное напряжение, возникает синусоидальный (синусоидальный) ток. Обе формы волны достигают своих пиковых значений в одно и то же время и проходят через ноль в одно и то же время. Поэтому говорят, что напряжение и ток в чисто резистивной цепи находятся «В ФАЗЕ» друг с другом.

Рис. 5.1.2 Индуктивность в цепях переменного тока

Индуктивность в цепях переменного тока

В чисто индуктивной цепи кривые напряжения и тока не совпадают по фазе. Индуктивность противодействует изменению тока из-за эффекта обратной ЭДС. Это приводит к тому, что ток достигает своего пикового значения через некоторое время после напряжения. Так что в индуктивной цепи ток «ОТСТАЕТ» от напряжения.

В цепях постоянного тока ток в конечном итоге устанавливается на установившееся значение, и период изменения до установившегося состояния зависит от постоянной времени (т. е. значений компонентов) цепи. Однако в цепи переменного тока, поскольку напряжение постоянно меняется, ток также продолжает изменяться, а в чисто индуктивной цепи пиковые значения тока приходятся на четверть периода (90°) после значений напряжения.

В цепи, содержащей как индуктивность, так и сопротивление, что обычно имеет место, поскольку катушка индуктивности (катушка провода) будет иметь некоторое внутреннее сопротивление, ток будет отставать от напряжения на величину между практически 0° (почти чистое сопротивление) и почти -90 ° (почти чистая индуктивность). Поскольку напряжение и ток больше не растут и не падают одновременно, в цепи происходит «ФАЗОВЫЙ СДВИГ».

Рис. 5.1.3 Емкость в цепях переменного тока

Емкость в цепях переменного тока

Емкость имеет свойство задерживать изменения напряжения, как описано в Модуле 4.3. То есть приложенное напряжение достигает устойчивого состояния только по истечении времени, определяемого постоянной времени. В цепях переменного тока напряжение и ток изменяются непрерывно, а в чисто емкостной цепи переменного тока пиковое значение осциллограммы напряжения возникает через четверть периода после пикового значения тока. Следовательно, в конденсаторе происходит фазовый сдвиг, величина фазового сдвига между напряжением и током составляет +90° для чисто емкостной цепи, где ток опережает напряжение. Противоположный фазовый сдвиг в индуктивной цепи.

Очень ГРАЖДАНСКОЕ отношение

Один из способов запомнить эти отношения ток/напряжение (I/V) в конденсаторах (C) и катушках индуктивности (L) состоит в том, чтобы рассмотреть положения букв в слове CIVIL.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *