Закрыть

Формула мощность тока: Работа и мощность тока — урок. Физика, 8 класс.

единица измерения электрической величины, формулы для ее определения

Мощность является физическим показателем. Она определяет работу, производимую во временном отрезке и помогающую измерять энергетическое изменение. Благодаря единице измерения мощности тока легко определяется скоростное энергетическое течение энергии в любом пространственном промежутке.

  • Расчет и виды
  • Определение активного и реактивного показателя
  • Величина измерения
  • Примеры вычислений

Расчет и виды

Из-за прямой зависимости мощности от напряжения в сети и токовой нагрузки следует, что эта величина может появляться как от взаимодействия большого тока с малым напряжением, так и в результате возникновения значительного напряжения с малым током. Такой принцип применим для превращения в трансформаторах и при передаче электроэнергии на огромные расстояния.

Существует формула для расчета этого показателя. Она имеет вид P = A / t = I * U, где:

  • Р является показателем токовой мощности, измеряется в ваттах;
  • А — токовая работа на цепном участке, исчисляется джоулями;
  • t выступает временным промежутком, на протяжении которого совершалась токовая работа, определяется в секундах;
  • U является электронапряжением участка цепи, исчисляется Вольтами;
  • I — токовая сила, исчисляется в амперах.

Электрическая мощность может иметь активные и реактивные показатели. В первом случае происходит преобразование мощностной силы в иную энергию. Ее измеряют в ваттах, так как она способствует преобразованию вольта и ампера.

Реактивный показатель мощности способствует возникновению самоиндукционного явления. Такое преобразование частично возвращает энергетические потоки обратно в сеть, из-за чего происходит смещение токовых значений и напряжения с отрицательным воздействием на электросеть.

Определение активного и реактивного показателя

Активная мощностная сила вычисляется путем определения общего значения однофазной цепи в синусоидальном токе за нужный временной промежуток.

Формула расчета представлена в виде выражения Р = U * I * cos φ, где:

  • U и I выступают в качестве среднеквадратичного токового значения и напряжения;
  • cos φ является углом межфазного сдвига между этими двумя величинами.

Благодаря мощностной активности электроэнергия превращается в другие энергетические виды: тепловую и электромагнитную энергии. Любая электросеть с током синусоидального или несинусоидального направления определяет активность цепного участка суммированием мощностей каждого отдельного цепного промежутка. Электромощность трехфазного цепного участка определяется суммой каждой фазной мощности.

Аналогичным показателем активной мощностной силы считается величина мощности прохождения, которая рассчитывается путем разницы между ее падением и отражением.

Реактивный показатель измеряется в вольт-амперах. Он является величиной, применяемой для определения электротехнических нагрузок, создаваемых электромагнитными полями внутри цепи переменного тока. Единица измерения мощности электрического тока вычисляется умножением среднеквадратичного значения напряжения в сети U на переменный ток I и угол фазного синуса между этими величинами. Формула расчета выглядит следующим образом: Q = U * I * sin.

Если токовая нагрузка меньше напряжения, тогда фазное смещение носит положительное значение, если наоборот — отрицательное.

Величина измерения

Основной электротехнической единицей является мощность. Для того чтобы определить, в чем измеряется мощность электрического тока, нужно изучить основные характеристики этой величины. По законам физики ее измеряют в ваттах. В условиях производства и в быту величина переводится в киловатты. Вычисления крупных мощностных масштабов требуют перевода в мегаватты. Такой подход практикуется на электростанциях для получения электрической энергии. Работа исчисляется в джоулях.

Величина определяется следующими соотношениями:

  • 1 Джоуль равен 1 Ватту, умноженному на 1 секунду;
  • 1 кДж = 1000 Дж;
  • 1Мдж = 1000000 Дж;
  • 1 ватт/час = 1 киловатт/час;
  • 1 кВт * ч = 1000 Вт * 3600 с = 3600000 Дж.

Потребительская мощностная сила обозначается на самом электроприборе или в паспорте к нему. Определив этот параметр, можно получить значения таких показателей, как напряжение и электрический ток. Используемые показатели указывают, в чем измеряется электрическая мощность, они могут выступать в виде ваттметров и варметров. Реактивная сила показателя мощности определяется фазометром, вольтметром и амперметром. Государственным эталоном того, в чем измеряется мощность тока, считается частотный диапазон от 40 до 2500 Гц.

Примеры вычислений

Для расчета тока чайника при электромощности 2 КВт используется формула I = P / U = (2 * 1000) / 220 = 9 А. Для запитывания прибора в электросеть не используется длина разъема в 6 А. Приведенный пример применим только тогда, когда полностью совпадает фазное и токовое напряжение. По такой формуле рассчитывается показатель всех бытовых приборов.

Если цепь является индуктивной или имеет большую емкость, то рассчитывать мощностную единицу тока необходимо, используя другие подходы. К примеру, мощность в двигателе с переменным током определяется с помощью формулы Р = I * U * cos.

При подключении прибора к трехфазной сети, где напряжение будет составлять 380 В, для определения показателя суммируются мощности каждой фазы в отдельности.

В качестве примера можно рассмотреть котел из трех фаз мощностной вместимостью 3 кВт, каждая из которых потребляет 1 кВт. Ток на фазе рассчитывается по формуле I = P / U * cos φ = (1 * 1000) / 220 = 4,5 А.

На любом приборе обозначается показатель электромощности. Передача большого мощностного объема, применяемая в производстве, осуществляется по линиям с высоким напряжением. Энергия преобразовывается с помощью подстанций в электроток и подается для использования в электросети.

Благодаря несложным расчетам определяется мощностная величина. Зная ее значение, можно сделать правильный подбор напряжения для полноценной работы приборов бытового и промышленного предназначения.

Такой подход поможет избежать перегорания электроприборов и обезопасить электросети от перепадов напряжения.

Мощность электрического тока: особенности и измерения

Содержание

  • 1 Работа электрического тока, мощность
  • 2 Трехфазные цепи
  • 3 На практике измерить мощность тока

Мощность электрического тока – скорость выполняемой цепью работы. Простое определение, морока с пониманием. Мощность подразделяется на активную, реактивную. И начинается…

Работа электрического тока, мощность

При движении заряда по проводнику поле выполняет над ним работу. Величина характеризуется напряжением, в отличие от напряженности в свободном пространстве. Заряды двигаются в сторону убывания потенциалов, для поддержания процесса требуется источник энергии. Напряжение численно равно работе поля при перемещении на участке единичного заряда (1 Кл). В ходе взаимодействий электрическая энергия переходит в другие виды. Поэтому необходим ввод универсальной единицы, физической свободно конвертируемой валюты. В организме мерой выступает АТФ, электричестве — работа поля.

Электрическая дуга

На схеме момент превращения энергии отображается в виде источников ЭДС. Если у генераторов направлены в одну сторону, у потребителя – обязательно в другую. Наглядным фактом отражается процесс расхода мощности, отбора у источников энергии. ЭДС несет обратный знак, часто называется противо-ЭДС. Избегайте путать понятие с явлением, возникающим в индуктивностях при выключении питания. Противо-ЭДС означает переход электрической энергии в химическую, механическую, световую.

Потребитель хочет выполнить работу за некоторую единицу времени. Очевидно, газонокосильщик не намерен ждать зимы, надеется управиться к обеду. Мощность источника должна обеспечить заданную скорость выполнения. Работу осуществляет  электрический ток, следовательно, понятие также относится. Мощность бывает активной, реактивной, полезной и мощностью потерь. Участки, обозначаемые физическими схемами сопротивлениями, на практике вредны, являются издержками. На резисторах проводников выделяется тепло, эффект Джоуля-Ленца ведет к лишнему расходу мощности. Исключением назовем нагревательные приборы, где явление желательно.

Полезная работа на физических схемах обозначается противо-ЭДС (обычный источник с обратным генератору направлением). Для мощности имеется несколько аналитических выражений. Иногда удобно использовать одно, в других случаях – иное (см. рис.):

Выражения мощности тока

  1. Мощность – скорость выполнения работы.
  2. Мощность равна произведению напряжения на ток.
  3. Мощность, затрачиваемая на тепловое действие, равна произведению сопротивления на квадрат тока.
  4. Мощность, затрачиваемая на тепловое действие, равна отношению квадрата напряжения к сопротивлению.

Запасшемуся токовыми клещами проще использовать вторую формулу. Вне зависимости от характера нагрузки посчитаем мощность. Только активную. Мощность определена многими факторами, включая температуру. Под номинальным для прибора значением понимаем, развиваемое в установившемся режиме. Для нагревателей следует применять третью, четвертую формулу. Мощность зависит целиком и полностью от параметров питающей сети. Предназначенные для работы со 110 вольт переменного тока в европейских условиях быстро сгорят.

Трехфазные цепи

Новичкам трехфазные цепи представляются сложными, на деле это более элегантное техническое решение. Даже электричество домом поставляют тремя линиями. Внутри подъезда делят по квартирам. Больше смущает то, что некоторые приборы на три фазы лишены заземления, нулевого провода. Схемы с изолированной нейтралью. Нулевой провод не нужен, ток возвращается источнику по фазным линиям. Разумеется, нагрузка здесь на каждую жилу повышенная. Требования ПУЭ отдельно оговаривают род сети. Для трехфазных схем вводятся следующие понятия, о которых нужно иметь представление, чтобы правильно посчитать мощность:

Трехфазная цепь с изолированной нейтралью

  • Фазным напряжением, током называют, соответственно, разницу потенциалов и скорость передвижения заряда меж фазой и нейтралью. Понятно, в оговоренном выше случае с полной изоляцией формулы будут недействительны. Поскольку нейтрали нет.
  • Линейным напряжением, током называют, соответственно, разницу потенциалов или скорость перемещения заряда меж любыми двумя фазами. Номера понятны из контекста. Когда говорят о сетях 400 вольт, подразумевают три провода, разница потенциалов с нейтралью равна 230 вольт. Линейное напряжение выше фазного.

Меж напряжением и током существует сдвиг фаз. О чем умалчивает школьная физика. Фазы совпадают, если нагрузка 100% активная (простые резисторы). Иначе появляется сдвиг. В индуктивности ток отстает от напряжения на 90 градусов, в емкости – опережает. Простая истина легко запоминается следующим образом (плавно подходим к реактивной мощности). Мнимая часть сопротивления индуктивности составляет jωL, где ω – круговая частота, равная обычной (в Гц), помноженной на 2 числа Пи; j – оператор, обозначающий направление вектора. Теперь пишем закон Ома: U = I R = I  jωL.

Из равенства видно: напряжение нужно отложить вверх на 90 градусов при построении диаграммы, ток останется на оси абсцисс (горизонтальная ось Х). Вращение по правилам радиотехники происходит против часовой стрелки. Теперь очевиден факт: ток отстает на 90 градусов. По аналогии проведем сравнение для конденсатора. Сопротивление переменному току в мнимой форме выглядит так: -j/ωL, знак указывает: откладывать напряжение нужно будет вниз, перпендикулярно оси абсцисс. Следовательно, ток опережает по фазе на 90 градусов.

В реальности параллельно с мнимой частью присутствует действительная – называют активным сопротивлением. Проволока катушки представлена резистором, будучи свитой, приобретает индуктивные свойства. Поэтому реальный угол фаз будет не 90 градусов, немного меньше.

А теперь можно переходить к формулам мощности тока трехфазных цепей. Здесь линия формирует сдвиг фаз. Меж напряжением и током, и относительно другой линии. Согласитесь, без заботливо изложенных авторами знания факт нельзя осознать. Меж линиями промышленной трехфазной сети сдвиг 120 градусов (полный оборот – 360 градусов). Обеспечит равномерность вращения поля в двигателях, для рядовых потребителей безразличен. Так удобнее генераторам ГЭС – нагрузка сбалансированная. Сдвиг идет меж линиями, в каждой ток опережает напряжение или отстает:

  1. Если линия симметричная, сдвиги меж любыми фазами по току составляют 120 градусов, формула получается предельно простой. Но! Если нагрузка симметрична. Посмотрим изображение: фаза ф не 120 градусов, характеризует сдвиг меж напряжением и током каждой линии. Предполагается, включили двигатель с тремя равноценными обмотками, получается такой результат. Если нагрузка несимметрична, потрудитесь провести вычисления для каждой линии отдельно, затем сложить результаты воедино для получения общей мощности тока.
  2. Вторая группа формул приведена для трехфазных цепей с изолированной нейтралью. Предполагается, ток одной линии утекает по другой. Нейтраль отсутствует за ненадобностью. Поэтому напряжения берутся не фазные (не от чего отсчитывать), как предыдущей формулой, а линейные. Соответственно, цифры показывают, какой параметр следует взять. Повремените пугаться греческих букв – фазы меж двумя перемножаемыми параметрами. Цифры меняются местами (1,2 или 2,1), чтобы правильно учесть знак.
  3. В асимметричной цепи вновь появляются фазные напряжение, ток. Здесь расчет ведется отдельно для каждой линии. Никаких вариантов нет.

Формулы мощности тока

На практике измерить мощность тока

Намекнули, можно воспользоваться токовыми клещами. Прибор позволит определить крейсерские параметры дрели. Разгон можно засечь только при многократных опытах, процесс чрезвычайно быстрый, частота смены индикации не выше 3-х раз в секунду. Токовые клещи демонстрируют погрешность. Практика показывает: достичь погрешности, указанной в паспорте, сложно.

Чаще для оценки мощности используют счетчики (для выплат компаниям-поставщикам), ваттметры (для личных и рабочих целей). Стрелочный прибор содержит пару неподвижных катушек, по которым течет ток цепи, подвижную рамку, для заведения напряжения путем параллельного включения нагрузки. Конструкция рассчитана сразу реализовать формулу полной мощности (см. рис.). Ток умножается на напряжение и некий коэффициент, учитывающий градуировку шкалы, также на косинус сдвига фаз между параметрами. Как говорили выше, сдвиг умещается в пределах 90 – минус 90 градусов, следовательно, косинус положителен, крутящий момент стрелки направлен в одну сторону.

Отсутствует возможность сказать индуктивная ли нагрузка или емкостная. Зато при неправильном включении в цепь показания будут отрицательными (завал набок). Произойдет аналогичное событие, если потребитель вдруг станет отдавать мощность обратно нагрузке (бывает такое). В современных приборах происходит нечто подобное же, вычисления ведет электронный модуль, интегрирующий расход энергии, либо считывающий показания мощности. Вместо стрелки присутствует электронный индикатор и множество других полезных опций.

Особые проблемы вызывают измерения в асимметричных цепях с изолированной нейтралью, где нельзя прямо складывать мощности каждой линии. Ваттметры делятся принципом действия:

  1. Электродинамические. Описаны разделом. Состоят из одной подвижной, двух неподвижных катушек.
  2. Ферродинамические. Напоминает двигатель с расщепленным полюсом (shaded-pole motor).
  3. С квадратором. Используется амплитудно-частотная характеристика нелинейного элемента (например, диода), напоминающая параболу, для возведения электрической величины в квадрат (используется в вычислениях).
  4. С датчиком Холла. Если индукцию сделать при помощи катушки пропорциональной напряжению магнитного поля в сенсоре, подать ток, ЭДС будет результатом умножения двух величин. Искомая величина.
  5. Компараторы. Постепенно повышает опорный сигнал, пока не будет достигнуто равенство. Цифровые приборы достигают высокой точности.

В цепях с сильным сдвигом фаз для оценки потерь применяется синусный ваттметр. Конструкция схожа с рассмотренной, пространственное положение таково, что вычисляется реактивная мощность (см. рис.). В этом случае произведение тока и напряжения домножим на синус угла сдвига фаз. Реактивную мощность измерим обычным (активным) ваттметром. Имеется несколько методик. Например, в трехфазной симметричной цепи нужно последовательную обмотку включить в одну линию, параллельную – в две другие. Затем производятся вычисления: показания прибора умножаются на корень из трех (с учетом, что на индикаторе произведение тока, напряжения и синуса угла между ними).

Методика двух ваттметров

Для трехфазной цепи с простой асимметрией задача усложняется. На рисунке показана методика двух ваттметров (ферродинамических или электродинамических). Начала обмоток указаны звездочками. Ток проходит через последовательные, напряжение с двух фаз подается на параллельную (одно через резистор). Алгебраическая сумма показаний обоих ваттметров складывается, умножается на корень из трех для получения значения реактивной мощности.

Электричество | Определение, факты и типы

электрическая сила между двумя зарядами

Смотреть все СМИ

Ключевые люди:
Томас Эдисон Рукс Эвелин Белл Кромптон Эдвард Уэстон Чарльз Фрэнсис Браш Флиминг Дженкин
Похожие темы:
биоэлектричество термоэлектричество электрический потенциал электролиз электрофорез

Просмотреть весь связанный контент →

электричество , явление, связанное со стационарными или движущимися электрическими зарядами.

Электрический заряд является фундаментальным свойством материи и переносится элементарными частицами. В электричестве задействованной частицей является электрон, несущий заряд, условно обозначаемый как отрицательный. Таким образом, различные проявления электричества являются результатом накопления или движения множества электронов.

Электростатика — это изучение электромагнитных явлений, происходящих при отсутствии движущихся зарядов, т. е. после установления статического равновесия. Заряды быстро достигают своего положения равновесия, потому что электрическая сила чрезвычайно велика. Математические методы электростатики позволяют рассчитывать распределения электрического поля и электрического потенциала по известной конфигурации зарядов, проводников и изоляторов. И наоборот, по набору проводников с известными потенциалами можно рассчитать электрические поля в областях между проводниками и определить распределение заряда на поверхности проводников. Электрическую энергию набора зарядов в состоянии покоя можно рассматривать с точки зрения работы, необходимой для сборки зарядов; в качестве альтернативы можно также считать, что энергия находится в электрическом поле, создаваемом этим набором зарядов.

Наконец, энергию можно хранить в конденсаторе; энергия, необходимая для зарядки такого устройства, запасается в нем в виде электростатической энергии электрического поля.

Изучите, что происходит с электронами двух нейтральных объектов, потертых друг о друга в сухой среде

Просмотреть все видео к этой статье

Статическое электричество — это известное электрическое явление, при котором заряженные частицы переходят от одного тела к другому. Например, если два предмета потереть друг о друга, особенно если эти предметы являются изоляторами, а окружающий воздух сухой, предметы приобретают равные и противоположные заряды, и между ними возникает сила притяжения. Объект, потерявший электроны, становится положительно заряженным, а другой — отрицательно заряженным. Сила — это просто притяжение между зарядами противоположного знака. Свойства этой силы были описаны выше; они включены в математическое соотношение, известное как закон Кулона. Электрическая сила на заряде

Q 1 при этих условиях за счет заряда Q 2 на расстоянии r дается законом Кулона,

Жирные буквы в уравнении указывают на векторный характер силы, а единичный вектор — это вектор размера 1, который указывает от заряда Q 2 до заряда Q 1 . Константа пропорциональности k равна 10 −7 c 2 , где c — скорость света в вакууме; k имеет числовое значение 8,99 × 10

9 ньютонов-квадратный метр на кулон в квадрате (Нм 2 /C 2 ). На рисунке 1 показано усилие на Q 1 из-за Q 2 . Числовой пример поможет проиллюстрировать эту силу. Оба Q 1 и Q 2 выбраны произвольно как положительные заряды, каждый с величиной 10 −6 кулонов. Заряд Q 1 расположен по координатам x , y , z со значениями 0,03, 0, 0 соответственно, а Q 2 900 32 имеет координаты 0, 0.04, 0. Все координаты даны в метрах. Таким образом, расстояние между Q 1 и Q 2 составляет 0,05 метра.

Викторина «Британника»

Викторина «Наука»

Величина силы F при зарядке Q 1 , рассчитанное по уравнению (1), составляет 3,6 ньютона; его направление показано на рис. 1. Сила, действующая на Q 2 из-за Q 1 , равна − F , которая также имеет величину 3,6 ньютона; однако его направление противоположно направлению F . Сила F может быть выражена через ее компоненты вдоль x и y осей, так как вектор силы лежит в плоскости x y . Это делается с помощью элементарной тригонометрии из геометрии рисунка 1, а результаты показаны на рисунке 2. Таким образом, в ньютонах. Закон Кулона математически описывает свойства электрического взаимодействия между покоящимися зарядами. Если бы заряды имели противоположные знаки, сила была бы притягивающей; притяжение будет указано в уравнении (1) отрицательным коэффициентом единичного вектора r̂. Таким образом, электрическая сила на Q 1 будет иметь направление, противоположное единичному вектору , и будет указывать от Q 1 до Q 9 0030 2 . В декартовых координатах это привело бы к изменению знаков обеих составляющих силы x и y в уравнении (2).

Как можно понять эту электрическую силу на Q 1 ? Принципиально сила обусловлена ​​наличием электрического поля в положении Q 1 . Поле создается вторым зарядом Q 2 и имеет величину, пропорциональную размеру Q 2 . При взаимодействии с этим полем первый заряд, находящийся на некотором расстоянии, либо притягивается, либо отталкивается от второго заряда в зависимости от знака первого заряда.

Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.

Подписаться

15.4 Мощность в цепи переменного тока — University Physics Volume 2

Цели обучения

К концу этого раздела вы сможете:

  • Опишите, как средняя мощность от цепи переменного тока может быть выражена через пиковый ток и напряжение и среднеквадратичное значение тока и напряжения
  • Определить соотношение между фазовым углом тока и напряжения и средней мощностью, известной как коэффициент мощности

Элемент схемы рассеивает или производит мощность в соответствии с P=IV, P=IV, где I — ток через элемент и В — напряжение на нем. Поскольку ток и напряжение в цепи переменного тока зависят от времени, мгновенная мощность p(t)=i(t)v(t)p(t)=i(t)v(t) также зависит от времени. График p ( t ) для различных элементов схемы показан на рис. 15.16. Для резистора i ( t ) и v ( t ) совпадают по фазе и поэтому всегда имеют один и тот же знак (см. рис. 15.5). Для конденсатора или катушки индуктивности относительные знаки i ( t ) и v ( t ) изменяются в течение цикла из-за разности фаз (см. рис. 15.7 и рис. 15.9). Следовательно, p ( t ) в одни моменты времени положителен, а в другие отрицателен, указывая на то, что емкостные и индуктивные элементы производят мощность в одни моменты времени и поглощают ее в другие.

Рисунок 15.16 График мгновенной мощности для различных элементов цепи. (a) Для резистора Pave=I0V0/2, Pave=I0V0/2, тогда как для (b) конденсатора и (c) катушки индуктивности Pave=0.Pave=0. (d) Для источника Pave=I0V0(cosϕ)/2, Pave=I0V0(cosϕ)/2, что может быть положительным, отрицательным или нулевым, в зависимости от ϕ.ϕ.

Поскольку мгновенная мощность изменяется как по величине, так и по знаку в течение цикла, она редко имеет какое-либо практическое значение. Что нас почти всегда интересует, так это мощность, усредненная по времени, которую мы называем средней мощностью. Он определяется усреднением по времени мгновенной мощности за один цикл:

Pave=1T∫0Tp(t)dt, Pave=1T∫0Tp(t)dt,

, где период колебаний. С заменами v(t)=V0sinωtv(t)=V0sinωt и i(t)=I0sin(ωt−ϕ),i(t)=I0sin(ωt−ϕ) этот интеграл принимает вид

Pave=I0V0T∫0Tsin(ωt−ϕ)sinωtdt.Pave=I0V0T∫0Tsin(ωt−ϕ)sinωtdt.

Используя тригонометрическое соотношение sin(A−B)=sinAcosB−sinBcosA,sin(A−B)=sinAcosB−sinBcosA, получаем tdt. Pave=I0V0cosϕT∫0Tsin2ωtdt−I0V0sinϕT∫ 0Tsinωtcosωtдт.

Вычисление этих двух интегралов дает ∫0Tsinωtcosωtdt=0.

Следовательно, средняя мощность, связанная с элементом схемы, равна

Pave=12I0V0cosϕ.Pave=12I0V0cosϕ.

15.12

В технических приложениях cosϕcosϕ известен как коэффициент мощности, который представляет собой величину, на которую мощность, подаваемая в цепь, меньше теоретического максимума цепи из-за несовпадения фаз напряжения и тока. Для резистора ϕ=0,ϕ=0, поэтому средняя рассеиваемая мощность составляет

Pave=12I0V0.Pave=12I0V0.

Сравнение p ( t ) и PavePave показано на рис. 15.16(d). Чтобы сделать Pave=(1/2)I0V0Pave=(1/2)I0V0 похожим на его аналог постоянного тока, мы используем среднеквадратичные значения IrmsandVrmsIrmsandVrms тока и напряжения. По определению это

Irms=iave2andVrms=vave2,Irms=iave2andVrms=vave2,

где t)dt и vave2=1T ∫0Tv2(t)dt.

При i(t)=I0sin(ωt−ϕ) и v(t)=V0sinωt, i(t)=I0sin(ωt−ϕ)и v(t)=V0sinωt получаем

Irms=12I0andVrms=12V0.Irms =12I0 и Vrms=12V0.

Затем мы можем написать для средней мощности, рассеиваемой резистором,

Pave=12I0V0=IrmsVrms=Irms2R.Pave=12I0V0=IrmsVrms=Irms2R.

15.13

Это уравнение дополнительно подчеркивает, почему для обсуждения выбрано среднеквадратичное значение, а не пиковые значения. Оба уравнения для средней мощности верны для уравнения 15.13, но среднеквадратические значения в формуле дают более четкое представление, поэтому дополнительный коэффициент 1/2 не нужен.

Переменные напряжения и токи обычно описываются их действующими значениями. Например, 110 В от бытовой розетки является среднеквадратичным значением. Амплитуда этого источника составляет 1102 В = 156 В. 1102 В = 156 В. Поскольку большинство счетчиков переменного тока откалиброваны по среднеквадратичным значениям, типичный вольтметр переменного тока, подключенный к бытовой розетке, будет показывать 110 В.

Для конденсатора и катушки индуктивности ϕ=π/2 и −π/2 рад, ϕ=π/2 и −π/2 рад соответственно. Поскольку cosπ/2=cos(−π/2)=0, cosπ/2=cos(−π/2)=0, из уравнения 15.12 мы находим, что средняя мощность, рассеиваемая любым из этих элементов, равна Pave=0.Pave =0. Конденсаторы и катушки индуктивности поглощают энергию из цепи в течение одного полупериода, а затем возвращают ее обратно в цепь в течение другого полупериода. Это поведение показано на графиках рис. 15.16, (b) и (c), которые показывают, что p( t) колеблется синусоидально около нуля.

Фазовый угол генератора переменного тока может иметь любое значение. Если cosϕ>0,cosϕ>0, генератор вырабатывает мощность; если cosϕ<0,cosϕ<0, он поглощает мощность. В терминах среднеквадратичных значений средняя мощность генератора переменного тока записывается как

Pave=IrmsVrmscosϕ.Pave=IrmsVrmscosϕ.

для генератора в цепи RLC ,

Tanϕ = xl -xcrtanϕ = xl -xcr

и

cosϕ = rr2+(xl -xc) 2 = rz. cos Воск = rr2+(xl -xc) 2 = = = r РЗ.

Отсюда средняя мощность генератора

Pave=IrmsVrmscosϕ=VrmsZVrmsRZ=Vrms2RZ2.Pave=IrmsVrmscosϕ=VrmsZVrmsRZ=Vrms2RZ2.

15.14

Это также можно записать как

Pave=Irms2R,Pave=Irms2R,

, что означает, что мощность, вырабатываемая генератором, рассеивается в резисторе. Как мы видим, закон Ома для среднеквадратичного значения переменного тока находится путем деления среднеквадратичного значения напряжения на импеданс.

Пример 15,3

Выходная мощность генератора

Генератор переменного тока, ЭДС которого определяется выражением

v(t)=(4,00 В)sin[(1,00×104 рад/с)t]v(t)=(4,00 В)sin[(1,00×104 рад/с)t]

подключен к RLC , для которой L=2,00×10-3HL=2,00×10-3H, C=4,00×10-6FC=4,00×10-6F и R=5,00ΩR=5,00Ω. а) Чему равно среднеквадратичное напряжение на генераторе? б) Чему равно сопротивление цепи? в) Какова средняя мощность генератора?

Стратегия

Среднеквадратичное напряжение – это амплитуда напряжения, умноженная на 1/21/2. Полное сопротивление цепи включает сопротивление и реактивные сопротивления конденсатора и катушки индуктивности. Средняя мощность рассчитывается по уравнению 15.14 или, точнее, по последней части уравнения, потому что у нас есть импеданс цепи Z , среднеквадратичное значение напряжения VrmsVrms и сопротивление R .

Решение
  1. Поскольку V0=4,00 В, V0=4,00 В, среднеквадратичное значение напряжения на генераторе равно

    Вэфф=12(4,00В)=2,83В. Вэфф=12(4,00В)=2,83В.

  2. Полное сопротивление цепи

    Z=R2+(XL-XC)2={(5,00 Ом)2+[(1,00×104 рад/с)(2,00×10-3H)−1(1,00×104рад/с)(4,00×10-6F)] 2}1/2=7,07 Ом. Z=R2+(XL-XC)2={(5,00 Ом)2+[(1,00×104 рад/с)(2,00×10-3H)−1(1,00×104 рад/с) (4,00×10-6F)]2}1/2=7,07 Ом.

  3. Из уравнения 15.14 средняя мощность, передаваемая в цепь, равна

    Pave=Vrms2RZ2=(2,83 В)2(5,00 Ом)(7,07 Ом)2=0,801 Вт. Pave=Vrms2RZ2=(2,83 В)2(5,00 Ом)(7,07 Ом)2=0,801 Вт.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *