Закрыть

Формула электроемкости: Электроемкость. Конденсаторы

Содержание

Электроемкость. Конденсаторы

Что такое электроемкость проводников

Если у нас есть два проводника, изолированных друг от друга, которым мы сообщаем некоторые заряды (обозначим их соответственно q1 и q2), то между ними возникнет определенная разность потенциалов. Ее величина будет зависеть от формы проводников, а также от исходных величин зарядов. Обозначим такую разность Δφ. Если мы говорим о разности, возникающей в электрическом поле между двумя точками, то ее обычно обозначают U.

В рамках темы данной статьи нам больше всего интересна такая разность потенциалов между проводниками, когда их заряды противоположны по знаку, но равны друг другу по модулю. В таком случае мы можем ввести новое понятие – электрическая емкость (электроемкость).

Определение 1

Электрической емкостью системы, состоящей из двух проводников, называется отношение заряда одного проводника (q) к разности потенциалов между этими двумя проводниками.

В виде формулы это записывается так: C=q∆φ=qU.

Для измерения электрической емкости применяется единица, называемая фарад. Она обозначается буквой Ф.

1Φ=1 Кл1 В.

Конфигурации и размеры проводников, а также свойства диэлектрика определяют величину электроемкости заданной системы. Наибольший интерес для нас представляют проводники особой формы, называемые конденсаторами.

Определение 2

Конденсатор – это проводник, конфигурация которого позволяет локализовать (сосредотачивать) электрическое поле в одной выделенной части пространства. Проводники, составляющие конденсатор, называются обкладками.

Определение 3

Если мы возьмем две плоские пластины из проводящего материала, расположим их на небольшом расстоянии друг от друга и проложим между ними слой диэлектрика, то мы получим простейший конденсатор, называемый плоским. При его работе электрическое поле будет располагаться преимущественно в промежутке между пластинами, но небольшая часть этого поля будет рассеиваться вокруг них.

Определение 4

Часть электрического поля вблизи конденсатора называется

полем рассеяния.

Иногда в задачах мы можем не учитывать его и работать только с той частью электрического поля, которое расположено между обкладками. Однако пренебрегать полем рассеяния допустимо далеко не всегда, поскольку это может привести к ошибочным расчетам из-за нарушения потенциального характера электрического поля.

Рисунок 1.6.1. Электрическое поле в плоском конденсаторе.

Рисунок 1.6.2. Электрическое поле конденсатора без учета поля рассеяния, не обладающее потенциальностью.

Модуль напряженности электрического поля, которое создает каждая обкладка в плоском конденсаторе, выражается соотношением следующего вида:

E1=σ2ε0.

Исходя из принципа суперпозиции, можно утверждать, что напряженность E→ поля, которое создают обе пластины конденсатора, будет равна сумме напряженностей E+→ и E-→ полей каждой пластины, то есть E→=E+→+E-→.

Векторы напряженностей обеих пластин во внутренней части конденсатора будут параллельны друг другу. Значит, мы можем выразить модуль напряженности их суммарного поля в виде формулы E=2E1=σε0.

Слишком сложно?

Не парься, мы поможем разобраться и подарим скидку 10% на любую работу

Опиши задание

Как рассчитать электроемкость конденсатора

Вне пластин векторы напряженности будут направлены в противоположные друг от друга стороны, значит, E будет равно нулю. Если мы обозначим заряд каждой обкладки как q, а ее площадь как S, то соотношение qS даст нам представление о поверхностной плотности. Умножив E на расстояние между обкладками (d), мы получим разность потенциалов между пластинами в однородном электрическом поле. Теперь возьмем оба этих соотношения и выведем из них формулу, по которой может быть рассчитана электрическая емкость конденсатора.

C=q∆φ=σ·SE·d=ε0Sd.

Определение 5

Электрическая емкость плоского конденсатора – величина, обратно пропорциональная расстоянию между обкладками и прямо пропорциональная их площади.

Заполнение пространства между проводниками диэлектрическим материалом может увеличить электроемкость плоского конденсатора в число раз, кратное undefined.

Определение 6

Введем обозначение емкости в виде буквы С и запишем это в виде формулы:

C=εε0Sd.

Данная формула называется формулой электроемкости плоского конденсатора.

Конденсаторы бывают не только плоскими. Возможны и другие конфигурации, также обладающие специфическими свойствами.

Определение 7

Сферическим конденсатором называется система из 2-х концентрических сфер, сделанных из проводящего материала, радиусы которых равны R1 и R2 соответственно.

Определение 8

Цилиндрическим конденсатором называется системы из двух проводников цилиндрической формы, длина которых равна L, а радиусы R1 и R2.

Обозначим проницаемость диэлектрического материала как ε и запишем формулы, по которым можно найти электрическую емкость конденсаторов:

  • C=4πε0εR1R2R2-R1(сферический конденсатор),
  • C=2πε0εLlnR2R1(цилиндрический конденсатор).

Как рассчитать электроемкость батареи конденсаторов

Определение 9

Если мы соединим несколько проводников между собой, то мы получим конструкцию, называемую батареей.

Способы соединения могут быть разными. Если соединение будет параллельным, то напряжение всех конденсаторов в системе будет одинаково: U1=U2 =U, а заряды можно найти по формулам q1=С1U и q2=C2U. При таком соединении вся система может считаться одним конденсатором, электроемкость которого равна C, заряд – q=q1+q2, а напряжение – U. В виде формулы это выглядит так:

С=q1+q2U или C=C1+C2

Определение 10

Если в батарее конденсаторов элементы соединены параллельно, то для нахождения общей электроемкости нам нужно сложить емкости ее отдельных элементов.

Рисунок 1.6.3. Конденсаторы, соединенные параллельно. C=C1+C2

Рисунок 1.6.4. Конденсаторы, соединенные последовательно: 1C=1C1+1C2

Если же батарея состоит из двух последовательно соединенных конденсаторов, то заряды обоих будут одинаковы: q1=q2=q. Найти их напряжения можно так: U1=qC1 и U2=qC2. Такую систему тоже можно считать одним конденсатором, заряд которого равен q, а напряжение U=U1+U2.

C=qU1+U2 или 1C=1C1+1C2

Определение 11

Если конденсаторы в батарее соединены последовательно, то для нахождения общей электроемкости нам нужно сложить величины, обратные емкостям каждого из них.

Справедливость обеих формул, приведенных выше, не зависит от количества конденсаторов в батарее.

Рисунок 1.6.5. Смоделированное электрическое поле плоского конденсатора.

Формула электроемкости конденсатора

Обкладки должны иметь такую форму и быть расположены так относительно друг друга, что поле, которое создается данной системой, было максимально сосредоточено в ограниченной области пространства, между обкладками.

Назначение конденсатора в том, чтобы накапливать и отдавать в электрической цепи заряд.

Основной характеристикой конденсатора является электрическая емкость (C). Электрическая емкость конденсатора – это взаимная емкость принадлежащих ему обкладок:

   

q – величина заряда на обкладке; – разность потенциалов между обкладками.

Электрическая ёмкость конденсатора зависит от диэлектрической проницаемости диэлектрика, который заполняет пространство между его обкладками. Если пространство между обкладками одного конденсатора заполнено диэлектриком с проницаемостью равной , а у второго конденсатора воздух между пластинами, то емкость конденсатора с диэлектриком (C) в раз больше, чем емкость воздушного конденсатора ():

   

Формула электроемкости основных типов конденсаторов

При расчете электроемкости плоского конденсатора нарушением однородности поля около краёв обкладок обычно пренебрегают. Это становится возможным, если расстояние между пластинами существенно меньше, чем линейные размеры обкладок. В таком случае электрическую емкость плоского конденсатора вычисляют при помощи формулы:

   

где – электрическая постоянная; S – площадь каждой (или наименьшей) пластины; d – расстояние между пластинами.

Если плоский конденсатор между обкладками имеет N слоев диэлектрика, при этом толщина каждого слоя равна , а диэлектрическая проницаемость , то его электрическую емкость рассчитывают при помощи формулы:

   

Цилиндрический конденсатор составляют две соосных (коаксиальных) цилиндрические проводящие поверхности, разного радиуса, пространство между которыми заполнено диэлектриком. При этом емкость цилиндрического конденсатора находят как:

   

где l – высота цилиндров; – радиус внешней обкладки; – радиус внутренней обкладки.

У сферического конденсатора обкладками служат две концентрические сферические проводящие поверхности, пространство обкладками заполняет диэлектрик. Емкость сферического конденсатора вычисляют как:

   

где – радиусы обкладок конденсатора. Если , то можно считать, что , тогда, мы имеем:

   

так как – площадь поверхности сферы, и если обозначить , то получим формулу для емкости плоского конденсатора (3). Если расстояние между обкладками сферического и цилиндрического конденсаторов малы (в сравнении с их радиусами), то в приближенных расчетах используют формулу емкости для плоского конденсатора.

Электрическую емкость для линии из двух проводов находят как:

   

где d – расстояние между осями проводов; R – радиус проводов; l – длина линии.

Формулы для вычисления электрической емкости соединений конденсаторов

Если конденсаторы соединены параллельно, то суммарная емкость батареи (C) находится как сумма емкостей отдельных конденсаторов ():

   

При последовательном соединении конденсаторов емкость батареи вычисляют как:

   

Если последовательно соединены N конденсаторов, с емкостями то емкость батареи найдем как:

   

Сопротивление конденсатора

Если конденсатор включен в цепь с постоянного тока, то сопротивление конденсатора можно считать бесконечно большим.

При включении конденсатора в цепь переменного тока, его сопротивление носит название емкостного, и вычисляют его с помощью формулы:

   

где – частота переменного тока; – угловая частота тока; C – емкость конденсатора.

Энергия поля конденсатора

Электрическое поле локализованное между пластинами конденсатора обладает энергией, которую можно вычислить при помощи формулы:

   

где –энергия поля конденсатора; q – заряд конденсатора; C – емкость конденсатора; – разность потенциалов между обкладками конденсатора.

Энергия поля плоского конденсатора:

   

Примеры решения задач по теме «Электроемкость конденсатора»

Электрическая емкость. Конденсаторы. Емкость конденсатора.

Электрическая емкость. Конденсаторы.

Емкость уединенного проводника.

Уединенным будем называть проводник, размеры которого много меньше расстояний до окружающих тел. Пусть это будет шар радиусом r. Если потенциал на бесконечности принять за 0, то потенциал заряженного уединенного шара равен:  , где e - диэлектрическая проницаемость окружающей среды.   Следовательно: 

эта величина не зависит ни от заряда, ни от потенциала и определяется только размерами шара (радиусом) и диэлектрической проницаемостью среды. Этот вывод справедлив для проводника любой формы.

 

Электрической емкостью проводника наз. отношение заряда проводника к его потенциалу: .

Емкость определяется геометрической формой, размерами проводника и свойствами среды (от материала проводника не зависит). Чем больше емкость проводника, тем меньше меняется потенциал при изменении заряда.

Емкость шара в СИ:

  -

Единицы емкости.

Емкостью (фарад) обладает такой проводник, у которого потенциал возрастает на 1 В при сообщении ему заряда в 1 Кл.

Емкостью   обладал бы уединенный шар, радиус которого был бы равен 13 радиусам Солнца.

Емкость Земли  700 мкФ

Если проводник не уединенный, то потенциалы складываются по правилу суперпозиции и емкость проводника меняется.

1 мкФ=10-6Ф

1нФ=10-9Ф

1пФ=10-12Ф

Конденсаторы (condensare - сгущение) .

Можно создать систему проводников, емкость которой не зависит от окружающих тел. Первые конденсаторы - лейденская банка (Мушенбрук, сер. XVII в.).

 

Конденсатор представляет собой систему из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.  Проводники наз.  обкладками  конденсатора. Если заряды пластин конденсатора одинаковы по модулю и противоположны по знаку, то  под зарядом конденсатора понимают абсолютное значение заряда одной из его обкладок.

На рисунке - плоский и сферический конденсаторы. Поле плоского конденсатора почти все сосредоточено внутри (у идеального - все). Усферического - все поле сосредоточено между обкладками.

 

Электроемкостью конденсатора называют отношение заряда конденсатора к разности потенциалов между обкладками: .

При подключении конденсатора к батарее аккумуляторов происходит поляризация диэлектрика внутри конденсатора и на обкладках появляютсязаряды - конденсатор заряжается. Электрические поля окружающих тел почти не проникают через металлические обкладки и не влияют на разность потенциалов между ними.

 

Емкость плоского конденсатора.

, т.о. емкость плоского конденсатора зависит только от его размеров, формы и диэлектрической проницаемости. Для создания конденсатора большой емкости необходимо увеличить площадь пластин и уменьшить толщину слоя диэлектрика.

Емкость сферического конденсатора .

Если зазор между обкладками мал по сравнению с радиусами, то формула переходит в формулу емкости плоского конденсатора.

Виды конденсаторов

При подключении электролитического конденсатора необходимо соблюдать полярность.

Назначение конденсаторов

  1. Накапливать на короткое время заряд или энергию для быстрого изменения потенциала.
  2. Не пропускать постоянный ток.
  3. В радиотехнике: колебательный контур, выпрямитель.
  4. Фотовспышка.

 

Электрическая ёмкость: определение, формулы, единицы измерения

Одним из важных параметров, учитываемых в электрических цепях, является электрическая емкость – способность проводников накапливать заряды. Понятие емкости применяется как для уединенного проводника, так и для системы, состоящей из двух и более проводников.  В частности, емкостью обладают конденсаторы, состоящие из двух металлических пластин, разделенных диэлектриком или электролитом.

Для накопления зарядов широко применяютсяаккумуляторы, используемые в качестве источников постоянного тока для питания различных устройств. Количественной характеристикой, определяющей время работы аккумулятора, является его электроемкость.

Определение

Если диэлектрик, например, эбонитовую палочку, наэлектризовать трением то электрические заряды сконцентрируются в местах соприкосновения с электризующим материалом. При этом, другой конец палочки можно насытить зарядами противоположно знака и такая наэлектризованность будет сохраняться.

Совсем по-другому ведут себя проводники, помещенные электрическое поле. Заряды распределяются по их поверхности, образуя некий электрический потенциал. Если поверхность ровная, как у палочки, то заряды распределятся равномерно. Под действием внешнего электрического поля в проводнике происходит такое распределение электронов, чтобы внутри его сохранялся баланс взаимной компенсации негативных и позитивных зарядов.

Внешнее электрическое поле притягивает электроны на поверхность проводника, компенсируя при этом положительные заряды ионов. По отношению к проводнику имеет место электростатическая индукция, а заряды на его поверхности называются индуцированными. При этом на концах проводника плотность зарядов будет несколько выше.

На металлическом шаре заряды распределяются равномерно по всей поверхности. Наличие полости любой конфигурации абсолютно не влияет на процесс распределения.

Однако, если проводник убрать из зоны действия поля, то его заряды перераспределятся таким образом, что он снова станет электрически нейтральным.

На рисунке 1 изображена схема заряженного разнополюсного диэлектрика и проводника, удалённого из зоны действия электростатического поля. Благодаря тому, что диэлектрик сохраняет полученные заряды, уединенный проводник восстановил свою нейтральность.

Рис. 1. Распределение зарядов

Интересное явление наблюдается с двумя проводниками, разделенными диэлектриком. Если одному из них сообщить положительный заряд, а другому – отрицательный, то после убирания источника электризации заряды на поверхности проводников сохранятся. Заряженные таким образом проводники обладают разностью потенциалов.

Заряды, накопившиеся на диэлектрике, уравновешивают внутренние взаимодействие в каждом из проводников, не позволяя им разрядиться. Величина заряда зависит от площади поверхности параллельных проводников и от свойства диэлектрика, расположенного между ними.

Свойство сохранять накопленный заряд называется электроемкостью. Точнее говоря, – это характеристика проводника, физическая величина определяющая меру его способности в накоплении электрического заряда.

Накопленное электричество можно снять с проводников путем короткого замыкания их или через нагрузку. С целью увеличения емкости на практике применяют параллельные пластины или же длинные полоски тонкой фольги, разделённой диэлектриком. Полоски сворачивают в тугой цилиндр для уменьшения объема. Такие конструкции называют конденсаторами.

На рисунке 2 изображена схема простейшего конденсатора с плоскими обкладками.

Рис. 2. Схема простого конденсатора

Существуют конденсаторы других типов:

  • переменные;
  • электролитические;
  • оксидные;
  • бумажные;
  • комбинированные и другие.

Важной характеристикой конденсатора, как и других накопительных систем, является его электрическая емкость.

Формулы

На рисунке 3 наглядно показано формулы для определения емкости, в т. ч. и для сферы.

Рис. 3. Электроёмкость проводника

По отношению к конденсатору, для  определения его емкости применяют формулу: C = q/U. То есть, эта величина прямо пропорциональна заряду одной из обкладок и обратно пропорциональна разнице потенциалов между обкладками (см. рис. 4).

Ёмкость конденсатора

О других способах определения ёмкости конденсатора читайте в нашей статье: https://www.asutpp.ru/kak-opredelit-emkost-kondensatora.html

Единицы измерения

За единицу измерения величины электроемкости принято фараду: 1 Ф = 1 Кл/1В.  Поскольку фарада величина огромная, то для измерения емкости на практике она мало пригодна. Поэтому используют приставки:

  • мили (м) = 10-3;
  • микро (мк) = 10-6;
  • нано (н) = 10-9;
  • пико (пк) = 10-12;

Например, электрическая емкость 1 мкф = 0,000001 Ф. Параметр зависит от геометрических размеров, конфигурации проводника и материала диэлектрика.

Уединенный проводник и его емкость

Уединенным называют проводник, влиянием на который других элементов цепей можно пренебречь. Предполагается, что все другие проводники бесконечно удалены от него, а как известно, потенциал точки, бесконечно удаленной в пространстве, равен 0.

Электрическую емкость C уединенного проводника, определяют как количество электричества q, которое требуется для повышения электрического потенциала на 1 В: С = q/ϕ. Параметр не зависит от материала, из которого изготовлен проводник.

Конденсаторы постоянной и переменной емкости

Эра накопителей электричества началась с воздушных конденсаторов. Благодаря плоскому конденсатору с большой  площадью обкладок физики смогли понять, как взаимная емкость регулируется площадями пластин, что позволило им создать конденсаторы с переменной емкостью (см. рис. 5).

Рис. 5. Конденсатор переменной емкости

Идея изменения емкости состояла в том, чтобы путем поворота плоской обкладки изменять площадь поверхности, которая располагается напротив другой пластины. Если обкладки располагались точно друг против друга, то напряженность поля между ними была максимальной. При смещении одной из пластин на некоторый угол, напряженность уменьшалась, что приводило к изменению емкости. Таким образом, можно было плавно управлять накопительной способностью конденсатора.

Детали с переменной емкостью нашли применение в первых радиоприемниках для поиска частоты нужной станции. Данный принцип используется по сегодняшний день в различных аналоговых электрических схемах.

Большую популярность приобрели электролитические конденсаторы. В качестве одной из обкладок у них используется электролит, обладающий высокими показателями диэлектрической проницаемости. Благодаря диэлектрическим свойствам электролитов такие конденсаторы обладают большими емкостями.

Главные их преимущества электролитического конденсатора:

  • высокие показатели емкости при малом объеме;
  • применение в цепях с постоянным током.

Недостатки:

  • необходимо соблюдать полярность;
  • ограниченный срок службы;
  • чувствительность к повышенным напряжениям.

Высокую электрическую прочность имеют плоские конденсаторы, у которых в качестве диэлектрического материала применяется керамика. Они используются в цепях с переменным током и выдерживают большие напряжения.

Сегодня промышленность поставляет на рынок множество конденсаторов различных типов, с высокими показателями проницаемости диэлектриков.

Конденсаторы различных типов

Аккумуляторы и электроемкость

Накопители электричества большой емкости (аккумуляторы) состоят из положительных и негативных пластин, погруженных в электролит. Во время зарядки часть атомов электролита распадается на ионы, которые оседают на пластине. Образуется разность потенциалов между пластинами, что является причиной возникновения ЭДС при подключении нагрузки.

С целью увеличения напряжения аккумуляторы последовательно соединяют в батареи. Разница потенциалов одной секции около 2 В. Для получения аккумулятора на 6 В необходимо создать батарею из трех секций, а на 12 В – батарею из 6 секций.

Для характеристики аккумуляторов (батарей) используются параметры:

  • емкости;
  • номинального напряжения;
  • максимального тока разряда.

Единицей емкости аккумулятора является ампер-час (А*ч) или кратные ей миллиампер-часы (мА*ч). Емкость аккумулятора зависит от площади пластин. Увеличить емкость можно путем параллельного подключения нескольких секций, но такой способ почти не применяется, так как проще и надежнее создать аккумулятор с большими пластинами.

Электроёмкость плоского конденсатора | Физика. Закон, формула, лекция, шпаргалка, шпора, доклад, ГДЗ, решебник, конспект, кратко

Плоским конденсатором обычно называ­ют систему плоских проводящих пластин — обкладок, разделенных диэлектриком. Про­стота конструкции такого конденсатора по­зволяет сравнительно просто рассчитывать его электроемкость и получать значения, совпадающие с результатами эксперимента.

Рис. 4.71. Плоский конденсатор на элект­рометре

Укрепим две металлические пластины на изоляционных подставках и соединим с электрометром так, что одна из пластин будет присоединена к стержню электромет­ра, а вторая — к его металлическому кор­пусу (рис. 4.71). При таком соединении электрометр будет измерять разность по­тенциалов между пластинами, которые об­разуют плоский конденсатор из двух пла­стин. Проводя исследования, необходимо пом­нить, что

при постоянном значении заряда пластин уменьшение разности потенциалов свидетельствует об увеличении электроем­кости конденсатора, и наоборот.

Сообщим пластинам разноименные заря­ды и отметим отклонение стрелки электро­метра. Приближая пластины друг к другу (уменьшая расстояние между ними), заме­тим уменьшение разности потенциалов. Та­ким образом, при уменьшении расстояния между пластинами конденсатора его элект­роемкость увеличивается. При увеличении расстояния показания стрелки электрометра увеличиваются, что является свидетельст­вом уменьшения электроемкости.

Электроемкость плоского конденсатора об­ратно пропорциональна расстоянию между его обкладками.

C ~ 1 / d,

где d — расстояние между обкладками.

Рис. 4.72. График зависимости емкости плоского конденсатора от расстояния между пластинами
Рис. 4.73. При расчетах емкости плоских конденсаторов учитывают площадь пере­крытия пластин

Эту зависимость можно изобразить гра­фиком обратной пропорциональной зависи­мости (рис. 4.72).

Будем смещать пластины одну относи­тельно другой в параллельных плоскостях, не изменяя расстояния между ними.

При этом площадь перекрытия пластин будет уменьшаться (рис. 4.73). Увеличение разности потенциалов, отмеченное электрометром, будет свидетельствовать об умень­шении электроемкости.

Увеличение площади перекрытия пластан приведет к увеличению емкости.

Электроемкость плоского конденсатора про­порциональна площади пластин, которые пере­крываются.

C ~ S,

где S — площадь пластин.

Рис. 4.74. График зависимости емкости плоского конденсатора от площади его пластин

Эту зависимость можно представить гра­фиком прямой пропорциональной зависи­мости (рис. 4.74). 

Возвратив пластины в начальное поло­жение, внесем в пространство между ними плоский диэлектрик. Электрометр отметит уменьшение разности потенциалов между пластинами, что свидетельствует об увели­чении электроемкости конденсатора. Если между пластинами поместить другой диэлек­трик, то изменение электроемкости будет иным.

Электроемкость плоского конденсатора за­висит от диэлектрической проницаемости ди­электрика.

C ~ ε,

где ε — диэлектрическая проницаемость ди­электрика. Материал с сайта http://worldofschool.ru

Рис. 4.75. График зависимости емкости плоского конденсатора от диэлектри­ческой проницаемости диэлектрика

Такая зависимость показана на графике рис. 4.75.

Результаты опытов можно обобщить в ви­де формулы ёмкости плоского конденсатора:

C = εε0S / d,

где S — площадь пластины; d — расстояние между ними; ε — диэлектрическая прони­цаемость диэлектрика; ε0 — электрическая постоянная.

Конденсаторы, которые состоят из двух пластин, в практике применяются очень редко. Как правило, конденсаторы имеют много пластин, соединенных между собой по определенной схеме.

На этой странице материал по темам:
  • Сообщение на тему электроемкость

  • Физика 10 класс . рассчитать площадь и электроемкость плоского конденсатора.

  • Примеры решения задач поизменению энергии в плоском конденсаторе

  • Решение задач по теме электроемкость плоского конденсатора

  • При увеличении площади перекрывания пластин конденсатора

Вопросы по этому материалу:
  • Какое строение плоского конденсатора?

  • По изменению какой величины в опыте можно делать заключение об изменении электроемкости?

  • В какой последовательности проводится опыт, в котором устанавли­валась зависимость электроемкости конденсатора от его параметров?

  • Как зависит электроемкость плоского конденсатора от активной площади пластин?

  • Как зависит электроемкость плоского конденсатора от расстояния между пластинами?

  • Как влияет диэлектрик на электроемкость конденсатора?

Электроёмкость конденсатора: формулы и история

Электроемкость конденсатора – физическая величина, характеризующая процесс заряда проводников, разделенных слоем диэлектрика. Используется многочисленными математическими расчетами, маркируется на корпусе изделия.

Формулы

Электроемкость конденсатора принято выражать через запасаемый заряд q при приложенном напряжении U подобным образом:

C = q/U.

Происхождение формулы – загадка. Известно только: из теоремы Гаусса по напряженности электрического поля найдем электроемкость конденсатора. Кто провел расчет, нигде не говорится. Физическая величина фарад изначально в системе СГС отсутствовала, в 1861 году ввела специальная комиссия, сформированная физиками.

По отдельным сведениям, впервые электроемкость конденсатора определил введший термины в обиход. Подразумеваем Алессандро Вольту. Поздние 70-е (XVIII века) ученый уделил исследованиям вопроса, установил: электроемкость можно выразить через накапливаемый заряд, приложенное к электродам напряжение.

Вдобавок удаётся часто встретить формулу электроемкости плоского конденсатора:

Авторы избегают судить, кто занимался расчетами выражения. Рассуждая логически, мало кого интересовала электроемкость плоского конденсатора до появления на свет изобретения Полака. Лейденские банки по-другому распределяют заряд. Рассуждения приводят к началу XX века. Возможно, вопросом занимались Тесла, Герц. С меньшей вероятностью – Попов.

Фамилии названы по критериям заинтересованности переменным током. Тесла изучал вопросы безопасности электричества, передачи на расстояние, конструировал двигатели. Герц и Попов исследовали антенны, заведомо настраиваются на некую длину волны, которую проще получить, применяя колебательный контур. Следовательно, ученые обязаны иметь представление об электроемкости конденсатора, катушках индуктивности.

Джеймс Максвелл, лорд Кельвин, Вильгельм Вебер много внимания уделяли совершенствованию единых систем измерения физических величин. Вероятно, кто-то приложил руку к исследованию конденсаторов. Ясно одно – в мировой истории естественных наук масса белых пятен, когда дело касается русскоязычных источников. Портал ВашТехник одним из первых начнёт публиковать новейшие исследования в области правильного понимания произошедших событий.

История

Нетерпеливым читателям докладываем: Алессандро Вольта ввел собственно термин емкости. Неизвестно точно, употреблял ли кто раньше, но в своей работе итальянский ученый, называя электрофорус конденсатором, одновременно применяет к нему термин емкости. Как сосуду, куда можно «налить» заряд из емкости. Конденсатором зовет за схожесть процесса с осаждением паров: понемногу наберем произвольное количество электричества. По большому счету, это верно.

Термин конденсатор

Исторически первым конденсатором считают лейденскую банку. Поныне ходят споры, кто изобрел прибор, поскольку оба ученых, увлеченных событиями, избегали ведения аккуратных записей. Бесспорно одно – электроемкость прибора измерить было нельзя, отсутствовало соответствующее понятие «электроемкость конденсатора».

Скрин печатного варианта трактата Вольты, 1782 год

Придумавший термин бессилен произнести слово раньше, нежели Алессандро Вольта в 1782 году, докладывая Королевскому Научному обществу изыскания в области электростатики, чтобы понять, откуда берется электричество. Известно, в течение следующих пяти лет Луиджи Гальвани откроет «животное электричество», приведшее Вольту прямиком к созданию первого элемента питания. Докладывая обществу, молодой ученый лишен упомянутых знаний, светило пытается понять, откуда появляется заряд. Рассуждает приблизительно так: «К настоящему времени немало свидетельств существования атмосферного электричества. Люди бессильны найти следы присутствия. Вероятно, означает: созданные электроскопы слишком слабы, неспособны уловить столь тонкую материю. Следовательно, требуется найти способ забрать из воздуха флюиды».

Выполняя сказанное, Алессандро Вольта предлагает приспособление, называемое электрофорусом (не путать с электрофорной машиной). Прибор захватывает флюиды атмосферного проводника (воздуха). Принцип служения Вольте напоминает процесс конденсации: собирает электричество.

Электрофорус

Запад электрофорус называет генератором емкостного типа. Указанное выше позволяет полагать: подобное определение прилепилось благодаря написанному Английскому Королевскому обществу Вольтой. Устройство придумано другим человеком – шведским физиком Джоном Кларком Вилке. Случилось двумя десятилетиями ранее – 1762 год.

Ныне считается, популярность прибору придал Вольта, называя любимца вечным генератором электричества. Тоже по сути правильно, тереть резину можно тысячелетиями. Больше «конденсатор» напоминает (см. рис.) здоровенную печать. Сверху, помимо основной центральной ручки, стоит боковая – снятия отрицательного потенциала. Видим три слоя:

  1. Подложка необязательна, на нее наклеивается резина.
  2. Тонкий слой резины служит телом электризации трением.
  3. Сверху – тонкий лист металла, снабженный двумя рукоятками, одна (центральная) изолирована.

Внешний вид электрофоруса

Начав работы, нужно убрать «печать», натереть резину шерстью. Затем гладкий диск ставится обратно. Площадь соприкосновения с резиной невелика из-за присутствующих шероховатостей, положительный заряд приобретается нескоро. Нужно выждать. Оператор на короткий миг заземляет крышку боковой ручкой, снимая отрицательный заряд, снизу остается положительный. Прикасаясь одной рукой к металлу, можно слышать хорошо различимый треск. Резина после поднятия крышки несет избыток электронов, позволяющий повторить опыт несколько раз (верится с трудом, некоторые источники говорят о сотне повторений).

Разнимая тела, резким движением потянув изолирующую рукоятку, оператор получает статическое электричество. Изобретение революционное, примечательно, появилось в считанные годы после отмены закона охоты на ведьм. По заявлению Вольты, круг резины делается по возможности тонким, в пределах 50-й доли дюйма. Удается получить наилучший результат. Лист металла фактически становится пластиной. В противном случае долго придётся ждать наполнения объема проводника. В простонародье «конденсатор» называют резиновым пирогом. Пирогом, покрытым металлической начинкой.

Действительно ли электрофорус является неисчерпаемым источником энергии? В идеальных условиях, хотя верится с трудом. Отрицательный заряд резины поляризует металлическую пластину, создавая некий потенциал. Вытесненные на внешнюю поверхность электроны снимаются прикосновением заземлителя. Остается разнять составные части электрофоруса. Уничтожив положительный заряд прикосновением, услышав звук проскочившей искры, можно заново начинать опыт.

Электрофорус действительно напоминает конденсатор. После снятия лишнего отрицательного заряда превращается фактически в упомянутый прибор. Долго храниться конденсатор не может, поскольку электроны с резины понемногу будут стекать на металл. Устройство разрядится. Фактически резина, металл отделены друг от друга воздухом, служащим диэлектриком. Вместо резины используем различные полимеры, например, Тефлон.

Осталось заметить: во времена Вольты не знали методов избавления резины от статического заряда. «Обкладка» конденсатора могла долгое время хранить груз электронов. Вольта предлагает для разрядки поместить образец под солнечные лучи, либо поводить рядом горящей свечой. Через ионизированное пламя электроны покидают конденсатор. Сегодня понятно, достаточно вымыть резину, чтобы следов не осталось статического напряжения. Для работы потребуется вновь высушить.

Лейденская банка

Считается, что Феликс Савари обнаружил колебания резонансного контура. Разряжая лейденскую банку через витую нить меди, наблюдал беспорядочное снование стрелки компаса. 1826 год, когда Англия, Франция, Германия, частично Италия лихорадочно исследовали новое явление, привнесенное в научный мир Эрстедом.

Историю создания лейденской банки можно прочитать в соответствующем обзоре. Следует сказать, никто не пытался толком понять, какова электроемкость конденсатора. Не нужно по очевидным соображениям: лейденскую банку преимущественно использовали научные круги, решая специфические задачи. Опыт Феликса Савари надолго остался без внимания…

В 1842 году колебательным контуром, электроемкостью конденсатора занялся наш старый знакомый, сэр Джозеф Генри, изобретатель электромагнитного реле, любитель телеграфа. Изложил письменно после опробования заметок Савари практикой:

«Аномалия, остающаяся столь долго без объяснения, которая на первый взгляд представляется существующей наперекор нашей теории электричества и магнетизма, после тщательного изучения мною отнесена к доселе неизведанным явлениям. Разряд происходит странно (вразрез теории Франклина), ощущение, что, выходя из банки, флюид начинает странствовать взад-вперед. Увиденное принуждает признать: процесс начинается нормальным образом, затем происходит несколько смен направлений, каждый раз амплитуда становится меньше, пока движения затухнут вовсе. Судя по всему, феномен сегодня не может быть объяснен, физики встречались с ним (Савари), но оказались бессильны».

Очевидно, ученого совершенно не интересует электроемкость конденсатора – мысли поглощены аномалией, которую хотелось бы разведать. Пятью годами позже, ознакомившийся с отчетом Генри физик Гельмгольц на встрече Физического общества Берлина, говорит:

«Проводя электролиз, заметил необычные колебания. Такое ощущение, процесс колебаний продолжается, пока само vis viva не исчезнет навсегда, поглощенное суммарным сопротивлением цепи. Создается впечатление, по контуру текут два тока противоположных направлений, верх берет то один, то другой».

Конец спорам положил знаменитый Вильям Томсон, нареченный лорд Кельвин. Математически исследовав процесс, заявил: в цепи очевидно присутствуют две вещи: электроемкость конденсатора и индуктивность свернутой медной проволоки. Работа On Transient Electric Currents стала классической. Хотя лорд Томсон зовет индуктивность электродинамической емкостью, смысл формулы однозначный. Ученый первым заявил: энергия передается меж конденсатором и катушкой индуктивности, постепенно затухая на активном сопротивлении цепи.

Формула, приведенная на рисунке, дана в современных величинах, обозначения стандартные. С – электроемкость конденсатора, L – индуктивность катушки, q – величина заряда, I – ток цепи. Прочие символы относятся к операциям дифференцирования. Термин индуктивность введен намного позже – в 1886 году Оливером Хэвисайдом. Формула резонансной частоты, зависящей от электроемкости конденсатора и индуктивности катушки, выведена Джеймсом Максвеллом в 1868 году.

Урок 28. электрическая ёмкость. конденсатор - Физика - 10 класс

Физика, 10 класс

Урок 28. Электрическая ёмкость. Конденсатор

Перечень вопросов, рассматриваемых на уроке:

  1. Электрическая ёмкость
  2. Плоский конденсатор
  3. Энергия конденсатора

Глоссарий по теме:

Конденсатор – устройство для накопления электрического заряда.

Электроёмкостью конденсатора называют физическую величину, численно равную отношению заряда, одного из проводников конденсатора к разности потенциалов между его обкладками.

Под зарядом конденсатора понимают модуль заряда одной из его обкладок.

Последовательное соединение – электрическая цепь не имеет разветвлений. Все элементы цепи включают поочередно друг за другом. При параллельном соединении концы каждого элемента присоединены к одной и той же паре точек.

Смешанное соединение - это такое соединение, когда в цепи присутствует и последовательное, и параллельное соединение.

Энергия конденсатора прямо пропорциональна квадрату напряжённости электрического поля внутри его:

Для любых конденсаторов энергия равна половине произведения электроёмкости и квадрата напряжения.

Основная и дополнительная литература по теме:

1. Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. Физика. 10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. С. 321-330.

2. Рымкевич А. П. Сборник задач по физике. 10-11 класс.- М.:Дрофа,2009. С. 97-100.

Теоретический материал для самостоятельного изучения

Конденсатор при переводе с латиницы означает, то что уплотняет, сгущает – устройство, предназначенное для накопления зарядов энергии электрического поля. Конденсатор состоит из двух одинаковых параллельных пластин, находящихся на малом расстоянии друг от друга. Главной характеристикой этого прибора, является его электроёмкость, которая зависит от площади его пластин, расстояния между ними и свойств диэлектрика.

Заряд конденсатора определяется – модулем заряда на любой одной из её обкладок. Заряд конденсатора прямо пропорционален напряжению между обкладками конденсатора. Коэффициент пропорциональности С называется электрической ёмкостью, электроёмкостью или просто ёмкостью конденсатора.

Электрической ёмкостью конденсатора называется физическая величина, которая численно равна отношению заряда, одного из проводников конденсатора к разности потенциалов между его обкладками.

Чем больше площадь проводников и чем меньше пространство заполняющего диэлектриком, тем больше увеличивается ёмкость обкладок конденсатора.

Измеряется электрическая ёмкость в Международной системе СИ в Фарадах. Эта единица имеет своё название в честь английского физика экспериментатора Майкла Фарадея который внёс большой вклад в развитие теории электромагнетизма. Один Фарад равен ёмкости такого конденсатора, между пластинами которого возникает напряжение, равное одному Вольту, при сообщении заряда в один Кулон.

Электрическая ёмкость конденсаторов определяется их конструкцией, самыми простыми из них являются плоские конденсаторы.

Чем больше площадь взаимного перекрытия обкладок и чем меньше расстояние между ними, тем значительнее будет увеличение ёмкости обкладок конденсатора. При заполнении в пространство между обкладками стеклянной пластины, электрическая ёмкость конденсатора значительно увеличивается, получается, что она зависит от свойств используемого диэлектрика.

Электрическая ёмкость плоского конденсатора зависит от площади его обкладок, расстояния между ними, диэлектрической проницаемости диэлектрика, заполняющего пространство между обкладками и определяется по формуле:

где – электрическая постоянная.

Для того чтобы получить необходимую определённую ёмкость, берут несколько конденсаторов и собирают их в батарею применяя при этом параллельное, последовательное или смешанное соединения.

Параллельное соединение:

q = q1 + q2 + q3

u = u1 = u2 = u3

с = с123

с = n∙с

Последовательное соединение:

q = q1 = q2 = q3

u = u1 + u2 + u3

Энергия конденсатора равна половине произведения заряда конденсатора напряжённости поля и расстояния между пластинами конденсатора: u = Еd

Эта энергия равна работе, которую совершит электрическое поле при сближении пластин, это поле совершает положительную работу. При этом энергия электрического поля уменьшается:

Для любых конденсаторов энергия равна половине произведения электроёмкости и квадрата напряжения:

Примеры и разбор решения заданий:

1. Плоский конденсатор, расстояние между пластинами которого равно 3 мм, заряжен до напряжения 150 В и отключен от источника питания. Разность потенциалов между пластинами возросла до 300 В.

  1. Во сколько раз увеличилась разность потенциалов между пластинами?
  2. Какое расстояние между пластинами конденсатора стало после того, как пластины были раздвинуты?
  3. Во сколько раз изменилось расстояние между пластинами.

Решение:

Электрическая ёмкость конденсатора определяется по формуле:

1.По условию разность потенциалов увеличилось в два раза. U1 = 150В→ U2 = 300В.

2.По условию d = 3 мм, если разность потенциалов увеличилось в два раза, по формуле соответственно и расстояние между пластинами увеличилось в два раза, и d =2·3 мм = 6 мм.

3.Расстояние между пластинами увеличилось в два раза.

Ответ:

1. 2

2. 6мм

3. 2

2. Конденсатор электроёмкостью 20 мкФ имеет заряд 4 мкКл. Чему равна энергия заряженного конденсатора?

Дано: С = 20 мкФ = 20 · 10-6 Ф, q = 4 мкКл = 4·10-6 Кл.

Найти: W.

Решение:

Энергия заряженного конденсатора W через заряд q и электрическую ёмкость С определяется по формуле:

Ответ: W = 0,4 мкДж.

Электроемкость. Конденсаторы

Что такое электроемкость проводников

Если у нас есть два проводника, которыми мы сообщаем некоторые заряды (обозначим их соответственно q1 и q2), то возникнет определенная разность потенциалов. Ее величина будет зависеть от формы проводников, а также от исходных величин зарядов. Обозначим такую ​​разность Δφ. Если мы говорим о разности, развивающей в электрическом поле между двумя точками, то ее обычно обозначают U.

В рамках темы данной статьи нам больше всего интересна такая разность потенциалов между проводниками, когда их заряды противоположны по знаку, но равны друг другу по модулю. В таком случае мы можем ввести новое понятие - электрическая емкость (электроемкость).

Определение 1

Электрической емкостью системы, состоящей из двух проводников, называется отношение заряда одного проводника (q) к разности потенциалов между этими двумя проводниками.

В виде формулы это записывается так: C = q∆φ = qU.

Для измерения электрической емкости единица, называемая фарад . Она обозначается буквой Ф.

1Ф = 1 Кл1 В.

Конфигурация и размеры проводников, а также свойства диэлектрика определения электроемкости заданной системы. Наибольший интерес для нас предлагает проводники особой формы, называемые конденсаторами.

Определение 2

Конденсатор - это проводник, конфигурация которого позволяет локализовать (сосредотачивать) электрическое поле в одной выделенной части пространства. Проводники, составляющие конденсатор, называются обкладками.

Определение 3

Если мы возьмем две плоские пластины из проводящего материала, расположим их на небольшом расстоянии от друга и проложим между ними слой диэлектрика, то мы получим простейший конденсатор, называемый Плата. При его работе электрическое поле будет располагаться в промежутке между пластинами, но небольшая часть этого поля будет рассеиваться вокруг них.

Определение 4

Часть электрического поля вблизи конденсатора называется полем рассеяния .

может работать как с той частью электрического поля, которая расположена между обкладками. Однако пренебречь полем рассеяния допустимо далеко не всегда, поскольку это может привести к ошибочным расчетам из-за потенциального характера электрического поля.

Рисунок 1.6.1. Электрическое поле в плоском конденсаторе.

Рисунок 1.6.2. Электрическое поле конденсатора без учета поля рассеяния, не обладающая потенциальностью.

Модуль напряженности электрического поля, который создает обкладка в плоском конденсаторе, выражается следующим видом:

E1 = σ2ε0.

Исходя из принципа суперпозиции, можно утверждать, что сила E → поля, размер экрана пластины конденсатора, будет равна сумме напряженностей E + → и E- → полей каждой пластины, то есть E → = E + → + E- →.

Векторы напряженностей пластин во внутренней части конденсатора параллельны друг другу.Значит, мы можем выразить модуль напряженности их суммарного поля в виде формулы E = 2E1 = σε0.

Слишком сложно?

Не парься, мы поможем разобраться и подарим скидку 10% на любую работу

Опиши задание

Как рассчитать электроемкость конденсатора

Вне пластин напряженности будут использоваться противоположные друг от друга стороны, значит, E будет равно нулю. Это представление о поверхностной плотности позволяет нам представить заряд каждой обкладки как q, а ее площадь как S, то соотношение q. Умножив E расстояние между обкладками (d), мы получим разность потенциалов между пластинами в однородном электрическом поле. Теперь возьмем оба этих соотношения и выведем из них формулу, по которой может быть рассчитана электрическая емкость конденсатора.

C = q∆φ = σ · SE · d = ε0Sd.

Определение 5

Электрическая емкость плоского конденсатора - величина, обратно пропорциональная расстояния между обкладками и прямо пропорциональную их площади.

Заполнение пространства между проводниками диэлектрических материалов может увеличить электроемкость плоского конденсатора в число раз, кратное undefined.

Определение 6

Введем обозначение емкости в виде буквы С и запишем это в виде формулы:

C = εε0Sd.

Данная формула называется формулой электроемкости плоского конденсатора .

Конденсаторы бывают не только плоскими. Возможны и другие конфигурации, также обладающие специфическими свойствами.

Определение 7

Сферическим конденсатором называется система из 2-х концентрических сфер, сделанных из проводящего материала, радиусы которых равны R1 и R2 соответственно.

Определение 8

Цилиндрическим конденсатором называется система из двух проводников цилиндрической формы, длина которой равна L, а радиусы R1 и R2.

Обозначим проницаемость диэлектрического материала как ε и запишем формулы, по которому можно найти электрическую емкость конденсаторов:

  • C = 4πε0εR1R2R2-R1 (сферический конденсатор),
  • C = 2πε0εLlnR2R1 (цилиндрический конденсатор).

Как рассчитать электроемкость батареи конденсаторов

Определение 9

Если мы соединим несколько проводников между собой, то мы получим конструкцию, называемую батареей .

Способы соединения могут быть разными. Если соединение будет параллельным, то напряжение всех конденсаторов в системе будет одинаково: U1 = U2 = U, а заряд можно найти по формулам q1 = С1U и q2 = C2U. При таком соединении вся система может считаться одним конденсатором, электроемкость которого равна C, заряд - q = q1 + q2, а напряжение - U. В виде формулы это выглядит так:

С = q1 + q2U или C = C1 + C2

Определение 10

Если в батарее конденсаторов элементы соединены параллельно, то для на общей электроемкости.

Рисунок 1.6.3. Конденсаторы, соединенные параллельные. С = С1 + С2

Рисунок 1.6.4. Конденсаторы, соединенные последовательно: 1C = 1C1 + 1C2

Если же батарея состоит из двух соединенных конденсаторов, то заряды обоих будут одинаковы: q1 = q2 = q. Найти их напряжения можно так: U1 = qC1 и U2 = qC2. Такую систему тоже можно считать одним конденсатором, заряд которого равен q, а напряжение U = U1 + U2.

C = qU1 + U2 или 1C = 1C1 + 1C2

Определение 11

Если конденсаторы в батарее соединены последовательно, то для нахождения общей электроемкости, нам нужно сложить величину, обратные емкостям каждого из них.

Справедливость формул, приведенных выше, не зависит от количества конденсаторов в батарее.

Рисунок 1.6.5. Смоделированное электрическое поле плоского конденсатора.

Формула электроемкости конденсатора

Установки должны иметь такую ​​форму и быть установленными так, что это поле устанавливается системой, максимально ограничено в ограниченной области пространства между обкладками.

Назначение конденсатора в том, чтобы накапливать и отдавать в электрической цепи заряд.

Основной характеристикой конденсатора является электрическая емкость (C). Электрическая емкость конденсатора - это взаимная емкость принадлежащих ему обкладок:

q - величина заряда на обкладке; - разность потенциалов между обкладками.

Электрическая ёмкость конденсатора зависит от диэлектрической проницаемости диэлектрика, который заполняет пространство между его обкладками.Если пространство между обкладками одного конденсатора заполнено диэлектриком с проницаемостью равной, а у второго конденсатора воздух между пластинами, то емкость конденсатора с диэлектриком (C) в раз больше, чем емкость воздушного конденсатора ():

Формула электроемкости основных типов конденсаторов

При расчете электроемкости плоского конденсатора нарушение однородности поля около краёв обкладок обычно пренебрегают. Это становится возможным, если расстояние между пластинами меньше, чем линейные размеры обкладок. В таком случае электрическую емкость плоского конденсатора вычисляют при помощи формулы:

где - электрическая постоянная; S - площадь каждой (или наименьшей) пластины; d - расстояние между пластинами.

Если плоский конденсатор между обкладками имеет N слоев диэлектрика, при этом при толщине каждого слоя равна, а диэлектрическая проницаемость, то его электрическую емкость составляют при помощи формулы:

Цилиндрический конденсатор составляет две соосные (цилиндрические) проводящие поверхности, разного радиуса, пространство между заполнено диэлектриком.При этом емкость цилиндрического конденсатора находят как:

где l - высота цилиндров; - радиус внешней обкладки; - радиус внутренней обкладки.

У сферического конденсатора обкладками две концентрические сферические проводящие поверхности, пространство обкладками заполняет диэлектрик. Емкость сферического конденсатора вычисляют как:

где - радиусы обкладок конденсатора. Если, то можно считать, что, тогда, мы имеем:

так как - площадь поверхности поверхности, и если обозначить, то получим формулу для емкости плоского конденсатора (3).Если расстояние между обкладками сферического и цилиндрического конденсаторов малы (в сравнении с их радиусами), то в приближенных расчетах используют формулу емкости для плоского конденсатора.

Электрическая емкость для линии из двух проводов находят как:

где d - между осями проводов; R - радиус проводов; l - длина линии.

Формулы для расчета электрических соединений конденсаторов

Если конденсаторы соединены параллельно, то суммарная емкость батареи (C) находится как сумма емкостей отдельных конденсаторов ():

При последовательном соединении конденсаторов емкость батареи вычисляют как:

Если соединены N конденсаторов, с емкостями то емкость батареи найдем как:

Сопротивление конденсатора

Если конденсатор включен в цепь с постоянным током, то сопротивление конденсатора можно считать бесконечно большим.

Примечания конденсатора в цепи переменного тока, его сопротивление носит название емкостного, и вычисляют его с помощью формулы:

где - частота переменного тока; - угловая частота тока; C - емкость конденсатора.

Энергия поля конденсатора

Электрическое поле локализованное между пластинами конденсатора обладает энергией, которую можно вычислить при помощи формулы:

где –энергия поля конденсатора; q - заряд конденсатора; C - емкость конденсатора; - разность потенциалов между обкладками конденсатора.

Энергия поля плоского конденсатора:

Примеры решения задач по теме «Электроемкость конденсатора»

Электрическая емкость. Конденсаторы. Емкость конденсатора.

Электрическая емкость. Конденсаторы.

Емкость уединенного проводника.

Уединенным будем на проводник, размеры которого много меньше расстояний до окружающих тел. Пусть это будет радиусом r . Если потенциал на бесконечности принять за 0, то потенциал заряженного уединенного равенства:, где e - диэлектрическая проницаемость окружающей среды. Следовательно:

эта величина не зависит ни от заряда, ни от этой величины зависит только размерами шара (радиусом) и диэлектрической проницаемостью среды. Этот вывод справедлив для проводника любой формы.

Электрической емкостью проводника наз.отношение заряда проводника к его потенциалу:.

Емкость проводника определяется геометрической формой, размерами и свойствами среды (от материала проводника не зависит). Чем больше емкость проводника, тем меньше меняется возможность при изменении заряда.

Емкость шара в СИ:

Единицы емкости.

Емкость (фарад) обладает таким проводником, у которого потенциал возрастает на 1 В при сообщении ему заряда в 1 Кл .

Емкость обладал бы уединенным шаром, радиус которого был бы равен 13 радиусам Солнца.

Емкость Земли 700 мкФ

Если проводник не уединенный, то потенциалы складываются по правиламу суперпозиции и емкость проводника меняется.

1 мкФ = 10 -6 Ф

1нФ = 10 -9 Ф

1пФ = 10 -12 Ф

Конденсаторы (конденсатор - сгущение) .

Можно создать систему проводников, емкость которой не зависит от окружающих тел. Первые конденсаторы - лейденская банка (Мушенбрук, сер. XVII в.).

Конденсатор представляет собой систему из двух проводников, разделенных слоем диэлектрика, толщиной которого является по сравнению с размерами проводников. Проводники наз. обкладками конденсатора. Если заряды пластин конденсатора одинаковы по модулю и противоположны по знаку, то под зарядом конденсатора понимают абсолютное значение заряда одной из его обкладок.

На рисунке - плоский и сферический конденсаторы. Поле плоского конденсатора почти все сосредоточено внутри (у идеального - все).Усферического - все поле сосредоточено между обкладками.

Электроемкость конденсатора называют заряд конденсатора к разности потенциалов между обкладками:.

При подключении конденсатора к батарее аккумуляторов поляризация диэлектрика внутри конденсатора и на обкладках появляютсязаряды - конденсатор заряжается.Электрические поля окружающих тел почти не проникают через металлические обкладки и их разность потенциалов между ними.

Емкость плоского конденсатора.

, т.о. емкость плоского конденсатора зависит только от его размеров, формы и диэлектрической проницаемости. Для создания конденсатора большой необходимо увеличить площадь пластин и уменьшить толщину слоя диэлектрика.

Емкость сферического конденсатора .

Если зазор между обкладками мал по сравнению с радиусами, то формула переходит в формулу емкости плоского конденсатора.

Виды конденсаторов

При подключении электролитического конденсатора необходимо соблюдать полярность.

Назначение конденсаторов

  1. Накапливать на короткое время заряд или энергию для быстрого изменения потенциала.
  2. Не пропускать постоянный ток.
  3. В радиотехнике: колебательный контур, выпрямитель.
  4. Фотовспышка.

Электрическая ёмкость: формулы, единицы измерения

Одним из важных параметров, учитываемых в электрических цепях, является электрическая емкость - способность проводников накапливать заряды.Понятие аппарата как для уединенного проводника, так и для системы, состоящей из двух и более проводников. В частности, емкостью обладают конденсаторы, состоящие из двух металлических пластин, разделенных диэлектриком или электролитом.

Для накопления зарядов широко применяются используемые в качестве источников тока тока для различных устройств. Характерная характеристика, определяющая время работы аккумулятора, является его электроемкостью.

Определение

Если диэлектрик, например, эбонитовую палочку, наэлектризовать трением то электрические заряды сконцентрируются в местах соприкосновения с электризующим материалом. При этом, другой конец палочки можно насытить противоположно знак и такая наэлектризованность будет сохраняться.

Совсем по-другому ведут себя проводники, помещенные электрическое поле. Заряды распределяются по их поверхности, образуя некий электрический потенциал.Если поверхность ровная, как у палочки, то заряды распределятся равномерно. Под внешним электрическим полем в проводнике происходит распределение электронов, чтобы внутри сохранялся баланс взаимной компенсации негативных и позитивных зарядов.

Внешнее электрическое поле притягивает электроны на поверхность проводника, компенсируя при этом положительные заряды внеш. По отношению к проводнику имеет место электростатическая индукция, а заряды на его поверхности называются индуцированными.При этом на концах проводника плотность зарядов будет несколько выше.

На металлическом шаре заряды равномерно равномерно по всей поверхности. Наличие полости любой конфигурации не влияет на процесс распределения.

Однако, если проводник убрать из зоны действия поля, то его заряды перераспределятся таким образом.

На рисунке 1 изображена схема заряженного разнополюсного диэлектрика и проводника, удаленного из зоны действия электростатического поля.Благодаря тому, что диэлектрик восстановил заряды, уединенный проводник восстановил свою нейтральность.

Рис. 1. Распределение зарядов

Интересное явление наблюдается с двумя проводниками, разделенными диэлектриком. Если одному из них сообщить положительный заряд, а другому - отрицательный, то после убирания источника электризации заряды на поверхности проводников сохранятся. Заряженные таким образом проводники обладают разностью потенциалов.

Заряды, накопившиеся на диэлектрике, уравновешивают внутренние взаимодействия в каждом из проводников, не позволяя им разрядиться.Величина заряда зависит от площади поверхности параллельных проводников и от свойств диэлектрика, расположенного между ними.

Свойство накопленный заряд называется электроемкостью. Точнее говоря, - это характеристика проводника, физическая величина определяющая меру его способности в накоплении электрического заряда.

Накопленное электричество можно снять с проводников короткого замыкания их или через нагрузку. С целью увеличения длины на практике параллельные пластины или длинные полоски тонкой фольги, разделённой диэлектриком.Полоски сворачивают в тугой цилиндр для уменьшения объема. Такие конструкции называют конденсаторами.

На рисунке 2 изображена схема простейшего конденсатора с плоскими обкладками.

Рис. 2. Схема простого конденсатора

Существуют конденсаторы других типов:

  • переменные;
  • электролитические;
  • оксидные;
  • бумажные;
  • комбинированные и другие.

Важной характеристикой конденсатора, как и других накопительных систем, является его электрическая емкость.

Формулы

На рисунке 3 наглядно формулы для определения емкости, в т. ч. и для сферы.

Рис. 3. Электроёмкость проводника

По отношению к конденсатору, для определения его емкости применяют формулу: C = q / U . То есть, эта величина прямо пропорциональна заряду одной из обкладок и обратно пропорциональна разнице потенциалов между обкладками (см. Рис. 4).

Ёмкость конденсатора

О других способах определения ёмкости конденсатора ч в нашей статье: https: // www.asutpp.ru/kak-opredelit-emkost-kondensatora.html

Единицы измерения

За единицу измерения величины электроемкости принимается фараду: 1 Ф = 1 Кл / 1В. Фарада размером огромная, для измерения емкости на практике она мало пригодна. Поэтому используйте приставки:

  • мили (м) = 10 -3 ;
  • микро (мк) = 10 -6 ;
  • нано (н) = 10 -9 ;
  • пико (пк) = 10 -12 ;

Например, электрическая емкость 1 мкф = 0,000001 Ф. Параметр зависит от геометрических размеров, конфигурации проводника и материала диэлектрика.

Уединенный проводник и его емкость

Уединенным называют проводник, привязанный к другим элементам, можно пренебречь. Предполагается, что все другие проводники бесконечно удалены от, а как известно, потенциал точки, бесконечно удаленной, равен 0.

Электрическая емкость C уединенного проводника, определяет как количество электричества q , которое требуется для повышения электрического электрического на 1 В: С = q / ϕ . Параметр не зависит от материала, из которого изготовлен проводник.

Конденсаторы постоянной емкости

Эра накопителей электричества началась с воздушных конденсаторов. Благодаря плоскому конденсатору с большой площадью обкладок физики смогли понять, как взаимная емкость конденсируется площадями пластин, что позволяет им создать конденсаторы с химической емкостью (см. Рис. 5).

Рис. 5. Конденсатор контрольной емкости

Идея изменения емкости поверхности в том, что посредством поворота плоской обкладки площади поверхности, которая находится напротив другой пластины.Если обкладки располагались точно друг против друга, то напряженность поля между ними была максимальной. При смещении одной из пластин на некоторый угол, напряженность уменьшалась, что приводило к изменению емкости. Таким образом, можно было плавно управлять накопительной способностью конденсатора.

Детали с примерной емкостью применения первых радиоприемников для поиска частоты нужной станции. Данный принцип используется по сегодняшний день в различных аналоговых схемах.

Большую популярность приобрели электролитические конденсаторы. В качестве одной из обкладок у них используется электролит, обладающий высокими показателями диэлектрической проницаемости. Благодаря диэлектрическим свойствам электролитов такие конденсаторы обладают большими емкостями.

Главные их преимущества электролитического конденсатора:

  • высокие показатели емкости при малом объеме;
  • применение в цепях с постоянным током.

Недостатки:

  • необходимо соблюдать полярность;
  • ограниченный срок службы;
  • чувствительность к повышенному напряжению.

Высокую электрическую прочность имеют плоские конденсаторы, у которых в качестве диэлектрического материала керамика. Они используются в цепях с переменным током и выдерживают большие напряжения.

Сегодня производство товаров на рынке конденсаторов различных типов, с высокими показателями проницаемости диэлектриков.

Конденсаторы различных типов

Аккумуляторы и электроемкость

Накопители электричества большой емкости (аккумуляторы) состоят из положительных и негативных пластин, погруженных в электролит. Во время зарядки часть элементов электролита распадается на ионы, которые оседают на пластине. Образуется разность потенциалов между пластинами, что является причиной возникновения ЭДС при подключении нагрузки.

С игрой напряжения увеличения аккумуляторы соединяют в батареи. Разница потенциалов одной секции около 2 В. Для получения аккумулятора на 6 необходимо создать батарею из трех секций, а на 12 В - батарею из 6 секций.

Для характеристик аккумуляторов (батарейки) используются параметры:

  • емкости;
  • номинального напряжения;
  • верхнего тока разряда.

Единицей емкости является ампер-час (А * ч) или кратные ей миллиампер-часы (мА * ч). Емкость аккумулятора зависит от площади пластин.Увеличить емкость можно путем параллельного подключения нескольких секций, но такой способ почти не используется, так как проще и надежнее создать аккумулятор с помощью больших пластинами.

Электроёмкость плоского конденсатора | Физика. Закон, формула, лекция, шпаргалка, шпора, доклад, ГДЗ, решебник, конспект, кратко

конденсатором обычно называют систему плоских проводящих пластин - обкладок, разделенных диэлектриком. Простота конструкции такого конденсатора позволяет сравнительно просто прогнозировать его электроемкость и получать значения, совпадающие с результатами эксперимента.

Рис. 4.71. Плоский конденсатор на электрометре

Укрепим две металлические пластины на изоляционных подставках и соединим с электрометром, что одна из пластин будет присоединена к стержню электрометра, а вторая - к его металлическому корпусу (рис. 4.71). При таком соединении будет измерять разность потенциалов между пластинами, которые образуют плоский конденсатор из двух пластин.Проводя исследования, необходимо помнить, что

при постоянном значении заряда пластин уменьшение разности потенциалов свидетельствует об увеличении электроемкости конденсатора и наоборот.

Сообщим пластинам разноименные заряды и отметим отклонение стрелки электрометра. Приближая друг к другу пластины (уменьшая расстояние между ними), заметим уменьшение разности потенциалов. Таким образом, уменьшении расстояния между пластинами конденсатора его электроемкость увеличивается. При увеличении увеличения показания стрелки электрометра уменьшаются, что уменьшает уменьшение электроемкости.

Электроемкость плоского конденсатора обратно пропорциональнаю между его обкладками.

С ~ 1/ d ,

где d - расстояние между обкладками.

Рис. 4.72. График зависимости емкости плоского конденсатора от расстояния между пластинами
Рис.4.73. При расчетах емкости плоских конденсаторов учитывают площадь перекрытия пластин

Эту зависимость можно изобразить график обратной пропорциональной зависимости (рис. 4.72).

Будем смещать пластины относительно другой в параллельных плоскостях, не изменяя положение между ними.

При этой площади перекрытия пластин будет уменьшаться (рис. 4.73). Увеличение разности потенциалов, отмеченное электрометром, будет свидетельствовать об уменьшении электроемкости.

Увеличение площади перекрытия пластан привести к увеличению увеличения.

Электроемкость плоского конденсатора пропорциональна площади пластин, перекрываются.

С ~ S,

где S - площадь пластин.

Рис. 4.74. График зависимости емкости плоского конденсатора от площади его пластин

Эту зависимость можно представить графиком прямой пропорциональной зависимости (рис.4.74).

Возвратив пластины в начальное положение, внесем в пространство между ними плоский диэлектрик. Электрометр отметит уменьшение разности потенциалов между пластинами, что свидетельствует об увеличении электроемкости конденсатора. Если между пластинами поместить другой диэлектрик, то изменение электроемкости будет иным.

Электроемкость плоского конденсатора зависит от диэлектрической проницаемости диэлектрика.

С ~ ε ,

где ε - диэлектрическая проницаемость диэлектрика.Материал с сайта http://worldofschool.ru

Рис. 4.75. График мощности плоского конденсатора от диэлектрической проницаемости диэлектрика

Такая зависимость на графике рис. 4.75.

Результаты опытов можно обобщить в виде формулы ёмкости плоского конденсатора :

C = εε 0 S / d,

где S - площадь пластины; d - расстояние между ними; ε - диэлектрическая проницаемость диэлектрика; ε 0 - электрическая постоянная.

Конденсаторы, которые состоят из двух пластин, в практике применяются очень редко. Как правило, конденсаторы имеют много пластин, соединенных между собой по форме.

На этой странице материал по темам:
  • Сообщение на тему электроемкость

  • Физика 10 класс. рассчитать площадь и электроемкость плоского конденсатора.

  • Примеры решения задач поизменению энергии в плоском конденсаторе

  • Решение задач по теме электроемкость плоского конденсатора

  • При увеличении площади перекрывания пластин конденсатора

Вопросы по этому материалу:
  • Какое строение плоского конденсатора?

  • По изменению какой величина в опыте можно делать заключение об изменении электроемкости?

  • В какой проводится опыт, в котором установлена ​​зависимость электроемкости конденсатора от его параметров?

  • Как зависит от мощности плоского конденсатора от мощности площади пластин?

  • Как зависит электроемкость плоского конденсатора от расстояния между пластинами?

  • Как влияет диэлектрик на электроемкость конденсатора?

Электроёмкость конденсатора: формулы и история

Электроемкость конденсатора - физическая величина, характеризующая процесс заряда проводников, разделенных слоем диэлектрика. Используется многочисленными математическими расчетами, маркируется на корпусе изделия.

Формулы

Электроемкость конденсатора выражать через запасаемый заряд q при приложенном напряжении U подобным образом:

C = q / U.

Происхождение формулы - загадка. Известно только: из теоремы Гаусса по напряженности электрического поля найдем электроемкость конденсатора. Кто провел расчет, нигде не говорится. Физическая величина изначально в системе СГС отсутствовала, в 1861 году ввела специальная форма, сформированная физиками.

По сведениям, впервые электроемкость конденсатора определил введенный термины в обиход. Подразумеваем Алессандро Вольту. Поздние 70-е (XVIII века) ученый уделил исследованиям вопроса, установил: электроемкость можно выразить через накапливаемый заряд, приложенное к электродам напряжение.

Вдобавок удаётся часто встретить формулу электроемкости плоского конденсатора:

Авторы избегают судить, кто занимался расчетами выражения. Рассуждая логически, кого интересовала электроемкость плоского конденсатора до появления на свет изобретения Полака. Лейденские банки по-другому распределяют заряд. Рассуждения вызывают к началу XX века. Возможно, вопросом занимались Тесла, Герц. С меньшей вероятностью - Попов.

Фамилии названы по критериям заинтересованности переменным током. Тесла изучал вопросы безопасности электричества, передачи на расстояние, конструировал двигатели. Герц и Попов исследовалины, заведомо настраиваются на некоторую длину волны, которую проще получить, применяя колебательный контур.Следовательно, необходимо представление об электроемкости конденсатора, катушках индуктивности.

Джеймс Максвелл, лорд Кельвин, Вильгельм Вебер много внимания уделяет единым системам совершенствования физических величин. Вероятно, кто-то приложил руку к исследованию конденсаторов. Ясно одно - в мировой истории естественных наук масса белых пятен, когда дело касается русскоязычных источников. Портал ВашТехник одним из первых начнёт публиковать новейшие исследования в области правильного понимания произошедших событий.

История

Нетерпеливым читателям докладываем: Алессандро Вольта ввел собственно термин емкости. Неизвестно точно, употреблял ли кто раньше, но в своей работе итальянский ученый, называя электрофорус конденсатором, одновременно применяет к нему термин емкости. Как сосуду, куда можно «налить» заряд из емкости. Конденсатором зовет за схожесть процесса с осаждением паров: понемногу наберем произвольное количество электричества. По большому счету, это верно.

Термин конденсатор

Исторически первым конденсатором считают лейденскую банку.Поныне ходят споры, кто изобрел прибор, оба ученых, увлеченных событиями, избегали вести аккуратных записей. Бесспорно одно - электроемкость прибора измерить было нельзя, отсутствовало соответствующее понятие «электроемкость конденсатора».

Скрин печатного варианта трактата Вольты, 1782 год

Придумавший термин бессилен произнести раньше, нежели Алессандро Вольта в 1782 году, докладывая Королевскому Научному обществу изыскания в области электростатики, чтобы понять, откуда берется электричество. Известно, в течение следующих пяти лет Луиджи Гальвани откроет «животное электричество», приведенное Вольту прком к созданию первого элемента питания. Докладывая обществу, молодой ученый лишен упомянутых знаний, светило пытается понять, откуда появляется заряд. Рассуждает приблизительно так: «Настоящее время немало свидетельств атмосферного электричества. Люди бессильны найти следы присутствия. Вероятно, означает: созданная электроскопы слишком слабы, неспособны уловить столь тонкую материю.Следовательно, требуется найти способ забрать из воздуха флюиды ».

Выполняя сказанное, Алессандро Вольта предлагает приспособление, называемое электрофорусом (не путать с электрофорной машиной). Прибор захватывает флюиды атмосферного проводника (воздуха). Принцип служения напоминает процесс конденсации: собирает электричество.

Электрофорус

Запад электрофорус называет генератором емкостного типа. Указанное выше позволяет: подобное определение прилепилось благодаря написанному Английскому Королевскому обществу Вольтой. Устройство придумано другим людям - шведским физиком Джоном Кларком Вилке. Случилось двумя десятилетиями ранее - 1762 год.

Ныне считается популярностью прибору придал Вольта, называя любимца вечным генератором электричества. Тоже по сути правильно, тереть резину можно тысячелетиями. Больше «конденсатор» напоминает (см. Рис.) Здоровенную печать. Сверху, помимо основной центральной ручки, стоит - снятия отрицательного элемента. Видим три слоя:

  1. Подложка необязательна, на нее наклеивается резина.
  2. Тонкий слой резины служит телом электризации трением.
  3. Сверху - тонкий лист металла, снабженный двумя рукоятками, одна (центральная) изолирована.

Внешний вид электрофоруса

Начав работы, нужно убрать «печать», натереть резину шерстью. Гладкий диск ставится обратно. Площадь соприкосновения с резиной невелика из-за присутствующих шероховатостей, положительный заряд приобретается нескоро. Нужно выждать. Оператор на короткое замыкание заземляет крышку боковой ручкой, снимая отрицательный заряд, снизу остается положительный. Прикасаясь одной рукой к металлу, можно слышать хорошо различимый треск. Резина после поднятия крышки обеспечивает избыток электронов, позволяющий повторить опыт несколько раз (некоторые источники говорят о сотне повторений).

Разнимая тела, резким движением потянув изолирующую рукоятку, оператор получает статическое электричество. Изобретение революционное, примечательно, появилось в считанные годы после отмены закона охоты на ведьм. По заявлению Вольты, круг резины делается по возможности тонким, в пределах 50-й доли дюйма.Удается получить наилучший результат. Лист металла фактически становится пластиной. В противном случае долго придётся ждать наполнения оборота проводника. В простонародье «конденсатор» называют резиновым пирогом. Пирогом, покрытым металлической начинкой.

Действительно ли электрофорус является неисчерпаемым источником энергии? В идеальных условиях, хотя верится с трудом. Отрицательный заряд резины поляризует металлическую пластину, создавая некий потенциал. Вытесненные на внешнюю поверхность электроны снимаются прикосновением заземлителя.Остается разнять составные части электрофоруса. Уничтожить положительный заряд прикосновением, услышав звук проскочившей искры, можно заново начать заряжать опыт.

Электрофорус действительно напоминает конденсатор. После снятия лишнего отрицательного заряда превращается в упомянутый прибор. Долго храниться конденсатор не может, поскольку электроны с резины понемногу будут стекать на металл. Устройство разрядится. Фактически резина, металл отделены друг от друга воздухом, служащим диэлектриком.Вместо резины используем различные полимеры, например, Тефлон.

Осталось заметить: во времена Вольты не знали методы избавления от резины от статического заряда. «Обкладка» конденсатора могла долгое время хранить груз электронов. Вольта предлагает для разрядки образец под солнечные лучи, либо поводить рядом горящей свечой. Через ионизированное пламя электроны покидают конденсатор. Сегодня понятно, достаточно вымыть резину, чтобы следов не осталось статического напряжения. Для работы повторно подвергнуть.

Лейденская банка

Считается, что Феликс Савари обнаружил колебания резонансного контура. Разряжая лейденскую банку через витую нить меди, наблюдал беспорядочное снование стрелки компаса. 1826 год, когда Англия, Франция, Германия, частично Италия лихорадочно исследовали новое явление, привнесенное в научный мир Эрстедом.

Историю создания лейденской банки можно прочитать в соответствующем обзоре. Следует сказать, никто не пытался толком понять, какова электроемкость конденсатора.Не нужно по очевидным соображениям: лейденскую банку преимущественно использовали научные круги, решая специфические задачи. Опыт Феликса Савари надолго остался без внимания…

В 1842 году колебательным контуром, электроемкостью конденсатора занялся наш старый знакомый, сэр Джозеф Генри, изобретатель электромагнитного реле, любитель телеграфа. Изложил письменно после опробования заметок Савари практикой:

«Аномалия, остающаяся так долго без объяснения, которая представляет собой существующую наперекор нашей теории электричества и магнетизма, после тщательного изучения мною отнесена к неизведанным явлениям. Разряд происходит странно (вразрез теории Франклина), ощущение, что, выходя из банки, флюид начинает странствовать взад-вперед. Увиденное принуждает: процесс начинается нормальным образом, происходит несколько сменных направлений, каждый раз амплитуда становится меньше, пока движение затухнут вовсе. Судя по всему, феномен сегодня не может быть объяснен, физики встречались с ним (Савари), но оказались бессильны ».

очевидно, ученого совершенно не интересует электроемкость конденсатора - мысли поглощены аномалией, хотелось бы исследовать.Пятью годами позже, ознакомившийся с отчетом Генри физик Гельмгольц на встрече Физического общества Берлина, говорит:

«Проводя электролиз, заметил необычные колебания. Такое ощущение, процесс колебания продолжается, пока само vis viva не исчезнет навсегда, поглощенное суммарным сопротивлением цепи. Создается впечатление, по контуру текут два тока противоположных ориентиров, верх берет то один, то другой ».

Конец спорам положил знаменитый Вильям Томсон, нареченный лорд Кельвин. Математически исследовав процесс, заявлено: в цепи присутствуют две вещи: электроемкость конденсатора и индуктивность свернутой медной проволоки. Работа на переходных электрических токах стала классической. Хотя лорд Томсон зовет индуктивность электродинамической емкостью смысл, формулы однозначный. Ученый первым заявлением: энергия передается меж конденсатором и катушкой индуктивности, постепенно затухая на активном сопротивлении цепи.

Формула, приведенная на рисунке, дана в современных величинах, обозначения стандартные.С - электроемкость конденсатора, L - индуктивность катушки, q - величина заряда, I - ток цепи. Прочие символы к операциям дифференцирования. Термин индуктивность введен намного позже - в 1886 году Оливером Хэвисайдом. Формула резонансной частоты, зависящей от электроемкости конденсатора и индуктивности катушки, выведена Джеймсом Максвеллом в 1868 году.

Урок 28. электрическая ёмкость. конденсатор - Физика - 10 класс

Физика, 10 класс

Урок 28. Электрическая ёмкость. Конденсатор

Перечень вопросов, рассматриваемых на уроке:

  1. Электрическая ёмкость
  2. Плоский конденсатор
  3. Энергия конденсатора

Глоссарий по теме:

- устройство для накопления.

Электроёмкость конденсатора называют физически равную величину заряда, одного из проводников конденсатора к разности потенциалов между его обкладками.

Под зарядом конденсатора понимают модуль заряда одной из его обкладок.

Последовательное соединение - электрическая цепь не имеет разветвлений. Все элементы цепи включают поочередно друг за другом. При параллельном соединении концевого присоединения к одной и той же паре точек.

Смешанное соединение - это такое соединение, когда в цепи присутствует и последовательное, и параллельное соединение.

Энергия конденсатора прямо пропорциональна квадрату напряжённости электрического поля внутри его:

Для любых конденсаторов энергия эквивалентности произведения электроёмкости и квадрата напряжения.

Основная и дополнительная литература по теме:

1. Мякишев Г. Я., Буховцев Б. Б., Чаругин В. М. Физика. 10 класс. Учебник для общеобразовательных организаций М .: Просвещение, 2017. С. 321-330.

2. Рымкевич А. П. Сборник задач по физике.10-11 класс.- М.: Дрофа, 2009. С. 97-100.

Теоретический материал для самостоятельного изучения

Конденсатор при переводе с латиницы означает, что уплотняет, сгущает - устройство, предназначенное для накопления зарядов энергии электрического поля. Конденсатор состоит из двух одинаковых параллельных пластин, находящихся на малом расстоянии друг от друга. Главной характеристикой этого прибора является его электроёмкость, которая зависит от площади его пластин, расстояния между ними и свойствами диэлектрика.

Заряд конденсатора определяется - модулем заряда на любой одной из её обкладок. Заряд конденсатора прямо пропорционален напряжению между обкладками конденсатора. Коэффициент пропорциональности С называется ёмкостью, электроёмкостью или просто ёмкостью конденсатора.

Электрическая ёмкость конденсатора называется физическая величина, которая численно относится к заряду, из проводников конденсатора к разности потенциалов между его обкладками.

Чем больше площадь проводников и чем меньше пространство заполняющего электронэлектриком, тем больше ёмкость обкладок конденсатора.

Измеряется электрическая ёмкость в Международной системе СИ в Фарадах. Эта единица имеет свое название в честь английского физика экспериментатора Майкла Фарадея который внёс большой вклад в развитие теории электромагнетизма. Один Фарад равен ёмкости такого конденсатора, между пластинами которого возникает напряжение, равное одному Вольту, при сообщении заряда в один Кулон.

Электрическая ёмкость конденсаторов их конструкцией, самыми простыми из них являются плоские конденсаторы.

Чем больше площадь взаимного перекрытия обкладок и чем меньше расстояние между ними, тем значительнее увеличение ёмкости обкладок конденсатора. При заполнении пространства между обкладками стеклянной пластины, электрическая ёмкость конденсатора увеличивается, получается, что она зависит от свойства используемой диэлектрика.

Электрическая ём плоского конденсатора зависит от площади его обкладок, расстояния между ними, диэлектрической проницаемости диэлектрика, заполняющего пространство между обкладками и определяется по формуле:

где - электрическая постоянная.

Для того, чтобы получить собирающую определенную емкость, берут несколько конденсаторов и их батарею применяют при этом параллельное, последовательное или смешанное соединение.

Параллельное соединение:

q = q 1 + q 2 + q 3

u = u 1 = u 2 = u 3

с = с 1 + с 2 + с 3

с = n ∙ с

Последовательное соединение:

q = q 1 = q 2 = q 3

u = u 1 + u 2 + u 3

Энергия конденсатора равна половине приложения заряда конденсатора напряжённости поля и расстояния между пластинами конденсатора: u = Еd

Эта энергия равна работе, которая совершит электрическое поле при сближении пластин, это поле совершает положительную работу. При этой энергии электрического поля уменьшается:

Для любых конденсаторов энергия электрического поля силы и квадрата напряжения:

Примеры и разбор решения заданий:

1. Плоский конденсатор, между пластинами которого которого 3 мм, заряжен напряжения до 150 В и отключен от источника питания. Разность потенциалов между пластинамила до 300 В.

  1. Во сколько увеличилась разность потенциалов между пластинами?
  2. Какое расстояние между пластинами конденсатора стало после того, как пластины были раздвинуты?
  3. Во сколько раз изменилось расстояние между пластинами.

Решение:

Электрическая ёмкость конденсатора определяется по формуле:

1.По условию разность потенциалов увеличилось в два раза. U 1 = 150В → U 2 = 300В.

2.По условию d = 3 мм, если разность потенциалов увеличилась в два, по формуле соответственно и расстояние между пластинами увеличилось в два раза, и d = 2 · 3 мм = 6 мм.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *