Закрыть

Формула емкости конденсатора – Емкость конденсаторов: определение, формулы, примеры.

Содержание

в чём измеряется и от чего зависит величина, как её определить, формулы расчёта

В чем измеряется емкость конденсатораОдин из наиболее важных эффектов, используемых в электронике, — ёмкость конденсаторов. Способность накапливать и хранить электрический заряд нашла применение практически во всех аналоговых цепях и логических схемах. Пассивные устройства, запасающие энергию в виде электрического поля, называли конденсаторами уже в те времена, когда учёные ещё очень мало знали о природе электричества.

История накопителей заряда

Самое раннее письменное свидетельство получения зарядов с помощью трения принадлежит учёному Фалесу из Милета (635—543 гг. до н. э.), который описал трибоэлектрический эффект от взаимодействия янтаря и сухой шерсти. Для приблизительно 2300 последующих лет любое получение электричества заключалось в трении двух различных материалов друг о друга.

Качественный рывок в знаниях о зарядах произошёл в эпоху Просвещения — период революционного развития научной мысли в образованных кругах. В это время электричество становится популярной темой, а энтузиастами было произведено немало опытов и экспериментов с генераторами на основе трения.

Первое устройство для хранения полученных зарядов было создано в 1745 г. двумя электриками (так тогда называли людей, изучающих природу статического электричества), работающими независимо друг от друга: Эвальдом фон Клейстом, деканом собора в Пруссии, и Питером ван Мюссенбруком, профессором математики и физики в университете Лейдена.

Открытие явления произошло во время опытов у обоих экспериментаторов, но с той разницей, что Мюссенбрук, во-первых, сделал немало усовершенствований первоначально созданного оборудования, а во-вторых, письменно сообщил коллегам о своих достижениях. Прошло совсем немного времени и учёные мира стали создавать накопители зарядов собственных конструкций. Это были первые шаги в эволюции конденсаторов, продолжающейся и в наши дни. Основные даты хронологии появления устройств для хранения зарядов:

  • Формула емкости конденсатора
    1746 г. — изобретение лейденской банки в результате экспериментов по доработке устройства Клейста;
  • 1750 г. — опыты Бенджамина Франклина с батареями конденсаторов;
  • 1837 г. — публикация Майклом Фарадеем теории диэлектрической поляризации — научной основы работы накопителей;
  • конец XIX в. — начало практического применения лейденских банок вместе с первыми устройствами постоянного тока;
  • начало XX в. — изобретение слюдяных и керамических конденсаторов.

Физика ёмкостных характеристик

Расчет емкости конденсатораУстройства, обладающие способностью хранения энергии в форме электрического заряда и производящие при этом разность потенциалов, называют конденсаторами. В простейшем виде они состоят из двух или более параллельных проводящих пластин, находящихся на небольшом расстоянии друг от друга, но электрически разделённых либо воздухом, либо каким-либо другим изоляционным материалом, например, вощёной бумагой, слюдой, керамикой, пластмассой или специальным гелем.

Если подключить к пластинам источник напряжения, то одна из них получит избыток электронов, а на другой сформируется их дефицит. Ионы и электроны на каждой из этих пластин притягиваются друг к другу, но благодаря диэлектрическому барьеру они не соединяются, а накапливаются на плоскостях проводников. В результате первая пластина (электрод) окажется заряженной отрицательно, а вторая — положительно. Неподвижные заряды создают постоянное электрическое поле, теоретически сохраняемое неограниченное количество времени в незамкнутой электрической цепи.

Поток электронов на пластины называется зарядным током, продолжающим присутствовать до тех пор, пока напряжение на пластинах не сравняется с приложенным. В этот момент конденсатор считается полностью заряженным, то есть зарядов на пластинах становится так много, что они отталкивают вновь поступающие. При подключении к заряженному устройству нагрузки электроны и ионы находят новый путь друг к другу. В этом случае конденсатор работает как источник тока до момента потери разности потенциалов на электродах.

Способность конденсатора хранить заряд Q (измеряется в кулонах) называют ёмкостью. Чем больше площадь пластин и меньше расстояние между ними (благодаря усилению эффекта притяжения зарядов между обкладками), тем большая ёмкость устройства. Степень приближения пластин ограничивается способностью диэлектрика сопротивляться разрядке пробоем между ними.

Таким образом, три характеристики определяют производительность конденсатора:

  • геометрия пластин;
  • расстояние между ними;
  • диэлектрический материал между пластинами.

Единица и формулы расчёта

Ёмкость в виде электрического свойства, способного хранить заряды, измеряется в фарадах (Ф) и обозначается С. Величина названа в честь английского физика Майкла Фарадея. Конденсатор ёмкостью 1 фарад способен хранить заряд в 1 кулон на пластинах с напряжением 1 вольт. Значение С всегда положительно.

Математическое выражение фарада

Какова емкость конденсатораЁмкость конденсатора — постоянная величина, означающая потенциальную способность хранить энергию. Количество заряда, хранимое в отдельно взятый момент, определяется уравнением Q=CV, где V — приложенное напряжение. Таким образом, регулируя напряжение на пластинах, можно увеличивать или уменьшать заряд. Эта формула ёмкости в виде C=Q/V в единичных значениях определяет, в чём измеряется ёмкость конденсатора в СИ, и является математическим выражением фарада.

Специалисты по электронике единицу в один фарад считают не совсем практичной, поскольку она представляет собой огромное значение. Даже 1/1000 F — это очень большая ёмкость. Как правило, для реальных электрических компонентов применяют следующие величины:

  • пикофарад — 10—12 Ф;
  • нанофарад — 10—9 Ф;
  • микрофарад — 10—6 Ф.

Диэлектрическая проницаемость

Фактор, благодаря которому изолятор определяет ёмкость конденсатора, называется диэлектрической проницаемостью. Обобщённая формула расчёта ёмкости конденсатора с параллельными пластинами представлена выражением C= ε (A / d), где:

  • А — площадь меньшей пластины;
  • d — расстояние между ними;
  • ε — абсолютная проницаемость используемого диэлектрического материала.

Виды конденсаторов

Диэлектрическая проницаемость вакуума ε0 является константой и имеет значение 8,84х10—12 фарад на метр. Как правило, проводящие пластины разделены слоем изоляционного материала, а не вакуума. Чтобы найти ёмкость конденсатора, пластины которого находятся в воздухе, можно воспользоваться значением ε0. Разницей диэлектрической проницаемости атмосферы и вакуума можно пренебречь, поскольку их значения очень близки.

На практике в формулах нахождения ёмкости конденсатора используется относительная диэлектрическая проницаемость в качестве коэффициента, означающая, насколько электрическое поле между зарядами уменьшается в диэлектрике по сравнению с вакуумом. Некоторые значения этой величины для различных материалов:

  • 1,0006 — воздух;
  • 2,5—3,5 — бумага;
  • 3—10 — стекло;
  • 5—7 — слюда.

Поскольку эффективность конденсатора зависит от применяемого в нём изолятора, его качество как накопителя можно определить через удельную ёмкость — величину, равную отношению ёмкости к объёму диэлектрика.

Практические измерения

Формула расчёта ёмкости конденсатора в зависимости от площади пластинЗначение ёмкости конденсатора обозначается на корпусе в дробных фарадах или с помощью цветового кода. Но со временем компоненты способны потерять свои качества, поэтому для некоторых критических случаев последствия могут быть неприемлемыми. Существуют и другие обстоятельства, требующие измерений. Например, необходимость знать общую ёмкость цепи или части электрооборудования. Приборов, осуществляющих непосредственное считывание ёмкости, не существует, но значение может быть вычислено вручную или интегрированными в измерительные устройства процессорами.

Для обнаружения фактической ёмкости нередко используют осциллограф как средство измерения постоянной времени (т). Эта величина обозначает время в секундах, за которое конденсатор заряжается на 63%, и равна произведению сопротивления цепи в омах на ёмкость цепи в фарадах: т=RC. Осциллограф позволяет легко определить постоянную времени и даёт возможность с помощью расчётов найти искомую ёмкость.

Существует также немало моделей любительского и профессионального электронного измерительного оборудования, оснащённого функциями для тестирования конденсаторов. Многие цифровые мультиметры обладают возможностью определять ёмкость. Эти устройства способны контролируемо заряжать и разряжать конденсатор известным током и, анализируя нарастание результирующего напряжения, выдавать довольно точный результат. Единственный недостаток большинства таких приборов — сравнительно узкий диапазон измеряемых величин.

Более сложные и специализированные инструменты — мостовые измерители, испытывающие конденсаторы в мостовой схеме. Этот метод косвенного измерения обеспечивает высокую точность. Современные устройства такого типа оснащены цифровыми дисплеями и возможностью автоматизированного использования в производственной среде, они могут быть сопряжены с компьютерами и экспортировать показания для внешнего контроля.

Идея суперконденсатора

Суперконденсаторы, применение

Электричество — чрезвычайно универсальный вид энергии, обладающий одним недостатком — его трудно саккумулировать быстро. Химические батареи способны сохранять большое количество энергии, но требуют нескольких часов для полной зарядки. Этого недостатка лишены конденсаторы — они могут заряжаться практически мгновенно. Но их ёмкость не позволяет хранить большое количество энергии, поэтому весьма заманчивой выглядит идея суперконденсатора, сочетающего лучшие качества химических и электростатических накопителей электричества.

Несмотря на функциональную схожесть, аккумуляторные батареи и конденсаторы устроены совершенно по-разному. Гальванические элементы работают на принципе высвобождения электрической энергии во время химической реакции веществ внутри них. При истощении запаса активных реагентов они прекращают генерировать разность потенциалов и для нового цикла требуют инициирования током обратных химических реакций для восстановления активных веществ. Основные недостатки аккумуляторов по сравнении и конденсаторами:

  • непродолжительный жизненный цикл;
  • невысокая удельная мощность;
  • узкий диапазон температур зарядки и разрядки;
  • неспособность быстро отдать весь запас энергии.

Тем не менее обычные конденсаторы не используются в качестве активных источников напряжения из-за низкой ёмкости. Теоретические и практические суперконденсаторы (ультраконденсаторы) отличаются от обычных крайне высокой ёмкостью при большой плотности хранимой энергии, что позволяет их рассматривать как альтернативу химическим элементам.

Разновидности суперконденсаторовКрупнейшие коммерческие устройства обладают ёмкостью до нескольких тысяч фарад, но их возможности всё равно несопоставимы с аккумуляторами, поэтому подобные устройства используются для хранения зарядов в течение относительно короткого периода времени. Они нашли широкое применение в качестве электрических эквивалентов механических маховиков, чтобы сглаживать напряжение источников питания, например, в ветровых турбинах или рекуперативных тормозных системах электрических транспортных средств.

Первые ультраконденсаторы появились в середине прошлого века и обладали не очень впечатляющими ёмкостями. С тех пор прогресс в совершенствовании материалов привёл к утоньшению диэлектрического слоя до одной молекулы, что позволило создавать устройства с выдающимися характеристиками. Дальнейшее развитие наноиндустрии стало основой для фундаментальных перемен в накоплении электричества. Возможно, в скором времени экологически опасные и капризные химические аккумуляторы заменят суперконденсаторы на основе молекулярно структурированных пластин и диэлектрического слоя.

rusenergetics.ru

Формула емкости конденсатора, С

Если q – величина заряда одной из обкладок конденсатора, а – разность потенциалов между его обкладками, то величина C, равная:

   

называется емкостью конденсатора. Это постоянная величина, которая зависит то размеров и устройства конденсатора.

Рассмотрим два одинаковых конденсатора, разница между которым заключается только в том, что между обкладками одного вакуум (или часто говорят воздух), между обкладками другого находится диэлектрик. В таком случае при равных зарядах на конденсаторах разность потенциалов воздушного конденсатора будет в раз меньше, чем между обкладками второго. Значит емкость конденсатора с диэлектриком (C) в раз больше, чем воздушного ():

   

где – диэлектрическая проницаемость диэлектрика.

За единицу емкости конденсатора принимают емкость такого конденсатора, который единичным зарядом (1 Кл) заряжается до разности потенциалов, равной одному вольту (в СИ). Единицей емкости конденсатора (как и любой эклектической емкости) в международной системе единиц (СИ) служит фарад (Ф).

Формула электрической емкости плоского конденсатора

Поле между обкладками плоского конденсатора обычно считают однородным. Его однородность нарушается только около краев. При вычислении емкости плоского конденсатора этими краевыми эффектами часто пренебрегают. Это следует делать, если расстояние между пластинами мало в сравнении с их линейными размерами. Для расчета емкости плоского конденсатора применяют формулу:

   

где – электрическая постоянная; S – площадь каждой (или наименьшей) пластины; d – расстояние между пластинами.

Электрическая емкость плоского конденсатора, который содержит N слоев диэлектрика толщина каждого , соответствующая диэлектрическая проницаемость i-го слоя , равна:

   

Формула электрической емкости цилиндрического конденсатора

Цилиндрический конденсатор представляется собой две соосных (коаксиальных) цилиндрические проводящие поверхности, разного радиуса, пространство между которыми заполняет диэлектрик. Электрическая емкость цилиндрического конденсатора вычисляется как:

   

где l – высота цилиндров; – радиус внешней обкладки; – радиус внутренней обкладки.

Формула электрической емкости сферического конденсатора

Сферическим конденсатором называют конденсатор, обкладками которого являются две концентрические сферические проводящие поверхности, пространство между ними заполнено диэлектриком. Емкость такого конденсатора находят как:

   

где – радиусы обкладок конденсатора.

Примеры решения задач по теме «Емкость конденсатора»

ru.solverbook.com

формула, в чем измеряется и как, от чего зависит емкость

В схемах электронных устройств конденсаторы выполняют большое количество полезных функций. Хотя конструкция этих приспособлений остаётся максимально простой. Но надо внимательно изучить ёмкость конденсатора и сами устройства, чтобы узнать, какого эффекта можно от них добиться.

Что это такое

Конденсатор — устройство, внутри которого сгущается или собирается электрический заряд в определённых количествах. Можно назвать это приспособление своеобразным аккумулятором. Отличие от существующих аналогов — в готовности сразу отдать всё накопленное, буквально в несколько секунд. Ещё одна отличительная черта — отсутствие внутри источника ЭДС. Как найти ёмкость, будет рассказано далее.

Возможные модели

Для чего нужен

Эти устройства отличаются также широкой сферой применения. Вот лишь некоторые допустимые варианты:

  1. Хранение аналоговых сигналов.
  2. Сохранение цифровых данных.
  3. Сфера телекоммуникационной связи. В этом случае главная функция — регулировка частоты, настройка профессионального оборудования.
  4. Использование при создании различных источников питания.
  5. Сглаживание выпрямленного напряжения на выходе устройств. Другой вопрос — в чём измеряется ёмкость конденсаторов.

Ещё одна возможная функция — генерация высокого напряжения, которое во много раз больше по сравнению с входными параметрами. Конденсаторы могут быть отличным хранилищем для электронов. Даже при отключении цепи от заряда энергия продолжает сохраняться внутри, на протяжении длительного времени.

Разные габариты

Принцип действия

Основные элементы любого конденсатора — это две проводящие обкладки. У каждой из них — свой электрический заряд, знаки у них противоположные. Этот заряд сохраняется благодаря диэлектриком, который разделяет обкладки.

В конденсаторах используется несколько разновидностей материалов в качестве изоляции. Это касается таких решений:

  • Полистирол;
  • Тантал;
  • Слюд;
  • Керамика.

Воздух вместе с бумагой и пластиком тоже популярные материалы, с помощью которых создают конденсаторы. Благодаря их применению обкладки внутри не соприкасаются друг с другом.

Электролитические изделия

Характеристики

На корпусе устройства обычно пишут о том, какие параметры для него характерны. Из других важных сведений из маркировки — дата выпуска, наименование фирмы производителя, тип конденсатора.

  • Показатель номинальной ёмкости.

Интересно. Один из самых важных. ГОСТ 2.702 — основной документ, регулирующий это направление. На схемах без указания единиц измерения пишут ёмкость, если она находится в пределах от 0 до 9 999 пФ. Если диапазон больше — то о микрофарадах обязательно упоминают. На самом конденсаторе соответствующая маркировка тоже стоит.

  • Отклонения от номинального значения.
  • Номинальное напряжение. Благодаря ему проще понять, как определить ёмкость конденсатора, формула которой остаётся одинаковой.

Для работы рекомендуется брать конденсаторы, у которых есть некоторый запас относительно данного параметра. С меньшим значением применять приборы не рекомендуют. Иначе диэлектрик пострадает от пробоя, устройство выйдет из строя раньше указанного времени.

  • Рабочие температуры, постоянный и переменный ток — характеристики дополнительные, информация о них не всегда выносится на этикетку.
  • Конденсаторы бывают однофазными и трёхфазными, для внутренней или наружной установки.

Внутреннее устройство

Величина заряда конденсатора

Как уже говорилось, конденсаторы — это электронные устройства, главное предназначение которых — накопление заряда в определённых количествах. Эта способность зависит от другой главной характеристики, получившей название ёмкости.

Её можно определить по формуле:

C = q/U.

Это как соотношение между количеством электрического заряда и напряжением. Самое простое объяснение, какой может быть ёмкость конденсатора, формула через площадь у которой несколько иная.

Керамические

В чём измеряется

Для этого используются величины, названные фарадами и микрофарадами. В честь учёного, который открыл соответствующее явление.

Разные устройства

Формула ёмкости

Основная формула уже была описана выше. Ёмкость относят к величинам постоянного характера. Её определяют другие параметры, например — размер конденсатора, конструктивные особенности.

За единицу ёмкости принимают ёмкость конденсатора, которому хватает единичного заряда для получения разности потенциалов в 1 Вольт. Определять конечные цифры благодаря этому очень просто.

Горизонтальные

Плоского

Обычно между обкладками внутри плоского конденсатора создаётся так называемое однородное поле. Только около краёв подобное свойство может быть нарушено. Этими эффектами у краёв часто пренебрегают, когда организуют расчёты. Но такой подход допустим, только если расстояние между пластинами достаточно маленькое по сравнению с линейными размерами.

Плоский конденсатор отличается ёмкостью, которую считают по формуле:

C = (Ee0S)/d.

E0 — постоянная электрическая величина.

S — площадь каждой пластины. Часто учитывают детали конструкции с минимальной площадью.

D — обозначение расстояния между пластинами.

Другое дело — когда конструкцию строят на нескольких слоях диэлектрика. Тогда их тоже включают в формулу, обычно добавляют к знаменателю. Без объёма в такой ситуации тоже не обойтись.

Особенности применения

Сферического

Сферический — это конденсатор, обкладки которого выполнены в виде двух сферических проводящих поверхностей. Диэлектрик заполняет пространство между указанными выше деталями. В таком случае формула в знаменателе содержит дополнительные обозначения R — радиус каждой из пластин.

 

Суперконденсаторы

Цилиндрического

В данном случае пластины выглядят как две соосные или коаксиальные цилиндрические поверхности с проводящим эффектом. При этом радиус у каждого элемента разный. И здесь пространство между разными частями заполнено диэлектриком. L — обозначение высоты цилиндра. И к формуле добавляют символ для диаметра. Его измеряют отдельно для обкладки внутри и снаружи.

Назначение

Как с помощью закона Гаусса рассчитать ёмкость конденсатора?

Главное — чтобы изначально присутствовала ёмкость с заданной геометрией у конденсатора. Остаётся вставить в стандартную формулу разность между потенциалами. Благодаря этому уменьшается общий уровень нагрузки, который обозначают как Q.

Соотношения между полями E и V применяют для поиска характеристик, которые остались неизвестными для формулы. Закон Гауса — универсальный инструмент, упрощающий любые вычисления в этой сфере. Измеряться так могут многие показатели.

Разнообразие выбора

Эксплуатационные характеристики

Не идеальные, но реальные конденсаторы обладают рядом дополнительных характеристик помимо тех, о которых сказано выше. Среди них:

  1. Зависимость между ёмкостью и температурой.
  2. Потери диэлектрического характера.
  3. Сопротивление материала, из которого изготовлены обкладки.
  4. Ток утечки.
  5. Уровень полярности.
  6. Номинальное напряжение.

Важно разобраться, какой источник может быть у потерь. Но для этого необходимо разобраться с таким понятием, как графики синусоидного тока, различные направления этого вида энергии. В обкладках ток равен нулю, когда конденсатор набрал максимальный заряд. Напряжение в этом случае у изделия отсутствует. То есть, по фазе напряжение вместе с током сдвигаются на угол в 90 градусов. Идеальная ситуация — когда у конденсатора появляется только реактивная мощность.

Важно. Но реальность такова, что у обкладок появляется собственное сопротивление. Часть энергии нужна, чтобы температура диэлектрика повысилась до определённого уровня. Из-за этого и появляются потери внутри конструкции. Эта характеристика в большинстве случаев остаётся незначительной, но в некоторых ситуациях пренебрегать ей не получится.

Тангенс угла диэлектрических потерь — главная единица измерения, применяемая в этом случае. Это соотношение между активной и реактивной разновидностями мощности. Измерение величины возможно, но только в теоретическом плане. Иначе рассчитать результаты невозможно.

Переменный вид

Каким ещё бывает техническое исполнение конденсаторов?

Постоянные и переменные, подстроечные — группы конденсаторов, которые выделяются в зависимости от возможности регулировать основные рабочие параметры. Форма позволяет выделить плоские и цилиндрические, сферические разновидности. Но тип диэлектрика — главное свойство, по которому чаще всего проводят классификацию.

Импортные и отечественные разработки

Бумажные

Бумага, чаще всего — промасленная — вот главный диэлектрик для таких ситуаций. Конденсаторы данного вида известны крупными габаритами. Без промасливания можно изменить характеристику в меньшую сторону. Обычно служат устройствами со стабилизирующей и накопительной функциями. Но из современной электроники их всё чаще вытесаняют плёночные аналоги, которые считают более современными.

Если промасливание отсутствует, появляется серьёзный недостаток — реакция на влажность воздуха, даже если упаковка остаётся абсолютно герметичной. Энергопотери увеличиваются при наличии промокшей бумаги.

Разные характеристики

Диэлектрики-органические плёнки

Выполняются из органических полимеров, например:

  • Фоторопласт.
  • Полистирол.
  • Полипропилен.
  • Полисульфон.
  • Поликарбонат.
  • Полиамид.
  • Полиэтилентерифталат.

Размеры таких конденсаторов более компактные, если сравнить с предыдущим вариантом. При этом диэлектрические потери не становятся больше, даже если влажность увеличивается. Но при перегреве многие устройства часто выходят из строя. А если недостаток отсутствует — приобретение прибора связано с дополнительными расходами.

Твёрдые неорганические материалы

Примеры — стекло и керамика, слюда.

Стабильность, линейность указанных характеристик — главное преимущество. Некоторые устройства реагируют даже на уровень радиации окружающей среды. Но иногда такая зависимость может стать и проблемой. Чем менее выражены недостатки — тем дороже стоит устройство.

Оксидные диэлектрики

Подходят для производства танталовых и твердотельных конденсаторов, моделей из алюминия. Отличаются такой характеристикой, как полярность. При неправильном подключении могут быстро выйти из строя. То же касается ситуации с высоким номиналом напряжения. Но зато это компактные устройства со стабильной работой, достаточными показателями по ёмкости. Могут проработать около 60 тысяч часов, если эксплуатировать устройство правильно.

Маркировка конденсаторов

Ёмкость вместе с номинальным напряжением — характеристики, которые должны быть отражены в маркировке. Ещё применяют циферно-буквенную разновидность обозначений для основных параметров.

Интересно. В российской практике существует четыре буквы для обозначения устройств.

Первая буква К позволяет понять, что перед покупателем — именно конденсатор. Далее идёт цифра для обозначения разновидности применяемого диэлектрика. Следующим указывают назначение, тоже в виде буквы. Последние значки могут иметь разное назначение.

Эксплуатация

Выбор и эксплуатация

Главное — использовать приборы в режимах, не превышающих номинальные значения. Тогда никаких дефектов и проблем появиться не должно.

Обратите внимание. Электрохимические процессы диэлектрика — главная причина старения основных элементов при воздействии постоянного напряжения. Причина — постоянный ноль, увеличение влажности и температуры в окружающей среде. Вид диэлектрика, конструктивное исполнение определяют, как поведёт себя то или иное устройство в этих условиях.

Ионизационные процессы станут причиной старения в случае с переменным напряжением, импульсными режимами.

Защищённые керамические конденсаторы считаются наиболее прочными и надёжными моделями из всех. Либо стоит отдавать предпочтение оксидно-полупроводниковым вариантам. Каждый из них гарантирует максимальный срок службы.

Со временем любой конденсатор теряет ёмкость. Это нормальный процесс, проходящий в оборудовании. Поэтому не рекомендуется размещать устройства с другими предметами, которые подвержены сильному нагреву. Электролиты могут стать слабым местом для любой электроники. Качество детали во многом зависит от того, какого выбрать производителя. Но такая проблема заслуживает отдельного разговора.

rusenergetics.ru

По какой формуле найти ёмкость (объем) конденсаторов

Емкостный показатель является одной из основных характеристик не только батареек и аккумуляторных элементов, но и конденсаторных устройств. Любому человеку, работающему с электросхемами, необходимо знать, от чего зависит эта величина, может ли она уменьшиться или увеличиться под влиянием внешних факторов (как, например, период времени, зарядка элемента или частота напряжения), и как выглядит выражающая емкость конденсатора формула для разных типов элементов.

Измерение емкостных данных мультиметром

Измерение емкостных данных мультиметром

Расчёт конденсаторов

В общем случае емкостной показатель С определяется по формуле:

C=q/U,

где q – заряд конденсатора на одной из его пластин, U – значение напряжения на конденсаторе.

Из этого выражения можно вывести формулу заряда конденсатора, величину которого можно найти, измерив два других показателя с помощью мультиметра.

Часто возникает вопрос, может ли этот параметр измениться. Он является постоянной величиной, присущей данному элементу и зависящей от его габаритов и устройства. Узнать емкостное значение можно с помощью мультиметра. Пользуясь этими данными, можно рассчитать целевую индуктивность дросселя для колебательного контура или параметры резистора.

В чем измеряется емкость? За измерительную единицу принимается параметр конденсаторного устройства, который можно зарядить 1 Кл до состояния, когда разница потенциалов будет равной 1 вольту. Название этой единицы – фарад (Ф).

Важно! Если сравнить два устройства, идентичных по габаритам, но различающихся тем, что у одного в зазоре между пластинами находится диэлектрический материал, а у другого – воздушное пространство, то при помещении одинаковых зарядов потенциальная разница первой детали будет в Е раз больше. Е – это число, равное диэлектрической проницаемости материала, из которого состоит использованный слой.

Ниже приведены формулы для конденсаторных элементов разной конфигурации. Рассчитанные по ним значения соответствуют идеальным устройствам, но релевантны и для реальных в тех случаях, когда емкостными потерями можно пренебречь.

Формула электрической емкости плоского конденсатора

В основном электрополе пластин плоского конденсатора бывает однородным, за исключением боковых частей, влиянием которых обычно принято пренебрегать. Однако, если пространство между обкладками велико в сопоставлении с их габаритами, краевые искажения нужно учитывать. В общем случае, чтобы высчитать, сколько фарад составит емкость плоского конденсатора, пользуются выражением:

C=E*E0*S/d, где S – площадь меньшей обкладки, E0 – электрическая константа, d – длина пространства между пластинами.

Плоский конденсаторный элемент

Плоский конденсаторный элемент

Формула электрической емкости цилиндрического изделия

Такой компонент состоит из пары разных по размеру коаксиальных цилиндрических элементов проводника, в пространстве между которыми расположили диэлектрический материал. В этом случае для нахождения емкостной величины не нужно узнавать значение заряда на обкладках конденсатора. Можно воспользоваться следующей формулой емкости:

С=2 π *E*E0*l / ln(R2/R1).

Здесь R1 и R2 – радиусы, соответственно, внутреннего и наружного цилиндров, l – их высота (она одинакова, в то время как радиальные параметры отличаются).

Цилиндрическое изделие

Цилиндрическое изделие

Формула для сферического изделия

Сферическая деталь состоит из двух проводниковых сфер с диэлектрическим слоем между ними. Вот как найти емкость круглого конденсатора:

C=4 π *E*E0* R1* R2 / R2 – R1.

Буквами R обозначены, как и в предыдущем примере, радиусы компонентов.

Ёмкость одиночного проводника

Это характеристика способности твердого проводникового компонента к удержанию электрозаряда.  Она определяется особенностями средового окружения (в частности, диэлектрической проницаемостью), взаиморасположением тел, имеющих на себе заряд, размерами детали. От силы тока и величины заряда она не зависит.

Способы соединения элементов

Монтаж изделия на плату может быть вертикальным или горизонтальным. При использовании нескольких изделий они могут быть соединены между собой разными способами.

Параллельное соединение

Для его организации нужно подключить группу  деталей к электроцепи так, чтобы обкладки всех деталей были подсоединены напрямую к местам включения. Поскольку все компоненты получают заряд от одного источника тока, у них будет одинаковая разность потенциалов. Но так как заряд копится на каждом изделии отдельно, количество электричества на группе можно выразить как сумму количеств на ее деталях. Это справедливо и для емкостных данных – значение для конфигурации равно сумме значений каждой единицы. Поэтому такую группу можно считать равной одному конденсатору, емкостной параметр которого равен сумме таковых для всех частей.

Параллельное подключение

Параллельное подключение

Последовательное соединение

Эта схема подразумевает соединение устройств одно за другим, когда к местам подключения к цепи подсоединены только два крайних изделия. Количество электричества для каждой детали будет одинаковым. При этом, чем менее емкое устройство, тем большее значение напряжения на нем будет наблюдаться.

Важно! Емкостной показатель такой системы будет еще меньше, чем у устройства, обладающего наименьшим его значением. Соотношение выглядит так: 1/С = 1/С1 + 1/С2 + 1/С3 + … Опираясь на него, можно произвести вывод непосредственно формулы С. Для двух элементов: С = С1*С2 / С1+С2.

Последовательное подключение

Последовательное подключение

Смешанное соединение

Такая сложная конструкция содержит фрагменты с двумя вышеприведенными типами соединений. Чтобы подсчитать полную емкость, схему делят на простые блоки, состоящие только из деталей, соединенных каким-то одним образом. Находят эквивалентные значения для каждого блока и затем рисуют схему заново в упрощенном виде. Рассчитывают  данные для получившейся системы.

Чтобы суметь подобрать подходящий конденсаторный набор, нужно уметь узнавать емкостные данные. Важно также знать, как рассчитывается показатель для конфигурации из нескольких деталей, соединенных между собой тем или иным образом.

Видео

amperof.ru

Ёмкость конденсатора | Все Формулы

    \[ \]

Электрическая ёмкость — характеристика проводника (конденсатора), мера его способности накапливать электрический заряд.

    \[\Large C=\frac{q}{U}=\frac{q}{\varphi_1-\varphi _2} =\varepsilon \varepsilon _0\frac{S}{d}\]

Конденсатор состоит из двух проводников (обкладок), которые разделены диэлектриком. На емкость конденсатора не должны влиять окружающие тела, поэтому проводникам придают такую форму, чтобы поле, которое создается накапливаемыми зарядами, было сосредоточено в узком зазоре между обкладками конденсатора. Этому условию удовлетворяют: 1) две плоские пластины; 2) две концентрические сферы; 3) два коаксиальных цилиндра. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, сферические и цилиндрические.

Так как поле сосредоточено внутри конденсатора, то линии напряженности начинаются на одной обкладке и кончаются на другой, поэтому свободные заряды, которые возникают на разных обкладках, равны по модулю и противоположны по знаку. Под емкостью конденсатора понимается физическая величина, равная отношению заряда Q, накопленного в конденсаторе, к разности потенциалов (φ1 — φ2) между его обкладками

    \[\Large C=\frac{q}{U}=\frac{q}{\varphi_1-\varphi _2}\]

Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею.

Конденсаторы можно классифицировать по следующим признакам и свойствам:

1) по назначению — конденсаторы постоянной и переменной емкости;

2) по форме обкладок различают конденсаторы плоские, сферические, цилиндрические и др.;

3) по типу диэлектрика — воздушные, бумажные, слюдяные, керамические, электролитические и т.д.

Так же есть:

Энергия конденсатора:

    \[\large W_p=\frac{U q}{2}=\frac{q^2}{2C}=\frac{CU^2}{2}\]

Ёмкость цилиндрического конденсатора :

    \[\large C=2\pi \varepsilon \varepsilon _0\frac{l}{ln(\frac{R_2}{R_1})}\]

Ёмкость плоского конденсатора :

    \[\large C=\varepsilon \varepsilon _0\frac{S}{d} = \frac{q}{U}\]

Емкость сферического конденсатора :

    \[\large  C=4\pi \varepsilon \varepsilon _0(\frac{1}{R_1} - \frac{1}{R_2})^{-1} \]

В формуле мы использовали :

C — Электрическая ёмкость (ёмкость конденсатора)

q — Заряд

U — Потенциал проводника (Напряжение)

    \[ \varphi\]

— Потенциал

    \[\varepsilon\]

— Относительная диэлектрическая проницаемость

    \[ \varepsilon _0 = 8.854185\times 10^{-12}\]

— Электрическая постоянная

S — Площадь одной обкладки

d — Расстояние между обкладками

xn----ctbjzeloexg6f.xn--p1ai

Формулы конденсатора

Формулы емкости конденсаторов

Для любого конденсатора справедлива формула:

   

где C – емкость конденсатора; q – величина заряда одной из обкладок конденсатора; – разность потенциалов между его обкладками.

Емкость конденсатора, между пластинами которого находится диэлектрик (C) (диэлектрическая проницаемость которого равна в раз больше, чем емкость такого же воздушного конденсатора ():

   

Для расчета емкости плоского конденсатора применяют формулу:

   

где – электрическая постоянная; S – площадь каждой (или наименьшей) пластины; d – расстояние между пластинами.

Емкость плоского конденсатора, содержащего N слоев диэлектрика (толщина i-го слоя равна , диэлектрическая проницаемость i-го слоя , определяется как:

   

Электрическая емкость цилиндрического конденсатора вычисляют как:

   

где l – высота цилиндров; – радиус внешней обкладки; – радиус внутренней обкладки.

Емкость сферического (шарового) конденсатора находят по формуле:

   

где – радиусы обкладок конденсатора.

Формулы для расчета емкости соединения конденсаторов

При параллельном соединении конденсаторов суммарная емкость батареи (C) равна сумме емкостей отдельных конденсаторов (), ее составляющих:

   

Электрическая емкость последовательного соединения конденсаторов может быть вычислена по формуле:

   

Если последовательно соединены N конденсаторов, с емкостями то емкость батареи вычислим как:

   

Сопротивление конденсатора

При включении конденсатора в цепь с постоянным током сопротивление конденсатора считают бесконечно большим.

Если конденсатор включен в цепь переменного тока, то его сопротивление называют емкостным и вычисляют при помощи формулы:

   

где – частота переменного тока; – угловая частота тока; C – емкость конденсатора.

Формула энергии поля конденсатора

   

где –энергия поля конденсатора; q – заряд конденсатора; C – емкость конденсатора; – разность потенциалов между обкладками конденсатора.

Энергия поля плоского конденсатора:

   

Примеры решения задач по теме «Конденсатор»

ru.solverbook.com

По какой формуле найти ёмкость (объем) конденсаторов

Во всех электронных устройствах используются конденсаторы. При их конструировании или изготовлении своими руками параметры устройств рассчитываются по специальным формулам.

Конденсаторы

Конденсаторы

Расчёт конденсаторов

Один из главных параметров таких устройств – ёмкость. Рассчитать её можно по следующей формуле:

C=q/U, где:

  • C – ёмкость,
  • q – заряд одной из обкладок элемента,
  • U – разность потенциалов между обкладками.

В электротехнике вместо понятия “разность потенциалов между обкладками” используется “напряжение на конденсаторе”.

Ёмкость элемента не зависит от конструкции и размеров устройства, а только от напряжения на нём и заряда обкладок. Но эти параметры могут изменяться в зависимости от расстояния между ними и материала диэлектрика. Это учитывается в формуле:

С=Co*ε, где:

  • С – реальная ёмкость,
  • Со – идеальная, при условии, что между пластинами вакуум или воздух,
  • ε – диэлектрическая проницаемость материала между ними.

Например, если в качестве диэлектрика используется слюда, “ε” которой 6, то ёмкость такого устройства в 6 раз больше, чем воздушного, а при изменении количества диэлектрика меняются параметры конструкции. На этом принципе основана работа ёмкостного датчика положения.

Устройство конденсатора

Устройство конденсатора

Единицей ёмкости в системе СИ является 1 фарад (F). Это большая величина, поэтому чаще применяются микрофарады (1000000mkF=1F) и пикофарады (1000000pF=1mkF).

Расчет плоской конструкции

Если нужно рассчитать плоский конденсатор, то необходимо учесть площадь обкладок и расстояние между ними. Это отражено в формуле, по которой рассчитывается ёмкость плоского конденсатора:

C=ε/d, где:

  • ε – диэлектрическая проницаемость изолирующего материала,
  • d – расстояние между пластинами.

Расчет конструкции цилиндрической формы

Цилиндрический конденсатор – это две соосные трубки различного диаметра, вставленные друг в друга. Между ними находится диэлектрик. При радиусе цилиндров, близком друг к другу и намного большем, чем расстояние между ними, цилиндрической формой можно пренебречь и свести расчёт к формуле, аналогичной той, по которой рассчитывается плоский конденсатор.

Вычисляются параметры такого устройства по формуле:

C=(2π*l*R*ε)/d, где:

  • l – длина устройства,
  • R – радиус цилиндра,
  • ε – диэлектрическая проницаемость изолятора,
  • d – его толщина.

Расчёт сферической конструкции

Есть устройства, обкладки которых представляют собой два шара, вложенные друг в друга. Формула ёмкости такого прибора:

C=(4π*l*R1*R2*ε)/(R2-R1), где:

  • R1 – радиус внутренней сферы,
  • R2 – радиус внешней сферы,
  • ε – диэлектрическая проницаемость.
Формулы ёмкости конденсаторов различной формы

Формулы ёмкости конденсаторов различной формы

Ёмкость одиночного проводника

Кроме конденсаторов, способностью накапливать заряд обладают отдельные проводники. Одиночным проводником считается такой проводник, который бесконечно далёк от других проводников. Параметры заряженного элемента рассчитывается по формуле:

C=Q/φ, где:

  • Q – заряд,
  • φ – потенциал проводника.

Объём заряда определяется размером и формой устройства, а также окружающей средой. Материал прибора значения не имеет.

Способы соединения элементов

Не всегда есть в наличии элементы с необходимыми параметрами. Приходится соединять их различными способами.

Соединение конденсаторов

Соединение конденсаторов

Параллельное соединение

Это такое соединение деталей, при котором к одной клемме или контакту присоединяются первые обкладки каждого конденсатора. При этом вторые обкладки присоединяются к другой клемме.

При таком соединении напряжение на контактах всех элементов будет одинаковым. Заряд каждого из них происходит независимо от остальных, поэтому общая ёмкость равна сумме всех величин. Её находят по формуле:

C=C1+C2+…Cn,

где C1-Cn – параметры деталей, участвующих в параллельном соединении.

Важно! Конденсаторы имеют предельное допустимое напряжение, превышение которого приведёт к выходу элемента из строя. При параллельном соединении устройств с различным допустимым напряжением этот параметр получившейся сборки равен элементу с наименьшим значением.

Последовательное соединение

Это такое соединение, при котором к клемме присоединяется только одна пластина первого элемента. Вторая пластина присоединяется к первой пластине второго элемента, вторая пластина второго – к первой пластине третьего и так далее. Ко второй клемме присоединяется только вторая обкладка последнего элемента.

При таком соединении заряд на обкладках конденсатора в каждом приборе будет равен остальным, однако напряжение на них будет разным: для зарядки устройств большей ёмкости тем же зарядом требуется меньшая разность потенциалов. Поэтому вся цепочка представляет собой одну конструкцию, разность потенциалов которой равна сумме напряжений на всех элементах, а заряд конденсатора равен сумме зарядов.

Последовательное соединение увеличивает допустимое напряжение и уменьшает общую ёмкость, которая меньше самого меньшего элемента.

Рассчитываются эти параметры следующим образом:

  • Допустимое напряжение:

Uобщ=U1+U2+U3+…Un, где U1-Un – напряжение на конденсаторе;

  • Общая ёмкость:

1/Собщ=1/С1+1/С2+1/С3+…1/Сn, где С1-Сn – параметры каждого устройства.

Интересно. Если в цепи только два элемента, то можно воспользоваться упрощённой формулой: Собщ=(С1*С2)/(С1+С2).

Смешанное соединение

Это такое соединение, в котором есть детали, соединённые последовательно, и есть соединённые параллельно. Параметры всей цепи рассчитывается в следующей последовательности:

  1. определяются группы элементов, соединённые параллельно;
  2. для каждой группы в отдельности рассчитывается эквивалентные значения;
  3. рядом с каждой группой параллельно соединённых деталей пишутся получившиеся величины;
  4. получившаяся схема эквивалентна последовательной схеме и рассчитывается по соответствующим формулам.

Знание формул, по которым можно найти емкость при изготовлении конденсаторов или их соединении необходимо при конструировании электронных схем.

Видео

Оцените статью:

jelectro.ru

Notice: Trying to access array offset on value of type null in /var/www/www-root/data/www/yato-tools.ru/wp-content/plugins/wpdiscuz/class.WpdiscuzCore.php on line 942 Notice: Trying to access array offset on value of type null in /var/www/www-root/data/www/yato-tools.ru/wp-content/plugins/wpdiscuz/class.WpdiscuzCore.php on line 975

Отправить ответ

avatar
  Подписаться  
Уведомление о
Notice: ob_end_flush(): failed to delete and flush buffer. No buffer to delete or flush in /var/www/www-root/data/www/yato-tools.ru/adv.php on line 309