Сила Ампера и закон Ампера
Закон АмпераТрудно представить нашу современную жизнь без электричества, ведь исчезни оно, это бы мгновенно привело к глобальным катастрофическим последствиям. Так что в любом случае с электричеством мы отныне не разлучные. А вот для того, чтобы иметь с ним дело нужно знать определенные физические законы, одним из которых, безусловно, является закон Ампера. А пресловутая магнитная сила Ампера – главная составляющая этого закона.
Закон Ампера
Итак, давайте сформулируем закон Ампера: в параллельных проводниках, где электрические токи текут в одном направление, появляется сила притяжения. А в проводниках, где токи текут в противоположных направлениях, наоборот возникает сила отталкивания. Если же говорить простым житейским языком, то закон Ампера можно сформулировать предельно просто «противоположности притягиваются», и ведь в реальной жизни (а не только физике) мы наблюдаемо подобное явление, не так ли?
Но вернемся к физике, в ней также под законом Ампера понимают закон, определяющий силу действия магнитного поля на ту часть проводника, по которой протекает ток.
Что такое сила Ампера
Собственно сила ампера и является той силой действия магнитного поля на проводник, по которому идет ток. Сила Ампера вычисляется по формуле как результат умножения плотности тока, идущего по проводнику на индукцию магнитного поля, в котором находится проводник. Как результат формула силы Ампера будет выглядеть так
са=ст*дчп*ми
Где, са – сила Ампера, ст – сила тока, дчп – длина части проводника, ми – магнитная индукция.
Правило левой руки
Правило левой руки предназначено для того, чтобы помочь запомнить, куда направлена сила Ампера. Оно звучит следующим образом: если рука занимает такое положение, что линии самой магнитной индукции внешнего поля заходят в ладонь, а пальцы с мизинца по указательный указывают направление в сторону движения тока в проводнике, то отторгнутый под углом в 90 градусов большой палец ладони и будет указывать, куда направлена сила Ампера, действующая на элемент проводника.
Примерно так выглядит правило левой руки на этой схеме.
Применение силы Ампера
Применение силы Ампера в современном мире очень широкое, можно даже без преувеличение сказать, что мы буквально окружены силой Ампера. Например, когда вы едете в трамвае, троллейбусе, электромобиле, его в движение приводит именно она, сила Ампера. Аналогичны лифты, электрические ворота, двери, любые электроприборы, все это работает именно благодаря силе Ампера.
Сила Ампера, видео
И в завершение небольшой видео урок о силе Ампера.
Автор: Павел Чайка, главный редактор журнала Познавайка
При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту [email protected] или в Фейсбук, с уважением автор.
Тема: Магнитостатика
Силы Ампера используются для преобразования энергии электрического тока в механическую энергию проводника. Такое преобразование применяется во многих электротехнических устройствах. Рассмотрим некоторые из них.
1. Электроизмерительные приборы магнитоэлектрической системы.
Рис. 6.19. Строение измерительного прибора магнитоэлектрической системы |
Электроизмерительный прибор магнитоэлектрической системы состоит из постоянного магнита и проволочной рамки, которая находится между полюсами (рис. 6.19). Полюса магнита имеют специальные насадки, которые дают возможность получить такое магнитное поле, при котором поворачивание рамки в нем не приводит к изменению угла между магнитной индукцией и проводниками рамки. Этот угол остается всегда равным 90°. С рамкой соединены две спиральные пружины, которые подводят электрический ток к рамке. При прохождении электрического тока по рамке появляется сила Ампера, пропорциональная силе тока в рамке. Поворачивание рамки приводит к деформации пружин и возникновению силы упругости. Рамка прекратит поворачиваться тогда, когда момент
Стрелка, связанная с рамкой, показывает угол ее поворота, при котором моменты уравновешиваются. Этот угол пропорциональный силе тока в рамке.
2. Электрический двигатель постоянного тока. Материал с сайта http://worldofschool.ru
Рис. 6.20. Строение двигателя постоянного тока |
Электрический двигатель
предназначен для непрерывного превращения энергии электрического тока в механическую. Принцип его действия такой же, как и электроизмерительного прибора, описанного выше. Но в его конструкции отсутствует пружина. Ток к рамке подводится через специальные скользящие контакты — щетки (рис. 6.20). При замыкании цепи рамка начинает взаимодействовать с магнитным полем постоянного магнита или электромагнита и поворачивается так, что ее плоскость становится перпендикулярной магнитной индукции. Непрерывность вращения рамки обеспечивается применением специального устройства — коллектора, которое периодически изменяет направление тока в рамке.В современных электродвигателях постоянного тока подвижная часть (ротор) состоит из многих рамок, размещенных в пазах цилиндра из специальной электротехнической стали. Роль коллектора в них часто выполняет специальное электронное устройство.
На этой странице материал по темам:Закон ампера, его применение в двигателях и электроизмерительных приборах.
Применение закона ампера в технике
Реферат на тему силаа ампера и его применение в техники
Закон ампера и его применение в двигателях и электроизмерительных приборах
Применение силы ампера в технике
Магнитная сила Ампера
Возьмем прямой проводник, изготовленный из алюминия, и подвесим его на тонких и гибких проводах таким образом, чтобы он находился между полюсами подковообразного постоянного магнита как на рисунке (а). Если в проводнике пропустить ток, проводник отклонится от положения равновесия — рисунок (б). Причиной такого отклонения является сила, действующая на проводник с током со стороны магнитного поля. Доказал наличие этой силы и выяснил, от чего зависят ее значение и направление, французский физик, математик и химик Андре Мари Ампер. Именно поэтому это явление называют магнитной силой Ампера.
Сила Ампера — это сила, с которой магнитное поле действует на проводник с током.
Сила Ампера прямо пропорциональна силе тока в проводнике и длине активной части проводника (то есть части, которая расположена в магнитном поле). Сила Ампера увеличивается с увеличением индукции магнитного поля и зависит от того, под каким углом к линиям магнитной индукции расположен проводник.
Значение силы Ампера (FA) вычисляют по формуле:
где В — магнитная индукция магнитного поля; I — сила тока в проводнике; l — длина активной части проводника; α — угол между направлением вектора магнитной индукции и направлением тока в проводнике.
Обратите внимание! Магнитное поле не будет действовать на проводник с током (FA= 0), если проводник расположен параллельно магнитным линиям поля (sin α = 0).
Определениенаправления силы Ампера
по правилу левой руки
Чтобы определить направление силы Ампера, используют правило левой руки:
Если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутые пальцы указывали направление тока в проводнике, то отогнутый на 90 ° большой палец укажет направление силы Ампера.
На рисунке слева показано определения направления силы Ампера, действующая на проводник, расположенный в однородном магнитном поле. Давайте определим направление тока в проводнике, направление магнитной индукции и направление силы Ампера.Получаем формулу для определения модуля магнитной индукции
Если проводник расположен перпендикулярно к линиям магнитной индукции (α = 90 °, sin α = 1), то поле действует на проводник с максимальной силой:
Отсюда получаем формулу для определения модуля магнитной индукции:
Обратите внимание! Значение магнитной индукции не зависит ни от силы тока в проводнике, ни от длины проводника, а зависит только от свойств магнитного поля.
Например, если уменьшить силу тока в проводнике, то изменится и сила Ампера, с которой магнитное поле действует на проводник, а вот значение магнитной индукции останется неизменным.
В СИ единица магнитной индукции — тесла (Тл), единица силы — ньютон (Н), силы тока — ампер (А), длины — метр (м), поэтому:
1Тл — это индукция такого однородного магнитного поля, которое действует с максимальной силой 1 Н на проводник длиной 1 м, в котором течет ток силой 1 А.
Проверочные задачи по теме: магнитное взаимодействие токов и сила Ампера
Задача 1. Докажите, что два параллельных проводника, в которых текут токи одного направления, притягиваются.Анализ задачи:
Вокруг любого проводника с током существует магнитное поле, следовательно, каждый из двух проводников находится в магнитном поле другого. На первый проводник действует сила Ампера со стороны магнитного поля, созданного током во втором проводнике, и наоборот. Определив по правилу левой руки направления этих сил, выясним, как вести себя проводники.
Решение:
В ходе решения выполним объяснительные рисунки: изобразим проводники А и В, покажем направление тока в них и др.
Определим направление силы Ампера, действующая на проводник А, находящегося в магнитном поле проводника В.
1) С помощью правила буравчика определим направление линий магнитной индукции магнитного поля, созданного проводником В (рисунок слева). Выясняется, что у проводника А магнитные линии направлены к нам (отметка «•»).
2) Воспользовавшись правилом левой руки, определим направление силы Ампера, действующая на проводник А со стороны магнитного поля проводника В.
3) Приходим к выводу: проводник А привлекается к проводнику В.
Теперь найдем направление силы Ампера, действующая на проводник В, находится в магнитном поле проводника А.
1) Определим направление линий магнитной индукции магнитного поля, созданного проводником А (рисунок справа). Выясняется, что у проводника В магнитные линии направлены от нас (отметка «х»).
2) Определим направление силы Ампера, действующая на проводник В.
3) Приходим к выводу: проводник В привлекается к проводнику А.
Ответ: два параллельных проводника, в которых текут токи одного направления, действительно притягиваются.
Задача 2. Прямой проводник (стержень) длиной 0,1 м массой 40 г находится в горизонтальном однородном магнитном поле индукцией 0,5 Тл. Стержень расположен перпендикулярно магнитных линий поля). Ток какой силы и в каком направлении следует пропустить в стержне, чтобы он не давил на опору (завис в магнитном поле)?
Анализ задачи:
Стержень не будет давить на опору, если сила Ампера уравновесит силу тяжести. Это произойдет при следующих условиях:
- сила Ампера будет направлена противоположно силе тяжести (то есть вертикально вверх)
- значение силы Ампера равна значению силы тяжести FA = Fтяж
Направление тока определим, воспользовавшись правилом левой руки.
Решение:
Определим направление тока. Для этого расположим левую руку так, чтобы линии магнитного поля входили в ладонь, а отогнутый на 90 ° большой палец был направлен вертикально вверх. Четыре вытянутые пальцы укажут направление от нас. Итак, ток в проводнике следует направить от нас.
Учитываем, что FA = Fтяж. FA= BIlsinα, где sin α = 1; Fтяж = mg
Из последнего выражения найдем силу тока: I = mg/Bl
Проверим единицу, найдем значение искомой величины.
Ответ: I = 8 А; Ток в направлении от нас.
Подводим итоги
Силу, с которой магнитное поле действует на проводник с током, называют силой Ампера. Значение силы Ампера вычисляют по формуле: FA= BIlsinα, где B — индукция магнитного поля; I — сила тока в проводнике; l — длина активной части проводника; α — угол между направлением вектора магнитной индукции и направлением тока в проводнике.
Для определения направления магнитной силы Ампера используют правило левой руки: если левую руку расположить так, чтобы линии магнитного поля входили в ладонь, а четыре вытянутые пальцы указывали направление тока в проводнике, то отогнутый на 90 ° большой палец укажет направление силы Ампера.
Что такое сила Ампера? :: SYL.ru
Знания о том, что такое сила Ампера, как она относится и чем может быть полезна для людей, необходимы для тех, кто работает с током. Как для собственной безопасности, так и для работы с различной радиоэлектроникой (при конструировании рельсетронов, что довольно популярно). Но хватит ходить вокруг, приступим к выяснению того, что такое сила Ампера, особенности этой силы и где она используется. Также можно будет прочитать потенциал использования в будущем и пользу от использования сейчас.
Закон Ампера
Сила Ампера является главной составляющей закона Ампера — закона о взаимодействии электрических токов. В нём говорится, что в параллельных проводниках, в которых электрические токи текут в одном направлении, возникает сила притягивания. А в тех проводниках, в которых электрические токи текут в противоположных направлениях, возникает сила отталкивания.Также законом Ампера называют закон, который определяет силу действия магнитного поля не небольшую часть проводника, по которой протекает ток. В данном случае она определяется как результат умножения плотности тока, который идёт по проводнику, на индукцию магнитного поля, в котором проводник находится.
Из самого закона Ампера сделаны выводы, что сила Ампера равняется нулю, если величина угла, расположенного между током и линией магнитной индукции, тоже будет равняться нулю. Другими словами, проводник для достижения нулевого значения должен быть расположен вдоль линии магнитной индукции.
А что же такое сила Ампера?
Это сила, с которой магнитное поле влияет на часть проводника, по которому течёт ток. Сам проводник находится в магнитном поле. Сила Ампера прямо зависит от силы тока в проводнике и векторного произведения длины части проводника, множимого на магнитную индукцию.В формульном виде всё будет выглядеть так: са=ст*дчп*ми. Здесь:
- са – сила Ампера,
- ст – сила тока,
- дчп – длина части проводника,
- ми – магнитная индукция.
История открытия
Впервые его сформулировал Андре Ампер, который применил закон к постоянному току. Открыт он был в 1820 году. Этот закон в будущем имел далеко идущие последствия, ведь без него представить работу целого ряда электрических приборов просто невозможно.
Правило левой руки
Это правило помогает запомнить направление силы Ампера. Само правило звучит так: если рука занимает такое положение, что линии самой магнитной индукции внешнего поля заходят в ладонь, а пальцы с мизинца по указательный указывают направление в сторону движения тока в проводнике, то отторгнутый по углом в 90 градусов большой палец ладони и будет указывать, куда направлена сила Ампера, действующая на элемент проводника. Могут возникнуть некоторые затруднения при использовании этого правила, но только если угол между током и индукцией поля слишком маленький. Для простоты применения этого правила ладонь часто располагают так, чтобы в неё входил не вектор, а модуль магнитной индукции (как изображено на картинке).Сила Ампера (при использовании двух параллельных проводников)
Представьте два бесконечных проводника, которые расположены на определённом расстоянии. По ним протекают токи. Если токи текут в одном направлении, то проводники притягиваются. В противоположном случае они будут отталкиваться один от одного. Поля, которые создают параллельные проводники, направлены встречно друг другу. И чтобы понять, почему они реагируют именно так, вам достаточно вспомнить о том, что одноименные полюса магнитов или одноименные заряды всегда отталкиваются. Для определения стороны направления поля, созданного проводником, следует использовать правило правого винта.Применение знаний о силе Ампера
Встретиться с областью применения знания о силе Ампера можно практически на каждом шагу цивилизации. Применение силы Ампера настолько обширно, что среднестатистическому гражданину даже сложно представить себе, что можно делать, зная закон Ампера и особенности применения силы. Так, под действием силы Ампера вращается ротор, на обмотку которого оказывает влияние магнитное поле статора, и ротор приходит в движение. Любое транспортное средство, которое использует электротягу для вращения валов (которые соединяют колеса транспорта), использует силу Ампера (это можно увидеть на трамваях, электровозах, электрических машинах и многих других интересных видах транспорта). Также именно магнитное поле влияет на механизмы, которые являются электрическими приборами, что должны открывать/закрывать что-то (двери лифта, открывающиеся ворота, электрические двери и много других). Другими словами, все устройства, что не могут работать без электричества и имеют движимые узлы, работают благодаря знанию о законе Ампера. Для примера:- Любые узлы в электротехнике. Самый популярный – элементарный электродвигатель.
- Различные виды электротехники, которая формирует различные звуковые колебания с использованием постоянного магнита. Механизм действия таков, что на магнит действует электромагнитное поле, что создает расположенный рядом проводник с током, и изменение напряжения приводит к смене звуковой частоты.
- На силе Ампера построена работа электромеханических машин, в которых движение обмотки ротора происходит относительно обмотки статора.
- С помощью силы Ампера происходит электродинамический процесс сжатия плазмы, что нашло применение в токамаках и потенциально открывает огромные пути развития термоядерной энергии.
- Также с помощью электродинамического сжатия применяется электродинамический метод прессования.
Потенциал
Несмотря на уже сейчас существующее практическое применение, потенциал использования силы Ампера настолько огромен, что с трудом поддаётся описанию. Она может использоваться в сложных механизмах, которые призваны облегчить существование человека, автоматизировать его деятельность, а также усовершенствовать природные жизненные процессы.
Эксперимент
Для того чтобы иметь возможность своими глазами увидеть действие силы Ампера, можно провести дома небольшой эксперимент. Для начала необходимо взять магнит-подкову, в котором между полюсами поместить проводник. Всё желательно воспроизвести так, как на картинке. Если замкнуть ключ, то можно увидеть, что проводник начнёт двигаться, смещаясь от начальной точки равновесия. Можно поэкспериментировать с направлениями пропускания тока и увидеть, что зависимо от направления движения меняется направление отклонения проводника. Из самого эксперимента можно вынести несколько наблюдений, которые подтверждают вышесказанное:- Магнитное поле действует исключительно на проводник с током.
- На проводник с током в магнитном поле действует сила, которая является следствием их взаимодействия. Именно под воздействием этой силы проводник движется в пространстве в границах магнитного поля.
- Характер взаимодействия прямо зависит от напряжения электрического тока и силовых линий магнитного поля.
- Поле не действует на проводник с током, если ток в проводнике течёт параллельно направлению линий поля.
Безопасность при работе с током
При работе с электрическим током необходимо придерживаться нескольких простых правил техники безопасности, которые позволят вам избежать негативных последствий:
- Работать с источниками питания не больше 12 Вольт.
- Не работать на воспламеняемых материалах.
- Не работать с мокрыми руками.
- Не браться за части прибора, которые находятся под напряжением.
Referat. Сила Ампера — PhysBook
Сила Ампера
Сила, с которой магнитное поле действует на помещенный в него проводник с током, называется силой Ампера.
Величина этой силы, действующей на элемент Δl проводника с током I в магнитном поле с индукцией \(~\vec B\) , определяется законом Ампера:
\(~\Delta F = B \cdot I \cdot \Delta l \cdot \sin \alpha\) , (1)где α – угол между направлениями тока и вектора индукции.
Направление силы Ампера можно найти с помощью правила левой руки (рис. 1):
Рис. 1
если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутых пальца совпадали по направлению с направлением тока, то отогнутый на 90° большой палец укажет направление силы, действующей на элемент проводника.
Использование этого правила затруднительно лишь в том случае, когда угол α мал. Поскольку, однако, величина B∙sin α представляет собой модуль перпендикулярной проводнику с током компоненты вектора индукции \(~\vec B_{\perp}\) (рис. 2), то ориентацию ладони можно определять именно этой компонентой – она должна входить в открытую ладонь левой руки.
Рис. 2
Из (1) следует, что сила Ампера равна нулю, если проводник с током расположен вдоль линий магнитной индукции, и максимальна, если проводник перпендикулярен этим линиям.
Закон Ампера выполняется для любого магнитного поля. Предположим, что это поле создается длинным линейным проводником с током I2, параллельным первому проводнику c током I1 и находящимся на расстоянии r от него. Тогда индукцию магнитного поля в точках расположения первого проводника можно определить (с учетом замены I → I2) по формуле:
\(~B = \frac{\mu_0 \cdot I}{2 \pi \cdot r} = \frac{\mu_0 \cdot I_2}{2 \pi \cdot r}\) .Подставляя это выражение в (1) и замечая, что в рассматриваемом случае параллельных проводников α = 90°, находим силу, действующую на линейный элемент Δl первого проводника,
\(~\Delta F = \frac{\mu_0 \cdot I_2}{2 \pi \cdot r} \cdot I_1 \cdot \Delta l = \mu_0 \cdot \frac{I_2 \cdot I_1 \cdot \Delta l}{2 \pi \cdot r} \) . (2)Совершенно ясно, что точно такое же выражение можно записать для силы, действующей на второй проводник. Используя правило буравчика (для определения магнитной индукции проводника с током) и правило левой руки (для определения силы, действующей на проводник с током), можно убедиться в том, что если токи в проводниках текут в одинаковых направлениях, то эти проводники притягиваются (рис. 3 а, б), а если в разных – отталкиваются (рис. 4, а, б), что и подтверждается опытом.
а
б
а
б
Выражение (2) было положено в основу принципа определения единицы силы тока. Если в (2) считать I1 = I2 = 1 А, r = 1 м, Δl = 1 м, то получим F = 2∙10-7 Н/м. Другими словами,
если по двум параллельным, бесконечно длинным линейным проводникам, расположенным на расстоянии 1 м друг от друга, текут одинаковые токи в 1 А, то эти токи взаимодействуют с силой 2∙10-7 Н на каждый метр длины проводников.
Заметим, что единица силы тока – ампер – в СИ принадлежит, наряду с секундой, метром, килограммом, кельвином, молем и канделой, к числу основных единиц измерения физических величин.
Момент сил, действующий на прямоугольную рамку с током
Поместим в однородном магнитном поле с индукцией \(~\vec B\) прямоугольную рамку с током ABCD (рис. 5 а – вид сбоку; рис. 5 б – вид сверху), где обозначим AB = a, AD = b, β – угол между перпендикуляром к рамке и вектором магнитной индукции.
а
б
На участки AD и BC магнитное поле действуют с силами, которые меняются от нуля до максимального значения (в зависимости от угла поворота рамки β) и стремятся растянуть рамку (на рис. 5 эти силы не указаны). На участки AB и CD магнитное поле действуют с постоянными силами \(~\vec F_1\) и \(~\vec F_2\), которые направлены в противоположные стороны (на рис. 5 а силы направлены перпендикулярно плоскости рисунка) и стремятся повернуть рамку вокруг оси OO´. Таким образом, эти силы \(~\vec F_1\) и \(~\vec F_2\) создают вращающий момент \(~M = F_1 \cdot l_1 + F_2 \cdot l_2\) , где \(~F_1 = F_2 = I \cdot B \cdot l\) (угол α = 90°), \(~l_1 = l_2 = \frac{AD}{2} \sin \beta = \frac{b}{2} \sin \beta\) , \(~l = AB = CD = a\) . Тогда
\(~M = 2 F_1 \cdot l_1 = 2I \cdot B \cdot a \cdot \frac{b}{2} \cdot \sin \beta = I \cdot B \cdot a \cdot b \cdot \sin \beta = I \cdot B \cdot S \cdot \sin \beta\) ,где \(~S = a \cdot b\) – площадь рамки.
Момент сил будет максимальным при β = 90° (рамка расположена вдоль линий индукции)
\(~M_{max} = I \cdot B \cdot S\) . (3)Отметим, что формула (3) справедлива не только для квадратной рамки, но и для плоской рамки другой формы.
Применение силы Ампера в технике
Электрический двигатель постоянного тока
В электрических двигателях для преобразования электрической энергии в механическую используется действие силы Ампера.
Основными частями электродвигателя постоянного тока (рис. 6) являются индуктор 4, с помощью которого создается постоянное магнитное поле, якорь 3, через обмотки которого пропускается ток, и коллектор 1 с электрическими щетками 2, с помощью которых осуществляется соединение обмоток якоря с источником тока.
а
б
В простейшей машине постоянного тока индуктор – это постоянный магнит или электромагнит со стальным сердечником. Обмотки электромагнита индуктора называются обмотками возбуждения. Магнит индуктора имеет полюсные наконечники такой формы, что между ними образуется отверстие цилиндрической формы. Между полюсными наконечниками индуктора помещается якорь. Якорь состоит из сердечника – стального цилиндра с пазами, параллельными оси цилиндра, и обмоток, вложенных в пазы сердечника (рис. 7). Выводы каждой обмотки соединены с медными контактами коллектора.
Рис. 7
Якорь насажен на ось, концы которой установлены в подшипниках, и может свободно вращаться вокруг этой оси.
Для постоянного вращения рамки с током в магнитном поле необходимо устройство, меняющее направление тока. Такое устройство – коллектор – было изобретено в XIX веке. В простейшем случае он представляет собой два металлических полукольца 1, насаженных на общую с рамкой ось 2, и к которым припаяны провода обмотки 4 (рис. 8). К коллектору с двух противоположных сторон прижимаются щетки 3 из графита или меди; щетки подключаются проводами 5 к источнику постоянного напряжения.
Рис. 8
При включении ток проходит через щетки, полукольца и обмотку, в результате чего под действием пары сил Ампера обмотка начинает поворачиваться и поворачивает полукольца коллектора. Когда плоскость обмотки окажется перпендикулярной линиям магнитной индукции, вращающий момент обратится в ноль. Однако это положение обмотка проскакивает по инерции, и с этого момента каждое из полуколец, повернувшись вместе с рамкой, станет прикасаться уже к другой щетке. В результате направление тока в обмотке изменится на противоположное, а возникший после такой смены направления тока вращающий момент будет вынуждать обмотку вращаться в прежнем направлении до тех пор, пока ее плоскость снова не станет перпендикулярной вектору индукции. После этого направление тока в обмотке снова изменится, и она продолжит вращение, и т.д.
Скорость вращения якоря электродвигателя можно регулировать, изменяя силу тока в его обмотках; направление вращения можно изменять, изменяя направление тока в обмотке якоря или индуктора.
Электродвигатель постоянного тока может приводить в движение колеса электровоза, троллейбуса, трамвая, приводить в действие электробритву, магнитофон и другие бытовые электроприборы.
Электроизмерительные приборы
В электроизмерительных приборах магнитоэлектрической системы используется действие магнитного поля на проводник с током (рис. 9).
Рис. 9
Измеряемый электрический ток пропускается через рамку 6, помещенную в магнитное поле постоянного магнита 5. Рамка укреплена на оси 2. Измеряемый ток подводится к рамке 6 через спиральную пружину 3. На участки проводников, расположенные перпендикулярно линиям индукции магнитного поля, действует сила Ампера. Если бы подвижная часть измерительного механизма не имела пружину 3, противодействующую ее повороту, то при пропускании тока через рамку происходил бы поворот ее на 180° независимо от силы тока. Но силы упругости, возникающие при закручивании пружины, препятствуют повороту рамки. Сила упругости прямо пропорциональна углу закручивания пружины, поэтому угол поворота, при котором наступает равенство моментов сил Ампера и сил упругости, пропорционален силе тока в рамке. Шкала магнитоэлектрического прибора равномерная.
При изменениях силы тока равновесие моментов сил упругости и сил Ампера нарушается, в результате подвижная система начинает совершать колебания относительно нового положения равновесия. Вместе с ней колеблется и стрелка прибора. Для устранения этих колебаний в приборах применяются специальные успокоители. В них для торможения подвижной системы используется тонкая алюминиевая пластина 7, помещенная между полюсами постоянного магнита 8 и закрепленная на оси вращения подвижной системы. При повороте подвижной системы алюминиевая пластина успокоителя движется в поле постоянного магнита. Наводимые в ней при этом индукционные токи тормозят движение пластины и вместе с тем вращение всей подвижной системы электроизмерительного прибора.
Для того чтобы при любом положении указательной стрелки 4 подвижная часть была уравновешена в поле тяжести, имеются противовесы 9. Установка на нулевое деление шкалы производится с помощью корректора 10.
Прибор можно проградуировать так, чтобы угол поворота определял силу тока в амперах или других единицах. Согласно закону Ома сила тока в приборе \(~I = \frac{U}{R}\) . Поэтому прибор можно проградуировать и так, чтобы определенному углу отклонения стрелки соответствовало напряжение U на зажимах прибора в вольтах или других единицах.
Таким образом, прибор может служить как амперметром, так и вольтметром. В последнем случае для увеличения сопротивления прибора нужно последовательно с катушкой включить резистор с большим сопротивлением.
Литература
- Буров Л.И., Стрельченя В.М. Физика от А до Я: учащимся, абитуриентам, репетиторам. – Мн.: Парадокс, 2000. – 560 с.
- Мякишев, Г.Я. Физика : Электродинамика. 10-11 кл. : учеб. для углубленного изучения физики / Г.Я. Мякишев, А.3. Синяков, В.А. Слободсков. – М.: Дрофа, 2005. – 476 с.
- Физика: Учеб. пособие для 10 кл. шк. и классов с углубл. изуч. физики/ О. Ф. Кабардин, В. А. Орлов, Э. Е. Эвенчик и др.; Под ред. А. А. Пинского. – 2-е изд. – М.: Просвещение, 1995. – 415 с.
Закон Ампера
Закон Ампера показывает, с какой силой действует магнитное поле на помещенный в него проводник. Эту силу также называют силой Ампера.
Ампер первым установил, что проводники, по которым течет электрический ток, взаимодействуют механически (притягиваются или отталкиваются).
Сила, действующая на проводник с током в магнитном поле, называется силой Ампера. Ее обозначения: \( \overrightarrow{F} \),\( \overrightarrow{F}_{A} \). Сила (\( \overrightarrow{F} \)), которая действует на прямолинейный проводник с током (I), всегда перпендикулярна проводнику и направлению вектора магнитной индукции (\( \overrightarrow{B} \)). В том случае, если прямолинейный проводник расположен параллельно вдоль направления линий магнитного поля, поле не действует.
Конкретное направление силы Ампера можно найти с помощью правила левой руки. Левую руку надо расположить так, чтобы линии поля входили в ладонь, четыре пальца были направлены по току, тогда отогнутый на 90 градусов большой палец укажет направление силы Ампера.
Еще Ампер установил, что два параллельных проводника с током притягиваются, если токи имеют одинаковые направления и отталкиваются, если токи текут в противоположные стороны. Это просто объяснить, если представить, что один проводник создает магнитное поле, а другой проводник в него помещен и это поле действует на него. Можно использовать правило левой руки и выяснить, как направлена сила.
Закон Ампера
Сила Ампера – сила, действующая на проводник тока, находящийся в магнитном поле и равная произведению силы тока в проводнике, модуля вектора индукции магнитного поля, длины проводника и синуса угла между вектором магнитного поля и направлением тока в проводнике.
Для прямолинейного проводника сила Ампера имеет вид:
\[ \large{\overrightarrow{F}_{A}} = I \cdot \overrightarrow{B} \cdot \overrightarrow{l} \cdot sin(α) \]
где: \( I \) — сила тока, которая течет в проводнике, \( \overrightarrow{B} \) — вектор индукции магнитного поля, в которое проводник помещен, \( \overrightarrow{l} \) — длина проводника в поле, направление задано направлением тока, \( \alpha \) — угол между векторами \( \overrightarrow{l\ }и\ \overrightarrow{B} \).
Этой формулой можно пользоваться:
- если длина проводника такая, что индукция во всех точках проводника может считаться одинаковой;
- если магнитное поле однородное (тогда длина проводника может быть любой, но при этом проводник целиком должен находиться в поле).
Если размер проводника произволен, а поле неоднородно, то формула выглядит следующим образом:
\[ \large{d\overrightarrow{F}_{A}} = I \cdot \overrightarrow{B} \cdot d\overrightarrow{l} \cdot sin(α) \]
Значение закона Ампера
На основании закона Ампера устанавливают единицы силы тока в системах СИ и СГСМ. Так как ампер равен силе постоянного тока, который при течении по двум параллельным бесконечно длинным прямолинейным проводникам бесконечно малого кругового сечения, находящихся на расстоянии 1м друг от друга в вакууме вызывает силу взаимодействия этих проводников равную \( 2\cdot {10}^{-7}Н \) на каждый метр длины.
Ток в один ампер – это такой ток, при котором два однородных параллельных проводника, расположенные в вакууме на расстоянии один метр друг от друга взаимодействуют с силой \( 2\cdot {10}^{-7} \) Ньютона.
Закон взаимодействия токов – два находящихся в вакууме параллельных проводника, диаметры которых много меньше расстояний между ними, взаимодействуют с силой прямо пропорциональной произведению токов в этих проводниках и обратно пропорциональной расстоянию между ними.
В вашем браузере отключен Javascript.Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!
Источник
Закон Ампера — Студопедия
Закон Ампера показывает, с какой силой действует магнитное поле на помещенный в него проводник. Эту силу также называют силой Ампера.
Формулировка закона: сила, действующая на проводник с током, помещенный в однородное магнитное поле, пропорциональна длине проводника, вектору магнитной индукции, силе тока и синусу угла между вектором магнитной индукции и проводником.
Если размер проводника произволен, а поле неоднородно, то формула выглядит следующим образом:
Направление силы Ампера определяется по правилу левой руки.
Правило левой руки: если расположить левую руку так, чтобы перпендикулярная составляющая вектора магнитной индукции входила в ладонь, а четыре пальца были вытянуты по направлению тока в проводнике, то отставленный на 90°большой палец, укажет направление силы Ампера.
МП движущего заряда. Действие МП на движущийся заряд. Сила Ампера, Лоренца.
Любой проводник с током создает в окружающем пространстве магнитное поле. При этом электрический же ток является упорядоченным движением электрических зарядов. Значит можно считать, что любой движущийся в вакууме или среде заряд порождает вокруг себя магнитное поле. В результате обобщения многочисленных опытных данных был установлен закон, который определяет поле В точечного заряда Q, движущегося с постоянной нерелятивистской скоростью v. Этот закон задается формулой
(1)
где r — радиус-вектор, который проведен от заряда Q к точке наблюдения М (рис. 1). Согласно (1), вектор В направлен перпендикулярно плоскости, в которой находятся векторы v и r: его направление совпадает с направлением поступательного движения правого винта при его вращении от v к r.
Рис.1
Модуль вектора магнитной индукции (1) находится по формуле
(2)
где α — угол между векторами v и r. Сопоставляя закон Био-Савара-Лапласа и (1), мы видим, что движущийся заряд по своим магнитным свойствам эквивалентен элементу тока: Idl = Qv
Действие МП на движущийся заряд.
Из опыта известно, что магнитное поле оказывает действие не только на проводники с током, но и на отдельные заряды, которые движутся в магнитном поле. Сила, которая действует на электрический заряд Q, движущийся в магнитном поле со скоростью v, называется силой Лоренца и задается выражением: F = Q где В — индукция магнитного поля, в котором заряд движется.
Чтобы определить направление силы Лоренца используем правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор В, а четыре вытянутых пальца направить вдоль вектора v (для Q>0 направления I и v совпадают, для Q На рис. 1 продемонстрирована взаимная ориентация векторов v, В (поле имеет направление на нас, на рисунке показано точками) и F для положительного заряда. Если заряд отрицательный, то сила действует в противоположном направлении.
Модуль силы Лоренца, как уже известно, равен F = QvB sin a; где α — угол между v и В.
МП не оказывает действия на покоящийся электрический заряд. Этим магнитное поле существенно отличается от электрического. Магнитное поле действует только на движущиеся в нем заряды.
Зная действие силы Лоренца на заряд можно найти модуль и направление вектора В, и формула для силы Лоренца может быть применена для нахождения вектора магнитной индукции В.
Поскольку сила Лоренца всегда перпендикулярна скорости движения заряженной частицы, то данная сила может менять только направление этой скорости, не изменяя при этом ее модуля. Значит, сила Лоренца работы не совершает.
В случае, если на движущийся электрический заряд вместе с магнитным полем с индукцией В действует еще и электрическое поле с напряженностью Е, то суммарная результирующая сила F, которая приложена приложенная к заряду, равна векторной сумме сил — силы, действующей со стороны электрического поля, и силы Лоренца: F = QE + Q[v,B]
Сила Ампера, Лоренца.
Сила, действующая на проводник с током в магнитном поле, называется силой Ампера.
Сила действия однородного магнитного поля на проводник с током прямо пропорциональна силе тока, длине проводника, модулю вектора индукции магнитного поля, синусу угла между вектором индукции магнитного поля и проводником:
F = B.I.l. sin α — закон Ампера.
Сила, действующая на заряженную движущуюся частицу в магнитном поле, называется силой Лоренца:
Явление электромагнитной индукции. Закон Фарадея. ЭДС индукции в движущихся проводниках. Самоиндукция.
Фарадей предположил, что если вокруг проводника с током существует магнитное поле, то естественно ожидать, что должно происходить и обратное явление – возникновение электрического тока под действием магнитного поля. И вот в 1831 г. Фарадей публикует статью, где сообщает об открытии нового явления – явления электромагнитной индукции.
Опыты Фарадея были чрезвычайно просты. Он присоединял гальванометр G к концам катушки L и приближал к ней магнит. Стрелка гальванометра отклонялась, фиксируя появление тока в цепи. Ток протекал, пока магнит двигался. При отдалении магнита от катушки гальванометр отмечал появление тока противоположного направления. Аналогичный результат отмечался, если магнит заменяли катушкой с током или замкнутым контуром с током.
Движущиеся магнит или проводник с током создают через катушку L переменное магнитное поле. В случае их неподвижности создаваемое ими поле постоянно. Если вблизи замкнутого контура поместить проводник с переменным током, то в замкнутом контуре также возникнет ток. На основе анализа опытных данных Фарадей установил, что ток в проводящих контурах появляется при изменении магнитного потока через площадь, ограниченную этим контуром.
Этот ток был назван индукционным. Открытие Фарадея было названо явлением электромагнитной индукции и легло в дальнейшем в основу работы электрических двигателей, генераторов, трансформаторов и подобных им приборов.
Итак, если магнитный поток через поверхность, ограниченную некоторым контуром, изменяется, то в контуре возникает электрический ток. Известно, что электрический ток в проводнике может возникнуть только под действием сторонних сил, т.е. при наличии э.д.с.. В случае индукционного тока э.д.с., соответствующая сторонним силам, называется электродвижущей силой электромагнитной индукции εi.
Э.д.с. электромагнитной индукции в контуре пропорциональна скорости изменения магнитного потока Фm сквозь поверхность, ограниченную этим контуром:
где к – коэффициент пропорциональности. Данная э.д.с. не зависит от того, чем вызвано изменение магнитного потока – либо перемещением контура в постоянном магнитном поле, либо изменением самого поля.
Итак, направление индукционного тока определяется правилом Ленца: При всяком изменении магнитного потока сквозь поверхность, ограниченную замкнутым проводящим контуром, в последнем возникает индукционный ток такого направления, что его магнитное поле противодействует изменению магнитного потока.
Обобщением закона Фарадея и правила Ленца является закон Фарадея — Ленца: Электродвижущая сила электромагнитной индукции в замкнутом проводящем контуре численно равна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, ограниченную контуром:
Это выражение представляет собой основной закон электромагнитной индукции.
При скорости изменения магнитного потока 1Вб/с в контуре индуцируется э.д.с. в 1 В.
Пусть контур, в котором индуцируется э.д.с., состоит не из одного, а из N витков, например, представляет собой соленоид. Соленоид – это цилиндрическая катушка с током, состоящая из большого числа витков. Так как витки в соленоиде соединяются последовательно, εi в данном случае будет равна сумме э.д.с., индуцируемых в каждом из витков по отдельности:
Величину Ψ = ΣΦm называют потокосцеплением или полным магнитным потоком. Если поток, пронизывающий каждый из витков, одинаков (т.е. Ψ = NΦm), то в этом случае
Немецкий физик Г. Гельмгольц доказал, что закон Фарадея-Ленца является следствием закона сохранения энергии. Пусть замкнутый проводящий контур находится в неоднородном магнитном поле. Если в контуре течет ток I, то под действием сил Ампера незакрепленный контур придет в движение. Элементарная работа dA, совершаемая при перемещении контура за время dt, будет составлять
dA = IdФm,
где dФm – изменение магнитного потока сквозь площадь контура за время dt. Работа тока за время dt по преодолению электрического сопротивления R цепи равна I2Rdt. Полная работа источника тока за это время равна εIdt. По закону сохранения энергии работа источника тока затрачивается на две названные работы, т.е.
εIdt = IdФm + I2Rdt.
Разделив обе части равенства на Idt, получим
Следовательно, при изменении магнитного потока, сцепленного с контуром, в последнем возникает электродвижущая сила индукции
Электромагнитные колебания. Колебательной контур.
Электромагнитные колебания — это колебания таких величин, индуктивность, как сопротивление, ЭДС, заряд, сила тока.
Колебательный контур — это электрическая цепь, которая состоит из последовательно соединенных конденсатора, катушки и резистора. Изменение электрического заряда на обкладке кон- денсатора с течением времени описывается дифференциальным уравнением:
Электромагнитные волны и их свойства.
В колебательном контуре происходит процесс перехода электрической энергии конденсатора в энергию магнитного поля катушки и наоборот. Если в определенные моменты времени компенсировать потери энергии в контуре на сопротивление за счет внешнего источника, то получим незатухающие электрические колебания, которые через антенну могут быть излучены в окружающее пространство.
Процесс распространения электромагнитных колебаний, периодических изменений напряженностей электрического и магнитных полей, в окружающем пространстве называется электромагнитной волной.
Электромагнитные волны охватывают большой спектр длин волн от 105 до 10 м и по частотам от 104 до 1024 Гц. По названию электромагнитные волны разделяются на радиоволны, инфракрасное, видимое и ультрафиолетовое излучения, рентгеновские лучи и -излучение. В зависимости от длины волны или частоты свойства электромагнитных волн меняются, что является убедительным доказательством диалектико-материалистического закона перехода количества в новое качество.
Электромагнитное поле материальное и обладает энергией, количеством движения, массой, перемещается в пространстве: в вакууме со скоростью С, а в среде со скоростью: V= , где = 8,85 ;
Объемная плотность энергии электромагнитного поля . Практическое использование электромагнитных явлений весьма широкое. Это — системы и средства связи, радиовещания, телевидения, электронно-вычислительная техника, системы управления различного назначения, измерительные и медицинские приборы, бытовая электро- и радиоаппаратура и другие, т.е. то, без чего невозможно представить себе современное общество.
Как действует на здоровье людей мощное электромагнитное излучение, точных научных данных почти нет, есть только неподтвержденные гипотезы и, в общем-то, небезосновательные опасение, что все неестественное действует губительно. Доказано, что ультрафиолетовое, рентгеновское и -излучение большой интенсивности во многих случаях наносят реальный вред всему живому.
Геометрическая оптика. Законы ГО.
Геометрическая (лучевая) оптика использует идеализированное представление о световом луче – бесконечно тонком пучке света, распространяющемся прямолинейно в однородной изотропной среде, а также представления о точечном источнике излучения, равномерно светящем во все стороны. λ – длина световой волны, – характерный размер
предмета, находящегося на пути волны. Геометрическая оптика является предельным случаем волновой оптики и ее принципы выполняются при соблюдении условия:
h/D << 1 т. е. геометрическая оптика, строго говоря, применима лишь к бесконечно коротким волнам.
В основе геометрической оптики лежит так же принцип независимости световых лучей: лучи при перемещении не возмущают друг друга. Поэтому перемещения лучей не мешают каждому из них распространяться независимо друг от друга.
Для многих практических задач оптики можно не учитывать волновые свойства света и считать распространение света прямолинейным. При этом картина сводится к рассмотрению геометрии хода световых лучей.
Основные законы геометрической оптики.
Перечислим основные законы оптики, следующие из опытных данных:
1) Прямолинейное распространение.
2) Закон независимости световых лучей, то есть два луча, пересекаясь, никак не мешают друг другу. Этот закон лучше согласуется с волновой теорией, так как частицы в принципе могли бы сталкиваться друг с другом.
3) Закон отражения. луч падающий, луч отраженный и перпендикуляр к поверхности раздела, восстановленный в точке падения луча, лежат в одной плоскости, называемой плоскостью падения; угол падения равен углу
Отражения.
4) Закон преломления света.
Закон преломления: луч падающий, луч преломленный и перпендикуляр к поверхности раздела, восстановленный из точки падения луча, лежат в одной плоскости – плоскости падения. Отношение синуса угла падения к синусу угла отражения равно отношению скоростей света в обеих средах.
Sin i1/ sin i2 = n2/n1 = n21
где – относительный показатель преломления второй среды относительно первой среды. n21
Если вещество 1 – пустота, вакуум, то n12 → n2 – абсолютный показатель преломления вещества 2. Можно легко показать, что n12 = n2 /n1 , в этом равенстве слева относительный показатель преломления двух веществ (например, 1 – воздух, 2 – стекло), а справа – отношение их абсолютных показателей преломления.
5) Закон обратимости света (его можно вывести из закона 4). Если направить свет в обратном направлении, он пройдёт по тому же пути.
Из закона 4) следует, что если n2 > n1 , то Sin i1 > Sin i2 . Пусть теперь у нас n2 < n1 , то есть свет из стекла, например, выходит в воздух, и мы постепенно увеличиваем угол i1.
Тогда можно понять, что при достижении некоторого значения этого угла (i1)пр окажется, что угол i2 окажется равным π /2 (луч 5). Тогда Sin i2 = 1 и n1 Sin (i1)пр = n2 . Итак Sin
(i1)пр = n2 / n1 .
Понимание основ силового закона Ампера
Закон о силе Ампера был открыт Андре-Мари Ампер (который лег в основу определения единицы электричества, Ампер). Не вдаваясь в утомительные математические уравнения, мы поймем, что такое закон, как определен Ампера и как этот закон, нарушающий пути, изменил физику в то время.
Закон силы Ампера гласит, что сила притяжения или отталкивания между двумя проводами, несущими токи, пропорциональна их длине и интенсивности проходящего через них тока.Если токи текут в одном направлении, происходит отталкивание. Если токи текут в противоположных направлениях, происходит притяжение. Закон основан на этих двух основных понятиях электростатики:
- Закон Био-Савара гласит, что каждый токоведущий провод создает вокруг него магнитное поле, как показано в Рисунок 1 .
- Сила Лоренца относится к силе, которую каждое магнитное поле оказывает на любой электрический заряд, движущийся в его поле.
Рисунок 1. Правило большого пальца для нахождения магнитного поля вокруг проводника с током
На основе закона Био-Савара и силы Лоренца существует связь между магнитным полем и электрическим зарядом / током.Именно эти отношения Ампер стремился установить с помощью экспериментов. Основным из этих экспериментов было изучение силы между двумя токонесущими проводами, как показано в . Рисунок 2 . Этот эксперимент и последующие теории для объяснения его результатов заложили основу электромагнетизма как поля в физике.
Рисунок 2: Магнитное поле между проводниками с током
Ампер, единица СИ электрического тока, определяется как сила электромагнита на единицу длины между двумя проводами бесконечной длины, имеющими пренебрежимо малый диаметр и расположенными на расстоянии 1 м друг от друга в вакууме.Основное предположение здесь состоит в том, что провода находятся в свободном пространстве, то есть нет никакого присутствия, которое может быть намагничено. Если какое-либо вещество, присутствующее в окружающей среде, намагничивается, оно будет оказывать свою собственную магнитную силу, которая должна быть принята во внимание, поэтому необходимо сделать это предположение.
Используя закон силы Ампера, магнитное поле вокруг бесконечности w
.Закон об амперах в дифференциальной форме
Что такое закон Ампера?
В соответствии с законом Ампера «Интеграл от линии магнитного поля B вдоль замкнутого пути, вызванного током, равен произведению проницаемости свободного пространства и тока, приложенного замкнутым путем».
Математически это выражается как:
Где
μ 0 = проницаемость свободного пространства
i = ток, протекающий через проводник.
Доказательство:
Рассмотрим прямой проводник, по которому течет ток i. Ток создает магнитное поле B вокруг проводника. Линии магнитного поля имеют форму концентрических окружностей.
Ампер показал, что плотность потока B в любой точке вблизи проводника прямо пропорциональна току i и обратно пропорциональна расстоянию ‘r’ от проводника, поэтому:
Где длина пути, называемая окружность круга?
Разделите круг, представляющий линию магнитного поля, на большое количество мелких элементов, каждый из которых имеет длину dl.Величина B.dl рассчитывается для каждого элемента следующим образом:
B.dl = Bdlcos = Bdlcos0 = Bdl
Для полного круга:
Интегральная форма кругового закона ампера
Дифференциальная форма закона ампера
Поскольку интегральная форма закона Ампера равна:
Вышеупомянутое соотношение известно как дифференциальная форма кругового закона Ампера.
Применение кругового закона Ампера
Рассмотрим соленоид, имеющий n витков на единицу длины.Когда ток проходит через соленоид, магнитное поле создается внутри соленоида, который направлен вдоль оси соленоида. Магнитное поле в пространстве снаружи настолько слабо, что считается нулевым.
Чтобы рассчитать значение магнитного поля B внутри соленоида по закону Ампера, мы рассматриваем abcda с замкнутым контуром в форме прямоугольника. Этот замкнутый путь известен как путь Amperian, как видно на рисунке.
Пусть этот путь будет разделен на четыре элемента длины:
ab = L1
bc = L2
cd = L3
da = L4
Таким образом, что сумма точек Произведение магнитного поля и длина элемента составляет:
∑ B.ΔL = BL1 Cos θ1 + BL2 Cos θ2 + BL3 Cos θ3 + BL4 Cos θ4 ………. (1)
Поскольку L1 параллельна линиям магнитного поля внутри соленоида, следовательно, θ = 0 °
BL1 Cos θ1 = BL1
L2 и L4 перпендикулярны магнитному полю, т.е. θ2 = 90 ° и θ4 = 90 °
BL2 Cos θ2 = 0
BL4 Cos θ4 = 0
и линии L3 вне соленоида, где поле слабее, т.е. B = 0
oR BL3 Cos θ3 = 0
Поместите все эти значения в уравнение (1), получим:
∑ B.ΔL = BL1 + 0 + 0 + 0
∑ B.ΔL = BL1 ………… .. (2)
В соответствии с законом Ампера
∑ B.ΔL = μ0I ……… (3)
Если N — число витков катушки, то
Ток = NI
А если «n» — это число витков на единицу длины, то
n = N / L1
N = nL1
Ток = n L1I
∑ B.ΔL = μ0n L1I ………… (4)
Сравнивая уравнения (2) и (4), получаем
μ0n L1I = BL1
B = μ0nI
Похожие темы на нашем сайте находятся:
Приложенная сила Роном Куртусом
SfC Главная> Физика> Сила>
Рон Куртус (пересмотрен 19 января 2019)
Обычно, когда вы думаете о силе, вы рассматриваете приложенную силу , которая представляет собой взаимодействие одного объекта с другим, которое вызывает ускорение второго объекта, изменение скорости или изменение направления.
Сила может быть толкать, тянуть или тянуть. Результирующее направление объекта зависит от относительного направления силы на объект.
Уравнение силы показывает связь между силой, массой и ускорением. Объект будет ускоряться, пока прикладывается сила.
Вопросы, которые могут у вас возникнуть:
- Какие виды приложенных сил?
- Каков результат направления силы?
- Что такое уравнение силы?
Этот урок ответит на эти вопросы. Полезный инструмент: Преобразование единиц
Виды прилагаемых сил
Сила может быть применена к другому объекту прямым нажатием, вытягиванием или перетаскиванием.Столкновение — это форма толкающего приложения. Сила на расстоянии — это форма силы тяги.
Push
Наиболее распространенная форма силы — это толчок через физический контакт. Простые примеры включают в себя:
- Вы можете нажать на дверь, чтобы открыть ее
- Вы можете поднять объект с пола
- Вы можете бросить мяч
- Ветер может толкнуть тебя
- Машина может что-то толкать
Толкающая сила обычно является результатом какого-то сложного процесса, такого как химическая реакция.
Столкновение
Когда один объект сталкивается с другим объектом, скорость обоих объектов изменится. В идеально упругом столкновении. изменение скорости происходит мгновенно. Несмотря на то, что применяется «сила», ускорение отсутствует. Это в основном передача импульса и энергии.
Большинство столкновений неэластичны, это означает, что некоторая энергия теряется и между передачей импульса существует задержка во времени. В таком случае сила называется импульсной силой .Поскольку существует временная задержка, уравнение силы может выполняться.
Pull
Вы можете применить силу, непосредственно потянув за объект, например, потянув за веревку, чтобы переместить коробку. Особая форма вытягивания — сила на расстоянии.
Силы на расстоянии
Гравитация, магнетизм и статическое электричество — это некоторые из сил, действующих на расстоянии без физического контакта, необходимого для перемещения объектов. Они обычно тянут на объекте.
В то время как много сил создано, эти силы происходят в природе.
(См. Таинственные силы на расстоянии для получения дополнительной информации.)
Перетаскивание
Если два объекта или материала находятся в контакте, и оба могут двигаться, движение одного объекта может вызвать движение другого из-за трения между поверхностями. Этот эффект перетаскивания отличается от силы сопротивления трения, когда один неподвижный объект или материал пассивно ограничивает движение другого объекта.
Результаты направления силы
Результаты направления, в котором сила применяется к объекту, зависят от движения объекта.
Стационарный объект
Сила, приложенная к неподвижному объекту, будет перемещать этот объект в направлении силы, если только его не удерживает достаточно большая сила сопротивления.
Движущийся объект
Сила, приложенная к движущемуся объекту в том же направлении движения , что и , будет ускорять или увеличивать скорость этого объекта. Это видно при толкании на вагон.
Сила, действующая на движущийся объект в противоположном направлении движения , уменьшит скорость этого объекта.Например, вы можете замедлить ходьбу при сильном ветре.
под углом
Сила, приложенная т под углом к движению объекта, может не только изменить его скорость, но и изменить его направление. Это видно по изогнутой траектории движения планет из-за гравитационного притяжения от Солнца.
Уравнение силы
Ускорение, вызванное приложенной силой:
a = F / m
Это соотношение чаще всего записывается как уравнение силы:
F = ma
где:
- F — сила, необходимая для преодоления инерции объекта
- м — масса объекта
- a — ускорение, вызванное силой
Обратите внимание, , что объект будет ускоряться, пока прикладывается сила.Как только сила прекратится, объект будет свободно двигаться с постоянной скоростью, если он не будет удержан сопротивляющей силой.
Резюме
Приложенная сила — это взаимодействие одного объекта с другим, которое заставляет второй объект ускоряться или изменять скорость или направление.
Сила может быть толкать, тянуть или тянуть. Результирующее направление объекта зависит от относительного направления силы на объект.
Уравнение силы F = ma .Объект будет ускоряться, пока прикладывается сила.
Будь силой в своем сообществе
Ресурсы и ссылки
Полномочия Рона Куртуса
Сайты
Типы Сил — Класс Физики
Силы — Физическая Гипербука
Force — Википедия
В поисках ускорения — Класс физики
Физические ресурсы
Книги
Лучшие книги по физике силы
Вопросы и комментарии
Есть ли у вас какие-либо вопросы, комментарии или мнения по этому вопросу? Если это так, отправьте электронное письмо со своим отзывом.Я постараюсь вернуться к вам как можно скорее.
Поделиться этой страницей
Нажмите на кнопку, чтобы добавить в закладки или поделиться этой страницей через Twitter, Facebook, электронную почту или другие услуги:
Студенты и исследователи
Адрес веб-страницы:
www.school-for-champions.com/science/
force_applied.htm
Пожалуйста, включите его в качестве ссылки на вашем сайте или в качестве ссылки в вашем отчете, документе или диссертации.
Copyright © Ограничения
Где ты сейчас?
Школа чемпионов
Темы физики
Приложенная сила
,
Преобразование миллиампер в ампер
Приведите приведенные ниже значения для перевода миллиампера [мА] в ампер [А] или наоборот .
Миллиампер
Определение: Миллиампер (символ: мА) — это кратная базовая единица СИ электрического тока, ампера. Он определяется как одна тысячная ампера.
История / происхождение: Миллиампер берет свое начало в амперах. Префикс «милли» указывает одну тысячную базового блока, которому он предшествует, в данном случае — ампер.Амперу может предшествовать любой из метрических префиксов, чтобы сообщать единицы в желаемой величине.
Потребляемая мощность: В качестве множителя единицы СИ используется миллиампер во всем мире, часто для небольших измерений электрического тока. Существует много устройств, которые измеряют единицы измерения в миллиамперах, таких как гальванометры и амперметры, хотя эти устройства измеряют не только миллиамперы.
Ампер
Определение: Ампер (символ: A), часто называемый просто ампер, является базовой единицей электрического тока в Международной системе единиц (СИ).Ампер определяется формально на основе фиксированного значения для элементарного заряда, e, равного 1,602176634 × 10 -19 , если выражено в единицах C, что равно A · s. Второе определяется на основе частоты цезия, ΔνCs. Это определение действует с 2019 года и является существенным изменением по сравнению с предыдущим определением ампер.
История / происхождение: Ампер назван в честь Андре-Мари Ампер, французского математика и физика. В системе единиц сантиметр-грамм-секунда, ампера была определена как одна десятая единицы электрического тока времени, который теперь известен как abampere.Размер блока был выбран таким, чтобы он удобно помещался в системе единиц метр-килограмм-секунда. До 2019 года ампер формально определяли как постоянный ток, при котором сила 2 × 10 -7 ньютонов на метр длины будет создаваться между двумя проводниками, где проводники параллельны, имеют бесконечную длину и помещаются в вакуум и имеют незначительные круглые сечения. В единицах измерения СИ, кулон, один ампер определяется как один кулон заряда, проходящий через данную точку за одну секунду.Это определение было трудно реализовать с высокой точностью, и поэтому оно было изменено, чтобы стать более интуитивным и легким для реализации. Ранее, поскольку определение включало ссылку на силу, необходимо определить СИ кг, метр и секунду, прежде чем можно было определить ампер. Теперь это зависит только от определения второго. Один потенциальный недостаток переопределения состоит в том, что проницаемость вакуума, проницаемость вакуума и полное сопротивление свободного пространства были точными до переопределения, но теперь будут подвержены экспериментальной ошибке.
Потребляемый ток: В качестве базовой единицы электрического тока СИ ампера используется во всем мире практически для всех применений, связанных с электрическим током. Ампер может быть выражен в форме ватт / вольт или Вт / В, так что ток равен 1 Вт / В, поскольку мощность определяется как произведение тока и напряжения.
Миллиампер в Ампер. Таблица перевода
Миллиампер [мА] | Ампер [A] |
---|---|
0,01 мА | 1.0E-5 A |
0.1 мА | 0,0001 A |
1 мА | 0,001 A |
2 мА | 0,002 A |
3 мА | 0,003 A |
5 мА | 0,005 A |
10 мА | 0,01 A |
20 мА | 0,02 A |
50 мА | 0,05 A |
100 мА | 0,1 A |
1000 мА | 1 A |
Как перевести миллиамперы в амперы
1 мА = 0.001 A
1 A = 1000 мА
Пример: преобразование 15 мА в A:
15 мА = 15 × 0,001 A = 0,015 A