Закрыть

Формула вычисления сопротивления: Формула сопротивления в физике

{2} \rho \frac{d l}{S}(1)$$

называют сопротивлением участка цепи между сечениями 1 и 2. В выражении (1) имеем $\rho$ – удельное сопротивление проводника, S – площадь поперечного сечения проводника, dl — элемент длины проводника.

Если проводник является однородным ($\rho$=const) и имеет форму цилиндра (S=const), то формула (1) может быть представлена как:

$$R=\rho \frac{l}{S}(2)$$

где l – длина участка рассматриваемого проводника.

Надо отметить, что удельное сопротивление проводника ($\rho$) – это сопротивление проводника единичной длины с поперечным сечением равным единице. Или иначе говорят, что удельное сопротивление вещества – это сопротивление куба с ребром 1 м изготовленного из рассматриваемого вещества, которое выражено в Ом, при токе, который параллелен ребру куба. Величина обратная удельному сопротивлению:

$$\sigma=\frac{1}{\rho}(3)$$

называется удельной проводимостью. Измеряется удельное сопротивление в системе СИ в [$\rho$]=Ом•м.

{-2}}=100$$

Ответ. n=100

Читать дальше: Формула внутренней энергии.

Содержание

Формула сопротивления тока. Как найти электрическое сопротивление по закону Ома.

В сфере электрики и электроники такая вещь (и понятие) как сопротивление встречается повсеместно. Хоть может и показаться, что электрическое сопротивление это плохо, так как она препятствует свободному течению электрических зарядов по проводникам, но это не совсем так. Возможно вы уже сталкивались с тем, что во всем нужна своя мера. Любой вид энергии (в нашем случае электрической, электромагнитной) в той или иной системе нуждается в своем определенном количестве. Если энергии становится больше или меньше нужной меры, то как правило возникают различные нарушения правильной ее работы. Так что сопротивление в определенных случаях это даже очень хорошо.

Ну, а какая есть формула сопротивления тока? Основополагающей формулой, по которой можно найти электрическое сопротивление является та, которая исходит из обычного закона Ома.

Сама формула электрического сопротивления выражается так — сопротивление это отношение напряжения к силе тока. То есть, чтобы найти электрическое сопротивление нужно напряжение (разность потенциалов) разделить на силу тока. Все очень просто. Единицей измерения электрического сопротивления является «Ом» (названная в честь своего ученого открывателя). Напряжение измеряется в вольтах, а сила тока в амперах. В итоге мы имеем, 1 Ом равен 1 вольт деленный на 1 ампер. Используется и другие более крупные единицы измерения сопротивления — это килоомы (1 кОм = 1000 Ом), мегаомы (1 мОм = 1000 кОм = 1000 000 Ом).

Но всеже есть одно НО! Формулу нахождения сопротивления по закону Ома можно применять для постоянного и переменного тока лишь при наличии именно активного сопротивления (обычные резисторы, нагреватели, лампы накаливания и т.д.). Для случая реактивного сопротивления используется немного другая формула сопротивления тока. Она учитывает кроме напряжения и силы тока еще частоту, индуктивность, ёмкость.

Помимо этих формул еще можно привести такую, которая показывает зависимость сопротивления от вида и размеров проводника. Формула сопротивления тока уже будет содержать такие понятия как сечение проводника, его длина, удельное сопротивления (зависящее от конкретного материала).

А что собственно представляет собой это самое электрическое сопротивление? Думаю не лишним будет пояснить это. Итак, из физики нам известно, что любой проводник имеет так называемую кристаллическую решетку, состоящую из атомов и молекул, соединенных достаточно жесткими связями, что формирует устойчивую, фиксированную структуру. Атомы имеют ядро (состоящее из протонов и нейтронов), у которого положительный заряд. Вокруг ядра вращаются более мелкие частицы, называемые электронами, имеющими отрицательный электрический заряд.

Так вот, те электроны, что удалены от ядра дальше всего могут достаточно легко отрываться от своего атома и переходить к соседнему. При определенных условиях, а именно при подключении внешнего источника питания (а конкретнее внешнего электромагнитного поля) эти свободные электроны могут уже перемещаться упорядоченно в одном направлении. что порождает электрический ток. Но при своем движении электроны постоянно сталкиваются с другими атомами, что находятся на их пути. Вот именно это и является фактором электрического сопротивления. Следовательно предположить, что чем длиннее и тоньше будет проводник, тем больше препятствий будет на пути движения электронов, тем больше будет электрическое сопротивление. Ну, а еще одни проводники, в силу особенностей своей кристаллической решетки, будут иметь большее сопротивление, а другие — меньшее.

Напряжение можно еще сравнить с давлением (по аналогии с водой в трубах, к примеру), электрический ток это упорядоченное движение заряженных частиц, то есть в прямом смысле «поток зарядов (их количество, которое движется в одном направлении)». Вот и получается, что чем больше мы имеем (видим) напряжение на определенном участке электрической цепи (давление воды в водопроводе), при определенном потоке электронов, тем значит больше будет электрическое сопротивление, которое оказывается на движение этого самого потока электрических зарядов, внутри проводника. Все логично.

P.S. Если хорошо уметь представлять те физические процессы, что происходят внутри электрических схем, цепей, будет намного проще понять их изначальную суть. После этого любая формула становится более понятной, с точки зрения зависимости определенных физических величин. Это уже не просто набор каких-то знаков, это конкретная зависимость единиц измерения, что строго отображают в теории то, что работает на практике (в схемах, электрических устройствах и т.д.).

Расчет сопротивления цепи

Расчет сопротивления цепи необходим при решении различных задач по электротехнике. Суть заключается в приведении сложной разветвленной электрической цепи к цепи с единственным эквивалентным сопротивлением, которую называют простой электрической цепью. 

Пример 1

 

Цепь в данном примере состоит из двух последовательно соединенных сопротивлений, следовательно, их общее сопротивление будет равно сумме их сопротивлений. Подробнее о видах соединений тут.

Допустим, что R1=10 Ом R2=20 Ом, тогда 

Пример 2

 

Два сопротивления соединены параллельно, значит при сворачивании схемы, общее сопротивление будет равно (значения R1,R2 такие же как и в примере 1) 

Можно заметить, что при параллельном соединении общее сопротивление меньше, чем при последовательном в несколько раз. 

Пример 3

 

В данном примере ситуация аналогична примеру 2, за тем лишь исключением, что сопротивлений три. Тогда общее сопротивление будет равно (R1,R2 прежние, R3=105 Ом) 

 

Пример 4

 

Чтобы рассчитать общее сопротивление смешанного соединения проводников, необходимо для начала найти общее сопротивление резисторов R1 и R2 соединенных параллельно, а затем общее сопротивление, как сумму R12 и R3 соединенных последовательно.

 

 Пример 5

Данная электрическая цепь сложнее, чем предыдущие, но как можно увидеть, она также состоит из последовательно или параллельно соединенных сопротивлений, которые можно постепенно сворачивать, приводя цепь к единственному эквивалентному сопротивлению R.

R4=20 Ом, R5=40 Ом, R6=15 Ом 

Путем сворачивания цепи с помощью преобразований последовательно и параллельно соединенных проводников, можно максимально упростить для дальнейшего расчета сколь угодно сложную схему. Исключением служат цепи содержащие сопротивления, соединенные по схеме звезда и треугольник.  

  • Просмотров: 56531
  • Какой формулой рассчитать мощность резисторов

    Резисторы применяются практически во всех электросхемах. Это наиболее простой компонент, в основном, служащий для ограничения или регулирования тока, благодаря наличию сопротивления при его протекании.

    Резисторы

    Виды резисторов

    Внутреннее устройство детали может быть различным, но преимущественно это изолятор цилиндрической формы, с нанесённым на его внешнюю поверхность слоем либо несколькими витками тонкой проволоки, проводящими ток и рассчитанными на заданное значение сопротивления, измеряемое в омах.

    Существующие разновидности резисторов:

    1. Постоянные. Имеют неизменное сопротивление. Применяются, когда определенный участок электроцепи требует установки заданного уровня по току или напряжению. Такие компоненты необходимо рассчитывать и подбирать по параметрам;
    2. Переменные. Оснащены несколькими выводными контактами. Их сопротивление поддается регулировке, которая может быть плавной и ступенчатой. Пример использования – контроль громкости в аудиоаппаратуре;
    3. Подстроечные – представляют собой вариант переменных. Разница в том, что регулировка подстроечных резисторов производится очень редко;
    4. Есть еще резисторы с нелинейными характеристиками – варисторы, терморезисторы, фоторезисторы, сопротивление которых меняется под воздействием освещения, температурных колебаний, механического давления.

    Важно! Материалом для изготовления практически всех нелинейных деталей, кроме угольных варисторов, применяемых в стабилизаторах напряжения, являются полупроводники.

    Параметры резисторного элемента

    1. Для резисторов применяется понятие мощности. При прохождении через них электротока происходит выделение тепловой энергии, рассеиваемой в окружающее пространство. Мощность детали является параметром, который показывает, сколько энергии она может выделить в виде тепла, оставаясь работоспособной. Мощность зависит от габаритов детали, поэтому у маленьких зарубежных резисторов ее определяют на глаз, сравнивая с российскими, технические характеристики которых известны;

    Важно! Импортные резисторные элементы идентичной мощности имеют несколько меньшие размеры, так как российские производятся с некоторым запасом по этому показателю.

    На схеме мощность показана следующим образом.

    Условное обозначение мощности

    1. Второй параметр – сопротивление элемента. На российских деталях типа МЛТ и крупных импортных образцах оба параметра указываются на корпусе (мощность – Вт, сопротивление – Ом, кОм, мОм). Для визуального определения сопротивления миниатюрных импортных элементов применяется система условных обозначений с помощью цветных полосок;

    Цветовая маркировка резисторов

    1. Допуски. Невозможно изготовить деталь с номинальным сопротивлением, в точности соответствующим заявленному значению. Поэтому всегда указываются границы погрешности, называемые допуском. Его величина – 0,5-20%;
    2. ТКС – коэффициент температуры. Показывает, как варьируется сопротивление при изменении внешней температуры на 1°С. Желательно, но не обязательно подбирать элементы с близким или идентичным значением этого показателя для одной цепи.

    Расчет резисторов

    Для расчета сопротивления резистора формула применяемая в первую очередь – это закон Ома:

    I = U/R.

    Исходя из этой формулы, можно вывести выражение для сопротивления:

    R = U/I,

    где U – разность потенциалов на выводных контактах резистора.

    Пример. Необходимо провести зарядку аккумулятора 2,4 В зарядным током 50 мА от автомобильной 12-вольтовой батареи. Прямое соединение сделать нельзя из-за слишком высоких показателей по току и напряжению. Но возможно поставить в схему сопротивление, которое обеспечит нужные параметры.

    Предварительно нужно рассчитать резистор:

    • Расчет начинается с определения падения напряжения, которое должен обеспечить резисторный элемент:

    U = 12-2,4 = 9,6 B

    • Протекающий по детали ток – 50 мА. Следовательно, R = 9,6/0,05 = 192 Ом

    Теперь можно уже подобрать нужный резистор по одному показателю.

    Если рассчитанной детали не нашлось, можно применить соединение из нескольких резисторных элементов, установив их последовательно или параллельно. Расчет сопротивлений при этом имеет свои особенности.

    Последовательное соединение

    Последовательно соединенные сопротивления складываются:

    R = R1+ R2.

    Если нужно получить общий результат 200 Ом, и имеется один резистор на 120 Ом, то расчет другого:

    R2 = R-R1 = 200-120 = 80 Ом.

    Последовательное соединение

    Параллельное соединение

    При параллельной схеме другая зависимость:

    1/R = 1/R1 + 1/R2.

    Или преобразованный вариант:

    R = (R1 x R2)/ (R1 + R2).

    Важно! Параллельное соединение можно использовать, когда в наличии детали с большим сопротивлением, чем требуется, последовательное наоборот.

    Пример. Необходимо сопротивление 200 Ом. Имеется деталь R2 на 360 Ом. Какое сопротивление подобрать еще? R1 = R2/(R2/R-1) = 360/(360/200-1) = 450 Ом.

    Параллельное соединение

    Смешанное соединение

    В смешанных схемах присутствуют последовательно-параллельные комбинации. Расчет таких схем сводится к их упрощению путем преобразований. На рисунке ниже представлено, как упростить схему, рассчитывая общий показатель для шести резисторов с учетом их соединения.

    Расчет сопротивления в смешанной схеме

    Мощность

    Определив сопротивление, еще нельзя выбрать деталь. Чтобы обеспечить надежную работу схемы, необходимо найти и другой параметр – мощность. Для этого надо знать, как рассчитать мощность резисторного элемента.

    Формулы, по которым можно рассчитать мощность резистора:

    Пример. I = 50 мА; R = 200 Ом. Тогда P = I² x R = 0,05² x 200 = 0,5 Вт.

    Если не учитывать значение тока, расчет мощности резистора ведется по другой формуле.

    Пример. U = 9,6 В, R = 200 Ом. P = U²/R = 9,6²/200 = 0,46 Вт. Получился тот же результат.

    Теперь, зная точные параметры рассчитываемого резисторного элемента, подберем радиодеталь.

    Важно! При выборе деталей возможно их заменить на резисторы с мощностью, больше рассчитанной, но обратный вариант не подходит.

    Это основные формулы для расчета резисторных деталей, на основании которых производится анализ узлов схемы, где главным является определение токов и напряжений, протекающих через конкретный элемент.

    Видео

    Оцените статью:

    параллельная, последовательная и комбинированная цепь

    Решая задачи в области электроники и электрики, приходится сталкиваться с различными вычислениями. Чаще всего они связаны с упрощением электрических схем. Для этого используется метод эквивалента, когда часть цепи заменяется на один элемент с характеристиками, аналогичными ей. Но чтобы это сделать, необходимо знать, как посчитать сопротивление участка цепи и какие виды соединений бывают.

    Определение величины

    Ток — это упорядоченное движение носителей заряда под действием электрического поля. Способность вещества проводить ток называют электропроводимостью. Чем больше носителей частиц имеет материал, тем большей проводимостью он обладает. В зависимости от этой характеристики все вещества разделяют на три вида:

    1. Проводники. Характеризуются хорошей электропроводностью. К ним относят металлы и их сплавы, а также электролиты.
    2. Диэлектрики. Вещества, практически не проводящие электрический ток. В основном это газы, каучук, минеральные масла, пластмассы.
    3. Полупроводники. Материалы, обладающие двумя видами проводимости одновременно — дырочной и электронной. Это вещества, имеющие ковалентную связь: кремний, германий, селен.

    Величина, обратная электропроводимости, называется электрическим сопротивлением. То есть это физическая величина, препятствующая прохождению тока. Кроме способности любого материала ограничивать количество проходящих через него зарядов, существует специальный радиоэлемент, ограничивающий силу тока — резистор.

    Таким образом, существует два понятия сопротивления: радиоэлемент и физическая величина.

    Сопротивление радиоэлемента

    Термин «резистор» произошёл от латинского слова resisto — «сопротивляемость». Все резисторы делятся на постоянные и переменные. Последние позволяют изменять своё сопротивление. На схемах и в литературе такая радиодеталь подписывается латинской буквой R. Единицей измерения считается Ом. Графически резистор обозначается в виде прямоугольника с двумя выводами от середины краёв. Кроме номинального сопротивления, он характеризуется рассеиваемой мощностью и классом точности.

    По своей сути это пассивный радиоэлемент, преобразующий часть электрической энергии в тепловую. Тем самым он ограничивает ток, линейно преобразовывая его силу в напряжение и наоборот. Главный параметр, описывающий сопротивление, находится согласно закону Ома для участка цепи по следующей формуле: R = U/I, где:

    • R — электрическое сопротивление, Ом.
    • U — разность потенциалов приложенная к элементу, В.
    • I — сила тока, преходящая через резистор, А.

    Но тут следует отметить, что этот закон справедлив только для резистивных цепей. То есть для тех, при расчёте которых ёмкостью и индуктивностью пренебрегают. Если же эту формулу применить к реактивным элементам, то для катушки индуктивности сопротивление будет равным нулю, а для конденсатора — бесконечным. Но это верно для постоянного тока и напряжения.

    При переменных величинах напряжение на индуктивности не будет равно нулю, как и ток, проходящий через конденсатор. Такие случаи сопротивлением уже не описываются, поскольку оно предполагает постоянные значения тока и напряжения.

    Удельный параметр вещества

    Чтобы различать понятие и элемент, было введено название удельное электрическое сопротивление. Обозначается оно греческим символом ρ. В Международной системе единиц эта величина измеряется в Омах, умноженных на метр. Зависит она исключительно от свойства материала.

    Для расчёта электрического сопротивления однородного вещества используется формула: R = ρ* l/S, где:

    • l — длина проводника, м;
    • S — площадь поперечного сечения, м2.

    Поэтому в физическом смысле удельное сопротивление материала — это величина, обратная удельной проводимости, представляющая собой сопротивление однородного проводника единичной длины и площади поперечного сечения. А значит, она численно равна импедансу участка электрической цепи, выполненному из вещества длиною один метр и площадью поперечного сечения один метр квадратный.

    Для каждого вещества удельное сопротивление известно и является справочной величиной. Например, для меди — 0,01724 Ом*мм2/м, алюминия — 0,0262 Ом*мм2/м, висмута — 1,2 Ом*мм2/м, нихром — 1,05 Ом*мм2/м. Эти данные получены при температуре t = 20 °C, так как материалы обладают свойством изменять свою удельную характеристику при изменениях температуры. Так, проводимость металлов увеличивается при снижении температуры, а полупроводников — уменьшается.

    Эквивалентная схема

    При расчётах сопротивления электрических цепей широко используется понятие «эквивалентная схема замещения». Её назначение — упростить сложную схему до вида, состоящую из минимума элементов. Иными словами, каждый сложный радиоэлемент можно представить в виде соответствующих ему эквивалентных простых радиодеталей: резистор, ёмкость, индуктивность, источники тока и напряжения. Это позволяет не только математически описать любую схему, но и рассчитать её параметры.

    При этом обычно радиоэлементы идеализируются, то есть их паразитные параметры не учитываются. Так и для подсчёта сопротивления цепи каждый компонент представляется как идеальный резистор. После чего схема перерисовывается, и в результате на ней остаются только подключённые разными способами друг к другу резисторы.

    Существует два вида подключения:

    • последовательное;
    • параллельное.

    Основными элементами электрической цепи являются узел, ветвь и контур. Узел — это место соединения двух и более ветвей. Ветвь — это последовательный участок цепи между двумя узлами, а контур — любая замкнутая цепь. Последовательное соединение состоит из элементов, при котором все компоненты цепи связаны так, что участок цепи, образованный из них, не имеет ни одного узла. А при параллельном соединении все компоненты электрической цепи контактируют между собой в двух узлах. При этом эти узлы напрямую не связаны.

    Расчёт импеданса

    Методы вычисления общего сопротивления зависят от способа соединения резисторов. При расчётах общего импеданса за основу берутся законы Кирхгофа.

    Так, первый его закон гласит: сумма токов в узле равна нулю. Или, если его перефразировать, значение тока, втекающего в узел, равно сумме токов, вытекающих из этого узла. Второй закон связан с электродвижущей силой, и его формулировка звучит так: сумма разности потенциалов в контуре равна сумме падений разности потенциалов на каждом резисторе в цепи.

    При последовательном соединении все элементы располагаются друг за другом без ответвлений. Так как согласно правилу Кирхгофа в любом месте ветви сила тока одинаковая I = I1 = In, то падение напряжения на первом элементе: U1 = I*R1, а на n: Un = I*Rn, где:

    • In — сила тока, протекающая через резистор, А.
    • Un — значение падения напряжения на резисторе, В.
    • Rn — величина сопротивления элемента, Ом.

    Общая разность потенциалов равна сумме всех напряжений, поэтому можно записать: U = U1+…+Un = I*(R1+…+Rn) = IRo.

    В результате формула для расчёта сопротивления цепи в этом случае будет выглядеть следующим образом:

    Ro = R1 +…+ Rn, где:

    • Ro — общее сопротивление ветви.
    • R1 — значение импеданса первого элемента.
    • Rn — величина сопротивления n-го элемента.

    Если цепь параллельная то это значит, что на этом участке несколько ветвей расходятся, а после опять соединяются. Получается, что сила тока в каждой ветви будет своя, а величина напряжения одинакова. Поэтому Uo = U1=…= Un, а Io = I1+…+In. Используя закон Ома, можно записать:

    Uo/Ro = U1/R1+…+Un/Rn, или

    1/Ro = 1/R1+…1/Rn.

    В итоге эквивалентное сопротивление при параллельном соединении рассчитывается как произведение значений резисторов, делённое на сумму их произведений. Для двух резисторов формулу для нахождения общего сопротивления можно записать в виде: Ro = (R1*R2) / (R1+R2).

    Браузерный онлайн-калькулятор

    Если элементов в цепи немного, то, упрощая схему, довольно легко посчитать, используя формулы для параллельного и последовательного включения резисторов, общий импеданс цепи. Но если в схеме много элементов, да ещё она такая, что содержит и то, и другое соединение (комбинированная), проще воспользоваться браузерными онлайн-калькуляторами.

    В их основе используются всё те же формулы для расчёта эквивалентного резистора, но все вычисления происходят автоматически. Существует огромное количество предложений таких калькуляторов. Но при этом все они работают одинаково. Онлайн-расчёт представляет собой программный код, в котором заложен алгоритм вычисления. Потребителю необходимо только в специальных ячейках указать, какой вид соединения используется, сколько элементов в контуре и сопротивления резисторов. Далее надо нажать кнопку «Рассчитать» и через считанные секунды получить ответ.

    Необходимо отметить, что, если даже это в программе не указано, все значения вводятся только в Международной системе единиц, сила тока — ампер, напряжение — вольт, сопротивление — Ом. Тогда и ответ получится в Омах.

    Бонусом является и то, что многие такие программы сразу рассчитывают и мощность элемента. Для этого используется формула: P = U2/Ro = I2*Ro, Вт.

    Практическое применение

    Чаще всего на практике расчёт общего сопротивления цепи выполняют для того, чтобы узнать потребляемую мощность той или иной схемы. При этом, зная общее сопротивление, можно найти и такие важные параметры цепи, как ток и напряжение. Поэтому и рисуют эквивалентную схему электрической цепи. Простые цепи состоят только из последовательных или параллельных участков, но чаще встречаются комбинированные соединения.

    Перед тем как приступить к расчёту эквивалентного сопротивления, вся электрическая цепь разделяется на простые контуры. Как только импеданс каждого такого контура будет подсчитан, схема перерисовывается, но вместо контуров рисуется уже резистор. Затем всё повторяется, и это происходит до тех пор, пока не останется один элемент.

    Простое соединение

    Пусть будет дана схема, состоящая из трёх резисторов, включённых последовательно. При этом сопротивление R1и R2 одинаковое и равно 57 Ом, а сопротивление R3 составляет один килоОм. Для расчёта общего сопротивления цепи сначала понадобится привести значение R3 согласно Международной системе единиц.

    R3 = 1 кОм = 1000 Ом.

    Так как соединение последовательное, используется формула: Ro = R1+R2+R3. Подставив известные значения, рассчитывается эквивалентное значение: Ro = 57+57+1000 = 1114 Ом.

    Если же те же самые резисторы будут расположены параллельно друг другу, то для расчёта общего сопротивления уже используется другое выражение:

    1/Ro = 1/R1 + 1/R2 +1/R3.

    Ro = R1*R2*R3 / (R1*R2+R2*R3+R1*R3).

    Подставив исходные данные в эту формулу, получим:

    Ro = 57*57*1000/ (57*57 +57*1000+ 57*1000) = 3249000/117249 = 27,7 Ом.

    Комбинированный контур

    Необходимо вычислить мощность и эквивалентное сопротивление смешанной цепи, состоящей из четырёх резисторов. Резистор R1 =R2 =5 Ом, R3= 10 Ом, R4 =3 Ом. На схему подаётся питание пять вольт.

    Первоначально понадобится упростить схему. Сопротивления R3 и R4 включены относительно друг друга параллельно. Поэтому находится их объединённое сопротивление:

    Rp = (R3*R4)/(R3+R4).

    Rp = (10*3)/ (10+3) = 2,3 Ом.

    Теперь схему можно перерисовать в виде трёх последовательно включённых резисторов и найти общее сопротивление путём сложения их величин:

    Ro = R1+R2+Rp = 5+5+2,3 = 12,3 Ом.

    Зная эквивалентное сопротивление, используя закон Ома, несложно вычислить силу тока в цепи и мощность эквивалентного резистора:

    I = U/R = 5/2,3 = 2,2 A.

    P = I*U = 2,2*5= 11 Вт.

    Таким образом, путём постепенного упрощения схемы можно свести цепь из последовательно и параллельно соединённых резисторов к одному элементу. А затем рассчитать его сопротивление и требуемую мощность.

    Как вычислить сопротивление проводника формула. Расчет сопротивлений проводов

    Электричество само по себе невидимо, хотя от этого его опасность ничуть не меньше. Даже наоборот: как раз потому и опаснее. Ведь если бы мы его видели, как видим, например, воду, льющуюся из крана, то наверняка бы избежали множества неприятностей.

    Вода. Вот она, водопроводная труба, и вот закрытый кран. Ничего не течет, не капает. Но мы точно знаем: внутри вода. И если система исправно работает, то вода эта там находится под давлением. 2, 3 атмосферы, или сколько там? Неважно. Но давление там есть, иначе система бы не работала. Где-то гудят насосы, гонят воду в систему, создают это самое давление.

    А вот наш провод электрический. Где-то далеко, на другом конце тоже гудят генераторы, вырабатывают электричество. И в проводе от этого тоже давление… Нет-нет, не давление, конечно, тут в этом проводе напряжение . Оно тоже измеряется, но в своих единицах: в вольтах.

    Давит в трубах на стенки вода, никуда не двигаясь, ждет, когда найдется выход, чтобы ринуться туда мощным потоком. И в проводе молча ждет напряжение, когда замкнется выключатель, чтобы потоки электронов двинулись выполнять свое предназначение.

    И вот открылся кран, потекла струя воды. По всей трубе течет, двигаясь от насоса к расходному крану. А как только замкнулись контакты выключателя, в проводах потекли электроны. Что это за движение? Это ток . Электроны текут . И это движение, этот ток тоже имеет свою единицу измерения: ампер.

    И еще есть сопротивление . Для воды это, образно говоря, размер отверстия в выпускном кране. Чем больше отверстие, тем меньше сопротивление движению воды. В проводах почти также: чем больше сопротивление провода, тем меньше ток.

    Вот, как-то так, если образно представлять себе основные характеристики электричества. А с точки зрения науки все строго: существует так называемый закон Ома. Гласит он следующим образом: I = U/R .
    I — сила тока. Измеряется в амперах.
    U — напряжение. Измеряется в вольтах.
    R — сопротивление. Измеряется в омах.

    Есть еще одно понятие — мощность, W. С ним тоже просто: W = U*I . Измеряется в ваттах.

    Собственно, это вся необходимая и достаточная для нас теория. Из этих четырех единиц измерения в соответствии с вышеприведенными двумя формулами можно вывести некоторое множество других:

    ЗадачаФормулаПример
    1Узнать силу тока, если известны напряжение и сопротивление.I = U/R I = 220 в / 500 ом = 0.44 а.
    2Узнать мощность, если известны ток и напряжение.W = U*I W = 220 в * 0.44 а = 96.8 вт.
    3Узнать сопротивление, если известны напряжение и ток.R = U/I R = 220 в / 0.44 а = 500 ом.
    4Узнать напряжение, если известны ток и сопротивление.U = I*R U = 0.44 а * 500 ом = 220 в.
    5Узнать мощность, если известны ток и сопротивление.W = I 2 *R W = 0.44 а * 0.44 а * 500 ом = 96.8 вт.
    6Узнать мощность, если известны напряжение и сопротивление.W = U 2 /R W = 220 в * 220 в / 500 ом = 96.8 вт.
    7 Узнать силу тока, если известны мощность и напряжение.I = W/U I = 96.8 вт / 220 в = 0,44 а.
    8Узнать напряжение, если известны мощность и ток.U = W/I U = 96.8 вт / 0.44 а = 220 в.
    9Узнать сопротивление, если известны мощность и напряжение.R = U 2 /W R = 220 в * 220 в / 96.8 вт = 500 ом.
    10Узнать сопротивление, если известны мощность и ток.R = W/I 2 R = 96.8 вт / (0,44 а * 0,44 а) = 500 ом.

    Ты скажешь: — Зачем мне это все надо? Формулы, цифры… Я ж не собираюсь заниматься расчетами.

    А я так отвечу: — Перечитай предыдущую статью . Как можно быть уверенным, не зная простейших истин и расчетов? Хотя, собственно, в бытовом практическом плане наиболее интересна только формула 7, где определяется сила тока при известных напряжении и мощности. Как правило, эти 2 величины известны, а результат (сила тока) безусловно необходим для определения допустимого сечения провода и для выбора защиты .

    Есть еще одно обстоятельство, о котором следует упомянуть в контексте этой статьи. В электроэнергетике используется так называемый «переменный» ток. То есть, те самые электроны движутся в проводах не всегда в одном направлении, они постоянно меняют его: вперед-назад-вперед-назад… И эта смена направления движения — 100 раз в секунду.

    Погоди, но ведь везде говорится, что частота 50 герц! Да, именно так и есть. Частота измеряется в количестве периодов за секунду, но в каждом периоде ток меняет свое направление дважды. Иначе сказать, в одном периоде две вершины, которые характеризуют максимальное значение тока (положительное и отрицательное), и именно в этих вершинах происходит смена направления.

    Не будем вдаваться в подробности более глубоко, но все же: почему именно переменный, а не постоянный ток?

    Вся проблема в передаче электроэнергии на большие расстояния. Тут как раз вступает в силу неумолимый закон Ома. При больших нагрузках, если напряжение 220 вольт, сила тока может быть очень большой. Для передачи электроэнергии с таким током потребуются провода очень большого сечения.

    Выход здесь только один: поднять напряжение. Седьмая формула говорит: I = W/U . Совершенно очевидно, что если мы будем подавать напряжение не 220 вольт, а 220 тысяч вольт, то сила тока уменьшится в тысячу раз. А это значит, что сечение проводов можно взять намного меньше.

    Поиск по сайту.
    Вы можете изменить поисковую фразу.

    Элементы электрической цепи можно соединить двумя способами. Последовательное соединение подразумевает подключение элементов друг к другу, а при параллельном соединении элементы являются частью параллельных ветвей. Способ соединения резисторов определяет метод вычисления общего сопротивления цепи.

    Шаги

    Последовательное соединение

      Определите, является ли цепь последовательной. Последовательное соединение представляет собой единую цепь без каких-либо разветвлений. Резисторы или другие элементы расположены друг за другом.

      Сложите сопротивления отдельных элементов. Сопротивление последовательной цепи равно сумме сопротивлений всех элементов, входящих в эту цепь. Сила тока в любых частях последовательной цепи одна и та же, поэтому сопротивления просто складываются.

    • Например, последовательная цепь состоит из трех резисторов с сопротивлениями 2 Ом, 5 Ом и 7 Ом. Общее сопротивление цепи: 2 + 5 + 7 = 14 Ом.
  • Если сопротивление каждого элемента цепи не известно, воспользуйтесь законом Ома: V = IR, где V – напряжение, I – сила тока, R – сопротивление. Сначала найдите силу тока и общее напряжение.

    Подставьте известные значения в формулу, описывающую закон Ома. Перепишите формулу V = IR так, чтобы обособить сопротивление: R = V/I. Подставьте известные значения в эту формулу, чтобы вычислить общее сопротивление.

    • Например, напряжение источника тока равно 12 В, а сила тока равна 8 А. Общее сопротивление последовательной цепи: R O = 12 В / 8 А = 1,5 Ом.

    Параллельное соединение

    1. Определите, является ли цепь параллельной. Параллельная цепь на некотором участке разветвляется на несколько ветвей, которые затем снова соединяются. Ток течет по каждой ветви цепи.

      Вычислите общее сопротивление на основе сопротивления каждой ветви. Каждый резистор уменьшает силу тока, проходящего через одну ветвь, поэтому она оказывает небольшое влияние на общее сопротивление цепи. Формула для вычисления общего сопротивления: , где R 1 – сопротивление первой ветви, R 2 – сопротивление второй ветви и так далее до последней ветви R n .

      • Например, параллельная цепь состоит из трех ветвей, сопротивления которых равны 10 Ом, 2 Ом и 1 Ом.
        Воспользуйтесь формулой 1 R O = 1 10 + 1 2 + 1 1 {\displaystyle {\frac {1}{R_{O}}}={\frac {1}{10}}+{\frac {1}{2}}+{\frac {1}{1}}} , чтобы вычислить R O
        Приведите дроби к общему знаменателю : 1 R O = 1 10 + 5 10 + 10 10 {\displaystyle {\frac {1}{R_{O}}}={\frac {1}{10}}+{\frac {5}{10}}+{\frac {10}{10}}}
        1 R O = 1 + 5 + 10 10 = 16 10 = 1 , 6 {\displaystyle {\frac {1}{R_{O}}}={\frac {1+5+10}{10}}={\frac {16}{10}}=1,6}
        Умножьте обе части на R O: 1 = 1,6R O
        R O = 1 / 1,6 = 0,625 Ом.
    2. Вычислите сопротивление по известной силе тока и напряжению. Сделайте это, если сопротивление каждого элемента цепи не известно.

      Подставьте известные значения в формулу закона Ома. Если известны значения общей силы тока и напряжения в цепи, общее сопротивление вычисляется по закону Ома: R = V/I.

      • Например, напряжение в параллельной цепи равно 9 В, а общая сила тока равна 3 А. Общее сопротивление: R O = 9 В / 3 А = 3 Ом.
    3. Поищите ветви с нулевым сопротивлением. Если у ветви параллельной цепи вообще нет сопротивления, то весь ток будет течь через такую ветвь. В этом случае общее сопротивление цепи равно 0 Ом.

    Комбинированное соединение

    1. Разбейте комбинированную цепь на последовательную и параллельную. Комбинированная цепь включает элементы, которые соединены как последовательно, так и параллельно. Посмотрите на схему цепи и подумайте, как разбить ее на участки с последовательным и параллельным соединением элементов. Обведите каждый участок, чтобы упростить задачу по вычислению общего сопротивления.

      • Например, цепь включает резистор, сопротивление которого равно 1 Ом, и резистор, сопротивление которого равно 1,5 Ом. За вторым резистором схема разветвляется на две параллельные ветви – одна ветвь включает резистор с сопротивлением 5 Ом, а вторая – с сопротивлением 3 Ом. Обведите две параллельные ветви, чтобы выделить их на схеме цепи.
    2. Найдите сопротивление параллельной цепи. Для этого воспользуйтесь формулой для вычисления общего сопротивления параллельной цепи: 1 R O = 1 R 1 + 1 R 2 + 1 R 3 + . . . 1 R n {\displaystyle {\frac {1}{R_{O}}}={\frac {1}{R_{1}}}+{\frac {1}{R_{2}}}+{\frac {1}{R_{3}}}+…{\frac {1}{R_{n}}}} .

      • В нашем примере параллельная цепь включает две ветви, сопротивления которых равны R 1 = 5 Ом и R 2 = 3 Ом.
        1 R p a r = 1 5 + 1 3 {\displaystyle {\frac {1}{R_{par}}}={\frac {1}{5}}+{\frac {1}{3}}}
        1 R p a r = 3 15 + 5 15 = 3 + 5 15 = 8 15 {\displaystyle {\frac {1}{R_{par}}}={\frac {3}{15}}+{\frac {5}{15}}={\frac {3+5}{15}}={\frac {8}{15}}}
        R p a r = 15 8 = 1 , 875 {\displaystyle R_{par}={\frac {15}{8}}=1,875} Ом.
    3. Упростите цепь. После того как вы нашли общее сопротивление параллельной цепи, ее можно заменить одним элементом, сопротивление которого равно вычисленному значению.

      • В нашем примере избавьтесь от двух параллельных ветвей и замените их одним резистором с сопротивлением 1,875 Ом.
    4. Сложите сопротивления резисторов, соединенных последовательно. Заменив параллельную цепь одним элементом, вы получили последовательную цепь. Общее сопротивление последовательной цепи равно сумме сопротивлений всех элементов, которые включены в эту цепь.

      • После упрощения цепи она состоит из трех резисторов со следующими сопротивлениями: 1 Ом, 1,5 Ом и 1,875 Ом. Все три резистора соединены последовательно: R O = 1 + 1 , 5 + 1 , 875 = 4 , 375 {\displaystyle R_{O}=1+1,5+1,875=4,375} Ом.
  • Среди прочих показателей, характеризующих электрическую цепь, проводник, стоит выделить электрическое сопротивление. Оно определяет способность атомов материала препятствовать направленному прохождению электронов. Помощь в определении данной величины может оказать как специализированный прибор – омметр, так и математические расчеты на основании знаний о взаимосвязях между величинами и физическими свойствами материала. Измерение показателя производится в Омах (Ом), обозначением служит символ R.

    Закон Ома – математический подход при определении сопротивления

    Соотношение, установленное Георгом Омом, определяет взаимосвязь между напряжением, силой тока, сопротивлением, основанную на математическом взаимоотношении понятий. Справедливость линейной взаимосвязи – R = U/I (отношение напряжения к силе тока) – отмечается не во всех случаях.
    Единица измерения [R] = B/A = Ом. 1 Ом – сопротивление материала, по которому идет ток в 1 ампер при напряжении в 1 вольт.

    Эмпирическая формула расчета сопротивления

    Объективные данные о проводимости материала следуют из его физических характеристик, определяющих как его собственно свойства, так и реакции на внешние влияния. Исходя из этого проводимость зависит от:

    • Размера.
    • Геометрии.
    • Температуры.

    Атомы проводящего материала сталкиваются с направленными электронами, препятствуя их дальнейшему продвижению. При высокой концентрации последних атомы не способны им противостоять и проводимость оказывается высокой. Большие значения сопротивления характерны для диэлектриков, которые отличаются практически нулевой проводимостью.

    Одной из определяющих характеристик каждого проводника является его удельное сопротивление – ρ. Оно определяет зависимость сопротивления от материала проводника и воздействий извне. Это фиксированная (в пределах одного материала) величина, которая представляет данные проводника следующих размеров – длина 1 м (ℓ), площадь сечения 1 кв.м. Поэтому взаимосвязь между данными величинами выражается соотношением: R = ρ* ℓ/S:

    • Проводимость материала падает по мере увеличения его длины.
    • Увеличение площади сечения проводника влечет за собой снижение его сопротивления. Такая закономерность обусловлена уменьшением плотности электронов, а, следовательно, и контакт частиц материала с ними становится более редким.
    • Рост температуры материала стимулирует рост сопротивления, в то время как падение температуры влечет за собой его снижение.

    Расчет площади сечения целесообразно производить согласно формуле S = πd 2 / 4. В определении длины поможет рулетка.

    Взаимосвязь c мощностью (P)

    Исходя из формулы закона Ома, U = I*R и P = I*U. Следовательно, P = I 2 *R и P = U 2 /R.
    Зная величину силы тока и мощность, сопротивление можно определить как: R = P/I 2 .
    Зная величину напряжения и мощности, сопротивление легко вычислить по формуле: R = U 2 /P.

    Сопротивление материала и величины других сопутствующих характеристик могут быть получены с применением специальных измерительных приборов или на основании установленных математических закономерностей.

    В природе существует два основных вида материалов, проводящие ток и не проводящие (диэлектрики). Отличаются эти материалы наличием условий для перемещения в них электрического тока (электронов).

    Из токопроводящих материалов (медь, алюминий, графит, и многие другие), делают электрические проводники, в них электроны не связаны и могут свободно перемещаться.

    В диэлектриках электроны привязаны к атомам намертво, поэтому ток в них течь не может. Из них делают изоляцию для проводов, детали электроприборов.

    Для того чтобы электроны начали перемещаться в проводнике (по участку цепи пошел ток), им нужно создать условия. Для этого в начале участка цепи должен быть избыток электронов, а в конце – недостаток. Для создания таких условий используют источники напряжения – аккумуляторы, батарейки, электростанции.

    В 1827 году Георг Симон Ом открыл закон силы электрического тока. Его именем назвали Закон и единицу измерения величины сопротивления. Смысл закона в следующем.

    Чем толще труба и больше давление воды в водопроводе (с увеличением диаметра трубы уменьшается сопротивление воде) – тем больше потечет воды. Если представить, что вода это электроны (электрический ток), то, чем толще провод и больше напряжение (с увеличением сечения провода уменьшается сопротивление току) – тем больший ток будет протекать по участку цепи.

    Сила тока, протекающая по электрической цепи, прямо пропорциональна приложенному напряжению и обратно пропорциональна величине сопротивления цепи.

    Где I – сила тока, измеряется в амперах и обозначается буквой А ; U В ; R – сопротивление, измеряется в омах и обозначается .

    Если известны напряжение питания U и сопротивление электроприбора R , то с помощью выше приведенной формулы, воспользовавшись онлайн калькулятором, легко определить силу протекающего по цепи тока I .

    С помощью закона Ома рассчитываются электрические параметры электропроводки, нагревательных элементов, всех радиоэлементов современной электронной аппаратуры, будь то компьютер, телевизор или сотовый телефон.

    Применение закона Ома на практике

    На практике часто приходится определять не силу тока I , а величину сопротивления R . Преобразовав формулу Закона Ома, можно рассчитать величину сопротивления R , зная протекающий ток I и величину напряжения U .

    Величину сопротивления может понадобится рассчитать, например, при изготовлении блока нагрузок для проверки блока питания компьютера. На корпусе блока питания компьютера обычно есть табличка, в которой приведен максимальный ток нагрузки по каждому напряжению. Достаточно в поля калькулятора ввести данные величины напряжения и максимальный ток нагрузки и в результате вычисления получим величину сопротивления нагрузки для данного напряжения. Например, для напряжения +5 В при максимальной величине тока 20 А, сопротивление нагрузки составит 0,25 Ом.

    Формула Закона Джоуля-Ленца

    Величину резистора для изготовления блока нагрузки для блока питания компьютера мы рассчитали, но нужно еще определить какой резистор должен быть мощности? Тут поможет другой закон физики, который, независимо друг от друга открыли одновременно два ученых физика. В 1841 году Джеймс Джоуль, а в 1842 году Эмиль Ленц. Этот закон и назвали в их честь – Закон Джоуля-Ленца .

    Потребляемая нагрузкой мощность прямо пропорциональна приложенной величине напряжения и протекающей силе тока. Другими словами, при изменении величины напряжения и тока будет пропорционально будет изменяться и потребляемая мощность.

    где P – мощность, измеряется в ваттах и обозначается Вт ; U – напряжение, измеряется в вольтах и обозначается буквой В ; I – сила ток, измеряется в амперах и обозначается буквой А .

    Зная напряжения питания и силу тока, потребляемую электроприбором, можно по формуле определить, какую он потребляет мощность. Достаточно ввести данные в окошки ниже приведенного онлайн калькулятора.

    Закон Джоуля-Ленца позволяет также узнать силу тока, потребляемую электроприбором зная его мощность и напряжение питания. Величина потребляемого тока необходима, например, для выбора сечения провода при прокладке электропроводки или для расчета номинала .

    Например, рассчитаем потребляемый ток стиральной машины. По паспорту потребляемая мощность составляет 2200 Вт, напряжение в бытовой электросети составляет 220 В. Подставляем данные в окошки калькулятора, получаем, что стиральная машина потребляет ток величиной 10 А.

    Еще один пример, Вы решили в автомобиле установить дополнительную фару или усилитель звука. Зная потребляемую мощность устанавливаемого электроприбора легко рассчитать потребляемый ток и правильно подобрать сечение провода для подключения к электропроводке автомобиля. Допустим, дополнительная фара потребляет мощность 100 Вт (мощность установленной в фару лампочки), бортовое напряжение сети автомобиля 12 В. Подставляем значения мощности и напряжения в окошки калькулятора, получаем, что величина потребляемого тока составит 8,33 А.

    Разобравшись всего в двух простейших формулах, Вы легко сможете рассчитать текущие по проводам токи, потребляемую мощность любых электроприборов – практически начнете разбираться в основах электротехники.

    Преобразованные формулы Закона Ома и Джоуля-Ленца

    Встретил в Интернете картинку в виде круглой таблички, в которой удачно размещены формулы Закона Ома и Джоуля-Ленца и варианты математического преобразования формул. Табличка представляет собой несвязанные между собой четыре сектора и очень удобна для практического применения

    По таблице легко выбрать формулу для расчета требуемого параметра электрической цепи по двум другим известным. Например, нужно определить ток потребления изделием по известной мощности и напряжению питающей сети. По таблице в секторе тока видим, что для расчета подойдет формула I=P/U.

    А если понадобится определить напряжение питающей сети U по величине потребляемой мощности P и величине тока I, то можно воспользоваться формулой левого нижнего сектора, подойдет формула U=P/I.

    Подставляемые в формулы величины должны быть выражены в амперах, вольтах, ваттах или Омах.

    Электрическое сопротивление физическая величина, которая показывает, какое препятствие создается току при его прохождении по проводнику . Единицами измерения служат Омы, в честь Георга Ома. В своем законе он вывел формулу для нахождения сопротивления, которая приведена ниже.

    Рассмотрим сопротивление проводников на примере металлов. Металлы имеют внутреннее строение в виде кристаллической решетки. Эта решетка имеет строгую упорядоченность, а её узлами являются положительно заряженные ионы. Носителями заряда в металле выступают “свободные” электроны, которые не принадлежат определенному атому, а хаотично перемещаются между узлами решетки. Из квантовой физики известно, что движение электронов в металле это распространение электромагнитной волны в твердом теле. То есть электрон в проводнике движется со скоростью света (практически), и доказано, что он проявляет свойства не только как частица, но еще и как волна. А сопротивление металла возникает в результате рассеяния электромагнитных волн (то есть электронов) на тепловых колебаниях решетки и её дефектах. При столкновении электронов с узлами кристаллической решетки часть энергии передается узлам, вследствие чего выделяется энергия. Эту энергию можно вычислить при постоянном токе , благодаря закону Джоуля-Ленца – Q=I 2 Rt. Как видите чем больше сопротивление, тем больше энергии выделяется.

    Удельное сопротивление

    Существует такое важное понятие как удельное сопротивление, это тоже самое сопротивление, только в единице длины. У каждого металла оно свое, например у меди оно равно 0,0175 Ом*мм2/м, у алюминия 0,0271 Ом*мм2/м. Это значит, брусок из меди длиной 1 м и площадью поперечного сечения 1 мм2 будет иметь сопротивление 0,0175 Ом, а такой же брусок, но из алюминия будет иметь сопротивление 0,0271 Ом. Выходит что электропроводность меди выше чем у алюминия. У каждого металла удельное сопротивление свое, а рассчитать сопротивление всего проводника можно по формуле

    где p – удельное сопротивление металла, l – длина проводника, s – площадь поперечного сечения.

    Значения удельных сопротивлений приведены в таблице удельных сопротивлений металлов (20°C)

    Вещество

    p , Ом*мм 2 /2

    α,10 -3 1/K

    Алюминий

    0.0271

    Вольфрам

    0.055

    Железо

    0.098

    Золото

    0.023

    Латунь

    0.025-0.06

    Манганин

    0.42-0.48

    0,002-0,05

    Медь

    0.0175

    Никель

    Константан

    0.44-0.52

    0.02

    Нихром

    0.15

    Серебро

    0.016

    Цинк

    0.059

    Кроме удельного сопротивления в таблице есть значения ТКС, об этом коэффициенте чуть позже.

    Зависимость удельного сопротивления от деформаций


    При холодной обработке металлов давлением, металл испытывает пластическую деформацию. При пластической деформации кристаллическая решетка искажается, количество дефектов становится больше. С увеличением дефектов кристаллической решетки, сопротивление течению электронов по проводнику растет, следовательно, удельное сопротивление металла увеличивается. К примеру, проволоку изготавливают методом протяжки, это значит, что металл испытывает пластическую деформацию, в результате чего, удельное сопротивление растет. На практике для уменьшения сопротивления применяют рекристаллизационный отжиг, это сложный технологический процесс, после которого кристаллическая решетка как бы, “расправляется” и количество дефектов уменьшается, следовательно, и сопротивление металла тоже.

    При растяжении или сжатии, металл испытывает упругую деформацию. При упругой деформации вызванной растяжением, амплитуды тепловых колебаний узлов кристаллической решетки увеличиваются, следовательно, электроны испытывают большие затруднения, и в связи с этим, увеличивается удельное сопротивление. При упругой деформации вызванной сжатием, амплитуды тепловых колебаний узлов уменьшаются, следовательно, электронам проще двигаться, и удельное сопротивление уменьшается.

    Влияние температуры на удельное сопротивление

    Как мы уже выяснили выше, причиной сопротивления в металле являются узлы кристаллической решетки и их колебания. Так вот, при увеличении температуры, тепловые колебания узлов увеличиваются, а значит, удельное сопротивление также увеличивается. Существует такая величина как температурный коэффициент сопротивления (ТКС), который показывает насколько увеличивается, или уменьшается удельное сопротивление металла при нагреве или охлаждении. Например, температурный коэффициент меди при 20 градусах по цельсию равен 4.1 · 10 − 3 1/градус. Это означает что при нагреве, к примеру, медной проволоки на 1 градус цельсия, её удельное сопротивление увеличится на 4.1 · 10 − 3 Ом. Удельное сопротивление при изменении температуры можно вычислить по формуле

    где r это удельное сопротивление после нагрева, r 0 – удельное сопротивление до нагрева, a – температурный коэффициент сопротивления, t 2 – температура до нагрева, t 1 — температура после нагрева.

    Подставив наши значения, мы получим: r=0,0175*(1+0.0041*(154-20))=0,0271 Ом*мм 2 /м. Как видите наш брусок из меди длиной 1 м и площадью поперечного сечения 1 мм 2 , после нагрева до 154 градусов, имел бы сопротивление, как у такого же бруска, только из алюминия и при температуре равной 20 градусов цельсия.

    Свойство изменения сопротивления при изменении температуры, используется в термометрах сопротивления. Эти приборы могут измерять температуру основываясь на показаниях сопротивления. У термометров сопротивления высокая точность измерений, но малые диапазоны температур.

    На практике, свойства проводников препятствовать прохождению тока используются очень широко. Примером может служить лампа накаливания, где нить из вольфрама, нагревается за счет высокого сопротивления металла, большой длины и узкого сечения. Или любой нагревательный прибор, где спираль разогревается благодаря высокому сопротивлению. В электротехнике, элемент главным свойством которого является сопротивление, называется – резистор . Резистор применяется практически в любой электрической схеме.

    10 формул по физике

    Доброго дня уважаемые радиолюбители!
    Приветствую вас на сайте “Радиолюбитель“

    Формулы составляют скелет науки об электронике. Вместо того, чтобы сваливать на стол целую кучу радиоэлементов, а потом переподключать их между собой, пытаясь выяснить, что же появится на свет в результате, опытные специалисты сразу строят новые схемы на основе известных математических и физических законов. Именно формулы помогают определять конкретные значения номиналов электронных компонентов и рабочих параметров схем.

    Точно так же эффективно использовать формулы для модернизации уже готовых схем. К примеру, для того, чтобы выбрать правильный резистор в схеме с лампочкой, можно применить базовый закон Ома для постоянного тока (о нем можно будет прочесть в разделе “Соотношения закона Ома” сразу после нашего лирического вступления). Лампочку можно заставить, таким образом, светить более ярко или, наоборот — притушить.

    В этой главе будут приведены многие основные формулы физики, с которыми рано или поздно приходится сталкиваться в процессе работы в электронике. Некоторые из них известны уже столетия, но мы до сих пор продолжаем ими успешно пользоваться, как будут пользоваться и наши внуки.

    Соотношения закона Ома

    Закон Ома представляет собой взаимное соотношение между напряжением, током, сопротивлением и мощностью. Все выводимые формулы для расчета каждой из указанных величин представлены в таблице:

    Искомая величинаФормула
    Напряжение, ВU=I*R
    Ток, АI=U/R
    Сопротивление, ОмR=U/I
    Мощность, ВтP=U*I

    В этой таблице используются следующие общепринятые обозначения физических величин:

    U — напряжение (В),

    I — ток (А),

    Р — мощность (Вт),

    R — сопротивление (Ом),

    Потренируемся на следующем примере: пусть нужно найти мощность схемы. Известно, что напряжение на ее выводах составляет 100 В, а ток— 10 А. Тогда мощность согласно закону Ома будет равна 100 х 10 = 1000 Вт. Полученное значение можно использовать для расчета, скажем, номинала предохранителя, который нужно ввести в устройство, или, к примеру, для оценки счета за электричество, который вам лично принесет электрик из ЖЭК в конце месяца.

    А вот другой пример: пусть нужно узнать номинал резистора в цепи с лампочкой, если известно, какой ток мы хотим пропускать через эту цепь. По закону Ома ток равен:

    I = U / R

    Схема, состоящая из лампочки, резистора и источника питания (батареи) показана на рисунке. Используя приведенную формулу, вычислить искомое сопротивление сможет даже школьник.

    Что же в этой формуле есть что? Рассмотрим переменные подробнее.

    > U пит (иногда также обозначается как V или Е): напряжение питания. Вследствие того, что при прохождении тока через лампочку на ней падает какое-то напряжение, величину этого падения (обычно рабочее напряжение лампочки, в нашем случае 3,5 В) нужно вычесть из напряжения источника питания. К примеру, если Uпит = 12 В, то U = 8,5 В при условии, что на лампочке падает 3,5 В.

    I: ток (измеряется в амперах), который планируется пропустить через лампочку. В нашем случае – 50 мА. Так как в формуле ток указывается в амперах, то 50 миллиампер составляет лишь малую его часть: 0,050 А.

    > R: искомое сопротивление токоограничивающего резистора, в омах.

    В продолжение, можно проставить в формулу расчета сопротивления реальные цифры вместо U, I и R:

    R = U/I = 8,5 В / 0,050 А= 170 Ом

    Расчёты сопротивления

    Рассчитать сопротивление одного резистора в простой цепи достаточно просто. Однако с добавлением в нее других резисторов, параллельно или последовательно, общее сопротивление цепи также изменяется. Суммарное сопротивление нескольких соединенных последовательно резисторов равно сумме отдельных сопротивлений каждого из них. Для параллельного же соединения все немного сложнее.

    Почему нужно обращать внимание на способ соединения компонентов между собой? На то есть сразу несколько причин.

    > Сопротивления резисторов составляют только некоторый фиксированный ряд номиналов. В некоторых схемах значение сопротивления должно быть рассчитано точно, но, поскольку резистор именно такого номинала может и не существовать вообще, то приходится соединять несколько элементов последовательно или параллельно.

    > Резисторы — не единственные компоненты, которые имеют сопротивление. К примеру, витки обмотки электромотора также обладают некоторым сопротивлением току. Во многих практических задачах приходится рассчитывать суммарное сопротивление всей цепи.

    Расчет сопротивления последовательных резисторов

    Формула для вычисления суммарного сопротивления резисторов, соединенных между собой последовательно, проста до неприличия. Нужно просто сложить все сопротивления:

    Rобщ = Rl + R2 + R3 + … (столько раз, сколько есть элементов)

    В данном случае величины Rl, R2, R3 и так далее — сопротивления отдельных резисторов или других компонентов цепи, а Rобщ — результирующая величина.

    Так, к примеру, если имеется цепь из двух соединенных последовательно резисторов с номиналами 1,2 и 2,2 кОм, то суммарное сопротивление этого участка схемы будет равно 3,4 кОм.

    Расчет сопротивления параллельных резисторов

    Все немного усложняется, если требуется вычислить сопротивление цепи, состоящей из параллельных резисторов. Формула приобретает вид:

    R общ = R1 * R2 / (R1 ­­+ R2)

    где R1 и R2 — сопротивления отдельных резисторов или других элементов цепи, а Rобщ -результирующая величина. Так, если взять те же самые резисторы с номиналами 1,2 и 2,2 кОм, но соединенные параллельно, получим

    776,47 = 2640000 / 3400

    Для расчета результирующего сопротивления электрической цепи из трех и более резисторов используется следующая формула:

    Здесь снова величины Rl, R2, R3 и так далее — сопротивления отдельных резисторов, a Rобщ — суммарная величина.

    Расчёты ёмкости

    Формулы, приведенные выше, справедливы и для расчета емкостей, только с точностью до наоборот. Так же, как и для резисторов, их можно расширить для любого количества компонентов в цепи.

    Расчет емкости параллельных конденсаторов

    Если нужно вычислить емкость цепи, состоящей из параллельных конденсаторов, необходимо просто сложить их номиналы:

    Собщ = CI + С2 + СЗ + …

    В этой формуле CI, С2 и СЗ — емкости отдельных конденсаторов, а Собщ суммирующая величина.

    Расчет емкости последовательных конденсаторов

    Для вычисления общей емкости пары связанных последовательно конденсаторов применяется следующая формула:

    Собщ  = С1 * С2 /( С1+С2)

    где С1 и С2 — значения емкости каждого из конденсаторов, а Собщ — общая емкость цепи

    Расчет емкости трех и более последовательно соединенных конденсаторов

    В схеме имеются конденсаторы? Много? Ничего страшного: даже если все они связаны последовательно, всегда можно найти результирующую емкость этой цепи:

    И здесь опять величины C1, С2, СЗ и так далее — емкости отдельных конденсаторов, а Собщ. — суммарная величина.

    Так зачем же вязать последовательно сразу несколько конденсаторов, когда могло хватить одного? Одним из логических объяснений этому факту служит необходимость получения конкретного номинала емкости цепи, аналога которому в стандартном ряду номиналов не существует. Иногда приходится идти и по более тернистому пути, особенно в чувствительных схемах, как, например, радиоприемники.

    Расчёт энергетических уравнений

    Наиболее широко на практике применяют такую единицу измерения энергии, как киловатт-часы или, если это касается электроники, ватт-часы. Рассчитать затраченную схемой энергию можно, зная длительность времени, на протяжении которого устройство включено. Формула для расчета такова:

    ватт-часы = Р х Т

    В этой формуле литера Р обозначает мощность потребления, выраженную в ваттах, а Т — время работы в часах. В физике принято выражать количество затраченной энергии в ватт-секундах, или Джоулях. Для расчета энергии в этих единицах ватт-часы делят на 3600.

    Расчёт постоянной ёмкости RC-цепочки

    В электронных схемах часто используются RC-цепочки для обеспечения временных задержек или удлинения импульсных сигналов. Самые простые цепочки состоят всего лишь из резистора и конденсатора (отсюда и происхождение термина RC-цепочка).

    Принцип работы RC-цепочки состоит в том, что заряженный конденсатор разряжается через резистор не мгновенно, а на протяжении некоторого интервала времени. Чем больше сопротивление резистора и/или конденсатора, тем дольше будет разряжаться емкость. Разработчики схем очень часто применяют RC-цепочки для создания простых таймеров и осцилляторов или изменения формы сигналов.

    Каким же образом можно рассчитать постоянную времени RC-цепочки? Поскольку эта схема состоит из резистора и конденсатора, в уравнении используются значения сопротивления и емкости. Типичные конденсаторы имеют емкость порядка микрофарад и даже меньше, а системными единицами являются фарады, поэтому формула оперирует дробными числами.

    T = RC

    В этом уравнении литера Т служит для обозначения времени в секундах, R — сопротивления в омах, и С — емкости в фарадах.

    Пусть, к примеру, имеется резистор 2000 Ом, подключенный к конденсатору 0,1 мкФ. Постоянная времени этой цепочки будет равна 0,002 с, или 2 мс.

    Для того чтобы на первых порах облегчить вам перевод сверхмалых единиц емкостей в фарады, мы составили таблицу:

    Значение емкости конденсатора, мкФЕмкость конденсатора для расчета
    100,000 01
    10,000 001
    0,10,000 000 1
    0,010,000 000 01

    Расчёты частоты и длины волны

    Частота сигнала является величиной, обратно пропорциональной его длине волны, как будет видно из формул чуть ниже. Эти формулы особенно полезны при работе с радиоэлектроникой, к примеру, для оценки длины куска провода, который планируется использовать в качестве антенны. Во всех следующих формулах длина волны выражается в метрах, а частота — в килогерцах.

    Расчет частоты сигнала

    Предположим, вы хотите изучать электронику для того, чтобы, собрав свой собственный приемопередатчик, поболтать с такими же энтузиастами из другой части света по аматорской радиосети. Частоты радиоволн и их длина стоят в формулах бок о бок. В радиолюбительских сетях часто можно услышать высказывания о том, что оператор работает на такой-то и такой длине волны. Вот как рассчитать частоту радиосигнала, зная длину волны:

    Частота = 300000 / длина волны

    Длина волны в данной формуле выражается в миллиметрах, а не в футах, аршинах или попугаях. Частота же дана в мегагерцах.

    Расчет длины волны сигнала

    Ту же самую формулу можно использовать и для вычисления длины волны радиосигнала, если известна его частота:

    Длина волны = 300000 / Частота

    Результат будет выражен в миллиметрах, а частота сигнала указывается в мегагерцах.

    Приведем пример расчета. Пусть радиолюбитель общается со своим другом на частоте 50 МГц (50 миллионов периодов в секунду). Подставив эти цифры в приведенную выше формулу, получим:

    6000 миллиметров = 300000 / 50 МГц

    Однако чаще пользуются системными единицами длины — метрами, поэтому для завершения расчета нам остается перевести длину волны в более понятную величину. Так как в 1 метре 1000 миллиметров, то в результате получим 6 м. Оказывается, радиолюбитель настроил свою радиостанцию на длину волны 6 метров. Прикольно!



    Закон

    Ома: сопротивление и простые схемы

    Цели обучения

    К концу этого раздела вы сможете:

    • Объясните происхождение закона Ома.
    • Рассчитывайте напряжения, токи или сопротивления по закону Ома.
    • Объясните, что такое омический материал.
    • Опишите простую схему.

    Что движет током? Мы можем думать о различных устройствах, таких как батареи, генераторы, розетки и т. Д., Которые необходимы для поддержания тока.Все такие устройства создают разность потенциалов и условно называются источниками напряжения. Когда источник напряжения подключен к проводнику, он прикладывает разность потенциалов В, , которая создает электрическое поле. Электрическое поле, в свою очередь, воздействует на заряды, вызывая ток.

    Ток, протекающий через большинство веществ, прямо пропорционален приложенному к нему напряжению В, . Немецкий физик Георг Симон Ом (1787–1854) первым экспериментально продемонстрировал, что ток в металлической проволоке прямо пропорционален приложенному напряжению :

    .

    [латекс] I \ propto {V} \\ [/ латекс].

    Это важное соотношение известно как закон Ома . Его можно рассматривать как причинно-следственную связь, в которой напряжение является причиной, а ток — следствием. Это эмпирический закон, подобный закону трения — явление, наблюдаемое экспериментально. Такая линейная зависимость возникает не всегда.

    Сопротивление и простые схемы

    Если напряжение управляет током, что ему мешает? Электрическое свойство, препятствующее току (примерно такое же, как трение и сопротивление воздуха), называется сопротивлением R .Столкновения движущихся зарядов с атомами и молекулами вещества передают энергию веществу и ограничивают ток. Сопротивление обратно пропорционально току, или

    .

    [латекс] I \ propto \ frac {1} {R} \\ [/ latex].

    Таким образом, например, ток уменьшается вдвое, если сопротивление увеличивается вдвое. Комбинируя отношения тока к напряжению и тока к сопротивлению, получаем

    [латекс] I = \ frac {V} {R} \\ [/ латекс].

    Это соотношение также называется законом Ома.Закон Ома в такой форме действительно определяет сопротивление определенных материалов. Закон Ома (как и закон Гука) не универсален. Многие вещества, для которых действует закон Ома, называются омическими . К ним относятся хорошие проводники, такие как медь и алюминий, и некоторые плохие проводники при определенных обстоятельствах. Омические материалы имеют сопротивление R , которое не зависит от напряжения В и тока I . Объект, который имеет простое сопротивление, называется резистором , даже если его сопротивление невелико.Единица измерения сопротивления — Ом, и обозначается символом Ω (заглавная греческая омега). Перестановка I = V / R дает R = V / I , и поэтому единицы сопротивления равны 1 Ом = 1 вольт на ампер:

    [латекс] 1 \ Omega = 1 \ frac {V} {A} \\ [/ латекс].

    На рисунке 1 показана схема простой схемы. Простая схема имеет один источник напряжения и один резистор. Можно предположить, что провода, соединяющие источник напряжения с резистором, имеют незначительное сопротивление, или их сопротивление можно включить в R .

    Рис. 1. Простая электрическая цепь, в которой замкнутый путь для прохождения тока обеспечивается проводниками (обычно металлическими), соединяющими нагрузку с выводами батареи, представленной красными параллельными линиями. Зигзагообразный символ представляет собой единственный резистор и включает любое сопротивление в соединениях с источником напряжения.

    Пример 1. Расчет сопротивления: автомобильная фара

    Какое сопротивление проходит у автомобильной фары? 2.50 А при подаче на него 12,0 В?

    Стратегия

    Мы можем изменить закон Ома, как указано в I = V / R , и использовать его для определения сопротивления.

    Решение

    Перестановка I = V / R и замена известных значений дает

    [латекс] R = \ frac {V} {I} = \ frac {\ text {12} \ text {.} \ Text {0 V}} {2 \ text {.} \ Text {50 A}} = \ text {4} \ text {.} \ text {80 \ Omega} \\ [/ latex].

    Обсуждение

    Это относительно небольшое сопротивление, но оно больше, чем хладостойкость фары.Как мы увидим в разделе «Сопротивление и удельное сопротивление», сопротивление обычно увеличивается с повышением температуры, поэтому лампа имеет меньшее сопротивление при первом включении и потребляет значительно больший ток во время короткого периода прогрева.

    Сопротивления варьируются от многих порядков. Некоторые керамические изоляторы, например те, которые используются для поддержки линий электропередач, имеют сопротивление 10 12 Ом или более. Сопротивление сухого человека может составлять 10 5 Ом, в то время как сопротивление человеческого сердца составляет примерно 10 3 Ом.Кусок медного провода большого диаметра длиной в метр может иметь сопротивление 10 −5 Ом, а сверхпроводники вообще не имеют сопротивления (они неомичны). Сопротивление связано с формой объекта и материалом, из которого он состоит, как будет показано в разделах «Сопротивление и удельное сопротивление». Дополнительную информацию можно получить, решив I = V / R для V , что дает

    В = ИК

    Это выражение для В, можно интерпретировать как падение напряжения на резисторе, вызванное протеканием тока I .Для этого напряжения часто используется фраза IR drop . Например, фара в Пример 1 выше имеет падение IR на 12,0 В. Если напряжение измеряется в различных точках цепи, будет видно, что оно увеличивается на источнике напряжения и уменьшается на резисторе. Напряжение аналогично давлению жидкости. Источник напряжения подобен насосу, создающему перепад давления, вызывающему ток — поток заряда. Резистор похож на трубу, которая снижает давление и ограничивает поток из-за своего сопротивления.Здесь сохранение энергии имеет важные последствия. Источник напряжения подает энергию (вызывая электрическое поле и ток), а резистор преобразует ее в другую форму (например, тепловую энергию). В простой схеме (схема с одним простым резистором) напряжение, подаваемое источником, равно падению напряжения на резисторе, так как PE = q Δ V , и то же самое q протекает через каждую. Таким образом, энергия, подаваемая источником напряжения, и энергия, преобразуемая резистором, равны.(См. Рисунок 2.)

    Рис. 2. Падение напряжения на резисторе в простой цепи равно выходному напряжению батареи.

    Установление соединений: сохранение энергии

    В простой электрической цепи единственный резистор преобразует энергию, поступающую от источника, в другую форму. Здесь о сохранении энергии свидетельствует тот факт, что вся энергия, подаваемая источником, преобразуется в другую форму одним резистором. Мы обнаружим, что сохранение энергии имеет и другие важные применения в схемах и является мощным инструментом анализа схем.

    Исследования PhET: закон Ома

    Посмотрите, как уравнение закона Ома соотносится с простой схемой. Отрегулируйте напряжение и сопротивление и посмотрите, как изменяется ток по закону Ома. Размеры символов в уравнении изменяются в соответствии с принципиальной схемой.

    Щелкните, чтобы запустить моделирование.

    Сводка раздела

    • Простая схема — это схема , в которой есть один источник напряжения и одно сопротивление.
    • Одно из утверждений закона Ома дает соотношение между током I , напряжением В и сопротивлением R в простой схеме как [латекс] I = \ frac {V} {R} \\ [/ latex] .
    • Сопротивление выражается в единицах Ом (Ом), относящихся к вольтам и амперам на 1 Ом = 1 В / А.
    • Имеется падение напряжения IR на резисторе, вызванное протекающим через него током, равным В = IR .

    Концептуальные вопросы

    1. Падение напряжения IR на резисторе означает изменение потенциала или напряжения на резисторе.Изменится ли ток при прохождении через резистор? Объяснять.
    2. Как падение IR в резисторе похоже на падение давления в жидкости, протекающей по трубе?

    Задачи и упражнения

    1. Какой ток протекает через лампочку фонаря на 3,00 В, когда ее горячее сопротивление составляет 3,60 Ом?

    2. Вычислите эффективное сопротивление карманного калькулятора с батареей на 1,35 В, через которую протекает ток 0,200 мА.

    3.Каково эффективное сопротивление стартера автомобиля, когда через него проходит 150 А, когда автомобильный аккумулятор подает на двигатель 11,0 В?

    4. Сколько вольт подается для работы светового индикатора DVD-плеера с сопротивлением 140 Ом, если через него проходит 25,0 мА?

    5. (a) Найдите падение напряжения в удлинителе с сопротивлением 0,0600 Ом, через который проходит ток 5,00 А. (b) Более дешевый шнур использует более тонкую проволоку и имеет сопротивление 0.300 Ом. Какое в нем падение напряжения при протекании 5.00 А? (c) Почему напряжение на любом используемом приборе снижается на эту величину? Как это повлияет на прибор?

    6. ЛЭП подвешена к металлическим опорам со стеклянными изоляторами, имеющими сопротивление 1,00 × 10 9 Ом. Какой ток протекает через изолятор при напряжении 200 кВ? (Некоторые линии высокого напряжения — постоянного тока.)

    Глоссарий

    Закон Ома:
    — эмпирическое соотношение, указывающее, что ток I, пропорционален разности потенциалов В, , ∝ В, ; его часто записывают как I = V / R , где R — сопротивление
    сопротивление:
    электрическое свойство, препятствующее току; для омических материалов это отношение напряжения к току, R = V / I
    Ом:
    единица сопротивления, равная 1Ω = 1 В / А
    омическое:
    тип материала, для которого действует закон Ома
    простая схема:
    схема с одним источником напряжения и одним резистором

    Избранные решения проблем и упражнения

    1.0,833 А

    3. 7,33 × 10 −2 Ом

    5. (а) 0,300 В

    (б) 1,50 В

    (c) Напряжение, подаваемое на любой используемый прибор, снижается, поскольку общее падение напряжения от стены до конечной мощности прибора является фиксированным. Таким образом, если падение напряжения на удлинителе велико, падение напряжения на приборе значительно уменьшается, поэтому выходная мощность прибора может быть значительно уменьшена, что снижает способность прибора работать должным образом.

    Формулы и калькулятор »Электроника

    Формулы, расчеты и калькулятор для определения общего сопротивления резисторов, установленных последовательно и параллельно.


    Resistance Tutorial:
    Что такое сопротивление Закон Ома Омические и неомические проводники Сопротивление лампы накаливания Удельное сопротивление Таблица удельного сопротивления для распространенных материалов Температурный коэффициент сопротивления Электрическая проводимость Последовательные и параллельные резисторы Таблица параллельных резисторов


    Резисторы могут быть размещены во многих конфигурациях в электрической или электронной схеме — иногда последовательно, иногда параллельно.

    Когда они размещаются в этих конфигурациях, важно иметь возможность рассчитать общее сопротивление. Этого можно довольно легко достичь, если использовать правильные формулы — есть простые формулы как для последовательных, так и для параллельных резисторов.

    При проектировании электронной схемы или по другой причине возможность вычисления сопротивления комбинации резисторов может быть очень полезной.

    В электронных схемах комбинации резисторов могут быть сведены к последовательным элементам и параллельным элементам, хотя при использовании других электронных компонентов комбинации могут быть более сложными.Однако во многих случаях расчет значений последовательного и параллельного сопротивления имеет большое значение.

    Резисторы серии

    Самая простая конфигурация электронной схемы — это резисторы, включенные последовательно. Это может произойти, если несколько этих электронных компонентов соединены последовательно, или необходимо добавить сопротивление кабеля к сопротивлению резистора и т. Д.

    Если резисторы соединены последовательно, то общее сопротивление является просто суммой отдельных резисторов.

    Последовательные резисторы

    Величину резисторов или сопротивлений, включенных последовательно, можно математически выразить следующим образом:

    Пример расчета последовательных резисторов:
    В качестве примера, если три резистора, имеющие номиналы 1 кОм, 2 кОм и 3 кОм, соединены последовательно, то общее сопротивление составит 1 + 2 + 3 кОм = 6 кОм.

    В реальных жизненных ситуациях и аспектах проектирования электрических и электронных схем будет много областей, где есть электронные компоненты, такие как резисторы или другие элементы, вносящие сопротивление, где количество последовательно соединенных сопротивлений, которые необходимо суммировать.

    Резисторы параллельно

    Есть также много случаев, когда электронные компоненты, такие как резисторы, а также другие элементы, вызывающие сопротивление, появляются в электрической или электронной цепи параллельно.

    Если резисторы размещены параллельно, они разделяют ток, и ситуацию немного сложнее вычислить, но все же довольно легко.

    1Rtotal = 1R1 + 1R2 + 1R3 + ……

    Пример расчета сопротивления резисторов, включенных параллельно:
    Чтобы дать пример, если есть три резистора, подключенных параллельно со значениями 1 кОм, 2 кОм и Омега и 3 кОм, то можно вычислить общее значение комбинации:

    1 / R Итого = 1/1000 + 1/2000 + 1/3000

    1 / R Итого = 1/1000 + 1/2000 + 1/3000

    1 / R Итого = 6/6000 + 3/6000 + 2/6000

    1 / R Итого = 11/6000

    R Всего = 6000/11 Ом или 545 Ом

    Корпус только двух резисторов, включенных параллельно

    Во многих конструкциях электронных схем наиболее распространенный экземпляр резисторов, включенных параллельно, состоит только из двух электронных компонентов.

    Часто бывает так, что один резистор подключается параллельно другому. Или другой случай может быть, когда резистор помещается на клеммы для цепи или сети, которая имеет определенное сопротивление. В этом случае необходимо только рассчитать общее сопротивление для двух параллельно включенных резисторов.

    Если необходимо рассчитать общее значение для двух параллельных резисторов, уравнением можно манипулировать и значительно упростить его, как показано ниже:

    Эта формула значительно упрощает вычисление номинала двух параллельно включенных резисторов, так как требует только одного умножения, одного сложения и одного деления.Часто это можно сделать мысленно или на клочке бумаги. В качестве альтернативы можно использовать наш простой калькулятор для двух параллельно включенных резисторов, приведенный ниже.

    Калькулятор для двух резисторов, включенных параллельно

    Этот калькулятор параллельного сопротивления обеспечивает простой метод расчета общего сопротивления для двух резисторов, соединенных параллельно.

    Хотя вычисление номиналов параллельных резисторов для двух резисторов упрощается до простой формулы, иногда гораздо проще и быстрее использовать калькулятор.

    Чтобы использовать калькулятор параллельных резисторов, просто введите значения параллельных резисторов в Ом, Ом или кОм и т. Д. В два поля ввода, но обратите внимание, что все значения должны быть в одних и тех же единицах, то есть оба в Ом кОм МОм и т. Д. Затем вычислитель параллельных резисторов предоставит общее сопротивление двух резисторов в тех же единицах, что и вход.

    Введите два значения для резисторов, R1 и R2, в поля, представленные в калькуляторе ниже, нажмите «Рассчитать», и будет предоставлено общее сопротивление.


    Калькулятор параллельного сопротивления

    Калькулятор параллельных резисторов позволяет легко рассчитать сопротивление двух резисторов, включенных параллельно, экономя записывать все и прибегая к ручке и бумаге или калькулятору в той или иной форме.

    Знание того, как рассчитать значения резисторов, включенных последовательно и параллельно, является ключом к пониманию того, как работают электрические и электронные схемы. Эти концепции используются как вторая натура при проектировании электрических и электронных схем.

    Другие основные концепции электроники:
    Напряжение Текущий Мощность Сопротивление Емкость Индуктивность Трансформеры Децибел, дБ Законы Кирхгофа Q, добротность Радиочастотный шум
    Вернуться в меню «Основные понятия электроники». . .

    Как рассчитать резисторы, включенные последовательно и параллельно — Kitronik Ltd

    Резисторы серии

    Когда резисторы подключаются друг за другом, это называется последовательным соединением.Это показано ниже. Чтобы рассчитать общее общее сопротивление ряда резисторов, подключенных таким образом, вы складываете отдельные сопротивления. Это делается по следующей формуле: Rtotal = R1 + R2 + R3 и так далее. Пример: чтобы рассчитать полное сопротивление для этих трех последовательно соединенных резисторов.
    Rtotal = R1 + R2 + R3 = 100 + 82 + 1 Ом = 183 Ом

    Задача 1:

    Рассчитайте общее сопротивление следующего последовательно включенного резистора.
    R Итого = _______________
    = _______________
    R Итого = _______________
    = _______________
    R Итого = _______________
    = _______________

    Параллельные резисторы

    Когда резисторы подключаются друг к другу (бок о бок), это называется параллельным подключением.Это показано ниже.

    Два параллельных резистора

    Для расчета общего полного сопротивления a двух резисторов, подключенных таким образом, вы можете использовать следующую формулу:
    Пример: чтобы рассчитать полное сопротивление для этих двух резисторов, включенных параллельно.

    Задача 2:

    Рассчитайте полное сопротивление следующего резистора, включенного параллельно.

    Три или более резистора параллельно

    Для расчета общего общего сопротивления ряда из трех или более резисторов, подключенных таким образом, вы можете использовать следующую формулу: Пример: Чтобы рассчитать общее сопротивление для этих трех резисторов, подключенных параллельно

    Задача 3:

    Рассчитайте полное сопротивление следующего резистора, включенного параллельно.

    ответы

    Задача 1

    1 = 1492 Ом 2 = 2242 Ом 3 = 4847 Ом

    Задача 2

    1 = 5 Ом 2 = 9,57 Ом 3 = 248,12 Ом

    Задача 3

    1 = 5,95 Ом 2 = 23,76 Ом Загрузите pdf-версию этой страницы здесь. Подробнее об авторе подробнее »

    © Kitronik Ltd — Вы можете распечатать эту страницу и ссылку на нее, но не должны копировать страницу или ее часть без предварительного письменного согласия Kitronik.

    Закон Ома для начинающих и новичков

    Закон Ома для начинающих и новичков
    Основной закон Ома

    HTML from: http: // www.btinternet.com/~dtemicrosystems/beginner.htm

    ЧТО ЭТО. КАК И ГДЕ ПОЛУЧИТЬ ЕГО


    Хотя закон Ома применим не только к резисторам — как мы увидим позже — кажется, логично включить его сейчас, так как он будет хорошей точкой отсчета для резистора подробности приведены выше.

    ЧТО ТАКОЕ ЗАКОН ОМС? :
    Используя диаграмму слева, закон Ома определяется как; «При условии, что температура остается постоянным, отношение разности потенциалов (стр.г.) ​​на концах проводника (R) к току (I), протекающему в этом проводнике, также будет постоянным ». проповедь!

    Из этого мы заключаем, что; Ток равен напряжению, разделенному на сопротивление (I = V / R), Сопротивление равно напряжению, разделенному на ток (R = V / I), а напряжение равно току, умноженному на Сопротивление (V = IR).
    Важным фактором здесь является температура. Если расчеты по закону Ома должны давать точные результаты, это должно оставаться постоянным. В «реальном» мире это почти никогда делает, и с точки зрения новичка вам не нужно беспокоиться об этом. более того, поскольку схемы, с которыми вы, вероятно, столкнетесь в данный момент, — и около 95% все те, с которыми вы столкнетесь в будущем — будут работать нормально, даже если они горячие или холодно!

    Закон OHMS ПРОСТОЙ СПОСОБ:
    На рисунке 1 слева показан наиболее распространенный треугольник закона Ома.Начиная с любого раздела треугольник, его можно читать в любом направлении — по часовой стрелке, против часовой стрелки, сверху вниз или снизу вверх — и он всегда предоставит вам расчет, который вы требовать.


    Если рассматривать (слегка диагональные) горизонтальные линии как знаки разделения, а короткие вертикальная линия как знак умножения, и всегда начинайте расчет с любого количества вы ищете, т.е. «V =», «I =» или «R =» у вас будет все возможные формулы, основанные на этом конкретном законе Ома.Это; V = IxR, I = V / R, R = V / I. Это должно быть очевидно, что формула работает и в обратном направлении, то есть; IxR = V, RxI = V, V / I = R и V / R = I.

    Эти объяснения могут показаться немного сложными, но их легко применить на практике. Как правило, для начинающих будет более понятен полезный пример, а не эти причудливые столы, так что поехали.

    ПОЯСНЕНИЕ НА ПРИМЕРЕ:
    Допустим, друг просит вас установить красную сигнальную лампу на приборную панель его / ее автомобиля.Будучи энтузиастом электроники, вы решили использовать красный светоизлучающий диод (LED), поскольку они излучают достаточно чистый красный свет, не выделяют чрезмерного тепла лампы накаливания, они также дешевы по сравнению с ними и выглядят высокотехнологичными!

    С точки зрения принципиальной схемы расположение будет таким, как показано слева.
    ОГРАНИЧИТЕЛЬНЫЙ РЕЗИСТОР ТОКА:
    Стандартные светодиоды не могут получать питание напрямую от 12 В без установки ограничения тока резистор включен последовательно с одним из выводов, но какое значение вы используете? Как общее правило на практике, вашему среднему светодиоду требуется около 15 мА тока для получения приемлемого света. выход.Учитывая это, теперь у нас есть две известные величины для использования в наших расчетах: напряжение и ток. Используя треугольник закона Ома, требуемое сопротивление равно рассчитывается по формуле «R = V / I», которая дает нам 12 / 0,015 = 800 Ом (см. ниже для ‘Vf’). Не забывайте, ток измеряется в амперах.

    На первый взгляд может показаться, что это проблема, поскольку 800 Ом не является стандартным значением. доступен в диапазоне E12. Однако в этом типе схемы сопротивление не критического, и ближайшего предпочтительного значения будет вполне достаточно, а именно 820 Ом.

    НЕ ЗАБЫВАЙТЕ ОБ «Vf»:
    Все электронные компоненты демонстрируют — в большей или меньшей степени — то, что известно как ‘выбывать’. Он имеет различные сокращения в зависимости от типа компонента, к которому он ссылается, но обычно они означают одно и то же. На самом деле это количество напряжения, которое используется компонентом для работы. Для стандартного светодиода это значение находится в диапазоне около 1,5 — 3 вольт, и для наших целей мы примем 2 В.

    Это означает, что из ваших 12 вольт от аккумулятора 2 вольта будут израсходованы светодиодом. Сама по себе, поэтому ваш расчет закона Ома должен быть основан на 10 вольт.Истинная формула должно быть на самом деле; (12-Vf) /0.015=666.66 Ом (повторяется для математиков среди ты!). Ближайшее значение в диапазоне E12 составляет 680 Ом, поэтому в идеале это должно быть ценность для использования. В целях безопасности, когда ваши результаты заканчиваются непонятными значениями, такими как при этом всегда выбирайте ближайшее значение выше, а не следующее ниже.

    РЕЗИСТОРЫ ПОСЛЕДОВАТЕЛЬНО И ПАРАЛЛЕЛЬНО

    Возможно «изготовление» стандартных и нестандартных номиналов резисторов на соответствовать вашим потребностям, если требуемое значение отсутствует.Это достигается подключением два или более из них параллельно, последовательно или их комбинация. Однако вам нужно заранее знать, как они взаимодействуют друг с другом в этих конфигурациях.

    РЕЗИСТОРОВ СЕРИИ:
    На рисунке слева показаны три последовательно включенных резистора. Это самый простой способ получить «производственные» значения. Формула прямой для расчет окончательного значения; «R» = R1 + R2 + R3. Другими словами, независимо от количества резисторов или их индивидуальных значений, окончательное значение «R» всегда будет их суммой.Расчет по ноге изображения работает для любого количества значений, соединенных последовательно, вы просто продолжаете добавлять их в список других.

    РЕЗИСТОРОВ ПАРАЛЛЕЛЬНО:
    При параллельном соединении резисторов расчеты сложнее. На рисунке слева показаны три параллельно включенных резистора. Мы будем не заботиться о трех отдельных ценностях, а сосредоточиться на том, что окончательное значение «R» будет с использованием примеров значений.Расчет у подножия изображение работает для любого количества значений, подключенных параллельно, вы просто продолжаете добавлять их в список других в скобках. Для наших целей предположим, что R1 составляет 47K, R2 — это 150 КБ, а R3 — 820 КБ. Формула прямой линии для окончательного значения: «R» = 1 / ( (1 / R1) + (1 / R2) + (1 / R3)).
    В этой формуле содержится много ненужных скобок (скобок), и вот причина; почти для всех расчетов электроники вам нужно использовать калькулятор, который отдает приоритет функциям умножения и деления, а также наиболее научным калькуляторы работают именно так.К сожалению, многие «простые» калькуляторы этого не делают, поэтому дополнительные скобки были показаны, чтобы компенсировать те, которые вычисляют цифры в порядок их ввода. С научным калькулятором вы можете использовать упрощенный формула прямой линии; «R» = 1 / (1 / R1 + 1 / R2 + 1 / R3).

    Важно определить значения в скобках перед применением окончательного Функция «1 /». В противном случае формула принимает вид 1 / R1 + 1 / R2 + 1 / R3 =? если ты попробуйте это на своем калькуляторе, используя наши примеры значений, вы, вероятно, подумаете, что у вас есть неправильный ответ (0.02916 …), но вы этого не сделали. На самом деле у вас точно есть право ответ, ему просто не хватает последней функции «1 /».

    Если в вашем калькуляторе есть «1 / X» (единица, деленная на все, что показано в display), затем нажмите эту кнопку сейчас. Если эта функция недоступна, поместите результат в памяти (убедившись, что раньше там ничего не было), очистите дисплей а затем введите «1 MR =» или другую подобную последовательность. Результат должен быть 34,29 кОм (34 290,29005 Ом), что правильно.Итак, итоговое значение всех трех параллельно включенные резисторы — 34,29К.

    ДЛЯ ЧЕГО ДРУГОЙ ТРЕУГОЛЬНИК?

    На рис. 2 слева показан второй по величине часто используемый треугольник закона Ома. К этому можно подойти точно так же, как и к выше, только на этот раз он используется для расчета мощности, напряжения и тока. В объяснения здесь таковы; Ток равен мощности, деленной на напряжение (I = P / V), мощность равна Ток, умноженный на напряжение (P = VxI), и напряжение равно мощности, деленной на ток (V = P / I).


    ДЕМОНСТРАЦИЯ НА ПРИМЕРЕ:
    Чтобы продемонстрировать использование этого треугольника, мы применим его к обычному электрическому / электронному компонент — трансформатор. Их характеристики обычно цитируются с точки зрения их выходное напряжение вторичной обмотки, вместе с мощностью — в ВА — это напряжение. Термин «VA» означает ватт и происходит от формулы «Вольт на Ампер» (отсюда — ВА). Это обозначается буквой «P» в треугольник закона Ома.

    КАКОЙ ТРАНСФОРМАТОР ДЕЛАТЬ НУЖНО ?
    Допустим, у вас есть цепь на 9 В, которая потребляет 1.5 ампер тока. Вы хотите знать, если трансформатор с номиналом 9 В при 25 ВА будет достаточным для питания вашей цепи. Ты уже есть две величины от трансформатора — напряжение (В) и мощность (P или VA), и по ним вы хотите узнать, какой будет доступный ток (I).


    Используя формулу «I = P / V» из треугольника, результат: 25/9 = 2,77 усилители. Таким образом, этот трансформатор подойдет для ваших нужд на 1,5 А. В целях безопасности если цепь будет постоянно потреблять определенное количество тока, независимо от каким может быть этот ток, тогда всегда используйте трансформатор, доступный как минимум на 50% больше ток, чем требует ваша схема.Никогда не используйте тот, у которого «ровно достаточно» тока, потому что он станет слишком горячим, что приведет к изменению характеристик напряжения и текущий указан. Эти изменения сложны, и мы не будем их объяснять в этой статье. раздел для начинающих, но будьте осторожны при выборе трансформаторов.

    Что такое закон Ома? | Fluke

    Закон Ома — это формула, используемая для расчета взаимосвязи между напряжением, током и сопротивлением в электрической цепи.

    Для изучающих электронику закон Ома (E = IR) столь же фундаментально важен, как уравнение относительности Эйнштейна (E = mc²) для физиков.

    E = I x R

    В тексте это означает напряжение = ток x сопротивление , или вольт = ампер x ом , или В = A x Ω .

    Названный в честь немецкого физика Георга Ома (1789-1854), закон Ома определяет ключевые величины, действующие в цепях:

    Количество Закон Ома
    символ
    Единица измерения
    (аббревиатура)
    Роль в схемы Если вам интересно:
    Напряжение E Вольт (В) Давление, которое запускает поток электронов E = электродвижущая сила (старая школа)
    Ток I Ампер, ампер (A) Скорость потока электронов I = интенсивность
    Сопротивление R Ом (Ом) Ингибитор потока Ом = omega

    Если известны два из этих значений, технические специалисты могут перенастроить закон Ома, чтобы вычислить третье.Просто измените пирамиду следующим образом:

    Если вы знаете напряжение (E) и ток (I) и хотите узнать сопротивление (R), вытяните R в пирамиде и вычислите оставшееся уравнение (см. Первое или дальнее слева, пирамида вверху).

    Примечание: Сопротивление не может быть измерено в рабочей цепи, поэтому закон Ома особенно полезен, когда его необходимо вычислить. Вместо того, чтобы отключать цепь для измерения сопротивления, технический специалист может определить R, используя вышеуказанный вариант закона Ома.

    Теперь, если вы знаете напряжение (E) и сопротивление (R) и хотите знать , ток (I), вытяните I и вычислите оставшиеся два символа (см. Среднюю пирамиду выше).

    И если вы знаете ток (I) и сопротивление (R) и хотите знать напряжение (E), умножьте нижние половины пирамиды (см. Третью или крайнюю правую пирамиду выше).

    Попробуйте несколько примеров расчетов на основе простой последовательной схемы, которая включает только один источник напряжения (аккумулятор) и сопротивление (свет).В каждом примере известны два значения. Используйте закон Ома для вычисления третьего.

    Пример 1: Напряжение (E) и сопротивление (R) известны.

    Какой ток в цепи?

    I = E / R = 12 В / 6 Ом = 2 А

    Пример 2: Напряжение (E) и ток (I) известны.

    Какое сопротивление создает лампа?

    R = E / I = 24 В / 6 А = 4 Ом

    Пример 3: Ток (I) и сопротивление (R) известны. Какое напряжение?

    Какое напряжение в цепи?

    E = I x R = (5A) (8Ω) = 40 В

    Когда Ом опубликовал свою формулу в 1827 году, его ключевым выводом было то, что количество электрического тока, протекающего через проводник, прямо пропорционально приложенному напряжению. в теме.Другими словами, требуется один вольт давления, чтобы протолкнуть один ампер тока через один ом сопротивления.

    Что проверять с помощью закона Ома

    Закон Ома можно использовать для проверки статических значений компонентов схемы, уровней тока, источников напряжения и падений напряжения. Если, например, измерительный прибор обнаруживает более высокое значение измерения тока, чем обычно, это может означать, что сопротивление уменьшилось или что напряжение увеличилось, вызывая ситуацию высокого напряжения. Это может указывать на проблему с питанием или цепью.

    В цепях постоянного тока (dc) измерение тока ниже нормального может означать, что напряжение снизилось или сопротивление цепи увеличилось. Возможные причины повышенного сопротивления — плохие или неплотные соединения, коррозия и / или поврежденные компоненты.

    Нагрузки в цепи потребляют электрический ток. Нагрузки могут быть любыми компонентами: небольшими электрическими устройствами, компьютерами, бытовой техникой или большим двигателем. На большинстве этих компонентов (нагрузок) есть паспортная табличка или информационная наклейка.На этих паспортных табличках указаны сертификаты безопасности и несколько ссылочных номеров.

    Технические специалисты обращаются к заводским табличкам на компонентах, чтобы узнать стандартные значения напряжения и тока. Во время тестирования, если технические специалисты обнаруживают, что обычные значения не регистрируются на их цифровых мультиметрах или токоизмерительных клещах, они могут использовать закон Ома, чтобы определить, какая часть цепи дает сбой, и на основании этого определить, в чем может заключаться проблема.

    Основы науки о схемах

    Схемы, как и вся материя, состоят из атомов.Атомы состоят из субатомных частиц:

    • Протонов (с положительным электрическим зарядом)
    • Нейтронов (без заряда)
    • Электронов (отрицательно заряженных)

    Атомы остаются связанными силами притяжения между ядром атома и электронами в его внешняя оболочка. Под воздействием напряжения атомы в цепи начинают преобразовываться, и их компоненты проявляют потенциал притяжения, известный как разность потенциалов. Взаимно привлеченные свободные электроны движутся к протонам, создавая поток электронов (ток).Любой материал в цепи, ограничивающий этот поток, считается сопротивлением.

    Ссылка: Принципы цифрового мультиметра Глена А. Мазура, American Technical Publishers.

    Статьи по теме

    Учебное пособие по физике: Комбинированные схемы

    Ранее в Уроке 4 упоминалось, что существует два разных способа соединения двух или более электрических устройств в цепь. Они могут быть соединены посредством последовательного или параллельного соединения.Когда все устройства в цепи соединены последовательным соединением, эта схема называется последовательной схемой. Когда все устройства в цепи соединены параллельными соединениями, тогда схема называется параллельной цепью. Третий тип схемы предполагает двойное использование последовательного и параллельного соединений в схеме; такие схемы называются составными схемами или комбинированными схемами. Схема, изображенная справа, является примером использования как последовательного, так и параллельного соединения в одной и той же цепи.В этом случае лампочки A и B подключаются параллельно, а лампочки C и D подключаются последовательно. Это пример комбинированной схемы .

    При анализе комбинированных цепей критически важно иметь твердое понимание концепций, относящихся как к последовательным цепям, так и к параллельным цепям. Поскольку оба типа соединений используются в комбинированных схемах, концепции, связанные с обоими типами схем, применяются к соответствующим частям схемы.Основные понятия, связанные с последовательными и параллельными цепями, представлены в таблице ниже.

    Цепи серии
    • Ток одинаков на всех резисторах; этот ток равен току в батарее.
    • Сумма падений напряжения на отдельных резисторах равна номинальному напряжению батареи.
    • Общее сопротивление набора резисторов равно сумме отдельных значений сопротивлений,
    R до = R 1 + R 2 + R 3 +…
    Параллельные схемы
    • Падение напряжения одинаково на каждой параллельной ветви.
    • Сумма тока в каждой отдельной ветви равна току вне ветвей.
    • Эквивалентное или полное сопротивление набора резисторов определяется уравнением 1 / R экв. = 1 / R 1 + 1 / R 2 + 1 / R 3

    Каждое из приведенных выше понятий имеет математическое выражение.Комбинирование математических выражений вышеуказанных понятий с уравнением закона Ома (ΔV = I • R) позволяет провести полный анализ комбинированной схемы.

    Анализ комбинированных схем

    Основная стратегия анализа комбинированных схем включает использование значения эквивалентного сопротивления для параллельных ветвей для преобразования комбинированной схемы в последовательную. После преобразования в последовательную схему анализ можно проводить обычным образом.Ранее в Уроке 4 описывался метод определения эквивалентного параллельного сопротивления, затем общее или эквивалентное сопротивление этих ветвей равно сопротивлению одной ветви, деленному на количество ветвей.

    Этот метод соответствует формуле

    1 / R экв. = 1 / R 1 + 1 / R 2 + 1 / R 3 + …

    , где R 1 , R 2 и R 3 — значения сопротивления отдельных резисторов, подключенных параллельно.Если два или более резистора, находящиеся в параллельных ветвях, не имеют одинакового сопротивления, необходимо использовать приведенную выше формулу. Пример этого метода был представлен в предыдущем разделе Урока 4.

    Применяя свое понимание эквивалентного сопротивления параллельных ветвей к комбинированной схеме, комбинированную схему можно преобразовать в последовательную. Затем понимание эквивалентного сопротивления последовательной цепи можно использовать для определения общего сопротивления цепи.Рассмотрим следующие диаграммы ниже. Схема A представляет собой комбинированную схему с резисторами R 2 и R 3 , размещенными в параллельных ветвях. Два параллельных резистора 4 Ом эквивалентны сопротивлению 2 Ом. Таким образом, две ветви можно заменить одним резистором с сопротивлением 2 Ом. Это показано на диаграмме B. Теперь, когда все резисторы включены последовательно, можно использовать формулу для общего сопротивления последовательных резисторов для определения общего сопротивления этой цепи: Формула для последовательного сопротивления составляет

    . R до = R 1 + R 2 + R 3 +…

    Итак, на схеме B полное сопротивление цепи составляет 10 Ом.

    После определения общего сопротивления цепи анализ продолжается с использованием закона Ома и значений напряжения и сопротивления для определения значений тока в различных местах. Весь метод проиллюстрирован ниже на двух примерах.

    Пример 1:

    Первый пример — самый простой — резисторы, включенные параллельно, имеют одинаковое сопротивление.Цель анализа — определить ток и падение напряжения на каждом резисторе.

    Как обсуждалось выше, первым шагом является упрощение схемы путем замены двух параллельных резисторов одним резистором с эквивалентным сопротивлением. Два последовательно подключенных резистора 8 Ом эквивалентны одному резистору 4 Ом. Таким образом, два резистора ответвления (R 2 и R 3 ) можно заменить одним резистором с сопротивлением 4 Ом. Этот резистор 4 Ом включен последовательно с R 1 и R 4 .Таким образом, общее сопротивление составляет

    . R до = R 1 + 4 Ом + R 4 = 5 Ом + 4 Ом + 6 Ом

    R до = 15 Ом

    Теперь уравнение закона Ома (ΔV = I • R) можно использовать для определения полного тока в цепи. При этом необходимо использовать общее сопротивление и общее напряжение (или напряжение батареи).

    I tot = ΔV tot / R tot = (60 В) / (15 Ом)

    I до = 4 А

    Расчет тока 4 А представляет собой ток в месте расположения батареи.При этом резисторы R 1 и R 4 включены последовательно, и ток в последовательно соединенных резисторах везде одинаков. Таким образом,

    I до = I 1 = I 4 = 4 А

    Для параллельных ветвей сумма тока в каждой отдельной ветви равна току вне ветвей. Таким образом, I 2 + I 3 должно равняться 4 ампер. Существует бесконечное количество возможных значений I 2 и I 3 , которые удовлетворяют этому уравнению.Поскольку значения сопротивления равны, значения тока в этих двух резисторах также равны. Следовательно, ток в резисторах 2 и 3 равен 2 А.

    I 2 = I 3 = 2 А

    Теперь, когда известен ток в каждом отдельном месте резистора, можно использовать уравнение закона Ома (ΔV = I • R) для определения падения напряжения на каждом резисторе. Эти расчеты показаны ниже.

    ΔV 1 = I 1 • R 1 = (4 А) • (5 Ом)
    ΔV 1 = 20 В

    ΔV 2 = I 2 • R 2 = (2 А) • (8 Ом)

    ΔV 2 = 16 В

    ΔV 3 = I 3 • R 3 = (2 А) • (8 Ом)

    ΔV 3 = 16 В

    ΔV 4 = I 4 • R 4 = (4 А) • (6 Ом)

    ΔV 4 = 24 В

    На этом анализ завершен, и его результаты представлены на диаграмме ниже.

    Пример 2:

    Второй пример — более сложный случай — резисторы, включенные параллельно, имеют другое значение сопротивления. Цель анализа та же — определить ток и падение напряжения на каждом резисторе.

    Как обсуждалось выше, первым шагом является упрощение схемы путем замены двух параллельных резисторов одним резистором с эквивалентным сопротивлением.Эквивалентное сопротивление резистора 4 Ом и 12 Ом, включенного параллельно, можно определить, используя обычную формулу для эквивалентного сопротивления параллельных ветвей:

    1 / R экв. = 1 / R 1 + 1 / R 2 + 1 / R 3

    1 / R экв. = 1 / (4 Ом) + 1 / (12 Ом)

    1 / R экв. = 0,333 Ом -1

    R экв. = 1 / (0,333 Ом -1 )

    R экв = 3.00 Ом

    На основании этого расчета можно сказать, что два резистора ответвления (R 2 и R 3 ) можно заменить одним резистором с сопротивлением 3 Ом. Этот резистор 3 Ом включен последовательно с R 1 и R 4 . Таким образом, общее сопротивление составляет

    . R до = R 1 + 3 Ом + R 4 = 5 Ом + 3 Ом + 8 Ом

    R до = 16 Ом

    Теперь уравнение закона Ома (ΔV = I • R) можно использовать для определения полного тока в цепи.При этом необходимо использовать общее сопротивление и общее напряжение (или напряжение батареи).

    I tot = ΔV tot / R tot = (24 В) / (16 Ом)

    I до = 1,5 А

    Расчет тока 1,5 А представляет собой ток в месте расположения батареи. При этом резисторы R 1 и R 4 включены последовательно, и ток в последовательно соединенных резисторах везде одинаков.Таким образом,

    I до = I 1 = I 4 = 1,5 А

    Для параллельных ветвей сумма тока в каждой отдельной ветви равна току вне ветвей. Таким образом, I 2 + I 3 должно равняться 1,5 А. Существует бесконечное множество значений I 2 и I 3 , которые удовлетворяют этому уравнению. В предыдущем примере два параллельно включенных резистора имели одинаковое сопротивление; таким образом, ток распределялся поровну между двумя ветвями.В этом примере неравный ток в двух резисторах усложняет анализ. Ветвь с наименьшим сопротивлением будет иметь наибольший ток. Для определения силы тока потребуется использовать уравнение закона Ома. Но для его использования сначала необходимо знать падение напряжения на ветвях. Таким образом, направление решения в этом примере будет немного отличаться от более простого случая, проиллюстрированного в предыдущем примере.

    Чтобы определить падение напряжения на параллельных ветвях, сначала необходимо определить падение напряжения на двух последовательно соединенных резисторах (R 1 и R 4 ).Уравнение закона Ома (ΔV = I • R) можно использовать для определения падения напряжения на каждом резисторе. Эти расчеты показаны ниже.

    ΔV 1 = I 1 • R 1 = (1,5 А) • (5 Ом)
    ΔV 1 = 7,5 В

    ΔV 4 = I 4 • R 4 = (1,5 А) • (8 Ом)

    ΔV 4 = 12 В

    Эта схема питается от источника 24 В.Таким образом, совокупное падение напряжения заряда, проходящего по контуру цепи, составляет 24 вольта. Будет падение 19,5 В (7,5 В + 12 В) в результате прохождения через два последовательно соединенных резистора (R 1 и R 4 ). Падение напряжения на ответвлениях должно составлять 4,5 В, чтобы компенсировать разницу между общим значением 24 В и падением 19,5 В на R 1 и R 4 . Таким образом,

    ΔV 2 = V 3 = 4,5 В

    Зная падение напряжения на параллельно соединенных резисторах (R 1 и R 4 ), можно использовать уравнение закона Ома (ΔV = I • R) для определения тока в двух ветвях.

    I 2 = ΔV 2 / R 2 = (4,5 В) / (4 Ом)
    I 2 = 1,125 А

    I 3 = ΔV 3 / R 3 = (4,5 В) / (12 Ом)

    I 3 = 0,375 A

    На этом анализ завершен, и его результаты представлены на диаграмме ниже.

    Разработка стратегии

    Два приведенных выше примера иллюстрируют эффективную концептуально-ориентированную стратегию анализа комбинированных схем.Подход требовал твердого понимания концепций последовательностей и параллелей, обсуждавшихся ранее. Такие анализы часто проводятся, чтобы решить физическую проблему для указанного неизвестного. В таких ситуациях неизвестное обычно меняется от проблемы к проблеме. В одной задаче значения резистора могут быть заданы, а ток во всех ветвях неизвестен. В другой задаче могут быть указаны ток в батарее и несколько значений резистора, и неизвестная величина становится сопротивлением одного из резисторов.Очевидно, что разные проблемные ситуации потребуют небольших изменений в подходах. Тем не менее, каждый подход к решению проблем будет использовать те же принципы, что и при подходе к двум приведенным выше примерам проблем.

    Начинающему студенту предлагаются следующие предложения по решению задач комбинированной схемы:

    • Если схематическая диаграмма не предоставлена, найдите время, чтобы построить ее. Используйте условные обозначения, такие как показанные в примере выше.
    • При решении проблемы, связанной с комбинированной схемой, найдите время, чтобы организовать себя, записав известные значения и приравняв их к символу, например I до , I 1 , R 3 , ΔV 2 и т. Д. Схема организации, использованная в двух приведенных выше примерах, является эффективной отправной точкой.
    • Знать и использовать соответствующие формулы для эквивалентного сопротивления последовательно соединенных и параллельно соединенных резисторов. Использование неправильных формул гарантирует неудачу.
    • Преобразуйте комбинированную схему в строго последовательную, заменив (по вашему мнению) параллельную секцию одним резистором, значение сопротивления которого равно эквивалентному сопротивлению параллельной секции.
    • Используйте уравнение закона Ома (ΔV = I • R) часто и надлежащим образом. Большинство ответов будет определено с использованием этого уравнения. При его использовании важно подставлять в уравнение соответствующие значения. Например, при вычислении I 2 важно подставить в уравнение значения ΔV 2 и R 2 .

    Для дальнейшей практики анализа комбинированных схем рассмотрите возможность анализа проблем в разделе «Проверьте свое понимание» ниже.

    Мы хотели бы предложить … Зачем просто читать об этом и когда можно с этим взаимодействовать? Взаимодействовать — это именно то, что вы делаете, когда используете одно из интерактивных материалов The Physics Classroom. Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного средства построения цепей постоянного тока.Вы можете найти его в разделе Physics Interactives на нашем сайте. Построитель цепей постоянного тока предоставляет учащемуся набор для построения виртуальных цепей. Вы можете легко перетащить источники напряжения, резисторы и провода на рабочее место, а также расположить и подключить их так, как захотите. Вольтметры и амперметры позволяют измерять падение тока и напряжения. Нажатие на резистор или источник напряжения позволяет изменять сопротивление или входное напряжение. Это просто. Это весело. И это безопасно (если вы не используете его в ванне).


    Проверьте свое понимание

    1. Комбинированная схема показана на схеме справа. Используйте диаграмму, чтобы ответить на следующие вопросы.

    а. Ток в точке A равен _____ (больше, равен, меньше) ток в точке B.

    г. Ток в точке B равен _____ (больше, равен, меньше) ток в точке E.

    г. Ток в точке G равен _____ (больше, равен, меньше) ток в точке F.

    г. Ток в точке E равен _____ (больше, равен, меньше) току в точке G.

    e. Ток в точке B равен _____ (больше, равен, меньше) ток в точке F.

    ф. Ток в точке A равен _____ (больше, равен, меньше) ток в точке L.

    г. Ток в точке H равен _____ (больше, равен, меньше) ток в точке I.

    2. Рассмотрим комбинированную схему на схеме справа. Используйте диаграмму, чтобы ответить на следующие вопросы. (Предположим, что падение напряжения в самих проводах пренебрежимо мало.)

    а. Разность электрических потенциалов (падение напряжения) между точками B и C составляет _____ (больше, равно, меньше) разности электрических потенциалов (падение напряжения) между точками J и K.

    г. Разность электрических потенциалов (падение напряжения) между точками B и K составляет _____ (больше, равно, меньше) разности электрических потенциалов (падение напряжения) между точками D и I.

    г. Разность электрических потенциалов (падение напряжения) между точками E и F составляет _____ (больше, равно, меньше) разности электрических потенциалов (падение напряжения) между точками G и H.

    г. Разность электрических потенциалов (падение напряжения) между точками E и F составляет _____ (больше, равно, меньше) разности электрических потенциалов (падение напряжения) между точками D и I.

    e. Разность электрических потенциалов (падение напряжения) между точками J и K составляет _____ (больше, равно, меньше) разности электрических потенциалов (падение напряжения) между точками D и I.

    ф. Разность электрических потенциалов между точками L и A составляет _____ (больше, равно, меньше) разности электрических потенциалов (падение напряжения) между точками B и K.


    3.Используйте концепцию эквивалентного сопротивления, чтобы определить неизвестное сопротивление идентифицированного резистора, которое сделало бы схемы эквивалентными.




    4. Проанализируйте следующую схему и определите значения общего сопротивления, общего тока, а также тока и падения напряжения на каждом отдельном резисторе.


    5. Обращаясь к диаграмме в вопросе №4, определите …

    а. … номинальная мощность резистора 4.

    г. … скорость, с которой энергия потребляется резистором 3.

    Сопротивление резистора — стенограмма видео и урока

    Расчет сопротивления

    Поскольку сопротивление резистора зависит от материала, из которого он сделан, это учитывается в формуле для расчета сопротивления, которая математически может быть прочитана как:

    В этом уравнении R обозначает сопротивление.Греческая буква ρ, похожая на букву p , обозначает удельное сопротивление материала, из которого изготовлен резистор. L обозначает длину резистора. А A обозначает площадь поперечного сечения резистора. Сопротивление измеряется в Ом.

    Можно использовать два резистора одинакового размера из разных материалов с разным сопротивлением. Но не думайте, что сопротивление есть только у резисторов. Провода, которые сами проводят электричество, также имеют определенное сопротивление.Все, что проводит электричество, имеет определенное сопротивление. Провода обычно имеют гораздо меньшее сопротивление, чем резистор, предназначенный для защиты от электричества. Вы можете иметь сопротивление от нескольких Ом до миллионов Ом.

    Вот пример расчета сопротивления углеродного резистора длиной 0,005 метра (5 миллиметров) и диаметром 0,001 метра (1 миллиметр). Этот конкретный углеродный резистор имеет удельное сопротивление 45 x 10-5 Ом-метр.Итак, в основном, мы умножаем это удельное сопротивление на 0,005 метра и делим его на π, умноженный на 0,0005 метра в квадрате.

    Как мы видим, этот угольный резистор имеет сопротивление примерно 2,86 Ом. Обратите внимание, что символ ома — большая греческая буква омега (Ω).

    Закон Ома

    Все цепи, проводящие электричество, подчиняются так называемому закону Ома. Этот закон говорит вам, как ваше напряжение и ток связаны с вашим сопротивлением.

    R обозначает сопротивление, V обозначает напряжение, а I обозначает ток. Единицами измерения являются омы для сопротивления, вольт для напряжения и амперы для тока. Эта формула говорит вам, что ваше сопротивление всегда равно напряжению, деленному на ток. Вы также можете сказать, что ваше напряжение равно вашему току, умноженному на ваше сопротивление, или В = IR в форме уравнения, где R = В / I .

    Итак, если ваш резистор в вашей цепи имеет сопротивление 100 Ом, а ток, протекающий по цепи, составляет 0,5 А, тогда напряжение вашей цепи рассчитывается следующим образом:

    Напряжение в вашей цепи составляет 50 В.

    Расположение резисторов

    Способ размещения резисторов также может по-разному изменить значение сопротивления.

    Если ваши резисторы расположены последовательно, так что они соединены друг с другом, как в ожерелье, то полное или эквивалентное сопротивление является суммой значений ваших резисторов.Ток, протекающий через каждый резистор, будет одинаковым, но напряжение, протекающее через каждый резистор, разное.

    Например, у вас есть резисторы на 200, 50 и 25 Ом, включенные последовательно. Общее сопротивление вашей цепи составляет 200 + 50 + 25 = 275 Ом.

    Если ваши резисторы размещены параллельно, то есть каждый резистор подключен к одному источнику напряжения, то эквивалентное сопротивление находится по следующей формуле:

    Напряжение для каждого резистора будет одинаковым, но ток, проходящий через каждый резистор, будет разным.

    Например, у вас есть те же резисторы на 200, 50 и 25 Ом, подключенные параллельно. Общее сопротивление можно найти следующим образом:

    1/200 + 1/50 + 1/25 = 1/200 + 4/200 + 8/200 = 13/200 = 1 / 15,38

    Обратите внимание, как последний шаг делит числитель и знаменатель на числитель. Это дает вам единицу по общему сопротивлению. Как только вы это сделаете, ваше полное сопротивление окажется 15,38 Ом.

    Итоги урока

    Хорошо, давайте рассмотрим.Резистор — это кусок материала, препятствующий прохождению электрического тока. Сопротивление резистора рассчитывается по следующей формуле:

    Как мы узнали, в случае этой формулы R означает сопротивление. Греческая буква ρ, похожая на букву p , обозначает удельное сопротивление материала, из которого изготовлен резистор. L обозначает длину резистора. И, наконец, A обозначает площадь поперечного сечения резистора.Сопротивление измеряется в омах, а ваша длина и площадь — в метрах.

    Все цепи следуют закону Ома, который говорит вам, что напряжение в цепи равно току, умноженному на сопротивление, или В = IR в форме уравнения, где R = В / I .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *