Резистор (от латинского «resisto», что означает «сопротивляюсь») – это пассивный элемент электрической цепи, обладающий определённым или переменным значением электрического сопротивления. В отличие от активных элементов, пассивные не имеют возможности управлять потоком электронов. В народе резисторы называют «резюками» или просто «сопротивление». Резисторы отвечают за линейное преобразование силы тока в напряжение и наоборот, а также для ограничения тока и поглощения электрической энергии. Резистор является одним из самых популярных компонентов и используется в большинстве электронных устройств. Содержание статьиДля чего нужен резистор в электрической цепиНаглядный пример работы резистора С помощью резистора в электроцепи ограничивают ток, получая нужную его величину. В соответствии с законом Ома, чем больше сопротивление при стабильном напряжении, тем меньше сила тока. Закон Ома выражается формулой U = I*R, в которой:
Также резисторы работают как:
Основные характеристики резисторовПараметры, которые нужно учитывать при выборе резистора, зависят от характера схемы, в которой он будет использован. К основным характеристикам относятся:
При необходимости принимают во внимание предельное рабочее напряжение, избыточный шум, устойчивость к температуре и влаге, коэффициент напряжения. Если деталь планируется установить в аппарат, работающий на высоких и сверхвысоких частотах, учитывают паразитную емкость и паразитную индуктивность. Эти величины должны быть минимальными. Способ монтажаПо технологии монтажа резисторы разделяют на выводные и SMD. Выводные резисторыРадиальный выводной резистор Аксиальный выводной резистор Предназначены для монтажа сквозь печатную плату. Выводы могут располагаться аксиально и радиально. Такие детали использовались в старой аудио- и видеоаппаратуре. Сейчас они применяются в простых аппаратах и в тех случаях, когда использование SMD-резисторов по каким-либо причинам невозможно. Выводные резисторы по конструкции бывают проволочными, металлопленочными и композитными. Из чего состоит резистор проволочного типаВ проволочных резисторах резистивным компонентом является проволока, намотанная на сердечник. Бифилярная намотка (двумя параллельными проводами, изолированными друг от друга, или обычным двужильным проводом) снижает паразитную индуктивность. К концам обмотки присоединяют выводы из многожильной меди или латунных пластин. Для защиты от влаги, механических повреждений и загрязнений, проволочные резюки покрывают неорганической эмалью, устойчивой к повышенным температурам. Чем отличается металлопленочный резистор от проволочногоУ металлопленочного резистора резистивным элементом является не проволока, а пленка из металлосплава. Резистивные компоненты (проволока или пленка) в резисторе изготавливаются из сплавов с высоким удельным сопротивлением: манганина, константана, нихрома, никелина. SMD-резисторыSMD-резисторы (или чип-резисторы) рассчитаны на поверхностный монтаж и выводов не имеют. Эти миниатюрные детали малой толщины изготавливаются прямоугольной или овальной формы. Имеют небольшие контакты, впаянные в поверхность. Их преимущества – экономия места на плате, упрощение и ускорение процесса сборки платы, возможность использования для автоматизированного монтажа. SMD-резисторы изготавливают по пленочной технологии. Они могут быть тонко- и толстопленочными. Резистивную толстую или тонкую пленку наносят на изоляционную подложку. Подложка выполняет две функции: основания и теплоотводящего компонента. Из чего делают чип-резисторыТонкопленочные элементы, к которым предъявляются особые требования по влагостойкости, изготавливаются из нихрома. При производстве толстопленочных моделей используются диоксид рутения, рутениты свинца и висмута. Виды резисторов по характеру изменения сопротивленияРезисторы бывают постоянными и переменными. Постоянные имеют два вывода и стабильное сопротивление, отображенное в маркировке. В переменных (регулировочных и подстроечных) резисторах этот параметр меняется в допустимых пределах, в зависимости от рабочего режима. В переменных резюках три вывода. На схеме указывается номинал между крайними выводами. Значение сопротивления между средним выводом и крайними регулируется путем перемещения скользящего контакта (бегунка) по резистивному слою. При этом сопротивление между средним и одним из крайних выводов возрастает, а между средним и другим крайним выводами – падает. При движении «бегунка» в другую сторону эффект обратный. Что делают подстроечные резисторыОни созданы для периодической подстройки, поэтому подвижная система рассчитана на небольшое количество циклов перемещения – до 1000. Регулировочные резисторы рассчитаны на многократное использование – более 5 тысяч циклов. Типы резисторов по характеру вольтамперной характеристикиПо ВАХ резисторы разделяются на линейные и нелинейные. Сопротивление линейных резюков не зависит от напряжения и тока, а сопротивление нелинейных элементов меняется, в зависимости от этих (или других) величин. Малогабаритные линейные детали типа МЛТ (металлизированные лакированные термостойкие) используются в аппаратуре связи – магнитофонах и радиоприемниках. Примером нелинейных резисторов может служить обычная осветительная лампочка, чье сопротивление в выключенном состоянии намного меньше, чем в режиме освещения. В фоторезисторах сопротивление меняется под действием света, в терморезисторах – температуры, тензорезисторах – деформации резисторного слоя, магниторезисторах – магнитного поля. Виды резисторов по назначениюРезисторы по назначению разделяются на два основных типа – общего назначения и специальные. В свою очередь, специальные сопротивления делятся следующим образом:
Шумы резисторов и способы их уменьшенияСобственные шумы резистивных элементов состоят из тепловых и токовых шумов. Тепловые шумы, спровоцированные движением электронов в токопроводящем слое, усиливаются при повышении температуры нагрева детали и температуры окружающей среды. При протекании тока генерируются токовые шумы. Токовые шумы, значение которых существенно выше тепловых, в основном характерны для непроволочных резисторов.
Обозначение резисторов на схемеОбозначение переменных, подстроечных и нелинейных резисторов на схемах: Условное обозначение резистора на схеме – прямоугольник размерами 4х10 мм. На схемах значение сопротивления постоянного резюка менее кОма проставляется рядом с его условным обозначением числом без единицы измерения. При номинале от одного кОм до 999 кОм рядом с числом ставят букву «К», от одного МОм – букву «М». Характеристики резисторов указывают на их поверхности, для чего применяют буквенно-цифровой код или группу цветных полосок. Примеры буквенно-цифрового обозначения для сопротивления, выраженного целым числом:
Если для выражения величины сопротивления используется десятичная дробь, то порядок расположения цифр и букв будет иным, например:
Если сопротивление выражается числом, отличным от нуля и с десятичной дробью, то буква в обозначении играет роль запятой, например:
Производители в силу несовершенства производственной технологии не в состоянии на 100% гарантировать соответствие заявленного значения сопротивления фактическому. Допустимая погрешность обозначается в % и проставляется после номинального значения, например ±5%, ±10%, ±20%. Класс точности может определяться буквой, в зависимости от производителя, – русской или латинской.
Цветовая маркировка резисторов с проволочными выводамиДля резисторов применяют цветовую кодировку, которая наносится 3, 4, 5, 6 цветовыми кольцами. Если кольца смещены к одному из выводов, то первым (с него и начинается расшифровка кода) считается кольцо, находящееся к выводу ближе всего. Если кольца расположены приблизительно равномерно, то следует помнить, что первое кольцо не делают серебристым или золотистым. В некоторых моделях чтение кода начинают с той стороны, где находятся парные кольца, отдельно стоящее кольцо обычно находится в конце шифра. Таблица расшифровки цветовых колец
В четырехполосном коде первые две полосы означают два знака номинала, третья полоска – это десятичный множитель, то есть это степень, в которую нужно возвести число, обозначающее номинал. Четвертая полоска указывает класс точности элемента. В пятиполосном шифре третья полоса обозначает знак номинала, четвертая – десятичный множитель, а пятая – класс точности. Если присутствует шестая полоса, то она обозначает температурный коэффициент. Если же это кольцо шире остальных в полтора раза, то оно характеризует процент отказов. В расшифровке кодов проволочных резисторов помогут удобные онлайн-программы. Тем более имеет смысл к ним обратиться при расшифровке кода SMD-резистора, поскольку существует несколько вариантов маркировок, с которыми самостоятельно разобраться будет очень непросто. Виды соединения резисторов в электроцепиЭффективная работа элементов электроцепи с резистором зависит от правильного выбора не только самого сопротивления, но и способа его соединения в цепи, который может быть последовательным, параллельным или смешанным. Последовательное соединениеПоследовательное соединение резисторов В такой схеме каждый последующий резистор подсоединяется к предыдущему, образуя неразветвленную цепь. Ток в последовательно соединенных «резюках» одинаковый, напряжение разное. Общее сопротивление нескольких последовательно расположенных «резюков» определяется очень просто – суммированием их номиналов. Формула: Rобщ. = R1 + R2 +…+ Rn Чем больше элементов в последовательной схеме, тем больше суммарное сопротивление. Параллельное соединениеПараллельное соединение резисторов При параллельном соединении резисторы соединяются между собой вводами и выводами. Напряжение на этих элементах одинаково, а ток между ними распределяется. Чем больше ветвей образуется, тем больше вариантов протекания тока и тем меньше общее сопротивление. Формула: Rобщ. = 1/R1 + 1/R2 +…+ 1/Rn Смешанное соединениеСмешанное соединение резисторов При таком способе варианты соединения элементов комбинируют. Сопротивление каждого участка с определенным типом соединения рассчитывается по указанным выше правилам. Соединение нескольких резисторов в одной схемеЕсли у вас под рукой не оказалось сопротивления нужного номинала, то можно его получить при помощи правильного соединения нескольких резюков. Так, если вам нужно сопротивление 100 кОм, а есть две резистивные детали по 50 кОм, то их можно соединить последовательно и получить нужный результат. Сопротивление в 100 кОм можно получить параллельным соединением элементов по 200 кОм. Видео: что такое резистор и как он работаетБыла ли статья полезна?Да Нет Оцените статью Что вам не понравилось? Другие материалы по темеАнатолий Мельник Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент. |
Зачем и для чего нужны резисторы
Рубрика: Статьи обо всем, Статьи про радиодетали Опубликовано 05.02.2020 · Комментарии: 0 · На чтение: 6 мин · Просмотры:Post Views: 1 102
Резистор – это самая распространенная деталь в электронике. Он гасит лишнее напряжение, ограничивает ток, изменяет и фильтрует сигналы. Резисторы применяются везде, от процессоров, где их миллионы, до энергетических систем. где их размеры с напольный шкаф.
Свойства в теории и практике
Основное свойство этой радиодетали – это сопротивление. Измеряется в омах (Ом).
Разберем для начала понятие активного сопротивления. Оно так называется потому, что есть у всех материалов (даже у сверхпроводников, пусть и 0,00001 Ом). И именно оно является основным у резисторов.
Что говорит теория
В теории у резистора есть постоянное сопротивление, которое на зависит от внешних условий (температуры, давления, напряжения и т.п.).
График зависимости тока от напряжения прямолинеен.
В идеальных и математических условиях у резистора только активное сопротивление. По типам бывают нелинейные и линейные резисторы.
Что на самом деле
На самом у всех резисторов непрямолинейная зависимость тока от напряжения. То есть, его сопротивление тоже зависит от внешних условий, конкретно от температуры.
Конечно, эта зависимость не такая, как у полупроводников, но она есть. И самое главное, у этой радиодетали есть емкость и индуктивность. Помимо активного сопротивления, есть еще и реактивное.
Реактивное сопротивление отличается от активного тем, что оно по разному пропускает электрический ток на разных частотах.
Например, для постоянного тока сопротивление 200 Ом, а если есть высокие значения индуктивности, то на частотах выше 2 кГц, сопротивление будет уже 250 Ом.
Именно поэтому резисторы делаются из разных материалов. Они бывают керамическими, углеродными, проволочными и у них разные допуски и погрешности. SMD деталь обладает меньшей емкостью и индуктивностью, чем DIP.
Еще существует специальные типы резисторов с более выраженной нелинейной вольт-амперной характеристикой. Если у обычных резисторов вольт-амперный график чуть-чуть не линейный, то у такого типа деталей он лавинообразный.
У них сопротивление резко зависит от внешних условий, не так. как у обычных:
- Терморезистор. Повышает или понижает сопротивление из-за влияния температуры;
- Варистор. Изменяет свои свойства в зависимости от приложенного напряжения;
- Фоторезистор. Уменьшается сопротивление, если на него действует свет;
- Тензорезистор. При деформировании (сжатии, механических воздействиях) изменяет свое сопротивление.
Кроме того, еще одна особенность активного сопротивления – выделение тепла, когда проходит электрический ток. Когда протекает электрический ток замкнутой цепи, электроны ударяются об атомы. И поэтому выделяется тепло. Тепло измеряется в мощности. Она рассчитывается исходя из напряжения и тока.
Одна из популярных функций резисторов это снижение напряжения и ограничения тока. Например, если через резистор проходит ток 0,25 А и на нем есть падение напряжения 1 В, то мощность, которая будет на нем рассеиваться это 0,25 Вт.
Поэтому, некоторые детали и изменяют свое сопротивление, даже если они не предназначены для этого. Это уже свойства материала. И если резистор сделан из проволоки, то при нагреве она расширяется и ее проводимость ухудшается. Поэтому у деталей есть допуск, который измеряется в процентах.
И из-за этого и существуют резисторы с разной рассеиваемой мощностью. Нельзя ставить резистор 0,125 Вт на место 1 Вт. Он начнет греться, трескаться, чернеть. А потом и сгорит. Потому, что не рассчитан на такую мощность.
Обозначения на схемах
На схемах в Европе и СНГ обознается прямоугольником и латинской букой R. Согласно ГОСТу, на отечественных схемах не указывается номинал сопротивления, а только номер детали (R). Однако, если под изображением детали указано число, например 120, оно по умолчанию читается как 120 Ом.
Типы включения и примеры использования
Основные типы включения это последовательные и параллельные соединения.
Последовательно сопротивление рассчитывается просто. Достаточно все сложить.
При последовательном соединении напряжение распределяется по резисторам согласно их сопротивлениям.
Это второе правило Кирхгофа. Например, напряжение 12 В, а пара резисторов по 1 кОм.
Соответственно, на каждом из них по 6 В. Это простой пример делителя напряжения. Здесь пара деталей делит напряжение, и благодаря этому можно получить необходимое напряжение.
Однако, если вы хотите использовать делитель напряжения для питания цепи, то должны помнить, что нужно согласовать сопротивления. В этой схеме сопротивление 1 кОм. Если вы подключите к ней нагрузку меньше этого сопротивления, то она не получит напряжения на свои выводы в полном объеме. Поэтому, все схемы с делителями напряжения должны быть рассчитаны и согласованы друг с другом.
Рассмотрим пример усилителя на транзисторе.
Здесь R1 и R2 образуют делитель напряжения, они выполняют роль делителя напряжения. Между этими двумя резисторами и базой транзистором протекает ток, который открывает транзистор.
Это необходимо для того, чтобы он работал без искажений.
Параллельное включение
При параллельном соединении радиодеталей, общее сопротивление цепи снижается. Если два резистора по 1 кОм соединены параллельно, то общее будет равно меньше 0,5 кОм, т.е. сопротивление цепи (эквивалентное) равно половине самого наименьшего.
В таком соединении наблюдается первое правило Кирхгофа. В точку соединения направляется ток в 1 А, а в узле он расходится на два направления по 0,5 А.
Формулы расчета
Для двух резисторов:
Для более:
Для тока параллельное соединение — это как вторая дорога или обходной путь. Еще такой тип соединения называют шунтированием. В качестве примера можно привести амперметр. Чтобы увеличить его шкалу показаний, достаточно подключить параллельно резистору еще один шунтирующий.
Его сопротивление рассчитывается по формуле:
Эквивалентное соединение
В схеме усилителя к эмиттеру транзистора VT1 подключена пара из резистора R3 и конденсатора C2.
В этом случае VT1 и R3 подключены последовательно друг к другу. Зачем это надо? Когда усилитель работает, транзистор начинает нагреваться и его сопротивление снижается. R3, как и в случае со светодиодом, не позволяет транзистору перегреваться. Он балансирует общее сопротивление, чтобы транзистор не вносил искажения в сигнал. Это называется режим термостабилизации.
А конденсатор C2 подключен к R3 параллельно. И это нужно для того, чтобы при нормальном режиме работы усилителя, переменный сигнал прошел без потерь. Так работает параллельный фильтр.
Если бы был только один R3, то мощность усилителя была намного меньше из-за того, что он забирает переменное напряжение на себя. А конденсатор пропускает без потерь, но не пропускает постоянное напряжение.
Фильтры и резисторы
С помощью резисторов и конденсаторов можно делать фильтры. Так называются RC фильтры.
Эта пара может разделять сигнал на постоянные и переменные составляющие.
В качестве примера рассмотрим ФНЧ и ФВЧ.
В схеме фильтра низких частот конденсатор C1 забирает на себя высокочастотные токи. Его сопротивление для них намного меньше, чем у нагрузки. Он шунтирует нагрузку. Таким образом, можно получить низкую частоту, отделив от нее все высокие составляющие.
В фильтре высоких частот наоборот. Высокие частоты свободно проходят через C1, и если в сигнале есть низкочастотные, то они пойдут через R1.
Такие фильтры бывают разные по конструкции. П образные, Г образные и т.п. Конкуренцию резистору может составить катушка индуктивности или дроссель. У них меньше активное сопротивление, но реактивное больше. Благодаря этому снижаются потери от активного сопротивления.
Post Views: 1 102
Автор Aluarius На чтение 9 мин. Просмотров 321 Опубликовано
В электрических цепях важную роль играет проводник. Для чего нужен резистор и что это такое стоит разобраться подробнее. Он способен поделить напряжение и ограничить ток, измерить его и создать цепь обратной связи. Основная задача маленькой детали создать необходимое сопротивление для электрического тока.
Резисторы бывают различных цветов, форм и размеровЧто такое резистор
Резистор – это сопротивление. Он является пассивным элементом в цепи и способен только уменьшать ток. Происхождение названия идет от латинского «resisto», что дословно на русском языке означает «сопротивляюсь».
Предназначен проводник для того, чтобы преобразовывать напряжение в силу тока и наоборот, он поглощает часть энергии и ограничивает ток. Основное применение приходится на электрические и электронные устройства.
Справка! Соединение проводников может быть последовательным, параллельным или смешанным.
Также есть два вида полупроводников:
- линейные, сопротивление у которых от тока и напряжения не зависит;
- нелинейные, способные изменить сопротивление в зависимости от значений протекающего тока и напряжения.
Основным параметром резисторов является номинальное напряжение.
Как выглядит
Элементы могут быть проволочные и непроволочные. Последние отлично выполнят свою функцию в высокочастотной цепи, внешний вид и процесс их изготовления отличаются. Различают резисторы общего применения и специального. Первые не превышают 10 мегаом, а вторые способны работать под напряжением 600 вольт и выше. Внешним видом они тоже отличаются. На фото ниже легко увидеть разницу и понять, как выглядит резистор.
Разница во внешнем виде и размерахИз чего состоит
Намотав проволоку на каркас из керамики или прессованного порошка получится проволочный резистор. При этом сама проволока должна быть из нихрома, константана или манганина. Так получится создать полупроводник с высоким удельным сопротивлением.
Непроволочные элементы изготовлены на основе диэлектрика из проводящих смесей и пленок. Разделяют тонкослойные и композиционные, но все они имеют повышенную точность и стабильность в работе.
Регулировочные и подстроечные элементы представляют собой кольцевую резистивную пластину по которой движется бегунок. Он скользит по кругу, меняя расстояние точек на резистивном слое, в результате сопротивление меняется. Следует понять, что же делает резистор для прибора.
Для чего используется
Для чего нужен резистор? При помощи этой детали в электрической цепи можно ограничить количество проводимого тока, в результате правильно подобранной детали легко получить необходимую величину. Чем выше сопротивление, тем ниже будет на выходе сила тока, при условии стабильного напряжения.
Как работают резисторы понять легко, они могут использоваться в качестве преобразователя напряжения в ток и наоборот, в измерительных аппаратах их применяют для деления напряжения, а также они могут понизить или полностью устранить радиопомехи.
Обозначение на схемах
В России и Европе резистор на схеме обозначаются прямоугольником, размерами 4*10мм. Для определения значений сопротивления есть условные обозначения. Постоянный элемент на схеме обозначается следующим образом:
Обозночения постоянных элементов на схемеПеременные, в том числе подстроечные, а также нелинейные следующим образом:
Обозначения переменных проводниковВажно! Всегда есть погрешность в заявленном производителем сопротивлении, она обозначается с помощью букв и цифр в процентном выражении.
Принцип работы резистора
В основе работы проводников лежит закон Ома, согласно которому напряжение зависит от величины тока и напряжения. Различные номиналы деталей помогут изменить ток и напряжение на необходимую величину. Суть заключается в том, что ток, движущейся по цепи, попадает в деталь и снижает свое продвижение.
Пример схемы
Резисторы могут соединяться параллельно и последовательно, на схемах также часто встречаются смешанные варианты. На фото ниже можно увидеть отличия в обозначениях деталей на схемах.
Обозначения элементов на схемахТипы резисторов
К типам резисторов общего применения относят постоянные, сопротивление которых невозможно изменить и переменные, когда допустимо его менять в пределах допустимых значений. Мощность рассеивания при этом будет в пределах 0,125-100 Вт, а сопротивление не превысит 10 мегаом.
Постоянные
Отличаются постоянные проводники наличием только двух выводов и постоянным сопротивлением. Поскольку этот вид предназначен только для уменьшения силы тока, то он отлично справляется со своей задачей в различных электрических приборах. Постоянные элементы делятся на общего и специального назначения.
Переменные
Переменные имеют три вывода, а на схеме можно увидеть пограничные значения рабочего режима. Поменять сопротивление поможет бегунок, который движется по резистивному слою. Во время движения сопротивление падает между средним и одним из боковых выводов, соответственно в другой стороне увеличивается. Переменные резисторы делятся на подстроечные и регулировочные.
Классификация резисторов
Резисторы отличаются не только возможностью регулировать сопротивление. Они могут изготавливаться из разных резистивных материалов, иметь различное количество контактов и иметь другие особенности.
По типу резистивного материала
Элементы могут быть проволочными, непроволочными или металлофольговыми. Высокоомная проволока является признаком проволочного элемента, для ее изготовления используют такие сплавы, как нихром, константан или никелин. Пленки с повышенным удельным сопротивлением являются основой непроволочных элементов. В металлофольговых используется специальная фольга. Теперь выясним из чего состоят резисторы.
Конструкция полупроводникаНепроволочные делятся на тонкослойные и композиционные, толщина первых измеряется в нанометрах, а вторых – в долях миллиметра. Тонкослойные делятся на:
- металлоокисные;
- металлизированные;
- бороуглеродистые;
- металлодиэлектрические;
- углеродистые.
Композиционные в свою очередь подразделяются на объемные и пленочные. Последние могут быть с органическим или неорганическим диэлектриком. Чтобы понять есть ли полярность у резистора следует знать, что стороны у них идентичны.
По назначению сопротивления
Постоянные и переменные полупроводники также имеют некоторые различия в характеристиках. Постоянные делятся на проводники общего и специального назначения. Последние могут быть:
- высокочастотными;
- высоковольтными;
- высокомегаомными;
- прецизионными.
Такие детали используются в точных измерительных приборах, они выделяются особой стабильностью.
Переменные резисторы можно разделить на подстроечные и регулировочные. Последние могут быть с линейной или нелинейной функциональной характеристикой.
По количеству контактов
В зависимости от назначения резистора у него может быть один, два и более контактов. Сами контакты также отличаются, например, у SMD-резисторов это контактная площадка, у проволочных – особого состава проволока. Есть резисторы металлопленочные, с квантовыми точечными контактами, а в переменных они подвижные.
Разное количество контактов на элементахДругие
Отличаются резисторы формой и типом сопротивления, а также характером зависимости величины сопротивления от напряжения. Описание зависимости величины может быть линейной или нелинейной. Использование элемента простое, емкость указывается на корпусе, минус и плюс не отличаются.
Резисторы могут быть защищены от влаги или нет, корпус может быть лакированным, вакуумным, герметичным, впрессованным в пластик или компаундированным. Нелинейные подразделяются на:
- варисторы;
- магниторезисторы;
- фоторезисторы;
- позисторы;
- тензорезисторы;
- терморезисторы.
Все они выполняют свою определенную функцию, одни меняют сопротивление от температуры, другие от напряжения, третьи от лучистой энергии.
Основные характеристики и параметры резисторов
Характерны для полупроводников такие параметры, как номинальное значение сопротивления, его допустимое отклонение. Мощность рассеяния также определяется номинальным и допустимым значениями. Элементы различны по максимальному рабочему напряжению и коэффициентом температуры сопротивления, а также шумами.
Виды соединения резисторов
Различают три типа соединения резисторов:
- параллельное;
- последовательное;
- смешанное.
Для последовательного соединения конец одного резистора нужно паять с началом другого и далее по цепочке. Так компоненты соединяются друг за другом и пропускают общий ток, проводник нужно правильно припаять. Количество таким образом соединенных проводников будет влиять на протекающий ток и оказывать общее сопротивление.
Параллельное соединение элементов отличается тем. Что все они сходятся в одной общей точке в начале и в другой точке в конце. В этом случае через каждый элемент течет свой ток, а значит сопротивление снижается. Смешанное соединение объединяет в себе оба предыдущих варианта, а расчет итогового сопротивления подсчитывают разбив схему на простые участки.
Какими могут быть номиналы резисторов
Номиналы резисторов четко определены и имеют показатели от нуля и до десяти. При этом всегда учитывается допустимое отклонение, а потому производители выпускают элементы с определенным шагом. Шагами при 10% отклонения будут: 100, 120, 150, 180, 220 и далее по схеме. Полупроводники отличаются разновидностью сборки, своими свойствами.
Как маркируются резисторы
В основном для таких элементов используется цветовая маркировка, но SMD-резисторы имеют буквенную. Цветовая включает от 4 до 6 полос, несущих определенную информацию. Две первые цифры покажут номинальное сопротивление, а третья число, на которое умножаются первые два, в результате получается величина сопротивления. Четвертая говорит о точности проводника. Если полос больше, то меняется только первый показатель на одну цифру.
Цветовое обозначение на элементахВнимание! Первой полосой считается та, которая ближе других расположена к краю элемента.
Чем отличается резистор от реостата, транзистора
Реостат является электрическим аппаратом. Который способен регулировать ток и напряжение в электрической цепи. В общем это аналог переменного резистора. Он включает проводящий элемент и регулятор сопротивления. Влиять на изменение показателя можно плавно, а при желании это можно сделать ступенчато. В стандартизации реостатом называют резисторы переменные, регулировочные и подстроечные.
Транзистор является прибором для управления электрическим током. По сути он усиливает ток и может им управлять, а проводник регулирует сопротивление в сети. Внешне два элемента значительно отличаются друг от друга. Резистор имеет цилиндрическую форму и цветную окраску, а транзистор облачен в пластиковый или металлический квадратный корпус.
Важно! Резистор способен работать при любом токе, а транзистор только при постоянном.
Выводы: проводники имеют одинаковую функциональность, а у транзистора разную. Также транзистор – это полярный элемент, а резистор – неполярный. По этой причине перепутать два элемента можно только в том случае, если человек совершенно далек от электротехники и радиоэлектроники.
Резистор необходимый элемент во всех микросхемах современных электроприборах. Оказывая сопротивление в цепи, полупроводник делит или уменьшает напряжение, благодаря чему, различные приборы могут работать от сети. Сопротивление тока измеряется в Омах, а грамотный подбор полупроводника обеспечит продолжительную работу любого электроприбора. Так мы выяснили, что такое резистор и для чего он нужен, чем отличается от реостата и транзистора и как обозначается на схемах.
Что такое резистор? Это элемент электрической сети, который ограничивает ток. Резистор — английское слово. В переводе на русский означает сопротивление.
Обозначение резистора на схеме
На рисунке показано простейшее обозначение резистора на электрической схеме. Справа в углу показаны реальные резисторы. Как видим, схематичное изображение сопротивления похоже на его реальную форму.
Изучение электротехники, радиодела начинается с закона Ома для участка цепи:
I = U/R, где
I – сила тока,
U – Напряжение,
R – Сопротивление.
Если по резистору течет ток силой 1 А, а напряжение на его концах равно 1 В, то говорят, что сопротивление равно 1 Ом.
Закон Ома для участка цепи
В нижней формуле на рисунке показана зависимость сопротивления от удельного сопротивления — ρ, физических размеров резистора (L- протяженность в см, S – площадь поперечного сечения в см2). Как видим, чем длиннее проводник (резистор), тем больше его сопротивление. Чем больше S, тем меньше R. Надо отметить, что любой проводник имеет сопротивление.
Виды резисторов
Резисторы бывают трех видов:
- Постоянные – величина сопротивления у которых не меняется. Надо отметить, что небольшие изменения все-таки происходят из-за изменения температуры. Но эти изменения не существенны, так как не влияют на работу цепи.
- Переменные – их сопротивление меняется в определенных пределах. Например, реостаты. Когда мы вращаем ручку радиоприемника для изменения звука или перемещаем ползунок, мы меняем сопротивление цепи.
- Подстроечные — меняют величину при помощи винта. Делается это редко, для получения нужных параметров цепи.
Принцип работы резистора простым языком
Все электронные приборы состоят из радиодеталей, которые делятся на два больших типа: активные и пассивные.
Активные усиливают электрические сигналы. Слабый сигнал на входе управляет мощным на выходе. В этом случае коэффициент усиления больше единицы.
Резистор относится к пассивному типу деталей, у которого коэффициент усиления меньше единицы.
В советское время резисторы именовали сопротивлениями. В наши дни эти детали называют резисторами. Сделано это потому, что все детали, применяемые в электронике, обладают сопротивлением. Чтобы не путаться, активные сопротивления назвали резисторами.
Все проводники имеют сопротивление, которое считается вредным, так как это приводит к нагреву элемента по которому течет ток. К тому же теряется электрическая мощность. Сопротивление резистора является полезным. Он нагревается и выделяет тепло. На этом принципе работают нагревательные печки и лампы, применяемые в быту.
Принцип работы переменного резистора
Схема потенциометра
Поворотом ручки меняется длина резистора, и как результат сила тока. На рисунке показан переменный резистор с тремя выводами – потенциометр. Сопротивление между концами 1 и 3 меняется от 0 до максимума, в зависимости от положения ручки. Такая же картина между концами 2 и 3, но наоборот. То есть если сопротивление 1 – 3 растет, 2 – 3 уменьшается. Когда переменный резистор имеет два конца – имеем реостат.
На рисунке показан поворотный переменный резистор. Бывают также ползунковые, где движок перемещается по прямой. Поворотом ручки сопротивление меняется от нуля до максимума. Потенциометры широко применяются в аудиоаппаратуре.
Потенциометр
Потенциометры утапливают в цилиндрические и параллелепипедные корпуса. Внутри корпуса имеется резистивный элемент подковообразной формы. По оси детали выходит металлическая ручка, поворотом которой меняется положение токосъемника, который расположен на противоположном конце.
Пластина токосъемника надежно прижата к резистивному элементу, за счет упругой силы. Ее изготавливают из стали или из бронзы. Напряжение подается на крайние концы потенциометра. За счет вращения ручки, токосъемник скользит по резистивному элементу, меняя напряжение между крайними и средним концами.
На рисунке показан проволочный потенциометр, у которого резистивный слой изготовлен из проволоки. Провод с высоким сопротивлением наматывается на подковообразный каркас. Затем контактная поверхность кольца шлифуется и полируется. Это делается для обеспечения надежности соединения ползунка с проводящим слоем.
Изготавливают также непроволочные потенциометры. В них резистивный слой нанесен на кольцеобразную или прямоугольную основу из изоляционного материала.
Принцип работы подстроечного резистора
После монтажа деталей электронного прибора, обычно его характеристики отличаются от номинальных. Для доводки показателей прибора применяют подстроечные резисторы. В принципе это те же переменные резисторы, но выделенные в отдельную группу, потому что конструктивно отличаются от переменных резисторов. У них нет ручек, вращая которые изменяются. Вместо них отверстия под отвертку шлицевую или прямую.
Подстроечный резистор с крестовиковым шлицом
В процессе работы прибора, через некоторое время, его параметры меняются. Для привидения их к номиналу применяют подстроечные резисторы.
По типу перемещения ползунка бывают подстроечные резисторы с перемещением по прямой и с перемещением по окружности.
Для точной настройки параметров электронного прибора используют подстроечные резисторы с большим числом оборотов. В них изменение сопротивления от минимума до максимума осуществляется за несколько оборотов или даже за десятки оборотов подстроечного вала. В этих резисторах перемещение контакта происходит при помощи червячной передачи.
Принцип работы резистора печки автомобиля
Схема отопителя автомобиля
У обычной ВАЗовской печки четыре скорости. Как видим из рисунка скорость вращения мотора печки зависит от резисторов. Переключатель резисторов является переключателем скоростей отопителя. Для того, чтобы воздух, поступаемый в салон из печки был бы теплым, двигатель должен быть прогрет. Часто водители включают печку для охлаждения двигателя, в случае его перегрева.
Если не нужно нагревать салон автомобиля (в теплое время), то воздух нагнетается в салон напрямую, минуя радиатор печки, через фильтр отопителя. Для этого есть специальная заслонка, которая переключается из салона автомобиля водителем.
Зная схему подключения резистора печки, можно легко заменить это сопротивление, в случае выхода его из строя. Сделать это можно самостоятельно, а не платить большие деньги в автосервисе.
Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:Проголосовавших: 4 чел.
Средний рейтинг: 5 из 5.
Резистор это один из наиболее распространенных электрических элементов, широко используемых в радиоэлектронике. Любой, кто имеет дело с электросхемами или монтажом радиодеталей на печатную плату, должен знать, для чего нужен резистор, как отличить его от других деталей (например, светодиодов), как эти компоненты ведут себя в электрических цепях.
Нелинейные резисторные изделия
Что такое резистор
Резистор что это такое? Основным свойством данного типа радиоэлементов является наличие активного сопротивления электротоку. В отличие от реактивного, оно не скапливает энергию внутри, а передает ее в окружающее пространство. Это свойство и обусловливает принцип работы резистора. В некоторых источниках и схемах слово «сопротивление» применяется в качестве наименования этой детали.
Из чего состоит резистор? Устройство этого элемента довольно простое. Основной составляющей является проволочный или пленочный компонент с большим показателем удельного сопротивления. В его роли могут выступать металлические оксиды, никелин, нихром и некоторые другие материалы.
Конструкция детали
Принцип работы
Приобретая деталь, нужно понимать, как именно работает резистор. Любой проводниковый компонент имеет определенные особенности, обусловленные его внутренним строением. Когда электроток идет по проводнику, заряженные частицы, проходя через его структуру, теряют энергетический запас, отдавая его наружу и нагревая вещество. Известно, что величина напряжения равна произведению проходящего по проводнику тока и сопротивления материала, из которого он изготовлен. Что же делает резистор? Поскольку он содержит в себе компонент с очень высокой сопротивляемостью току, при прохождении последнего на элементе понижается напряжение, и происходит выделение некоторой части мощности в виде теплоты.
Виды резисторов
При выборе подходящей детали нужно не только знать, для чего нужны в цепи резисторы, но и иметь представление о типах этих компонентов. Помимо переменных и постоянных, существуют также нелинейные приборы, чей основной параметр – сопротивление (параметр нестабилен и меняется под действием некоторого фактора внешней среды, к примеру, лучей света, температуры или напряжения).
Постоянные резисторы
Эти компоненты характеризуются неизменным значением показателя сопротивления. В отношении вариантов исполнения эти изделия бывают разными: от крупногабаритных, рассеивающих значительную мощность, до миниатюрных smd-компонентов, но все их объединяет константность сопротивления.
Изображение постоянных резисторов на схемах
Переменные резисторы
Здесь, напротив, значение сопротивления вариативно. В эту группу входят реостаты, регулирующие силу тока, и потенциометры, осуществляющие контроль напряжения. Также сюда относятся подстраивающиеся компоненты, снабженные специальными пазами. Для регуляции сопротивления в пазах надлежит проделывать манипуляции ключом, прилагающимся к прибору.
Типы переменных компонентов
Термисторы
Данные компоненты имеют в себе полупроводниковые детали и отличаются зависимостью сопротивления от окружающей температуры. Эту зависимость характеризует тепловой коэффициент, демонстрирующий, насколько меняется сопротивление элемента при перепадах температуры. У обычных термисторных изделий оно снижается при потеплении, но есть еще позисторы, чья основная характеристика при увеличении температуры также повышается.
Варисторы
Благодаря зависимости от напряжения, их широко используют для защиты сети от резких перепадов и избыточных значений упомянутого параметра. Вследствие сильного снижения сопротивления при таком инциденте ток идет через него, обходя главную цепь и обеспечивая ей изоляцию.
Важно! Из-за того, что элемент принимает на себя большую мощность, после инцидента он зачастую приходит в негодность.
Фоторезисторы
Такие компоненты меняют значение своего ключевого параметра, когда на них падает свет. Работает для этой цели, как свет солнца, так и искусственное освещение, к примеру, от фонаря.
Тензорезисторы
В них используются очень тонкие проводниковые компоненты, подвергающиеся растяжке, из-за чего их сопротивление повышается. Применяются в разного рода датчиках и электронных приборах для измерения массы.
Полупроводниковые резисторы
В таких изделиях эксплуатируются свойства тех или иных полупроводниковых материалов – менять сопротивление под действием механического давления, влажности, температуры, освещенности или иного фактора. Используемые полупроводниковые компоненты подвергаются равномерной легировке примесями. Отдельные виды последних также позволяют изготавливать разные типы изделий.
Основные характеристики
Зная, для чего в цепи нужно сопротивление, можно приступить к выбору подходящего изделия для конкретного случая. Надлежит обращать внимание на такие параметры, как номинал сопротивления и категория точности. Последняя демонстрирует процент, на который реальное сопротивление может отличаться от указанного в ту или другую сторону.
Важно! Также нужно обращать внимание на показатели выделяемой на компоненте мощности. Целесообразно приобретать изделия с мощностным запасом не менее, чем в 20%.
Где и для чего применяются
Основная область применения резисторов – контроль показателя тока. Чтобы узнать показатель ограничительного сопротивления, пользуются формулой:
R=(U2-U1)/I,
где:
- U1 – рабочий номинал контролируемого компонента,
- U2 – напряжение на источнике питания,
- I – номинал тока.
Среди других областей можно отметить задание электротока транзисторам. Балластные резисторы используют для поглощения избытка напряжения.
Резистор в цепи
Детали с постоянным сопротивлениям в отечественной номенклатуре обозначаются прямоугольником, внутри которого находится определенное число черт, положение которых соответствует определенному номиналу. В зарубежных схемах их символ имеет зигзагообразную форму.
Переменные варианты отличаются направляющейся к прямоугольнику сверху линией со стрелой. Она демонстрирует опцию регуляции сопротивления. Иногда выводы элемента нумеруют цифрами.
Фоторезистор иллюстрируется прямоугольной фигурой, заключенной в круг, к которой направляется пара стрел, обозначающих световые лучи. Остальные полупроводниковые изделия символизируются зачеркнутым косой чертой прямоугольником. Буква показывает, от какого параметра зависит сопротивление (t – температура, U – напряжение и так далее).
Важно! Несколько резисторных компонентов могут быть объединены в цепь параллельно или последовательно. В первом случае будет справедливым выражение: 1/R = 1/R1+ 1/R2 + … 1/Rn. Сопротивление такой композиции будет ниже, чем у элемента с самым низким номиналом. Во втором случае итоговый показатель для системы равен сумме сопротивлений всех входящих в нее элементов.
Номиналы
Типовые значения выпускаемых в продажу резисторных элементов подчиняются некоторому ряду номиналов, в основе которого лежит положение о том, что шаг между показателями закрывает разрешенную погрешность. Например, когда номинал изделия 10 Ом, а допустимая погрешность равна 10%, у резистора, идущего в ряду последующим, будет показатель в 12 Ом. Элементы объединяют в серии, для каждой из которых существует отдельный ряд номиналов.
Маркировка
Советские изделия маркируются буквами и цифрами. При этом небольшие номиналы (до ста Ом) демонстрируются буквами R или Е, а тысячи – буквой К. Например, 250R = 250 Ом, 2К3 = 2,3 кОм = 2300 Ом, К25 = 0,25 кОм = 250 Ом. Иногда цифробуквенные коды встречаются и на импортных изделиях, например, 4W – мощность в 4 ватта, 50R – сопротивление в 50 Ом. Все-таки чаще они маркируются цветными полосами.
Цветовая маркировка
Отдельные фирмы-производители располагают разными системами значений цветовых полос. Число таковых может быть от 3 до 6. Если под рукой нет инструкции от производителя, нужно посмотреть, сколько полос имеется на корпусе элемента, и по названию фирмы найти соответствующую таблицу в сети. Первой полосой нужно считать расположенную наиболее близко к выводу.
Чтобы предохранить цепь от скачков напряжения, важно знать, что такое резистор, и уметь подбирать подходящий для конкретного случая элемент. Важно также уметь правильно рассчитать номиналы резисторов для последовательного подключения в цепь.
Видео
Что такое резистор
Резистор – это самый распространенный радиоэлемент, который используется в электронике. Я могу со 100% уверенностью сказать, что абсолютно на любой плате какого-либо устройства вы найдете хотя бы один резистор. Резистор имеет важное свойство – он обладает активным сопротивлением электрическому току. Существует также и реактивное сопротивление. Подробнее про реактивное и активное сопротивление.
Виды резисторов
Существует множество видов резисторов, которые используются в радио-электронной промышленности. Давайте разберем основные из них.
Постоянные резисторы
Постоянное резисторы выглядят примерно вот так:
Слева мы видим большой зеленый резистор, который рассеивает очень большую мощность. Справа – маленький крохотный SMD резистор, который рассеивает очень маленькую мощность, но при этом отлично выполняет свою функцию. Про то, как определить сопротивление резистора, можно прочитать в статье маркировка резисторов.
Вот так выглядит постоянный резистор на электрических схемах:
Наше отечественное изображение резистора изображают прямоугольником (слева), а заморский вариант (справа), или как говорят – буржуйский, используется в иностранных радиосхемах.
Вот так маркируются мощности на советских резисторах:
Далее мощность маркируется с помощью римских цифр. V – 5 Ватт, X – 10 Ватт, L -50 Ватт и тд.
Какие еще бывают виды резисторов? Давайте рассмотрим самые распространенные:
20 ваттный стекловидный с проволочными выводами, 20 ваттный с монтажными лепестками,30 ваттный в стекловидной эмали, 5 ваттный и 20 ваттный с монтажными лепестками
1, 3, 5 ваттные керамические; 5,10,25, 50 ваттные с кондуктивным теплообменом
2, 1, 0.5, 0.25, 0.125 ваттные углеродной структуры; SMD резисторы типоразмеров 2010, 1206, 0805, 0603,0402; резисторная SMD сборка, 6,8,10 выводные резисторные сборки для сквозного монтажа, резистор в DIP корпусе
Переменные резисторы
Переменные резисторы выглядят так:
На схемах обозначаются так:
Соответственно отечественный и зарубежный вариант.
А вот и их цоколевка (расположение выводов):
Переменный резистор, который управляет напряжением называется потенциометром, а который управляет силой тока – реостатом. Здесь заложен принцип делителя напряжения и делителя тока соответственно. Различие между потенциометром и реостатом в схеме подключения самого переменного резистора. В схеме с реостатом в переменном резисторе соединяется средний и крайний выводы.
Переменные резисторы, у которых сопротивление можно менять только при помощи отвертки или шестигранного ключика, называются подстроечными переменными резисторами. У них есть специальные пазы для регулировки сопротивления (отмечены красной рамкой):
А вот так обозначаются подстроечные резисторы и их схемы включения в режиме реостата и потенциометра.
Термисторы
Термисторы – это резисторы на основе полупроводниковых материалов. Их сопротивление резко зависит от температуры окружающей среды. Есть такой важный параметр термисторов, как ТКС – тепловой коэффициент сопротивления. Грубо говоря, этот коэффициент показывает на сколько изменится сопротивление термистора при изменении температуры окружающей среды.
Этот коэффициент может быть как отрицательный, так и положительный. Если ТКС отрицательный, то такой термистор называют термистором, а если ТКС положительный, то такой термистор называют позистором. У термисторов при увеличении температуры окружающей среды сопротивление падает. У позисторов с увеличением температуры окружающей среды растет и сопротивление.
Так как термисторы обладают отрицательным коэффициентом (NTC — Negative Temperature Coefficient — отрицательный ТКС), а позисторы положительным коэффициентом (РТС — Positive Temperature Coefficient — положительный ТКС), то и на схемах они будут обозначаться соответствующим образом.
Варисторы
Есть также особый класс резисторов, которые резко изменяют свое сопротивление при увеличении напряжения – это варисторы.
Это свойство варисторов широко используют от защиты перенапряжений в цепи, а также от импульсных скачков напряжения. Допустим у нас “скакануло” напряжение. Все это дело “чухнул” варистор и сразу же резко изменил сопротивление в меньшую сторону. Так как сопротивление варистора стало очень маленьким, то весь электрический ток сразу же начнет протекать через него, тем самым защищая основную цепь радиоэлектронного устройства. При этом варистор берет всю мощность импульса на себя и очень часто платит за это своей жизнью, то его выгорает наглухо
На схемах варисторы обозначаются вот таким образом:
Фоторезисторы
Большой популярностью также пользуются фоторезисторы. Они изменяют свое сопротивление, если на них посветить. В этих целях можно применять как солнечный свет, так и искусственный, например, от фонарика.
На схемах они обозначаются вот таким образом:
Тензорезисторы
Принцип действия их работы основан на растяжении тонких печатных проводников. При растяжении они становятся еще тоньше. Это все равно, что вытягивать жевательную резинку. Чем больше вы ее вытягиваете, тем тоньше она становится. А как вы знаете, чем тоньше проводник, тем бОльшим сопротивлением он обладает.
На схемах тензорезистор выглядит вот так:
Вот анимация работы тензорезистора, позаимствованная с Википедии.
Ну и как вы догадались, тензорезисторы используются в электронных весах, а также в различных датчиках, где применяется какое-либо давление, либо сила.
Как измерить сопротивление резистора
Любой резистор обладает сопротивлением. Кто не в курсе, что такое сопротивление и как оно измеряется, в срочном порядке читаем эту статью. Сопротивление измеряется в Омах. Но как же нам узнать сопротивление резистора? Есть прямой и косвенный методы.
Прямой метод он самый простой. Нам нужно взять мультиметр и просто замерять сопротивление резистора. Давайте рассмотрим, как все это выглядит. Я беру мультиметр, выставляю крутилку на измерение сопротивления и цепляюсь к выводам резистора.
измерение сопротивленияРезистор я брал на 1 кОм. Он мне показал 976 Ом, что в принципе тоже нормально, так как у таких резисторов всегда существует некая погрешность.
Косвенный метод измерения заключается в том, что мы будем рассчитывать сопротивление резистора через закон Ома.
формула сопротивления через закон ОмаПоэтому, чтобы узнать сопротивление резистора, нам надо напряжение на концах резистора поделить на силу тока, которая течет через резистор. Все довольно просто!
Допустим, я хочу узнать сопротивление нити накала лампочки, когда она источает свет. Думаю, некоторые из вас в курсе, что сопротивление холодной вольфрамовой нити и раскаленной – это абсолютно разные сопротивления. Я ведь не смогу измерить мультиметром в режиме измерения сопротивления раскаленную вольфрамовую нить лампы накаливания, так ведь? Поэтому, нам как нельзя кстати подойдет эта формула
Давайте же узнаем это на опыте. У меня есть лабораторный блок питания, который показывает сразу напряжение и силу тока, которая течет через нагрузку. Беру лампу, выставляю на блоке питания напряжение, которое написано на самой лампе и подключаю ее к клеммам блока питания.
лампа накаливания потребление токаИтак, получается, что на выводах лампы сейчас напряжение 12 Вольт, а ток, который течет в цепи, а следовательно и через лампу 0,71 Ампер.
Получаем, что сопротивление раскаленной нити лампы в данном случае составляет
Последовательное и параллельное соединение резисторов
Все вышеописанные резисторы можно соединять параллельно или последовательно. При параллельном соединении выводы резисторов соединятся в общих точках.
В этом случае, чтобы узнать общее сопротивление всех резисторов в цепи, достаточно будет воспользоваться формулой, где сопротивление между точками А и В (RAB) и есть то самое R общее:
При последовательном соединении номиналы резисторов просто тупо суммируются
В этом случае
Хорошее видео по теме
Похожие статьи по теме “резисторы”
Маркировка резисторов
Фоторезистор
RC цепь
Активное и реактивное сопротивление
Что такое сопротивление
Закон Ома
Резистор (сопротивление) — один из наиболее распространённых компонентов в электронике. Его назначение — простое: сопротивляться течению тока, преобразовывая его часть в тепло.
Основной характеристикой резистора является сопротивление. Единица измерения сопротивления — Ом (Ohm, Ω). Чем больше сопротивление, тем большая часть тока рассеивается в тепло. В схемах, питаемых небольшим напряжением (5 – 12 В), наиболее распространены резисторы номиналом от 100 Ом до 100 кОм.
Закон Ома
Закон Ома позволяет на заданном участке цепи определить одну из величин: силу тока I, напряжение U, сопротивление R, если известны две остальные:
Для обозначения напряжения наряду с символом U используется V.
Рассмотрим простую цепь
Расчитаем силу тока, проходящего через резистор R1 и, соответственно, затем через лампу L1. Для простоты будем предполагать, что сама лампа обладает нулевым собственным сопротивлением.
Аналогично, если бы у нас был источник питания на 5 В и лампа, которая по документации должна работать при токе 20 мА, нам нужно бы было выбрать резистор подходящего номинала.
В данном случае, разница в 10 Ом между идеальным номиналом и имеющимся не играет большого значения: можно смело брать стандартный номинал — 240 или 220 Ом.
Аналогично, мы могли бы расчитать требуемое напряжение, если бы оно было не известно, а на руках были значения сопротивления и желаемая сила тока.
Соединение резисторов
При последовательном соединении резисторов, их сопротивление суммируется:
При параллельном соединении, итоговое сопротивление расчитывается по формуле:
Если резистора всего два, то:
В частном случае двух одинаковых резисторов, итоговое сопротивление при параллельном соединении равно половине сопротивления каждого из них.
Таким образом можно получать новые номиналы из имеющихся в наличии.
Применеие на практике
Среди ролей, которые может выполнять резистор в схеме можно выделить следующие:
Токоограничивающий резистор (current-limiting resistor)
Стягивающий, подтягивающий резистор (pull-down / pull-up resistor)
Делитель напряжения (voltage divider)
Токоограничивающий резистор
Пример, на котором рассматривался Закон Ома представляет собой также пример токоограничевающего резистора: у нас есть компонент, который расчитан на работу при определённом токе — резистор снижает силу тока до нужного уровня.
В случае с Ардуино следует ограничивать ток, поступающий с выходных контактов (output pins). Напряжение, в состоянии, когда контакт включен (high) составляет 5 В. Исходя из документации, ток не должен превышать 40 мА. Таким образом, чтобы безопасно увести ток с контакта в землю понадобится резистор номиналом R = U / I = 5 В / 0.04 А = 125 Ом или более.
Стягивающие и подтягивающие резисторы
Стягивающие (pull-down) и подтягивающие (pull-up) резисторы используются в схемах рядом со входными контактами логических компонентов, которым важен только факт: подаётся ноль вольт (логический ноль) или не ноль (логическая единица). Примером являются цифровые входы Ардуино. Резисторы нужны, чтобы не оставить вход в «подвешенном» состоянии. Возьмём такую схему
Мы хотим, чтобы когда кнопка не нажата (цепь разомкнута), вход фиксировал отсутствие напряжения. Но в данном случае вход находится в «никаком» состоянии. Он может срабатывать и не срабатывать хаотично, непредсказуемым образом. Причина тому — шумы, образующиеся вокруг: провода действуют как маленькие антенны и производят электричество из электромагнитных волн среды. Чтобы гарантировать отсутствие напряжения при разомкнутой цепи, рядом с входом ставится стягивающий резистор:
Теперь нежелательный ток будет уходить через резистор в землю. Для стягивания используются резисторы больших сопротивлений (10 кОм и более). В моменты, когда цепь замкнута, большое сопротивление резистора не даёт большей части тока идти в землю: сигнал пойдёт к входному контакту. Если бы сопротивление резистора было мало (единицы Ом), при замкнутой цепи произошло бы короткое замыкание.
Аналогично, подтягивающий резистор удерживает вход в состоянии логической единицы, пока внешняя цепь разомкнута:
То же самое: используются резисторы больших номиналов (10 кОм и более), чтобы минимизировать потери энергии при замкнутой цепи и предотвратить короткое замыкание при разомкнутой.
Делитель напряжения
Делитель напряжения (voltage divider) используется для того, чтобы получить из исходного напряжения лишь его часть. Например, из 9 В получить 5. Он подробно описан в отдельной статье.
Мощность резисторов
Резисторы помимо сопротивления обладают ещё характеристикой мощности. Она определяет нагрузку, которую способен выдержать резистор. Среди обычных керамических резисторов наиболее распространены показатели 0.25 Вт, 0.5 Вт и 1 Вт. Для расчёта нагрузки, действующей на резистор, используйте формулу:
При превышении допустимой нагрузки, резистор будет греться и его срок службы может сильно сократиться. При сильном превышении — резистор может начать плавиться и вызвать воспламенение. Будьте осторожны!
90000 How do resistors work? What’s inside a resistor? 90001 90002 90003 90004 90005 90006 90007 90008 90002 by Chris Woodford. Last updated: July 22, 2019. 90003 90011 When you first learn about electricity, you discover that materials fall into two basic categories called conductors and insulators. Conductors (such as metals) let electricity flow through them; insulators (such as plastics and wood) generally do not. But nothing’s quite so simple, is it? Any substance will conduct electricity if you put a big enough voltage across it: even air, which is normally an insulator, suddenly becomes a conductor when a powerful voltage builds up in the clouds-and that’s what makes lightning.Rather than talking about conductors and insulators, it’s often clearer to talk about resistance: the ease with which something will let electricity flow through it. A conductor has low resistance, while an insulator has much higher resistance. Devices called resistors let us introduce precisely controlled amounts of resistance into electrical circuits. Let’s take a closer look at what they are and how they work! 90003 90002 Photo: Four typical resistors sitting side by side in an electronic circuit.A resistor works by converting electrical energy into heat, which is dissipated into the air. 90003 90015 What is resistance? 90016 90002 Electricity flows through a material carried by electrons, tiny charged particles inside atoms. Broadly speaking, materials that conduct electricity well are ones that allow electrons to flow freely through them. In metals, for example, the atoms are locked into a solid, crystalline structure (a bit like a metal climbing frame in a playground). Although most of the electrons inside these atoms are fixed in place, some can swarm through the structure carrying electricity with them.That’s why metals are good conductors: a metal puts up relatively little resistance to electrons flowing through it. Plastics are entirely different. Although often solid, they do not have the same crystalline structure. Their molecules (which are typically very long, repetitive chains called polymers) are bonded together in such a way that the electrons inside the atoms are fully occupied. There are, in short, no free electrons that can move about in plastics to carry an electric current. Plastics are good insulators: they put up a high resistance to electrons flowing through them.90003 90002 This is all a little vague for a subject like electronics, which requires precise control of electric currents. That’s why we define resistance more precisely as the voltage in volts required to make a current of 1 amp flow through a circuit. If it takes 500 volts to make 1 amp flow, the resistance is 500 ohms (written 500 Ω). You might see this relationship written out as a mathematical equation: 90003 90002 V = I × R 90003 90002 This is known as Ohm’s Law for German physicist Georg Simon Ohm (1789-1854).90003 90002 90003 90002 Photo: Using a multimeter like this one, you can automatically find the resistance of an electronic component; the meter feeds a known current through the component, measures the voltage across it, and uses Ohm’s law to calculate the resistance. Although multimeters are reasonably accurate, you have to remember that the leads and probes also have resistance that will introduce an error into your measurements (the smaller the resistance you’re measuring, the bigger the likely error).Here, I’m measuring the resistance of a loudspeaker in a telephone, which you can see, from the digital display, is 36.4 Ω. Inset: a switch on the multimeter lets me measure a range of different resistances (200 Ω, 2000. Ω, 20K = 20,000 Ω, 200K = 200,000 Ω, and 20M = 20 million Ω). 90003 90015 Resistance is useless? 90016 90002 How many times have you heard bad guys say that in movies? It’s often true in science as well. If a material has a high resistance, it means electricity will struggle to get through it.The more the electricity has to struggle, the more energy is wasted. That sounds like a bad idea, but sometimes resistance is far from «useless» and actually very helpful. 90003 90002 90003 90002 Photo: The filament inside an old-style light bulb. It’s a very thin wire with a moderate amount of resistance. It’s designed to get hot so it glows brightly and gives off light. 90003 90002 In an old-style light bulb, for example, electricity is made to flow through an extremely thin piece of wire called a filament.The wire is so thin that the electricity really has to fight to get through it. That makes the wire extremely hot-so much so, in fact, that it gives off light. Without resistance, light bulbs like this would not function. Of course the drawback is that we have to waste a huge amount of energy heating up the filament. Old-style light bulbs like this make light by making heat and that’s why they’re called incandescent lamps; newer energy-efficient light bulbs make light without making much heat through the entirely different process of fluorescence.90003 90002 The heat that filaments make is not always wasted energy. In appliances like electric kettles, electric radiators, electric showers, coffee makers, and toasters, there are bigger and more durable versions of filaments called heating elements. When an electric current flows through them, they get hot enough to boil your water or cook your bread. In heating elements, at least, resistance is far from useless. 90003 90002 Resistance is also useful in things like transistor radios and TV sets.Suppose you want to lower the volume on your TV. You turn the volume knob and the sound gets quieter-but how does that happen? The volume knob is actually part of an electronic component called a variable resistor. If you turn the volume down, you’re actually turning up the resistance in an electrical circuit that drives the TV’s loudspeaker. When you turn up the resistance, the electric current flowing through the circuit is reduced. With less current, there’s less energy to power the loudspeaker-so it sounds much quieter.90003 90002 90003 90002 Photo: «Variable resistor» is the very general name for a component whose resistance can be varied by moving a dial, lever, or control of some sort. More specific kinds of variable resistors include potentiometers (small electronic components with three terminals) and rheostats (usually much larger and made from multiple turns of coiled wire with a sliding contact that moves across the coils to «tap off» some fraction of the resistance) . Photos: 1) A small variable resistor acting as the volume control in a transistor radio.2) Two large rheostats from a power plant. You can see the dial controls that «tap off» more or less resistance. Photo by Jack Boucher from Historic American Engineering Record courtesy of US Library of Congress. 90003 90015 How resistors work 90016 90002 People who make electric or electronic circuits to do particular jobs often need to introduce precise amounts of resistance. They can do that by adding tiny components called resistors. A resistor is a little package of resistance: wire it into a circuit and you reduce the current by a precise amount.From the outside, all resistors look more or less the same. As you can see in the top photo on this page, a resistor is a short, worm-like component with colored stripes on the side. It has two connections, one on either side, so you can hook it into a circuit. 90003 90002 What’s going on inside a resistor? If you break one open, and scratch off the outer coating of insulating paint, you might see an insulating ceramic rod running through the middle with copper wire wrapped around the outside.A resistor like this is described as wire-wound. The number of copper turns controls the resistance very precisely: the more copper turns, and the thinner the copper, the higher the resistance. In smaller-value resistors, designed for lower-power circuits, the copper winding is replaced by a spiral pattern of carbon. Resistors like this are much cheaper to make and are called carbon-film. Generally, wire-wound resistors are more precise and more stable at higher operating temperatures. 90003 90002 90003 90002 Photo: Inside a wire-wound resistor.Break one in half, scratch away the paint, and you can clearly see the insulating ceramic core and the conducting copper wire wrapped around it. 90003 90015 How does the size of a resistor affect its resistance? 90016 90002 Suppose you’re trying to force water through a pipe. Different sorts of pipes will be more or less obliging, so a fatter pipe will resist the water less than a thinner one and a shorter pipe will offer less resistance than a longer one. If you fill the pipe with, say, pebbles or sponge, water will still trickle through it but much more slowly.In other words, the length, cross-sectional area (the area you see looking into the pipe to see what’s inside), and stuff inside the pipe all affect its resistance to water. 90003 90002 Electrical resistors are very similar-affected by the same three factors. If you make a wire thinner or longer, it’s harder for electrons to wiggle through it. And, as we’ve already seen, it’s harder for electricity to flow through some materials (insulators) than others (conductors). Although Georg Ohm is best known for relating voltage, current, and resistance, he also researched the relationship between resistance and the size and type of material from which a resistor is made.That led him to another important equation: 90003 90002 R = ρ × L / A 90003 90002 In simple words, the resistance (R) of a material increases as its length increases (so longer wires offer more resistance) and increases as its area decreases (thinner wires offer more resistance). The resistance is also related to the type of material from which a resistor is made, and that’s indicated in this equation by the symbol ρ, which is called the resistivity, and measured in units of Ωm (ohm meters).Different materials have very different resistivities: conductors have much lower resistivity than insulators. At room temperature, aluminum comes in at about 2.8 x 10 90066 -8 90067 Ωm, while copper (a better conductor) is significantly lower at 1.7 90066 -8 90067 Ωm. Silicon (a semiconductor) has a resistivity of about тисячі Ωm and glass (a good insulator) measures about 10 90066 12 90067 Ωm. You can see from these figures how vastly different conductors and insulators are in their ability to carry electricity: silicon is about 100 billion times worse than copper and glass is about a billion times worse again! 90003 90015 Resistance and temperature 90016 90002 90003 90002 Chart: The resistance of a material increases with temperature.This chart shows how resistivity (basic resistance of a material, independent of its length or area) increases almost linearly as the temperature increases from absolute zero up to about 600K (327 ° C) for four common metals. Drawn using original data from «Electrical Resistivity of Selected Elements» by P. Desai et al, J. Phys. Chem. Ref. Data, Vol 13, No 4, 1984 and «Electrical Resistivity of Copper, Gold, Palladium, and Silver» by R. Matula, J. Phys. Chem. Ref. Data, Vol 8, No 4, 1979, courtesy of US National Institute of Standards and Technology Open Data.90003 90002 The resistance of a resistor is not constant, even if it’s a certain material of a fixed length and area: it steadily 90080 increases 90081 as the temperature increases. Why? The hotter a material, the more its atoms or ions jiggle about and the harder it is for electrons to wriggle through, which translates into higher electrical resistance. Broadly speaking, the resistivity of most materials increases linearly with temperature (so if you increase the temperature by 10 degrees, the resistivity increases by a certain amount, and if you increase it by another 10 degrees, the resistivity rises by the same amount again).If you 90080 cool 90081 a material, you lower its resistivity-and if you cool it to an extremely low temperature, you can sometimes make the resistivity disappear altogether, in a phenomenon known as superconductivity. 90003 .90000 What is Resistor 90001 90002 What is resistor and resistor calculations. 90003 90004 What is resistor 90005 90002 Resistor is an electrical component that reduces the electric current. 90003 90002 The resistor’s ability to reduce the current is called resistance and is measured in units of ohms (symbol: Ω). 90003 90002 If we make an analogy to water flow through pipes, the resistor is a thin pipe that reduces the water flow. 90003 90004 Ohm’s law 90005 90002 The resistor’s current 90015 I 90016 in amps (A) is equal to the resistor’s voltage 90015 V 90016 in volts (V) 90003 90002 divided by the resistance 90015 R 90016 in ohms (Ω): 90003 90002 90003 90002 90003 90002 The resistor’s power consumption 90015 P 90016 in watts (W) is equal to the resistor’s current 90015 I 90016 in amps (A) 90003 90002 times the resistor’s voltage 90015 V 90016 in volts (V): 90003 90002 90015 P 90016 = 90015 I 90016 × 90015 V 90016 90003 90002 90003 90002 The resistor’s power consumption 90015 P 90016 in watts (W) is equal to the square value of the resistor’s current 90015 I 90016 in amps (A) 90003 90002 times the resistor’s resistance 90015 R 90016 in ohms (Ω): 90003 90002 90015 P 90016 = 90015 I 90016 90063 2 90064 × 90015 R 90016 90003 90002 90003 90002 The resistor’s power consumption 90015 P 90016 in watts (W) is equal to the square value of the resistor’s voltage 90015 V 90016 in volts (V) 90003 90002 divided by the resistor’s resistance 90015 R 90016 in ohms (Ω): 90003 90002 90015 P 90016 = 90015 V 90016 90063 2 90064/90015 R 90016 90003 90004 Resistors in parallel 90005 90002 90003 90002 The total equivalent resistance of resistors in parallel 90015 R 90096 Total 90097 90016 is given by: 90003 90002 90003 90002 90003 90002 So when you add resistors in parallel, the total resistance is decreased.90003 90004 Resistors in series 90005 90002 90003 90002 The total equivalent resistance of resistors in series 90015 R 90096 total 90097 90016 is the sum of the resistance values: 90003 90002 90015 R 90096 total 90097 90016 = 90015 R 90016 90096 1 90097 + 90015 R 90016 90096 2 90097 + 90015 R 90016 90096 3 90097 + … 90003 90002 90003 90002 So when you add resistors in series, the total resistance is increased. 90003 90004 Dimensions and material affects 90005 90002 The resistance R in ohms (Ω) of a resistor is equal to the resistivity 90015 ρ 90016 in ohm-meters (Ω ∙ m) times the resistor’s length l in meters (m) divided by the resistor’s cross sectional area 90015 A 90016 in square meters (m 90063 2 90064): 90003 90002 90003 90004 Resistor image 90005 90002 90003 90154 Resistor symbols 90155 90154 Resistor color code 90155 90002 The resistance of the resistor and its tolerance are marked on the resistor with color code bands that denotes the resistance value.90003 90002 There are 3 types of color codes: 90003 90162 90163 4 bands: digit, digit, multiplier, tolerance. 90164 90163 5 bands: digit, digit, digit, multiplier, tolerance. 90164 90163 6 bands: digit, digit, digit, multiplier, tolerance, temperature coefficient. 90164 90169 90170 Resistance calculation of 4 bands resistor 90171 90002 90015 R 90016 = (10 × 90015 digit 90016 90096 1 90097 + 90015 digit 90016 90096 2 90097) × 90015 multiplier 90016 90003 90170 Resistance calculation of 5 or 6 bands resistor 90171 90002 90015 R 90016 = (100 × 90015 digit 90016 90096 1 90097 + 10 × 90015 digit 90016 90096 2 90097 + 90015 digit 90016 90096 3 90097) × 90015 multiplier 90016 90003 90154 Resistor types 90155 90208 90209 90210 Variable resistor 90211 90210 Variable resistor has an adjustable resistance (2 terminals) 90211 90214 90209 90210 Potentiometer 90211 90210 Potentiometer has an adjustable resistance (3 terminals) 90211 90214 90209 90210 Photo-resistor 90211 90210 Reduces resistance when exposed to light 90211 90214 90209 90210 Power resistor 90211 90210 Power resistor is used for high power circuits and has large dimensions.90211 90214 90209 90210 Surface mount 90002 (SMT / SMD) resistor 90003 90211 90210 SMT / SMD resistors have small dimensions. The resistors are surface mounted on the printed circuit board (PCB), this method is fast and requires small board area. 90211 90214 90209 90210 Resistor network 90211 90210 Resistor network is a chip that contains several resistors with similar or different values. 90211 90214 90209 90210 Carbon resistor 90211 90210 90211 90214 90209 90210 Chip resistor 90211 90210 90211 90214 90209 90210 Metal-oxide resistor 90211 90210 90211 90214 90209 90210 Ceramic resistor 90211 90210 90211 90214 90271 90002 90003 90170 Pull-up resistor 90171 90002 In digital circuits, pull-up resistor is a regular resistor that is connected to the high voltage supply (e.g + 5V or + 12V) and sets the input or output level of a device to ‘1’. 90003 90002 The pull-up resistor set the level to ‘1’ when the input / output is disconnected. When the input / output is connected, the level is determined by the device and overrides the pull-up resistor. 90003 90170 Pull-down resistor 90171 90002 In digital circuits, pull-down resistor is a regular resistor that is connected to the ground (0V) and sets the input or output level of a device to ‘0’. 90003 90002 The pull-down resistor set the level to ‘0’ when the input / output is disconnected.When the input / output is connected, the level is determined by the device and overrides the pull-down resistor. 90003 90002 90003 90002 Electrical resistance ► 90003 90002 90003 90292 90154 See also 90155 .90000 What is Bleeder Resistor? — Significance & Functions of Bleeder Resistor 90001 90002 90003 Definition: Bleeder Resistor 90004 is a standard resistor which is connected in parallel with the capacitor of the filter circuit to provide discharging of the capacitor. If the capacitor is not discharged properly, then it may lead to an electric shock to the person operating it. 90005 90002 Thus, to ensure the safety of the operators working with it, it is necessary to connect a resistor in parallel with the capacitor.90005 90008 Significance of Bleeder Resistor 90009 90002 To understand the significance of bleeder resistor, let’s consider a circuit. In this circuit power supply is given by the rectifier or the output of the rectifier is connected to the input of this experimental circuit. 90005 90002 90013 90005 90002 Now, the input to this circuit is given by rectifier, and the output of the rectifier is pulsating DC. Thus, we need to use filter circuit also. In a filter circuit, we have inductor and capacitor.90005 90002 When the power supply is «ON» the capacitor starts charging. And do remember one crucial thing; we need to connect a standard resistor in parallel with the capacitor, i.e. bleeder resistor. What if we forget to connect the resistor? 90005 90002 90020 90005 90002 If you have not connected the bleeder resistor in parallel with the capacitor of the filter circuit, it may give an electric shock to the operator working with it. 90005 90002 90003 Strange !!!! Why I experienced electric shock? I have touched the capacitor when the power was OFF but still this electric shock ?? 90004 90005 90002 90029 90005 90002 You must be thinking that what is the reason behind this electric shock? Let me explain.When the power was switched ON, the capacitor gets charges to its peak value. After switching OFF the power supply, the capacitor is still charged, because it consists of the previous charge. If we touch this capacitor, we will experience electric shock irrespective of the OFF power supply. 90005 90002 Therefore, we need a resistor, so that the capacitor can discharge properly after switching OFF the power supply. Thus, a resistor of standard value is connected in parallel with the capacitor, which helps in discharging after the curtailment of power.90005 90008 Functions of Bleeder Resistor 90009 90037 Effective Voltage Regulation 90038 90002 Bleeder resistor helps to achieve better and improved voltage regulation. Voltage regulation is the ratio of the difference between no-load voltage and full load voltage to the full load voltage in the denominator. 90005 90002 If the difference between no-load voltage and full load voltage will decimate, then the voltage regulation will be improved. The bleeder resistor is connected in parallel with both the capacitor of the filter circuit as well as the load resistor.90005 90002 Thus, there will be two voltage drop, one across the bleeder resistor and one across the load resistor. In the absence of load resistor, the no-load voltage drop will be equal to the voltage drop across bleeder resistor. 90005 90002 Thus, when no load is connected then also there is some voltage drop. And after connection of the load, the voltage drop across the load will be taken into consideration. In previous cases, the voltage regulation without bleeder resistor is poor because the difference between no-load voltage and full load voltage is high.90005 90002 In case of bleeder resistor connected in the circuit, the difference between the no-load and full load voltage is very less. Consequently, this leads to improved voltage regulation. 90005 90037 Safety Purpose 90038 90002 Bleeder resistor proves to be a component which saves us from hazardous repercussions. Anyone working with the circuits may get electric shocks in the absence of bleeder resistor. 90005 90002 Thus, it is a crucial device for protection from electric shocks. 90005 90037 Voltage Divider 90038 90002 This adds to one of the significant advantages of bleeder resistor that it can be used as a voltage divider.If we require a device to provide two or three voltage supply, then tapping can be done, and bleeder resistor will act as 2, 3 or 4 resistors connected in series. 90005 90002 90060 90005 90002 In this way, it also provides the functioning of the voltage divider. 90005 90002 In this article, we have discussed bleeder resistor which is certainly a vital electronic component in electronic circuits. To design a circuit, it is necessary to have a detailed knowledge about such component which indirectly plays a significant role in circuit processing.90005 90002 Moreover, its multiple functions make this electronic component worth. The elementary step for understanding electronics, designing electronic circuits or simulating or synthesizing the circuit, is to have the knowledge about components that do not involve the direct role in the process of the circuit but still without these components a circuit can not work efficiently. 90005 .90000 Good Function Of 120 Ohm Shg Cement Resistor With Tolerance 5% 90001 90002 90003 RX / BRX / NRX Good Function of 120 ohm SHG Cement Resistor with tolerance 5% 90004 90005 90006 90007 90006 90003 Cement Resistors (RX / BRX / HRX) 90004 90007 90006 1, Good heat-durability, low temperature coefficient, low noise , high load power, high insulating capacity 90007 90006 2, Operating ambient temperature: -55 ° C to + 275 ° C 90007 90006 3, Resistance tolerance: ± 1%, ± 2%, ± 5%, ± 10% 90007 90006 90007 90006 Forming Type & Power: 90007 90006 SQP: 1W-11W, 15W, 17W, 20W, 25W 90007 90006 SBH: 5W-11W, 15W, 17W, 20W, 25W 90007 90006 SQM: 1W-11W, 15W, 20W 90007 90006 SQS : 5W, 7W, 10W, 15W, 20W, 25W 90007 90006 SQO: 4W, 5W, 6W, 7W, 8W 90007 90006 SQZ: 3W-11W, 15W, 17W, 20W, 25W 90007 90006 SQH: 3W-11W, 15W, 17W, 20W, 25W, 30W, 40W, 50W, 100W 90007 90006 SHG: 10W, 11W, 15W, 20W, 25W, 30W, 40W 90007 90006 Z4-16, Z5-16: 4W, 10W 90007 90006 ZC-11: 5W 90007 90006 M450: 80W 90007 90006 90007 90006 Tolerance: ± 1%, ± 2%, ± 5%, ± 10% 90007 90048 Range: 0R01-100K 90007 90006 90007 90 052 90053 90054 90055 90006 Description 90007 90058 90055 90006 Forming Type 90007 90058 90055 90006 Size 90007 90058 90055 90006 Tolerance 90007 90058 90055 90006 Range 90007 90058 90075 90054 90077 90006 RX / BRX / HRX 90007 90006 Cement Resistors 90007 90006 90007 90006 90007 90006 90007 90006 90007 90006 90007 90006 90007 90006 90007 90006 90007 90006 90007 90006 90007 90006 NRX 90007 90006 Non-inductive Cement Resistors 90007 90006 90007 90006 90007 90006 90007 90058 90055 90006 SQP 90007 90058 90055 90006 1W-11W, 15,17W, 20W, 25W 90007 90058 90077 90006 ± 5% ± 1% 90007 90058 90077 90006 RX / BRX / HRX 90007 90006 0R01-100K 90007 90006 90007 90006 90007 90006 90007 90006 NRX: 0R1-47R 90007 90058 90075 90054 90055 90006 SBH 90007 90058 90055 90006 5W-11W, 15,17W, 20W, 25W 90007 90058 90075 90054 90055 90006 SQM 90007 90058 90055 90006 1W-11W, 15,17W, 20W 90007 90058 90075 90054 90055 90006 SQS 90007 90058 90055 90006 5W, 7W, 10W, 15W, 20W, 25W 90007 90058 90075 90054 90055 90006 SQO 90007 90058 90055 90006 4W, 5W, 6W, 7W, 8W 90007 90058 90075 90054 90055 90006 SQZ 90007 90058 90055 90006 3W-11W, 15,17W, 20W, 25W 90007 90058 90075 90054 90055 90006 SQH 90007 90058 90055 90006 3W-11W, 15,17W, 20W, 25W 90007 90006 30W, 40W, 50W, 100W 90007 90058 90075 90054 90055 90006 SHG 90007 90058 90055 90006 10W , 11W, 15W, 20W, 25W, 30W, 40W 90007 90058 90075 90054 90055 90006 Z4-16, Z5-16 90007 90058 90055 90006 4W, 10W 90007 90058 90075 90054 90055 90006 ZC-11 90007 90058 90055 90006 5W 90007 90058 90075 90054 90055 90006 M450 90007 90058 90055 90006 80W 90007 90058 90075 90054 90055 90006 E 90007 90058 90055 90006 2W, 3W, 5W, 7W, 10W, 2W + 2W, 3W + 3W, 5W + 5W, 7W + 7W 90007 90058 90075 90054 90055 90006 MPR 90007 90006 Metal Plate Non-inductive Cement Resistors 90007 90006 90007 90058 90055 90006 EC 90007 90058 90055 90006 5W 90007 90058 9 0055 90006 ± 5% ± 10% 90007 90058 90055 90006 0R01-4R7 90007 90058 90075 90054 90055 90006 Heated Cement Resistors 90007 90006 90007 90058 90055 90006 B 90007 90058 90055 90006 16W 90007 90058 90055 90006 ± 5% ± 10% 90007 90058 90055 90006 0R1-220R 90007 90058 90075 90054 90055 90006 Temperature Fuse Cement Resistors 90007 90006 90007 90058 90055 90006 M 90007 90058 90055 90006 5W, 7W, 10W 90007 90058 90055 90006 ± 5% ± 10% 90007 90058 90055 90006 0R1-47K 90007 90006 90007 90058 90075 90328 90329 90006 90007 .