Закрыть

Где у диода анод и катод: Диод | Виды, характеристики, параметры диодов

Содержание

Диод | Виды, характеристики, параметры диодов

Что такое диод

Полупроводниковый диод или просто диод представляет из себя радиоэлемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. По аналогии с гидравликой диод можно сравнить с обратным клапаном: устройством, которое пропускает жидкость только в одном направлении.

обратный клапан

 

Диод – это радиоэлемент с двумя выводами. Некоторые  диоды выглядят почти также как и резисторы:

А некоторые выглядят чуточку по-другому:

Есть также и SMD исполнение диодов:

Выводы диода называются – анод и катод. Некоторые по ошибке называют их “плюс” и “минус”. Это неверно. Так говорить нельзя.

На схемах диод обозначается так

Он может пропускать электрический ток только от анода к катоду.

Из чего состоит диод

В нашем мире встречаются вещества, которые отлично проводят электрический ток.

Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток – фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся полупроводники. Это в основном германий и кремний.

После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.

Теперь если эти два полупроводника P и N -типа приварить вместе, на их стыке образуется PN-переход. Это и есть строение диода. То есть диод состоит из PN-перехода.

строение диода

Полупроводник P-типа в диоде является анодом, а полупроводник N-типа – катодом.

Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.

диод Д226

 

Вот это и есть тот самый PN-переход

PN-переход диода

Как определить анод и катод диода

1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса

2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод.   Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.

Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).

Диод в цепи постоянного тока

Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.

прямое включение диода

Так как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.

диод в прямом включении

 

Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.

обратное включение диода

 

Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.

обратное включение диода

 

Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.

Диод в цепи переменного тока

Кто забыл, что такое переменный ток, читаем эту статью. Итак, для того, чтобы рассмотреть работу диода в цепи переменного тока, давайте составим схему. Здесь мы видим генератор частоты G, диод и два клеммника Х1 и Х2, с которых мы будем снимать сигнал с помощью осциллографа.

Мой генератор частоты выглядит вот так.

генератор частот

Осциллограмму будем снимать с помощью цифрового осциллографа

 

Генератор выдает переменное синусоидальное напряжение.

синусоидальный сигнал

 

Что же будет после диода? Цепляемся к клеммам X1 и X2 и видим вот такую осциллограмму.

переменное напряжение после диода

 

Диод вырезал нижнюю часть синусоиды, оставив только верхнюю часть.

А что будет, если мы поменяем выводы диода? Схема примет такой вид.

переменый ток после диода

 

Что же получим на клеммах Х1 и Х2 ? Смотрим на осциллограмму.

переменный ток после диода

Ничего себе! Диод срезал только положительную часть синусоиды!

Характеристики диода

Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск “даташит КД411АМ”

Для объяснения параметров диода, нам также потребуется его ВАХ

1) Обратное максимальное напряжение Uобр – это  такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр – сила тока  при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести  к полному тепловому разрушению диода.  В нашем исследуемом диоде это напряжение равняется 700 Вольт.

2) Максимальный прямой ток Iпр – это  максимальный ток, который может течь через диод в прямом направлении.  В нашем случае это 2 Ампера.

3) Максимальная частота Fd , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.

Виды диодов

Стабилитроны

Стабилитроны  представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение.  Но  чтобы стабилитрон выполнял стабилизацию, требуется одно  условие.  Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся.  В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь – прямое направление, а вот в стабилитроне другая часть ветки ВАХ – обратное направление.

Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры – Закон Джоуля-Ленца. Главный параметр стабилитрона – это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон – это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.

Выглядят стабилитроны точно также, как и обычные диоды:

На схемах обозначаются вот так:

Светодиоды

Светодиоды – особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет – это свет в инфракрасном или ультрафиолетовом диапазоне.  Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.

Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА.  Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять  номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.

Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.

Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.

На схемах светодиоды обозначаются так:

Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления

Ну и осветительные светодиоды – это те, которые используются в ваших китайских фонариках, а также в LED-лампах

Светодиод – это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:

Как проверить светодиод  можно узнать из этой статьи.

Тиристоры

Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода – управляющего электрода (УЭ). Основное применение тиристоров – это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры  примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр – Iос,ср

. – среднее значение тока, которое должно протекать через тиристор  в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор –  (Uу), которое подается на управляющий электрод  и при котором тиристор полностью открывается.

 

а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с  большой силой тока:

На схемах  триодные тиристоры  выглядят вот таким образом:

Существуют также  разновидности тиристоров – динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы – это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.

Диодный мост и диодные сборки

Производители также  несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки.  Диодные мосты  – одна из разновидностей диодных сборок.

 На схемах диодный мост обозначается вот так:

Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки  и тд. Для того, чтобы их всех описать, нам не хватит и вечности.

Очень интересное видео про диод

Как определить анод и катод у диодов 1Вт и более

В фонариках и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.

Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.

Как узнать полярность SMD?

SMD активно применяются практических в любой технике:

  • Лампочки;
  • светодиодные ленты;
  • фонарики;
  • индикация чего-либо.

Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.

Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки – это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения.

Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты.

Маркировка выводов SMD 5630 аналогична – срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду.

Как определить плюс на маленьком SMD?

В отдельных случаях (SMD 1206) можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода.

Выступ или сторона, на которую указывает треугольник, является направлением протекания тока, а вывод расположенный там – катодом.

Определяем полярность мультиметром

При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.

Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка.

Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений?

Например, на этой плате указаны полюса каждого из светодиодов и их наименование – 5630.

Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра.

Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот. Когда на экране появятся хоть какие-то значения, или диод загорится – значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ.

В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность.

Другие способы определения полярности

Самый простой вариант для определения где плюс у светодиода – это батарейки с материнской платы, типоразмера CR2032.

Её напряжение порядка 3-х вольт, чего вполне хватит чтобы зажечь диод. Подключите светодиод, в зависимости от его свечения вы определите расположение его выводов. Таким образом можно проверить любой диод. Однако это не очень удобно.

Можно собрать простейший пробник для светодиодов, и не только определять их полярность, но и рабочее напряжение.

Схема самодельного пробника

При правильном подключении светодиода через него будет протекать ток порядка 5-6 миллиампер, что безопасно для любого светодиода. Вольтметр покажет падение напряжения на светодиоде при таком токе. Если полярность светодиода и пробника совпадёт – он засветится, и вы определите цоколевку.

Знать рабочее напряжение нужно, так как оно отличается в зависимости от типа светодиода и его цвета (красный берет на себя менее 2-х вольт).

И последний способ изображен на фото ниже.

Включите на тестере режим Hfe, вставьте светодиод в разъём для проверки транзисторов, в область помеченной как PNP, в отверстия E и C, длинной ножкой в E. Так можно проверить работоспособность светодиода и его распиновку.

Если светодиод выполнен в другом виде, например, smd 5050, вы можете воспользоваться этим способом просто – вставьте в E и C обычные швейные иглы, и прикоснитесь к ним контактами светодиода.

Любому любителю электроники, да и самоделок вообще нужно знать, как определить полярность светодиода и способы их проверки.

Будьте внимательны при выборе элементов вашей схемы. В лучшем случае они просто быстрее выйдут из строя, а в худшем – мгновенно вспыхнут синем пламенем.

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

Диоды. For dummies / Хабр

Введение


Диод — двухэлектродный электронный прибор, обладает различной проводимостью в зависимости от направления электрического тока. Электрод диода, подключённый к положительному полюсу источника тока, когда диод открыт (то есть имеет маленькое сопротивление), называют анодом, подключённый к отрицательному полюсу — катодом. (wikipedia)

Все диоды можно разделить на две большие группы: полупроводниковые и неполупроводниковые. Здесь я буду рассматривать только первую из них.

В основе полупроводникового диода лежит такая известная штука, как p-n переход. Думаю, что большинству читателей о нем рассказывали на уроках физики в школе, а кому-то более подробно еще и в институте. Однако, на всякий случай приведу общий принцип его работы.

Два слова о зонной теории проводимости твердых тел


Прежде, чем начать разговор о p-n переходе, стоит обговорить некоторые теоретические моменты.

Считается, что электроны в атоме расположены на различном расстоянии от ядра. Соответственно, чем ближе электрон к ядру, тем сильнее связь между ними и тем большую энергию надо приложить, чтобы отправить его «в свободное плаванье». Говорят, что электроны расположены на различных энергетических уровнях. Заполнение этих уровней электронами происходит снизу вверх и на каждом из них может находиться не больше строго определенного числа электронов (атом Бора). Таким образом, если уровень заполнен, то новый электрон не может на него попасть, пока для него не освободится место. Чтобы электрон мог перейти на уровень выше, ему нужно сообщить дополнительную энергию. А если электрон «падает» вниз, то излишек энергии освобождается в виде излучения. Электроны могут занимать в атоме только сторого определенные орбиты с определенными энергиями. Орбиты эти называются разрешенными. Соответственно, запрещенными называют те орбиты (зоны), в которых электрон находиться не может. Подробнее об этом можно почитать по ссылке на атом Бора выше, здесь же примем это как аксиому.

Самый верхний энергетический уровень называется валентным. У большинства веществ он заполнен только частично, поэтому электроны внешних подуровней других атомов всегда могут найти на нем себе место. И они действительно хаотично мигрируют от атома к атому, осуществляя таким образом связь между ними. Нижний слой, в котором могут перемещаться свободные электроны, называют зоной проводимости. Если валентная зона частично заполнена и электроны в ней могут перемещаться от атома к атому, то она совпадает с зоной проводимости. Такая картина наблюдается у проводников. У полупроводников валентная зона заполнена целиком, но разница энергий между валентным и проводящим уровнями у них мала. Поэтому электроны могут преодолевать ее просто за счет теплового движения. А у изоляторов эта разница велика, и чтобы получить пробой, нужно приложить значительную энергию.

Такова общая картина энергетического строения атома. Можно переходить непосредственно к p-n переходу.

p-n переход


Начнем с того, что полупроводники бывают n-типа и p-типа. Первые получают легированием четырехвалентного полупроводника (чаще всего кремния) пятивалентным полупроводником (например, мышьяком). Эту пятивалентную примесь называют донором. Ее атомы образуют четыре химических связи с атомами кремния, а пятый валентный электрон остается свободным и может выйти из валентной зоны в зону проводимости, если, например, незначительно повысить температуру вещества. Таким образом, в проводнике n-типа возникает избыток электронов.

Полупроводники p-типа тоже получаются путем легирования кремния, но уже трехвалентной примесью (например, бором). Эта примесь носит название акцептора. Он может образовывать только три из четырех возможных химических связей. А оставшуюся незаполненной валентную связь принято называть дыркой. Т.е. дырка — это не реальная частица, а абстракция, принятая для более удобного описания процессов, происходящих в полупроводнике. Ее заряд полагают положительным и равным заряду электрона. Итак, в полупроводнике p-типа у нас получается избыток положительных зарядов.

В полупроводниках обоих типов кроме основных носителей заряда (электроны для n-типа, дырки для p-типа) в наибольшом количестве присутствуют неосновные носители заряда: дырки для n-области и электроны для p-области.

Если расположить рядом p- и n-полупроводники, то на границе между ними возникнет диффузный ток. Произойдет это потому, что с одной стороны у нас чересчур много отрицательных зарядов (электронов), а с другой — положительных (дырок). Соответственно, электроны будут перетекать в приграничную область p-полупроводника. А поскольку дырка — место отсутствия электрона, то возникнет ощущение, будто дырки перемещаются в противоположную сторону — к границе n-полупроводника. Попадая в p- и n-области, электроны и дырки рекомбинируют, что приводит к снижению количества подвижных носителей заряда. На этом фоне становятся ясно видны неподвижные положительно и отрицательно заряженные ионы на границах полупроводников (от которых «ушли» рекомбинировавшие дырки и электроны). В итоге получим две узкие заряженные области на границе веществ. Это и есть p-n переход, который также называют обедненным слоем из-за малой концентрации в нем подвижных носителей заряда. Естественно, что здесь возникнет электрическое поле, направление которого препятствует дальнейшей диффузии электронов и дырок. Возникает потенциальный барьер, преодолеть который основные носители заряда смогут только обладая достаточной для этого энергией. А вот неосновным носителям возникшее электрическое поле наоборот помогает. Соответственно, через переход потечет ток, в противоположном диффузному направлении. Этот ток называют дрейфовым. При отсутствии внешнего воздействия диффузный и дрейфовый ток уравновешивают друг друга и перетекание зарядов прекращается.

Ширина обедненной области и контактная разность потенциалов границ перехода (потенциальный барьер) являются важными характеристиками p-n перехода.

Если приложить внешнее напряжение так, чтобы его электрическое поле «поддерживало» диффузный ток, то произойдет снижение потенциального барьера и сужение обедненной области. Соответственно, ток будет легче течь через переход. Такое подключение внешнего напряжения называют прямым смещением.

Но можно подключиться и наоборот, чтобы внешнее электрическое поле поддерживало дрейфовый ток. Однако, в этом случае ширина обедненной зоны увеличится, а потенциальный барьер возрастет. Переход «закроется». Такое подключение называют обратным смещением. Если величина приложенного напряжения превысит некоторое предельное значение, то произойдет пробой перехода, и через него потечет ток (электроны разгонятся до такой степени, что смогут проскочить через потенциальный барьер). Эта граничная величина называется напряжением пробоя.

Все, конец теории, пора перейти к ее практическому применению.

Диоды, наконец-то



Диод, по сути, одиночный p-n переход. Если он подключен с прямым смещением, то ток через него течет, а если с обратным — не течет (на самом деле, небольшой дрейфовый ток все равно остается, но этим можно пренебречь). Этот принцип показан в условном обозначении диода: если ток направлен по стрелке треугольника, то ему ничего не мешает, а если наоборот — то он «натыкается» на вертикальную линию. Эта вертикальная линия на диодах-радиоэлементах обозначается широкой полосой у края.

Помню, когда я была глупой студенткой и впервые пришла работать в цех набивки печатных плат, то сначала ставила диоды как бог на душу положит. Только потом я узнала, что правильное расположение этого элемента играет весьма и весьма значительную роль. Но это так, лирическое отступление.

Диоды имеют нелинейную вольт-амперную характеристику.

Области применения диодов


  1. Выпрямление пременного тока. Основано оно именно на свойстве диода «запираться» при обратном смещении. Диод как бы «срезает» отрицательные полуволны.
  2. В качестве переменной емкости. Эти диоды называются варикапами.

    Здесь используется зависимость барьерной емкости перехода от обратного смещения. Чем больше его значение, тем шире обедненная область p-n перехода. Ее можно представить себе как плоский конденсатор, обкладками которого явялются границы области, а сама она выступает в качестве диэлектрика. Соответственно, чем толще «слой диэлеткрика», тем ниже барьерная емкость. Следовательно, изменяя приложенное напряжение можно электрически менять емкость варикапа.
  3. Для стабилизации напряжения. Принцип работы таких диодов заключается в том, что даже при значительном увеличении внешнего падения напряжения, падение напряжения на диоде увеличится незначительно. Это справедливо и для прямого, и для обратного смещений. Однако напряжение пробоя при обратном смещении намного выше, чем прямое напряжение диода. Таким образом, если нужно поддерживать стабильным большое напряжение, то диод лучше включать обратно. А чтобы он сохранял работоспособность, несмотря на пробой, нужно использовать диод особого типа — стабилитрон.

    В прямосмещенном режиме он будет работать подобно обычному выпрямляющему диоду. А вот в обратносмещенном не будет проводить ток до тех пор, пока приложенное напряжение не достигнет так называемого напряжения стабилитрона, при котором диод сможет проводить значительный ток, а напряжение будет ограничено уровнем напряжения стабилитрона.
  4. В качестве «ключа» (коммутирующего устройства). Такие диоды должны уметь очень быстро открываться и закрываться в зависимости от приложенного напряжения.
  5. В качестве детекторов излучения (фотодиоды).

    Кванты света передают атомам в n-области дополнительную энергию, что приводит к появлению большого числа новых пар электрон-дырка. Когда они доходят до p-n перехода, то дырки уходят в p-область, а электроны скапливаются у края перехода. Таким образом, происходит возрастание дрейфового тока, а между p- и n-областями возникает разность потенциалов, называемая фотоЭДС. Величина ее тем больше, чем больше световой поток.
  6. Для создания оптического излучения (светодиоды).

    При рекомбинации дырок и электронов (прямое смещение) происходит переход последних на более низкий энергетический уровень. «Излишек» энергии выделяется в виде кванта энергии. И в зависимости от химического состава и свойств того или иного полупроводника, он излучает волны того или иного диапазона. От состава же зависит и эффективность излучения.

Немного экзотики


Не стоит забывать о том, что p-n переход — одно из явлений микромира, где правит балом квантовая физика и становятся возможными странные вещи. Например, туннельный эффект — когда частица может пройти через потенциальный барьер, обладая меньшей энергией. Это становится возможным благодаря неопределенности соотношения между импульсом и координатами частицы (привет, Гейзенберг!). Этот эффект лежит в основе туннельных диодов.

Чтобы обеспечить возможность «просачивания» зарядов, их делают из вырожденных полупроводников (содержащих высокую концентрацию примесей). В результате получают резкий p-n переход с тонким запирающим слоем. Такие диоды маломощные и низкоинерционные, поэтому их можно применять в СВЧ-диапазоне.

Есть еще одна необычная разновидность полупроводниковых диодов — диоды Шоттки.

В них используется не традиционный p-n переход, а переход металл-полупроводник в качестве барьера Шоттки. Барьер этот возникает в том случае, когда разнятся величины работы выхода электронов из металла и полупроводника. Если n-полупроводник имеет работу выхода меньше, чем контактирующий с ним металл, то приграничный слой металла будет заряжен отрицательно, а полупроводника — положительно (электронам проще перейти из полупроводника в металл, чем наоборот). Если же у нас контакт металл/p-полупроводник, причем работа выхода для второго выше, чем для первого, то получим положительно заряженный приграничный слой металла и отрицательно заряженный слой полупроводника. В любом случае, у нас возникнет разность потенциалов, с помощью которой работы выхода из обоих контактирующих веществ сравняются. Это приведет к возникновению равновесного состояния и формированию потенциального барьера между металлом и полупроводником. И так же, как и в случае p-n перехода, к переходу металл/полупроводник можно прикладывать прямое и обратное смещение с аналогичным результатом.

Диоды Шоттки отличаются от p-n собратьев низким падением напряжения при прямом включении и меньшей электрической емкостью перехода. Таким образом, повышается их рабочая частота и понижается уровень помех.

Заключение


Само собой, здесь рассмотрены далеко не все существующие виды диодов. Но надеюсь, что по написанному выше можно составить достаточно полное суждение об этих электронных компонетах.

Источники:
ru.wikipedia.org
mda21.ru
elementy.ru
femto.com.ua

анод — английский перевод — Linguee

Een goed werkende diode laat de stroom alleen door va n d e anode n a ar de kathode.

leroy-somer.com

Исправный диод должен пропускать ток только в направлении от анода к катоду.

leroy-somer.com

Als de boot in zoet water (of brak water met weinig zout) wordt gebruikt moet u d e анод o p dj svengne svergne u м анод .

muldermotoren.nl

Если лодка используется в пресной воде (или в солоноватой воде с небольшим содержанием соли), приводной анод следует заменить на магниевый анод.

muldermotoren.com

E e n анод m o et worden vervangen […]

Ваннер ок. 50% объема van het — это зеленый цвет.

muldermotoren.nl

A n анод mu st b e заменен […]

, когда израсходовано около 50% его объема.

muldermotoren.com

Ан-де-Хэнд

[…] van het toesteltype en het volledige serienummer kan het ty p e anode v a st gesteld worden.

aosmith.co.uk

Тип анода можно установить по типу устройства и полному серийному номеру.

aosmith.co.uk

Tegelijkertijd kunnen deze carboxylaten door een anionuitwisselingsmembraan gescheiden worden van de kathode naa r d e anode , heron

researchportal. be

Одновременно через анионообменную мембрану эти карбоксилаты отделяются от катода к аноду, где они могут быть восстановлены.

researchportal.be

Дата betekent dat

[…] de zink, in betrekking tot de normale Potentiaal, zich gedraagt ​​als de verbru ik t e anode e n d 9000t bassea.

kopos.com

Это означает, что относительно нормального потенциала цинк действует как израсходованный анод и, следовательно, защищает основной материал.

kopos.com

Indien het noodzakelijk i s d e anode t e v ervangen, moet hiervoor altijd eenzelfde […

toegepast worden.

aosmith.co.uk

Если необходимо заменить анод, его необходимо заменить на анод того же типа.

aosmith.co.uk

Дверь каталитического процесса или p d e анод ( или xi datie van brandstof) en de kathode (reducofte van zuurstof) . ..]

en вода.

solvay.com

Каталитический процесс на анодной (окисление топлива) и катодной (восстановление кислорода) сторонах мембраны генерирует электричество, тепло и воду.

solvay.com

4. Spoel de oude elektrolytoplossing van de kathode e n d e anode v o or dat u verder gaat.

extechmalaysia.com

4. Перед продолжением смойте старый раствор электролита с катода и анода.

extechmalaysia.com

De aansluitingen van een

[…] диод wo rd e n анод e n k athode genoemd.

fluke.com

Клеммы диода

[…] являются le d анод и c на hode.

fluke.com

Де «A» и «K» в датах l d e Anode e n K athode van de IR diode.

впэб.нл

В этом случае соединения «A» и «K» каждого входного порта являются соответственно анодом и катодом ИК-диода оптопары.

впэб.нл

Даардур

[…] ontstaat een Potentiaalverschil en het minder edele metaal (zink) overgaat als e e n anode i n af .

kopos.com

Здесь возникает разница напряжений, и менее благородный металл (цинк) переходит в раствор в качестве анода, см. Рисунок.

kopos.com

Wanneer de batterij geladen Worden,

[…]

bewegen de lithium-ionen (positief geladen lithium atomen) zich van de kathode Doorheen

[…] de scheidingswand naa r d e анод .

umicore.com

Когда аккумулятор заряжен, ионы лития (положительно заряженные атомы лития) мигрируют от катода через

[…] сепаратор жгут ар ds th e анод .

umicore.com

De gelijkstroom stroomt va n d e anode n a ar de kathode en verwijdert op die manier de metaalionen […

met een gecontroleerde snelheid.

lowara.pl

Постоянный ток течет от анода к катоду, удаляя ионы металлов с контролируемой скоростью.

lowara.pl

Gebruik uitsluitend

[…] originele Volvo P en t a анодов o m da t bij een verkeerde keuze v m a te riaal ernstige […]

Corrosie Kan optreden

[…]

bij de hekaandrijving en de schroef.

muldermotoren.nl

Используйте Genuine V ol vo Pe nta анодов, si nce t he неправильная смесь материала в аноде [. ..]

может привести к серьезным коррозионным повреждениям привода и гребного винта.

muldermotoren.com

Анод ee n stuk metaal (meestal wolfraam) dat wordt geraakt door de elektronen.

foodproducernews.com

Анод — кусок металла (обычно вольфрама), на который попадают электроны.

foodproducernews.com

Verbind dan de v ri j e anode m e t aansluitpunt X6 и vrije kathode met aansluitpunt X3.

tams-online.de

Подключите отключенный анод к точке подключения X6, а отключенный катод — к точке подключения X3.

tams-online.de

De drijvende kracht daarbij is een elektrisch veld tussen kathod e e n anode .

envirochemie.com

Активирующая сила — это электрическое поле между катодом и анодом.

envirochemie.com

Co мм o n анод i s h et meest gebruikt […] Контроллеры OMDAT

, созданные в VCC.

mcselec.com

C omm на аноде is используется m ost потому что […] Микроконтроллеры

могут переключать больше тока на землю, чем на VCC.

mcselec.com

De brandstofcel is een soort accu die opgebouwd is uit laagjes die elk bestaan ​​

[…] uit een elektrolyt (мембран), een kathode en e e n анод .

kasklimaat.nl

Топливный элемент представляет собой своего рода аккумулятор, который состоит из слоев, каждый по

[…] Существуют , , , электролит, , (м мембрана ), катод , , анод , , .

kasklimaat.nl

D e z e anoden h e bb en een nog lager потенциальный теневой вариант van de schroef en dit z0005 tvoor da6 анод ( e n niet de huid [. ..]

van het schip) zal worden aangetast.

mastervolt.nl

Разница потенциалов между и анодом и винтом обеспечивает коррозию анода, а не корпуса.

mastervolt.com

Aan de as zit een

[…] flens waaro p d e анод b e ve stigd wordt.

schaeffler.nl

Вал имеет

[…] фланец для крепления г анод .

schaeffler.kr

Onder invloed van een elektrisch veld zullen anionen migreren in de richting va d e anode e n k van de richting k richting van de richting.

emis.vito.быть

Под действием электрического поля анионы будут перемещаться в направлении анода, а катионы — в направлении катода.

emis.vito.be

Volgens de Noorse autoriteiten werden steenkool en cokes als grondstof gebruikt bij

[. ..] de productie v a n анодов e n e lektrodemateriaal.

eur-lex.europa.eu

По данным норвежских властей, уголь и кокс использовались в качестве сырья в

году. […] pro du ctio n из анодов и elec tr ode mass.

eur-lex.europa.eu

De productie v a n анодов s t ee g tijdens […]

het tweede halfjaar en de jaarcapaciteit werd opgetrokken naar de geplande nominale емкостью 210 000 тонн.

euroland.com

Продукт io n из анодов incr ea sed в […]

на вторую половину года, и годовая мощность теперь увеличена до заявленной цели 210 000 тонн.

euroland.com

De capacity van de

[…] koperraffinage-eenheid in België werd voor 100% benut, maar de capacity van de Spaanse fabriek kon niet volledig gebruikt worden omwille van de onregelmatige aanvoer v a n

euroland. com

Установка рафинирования меди работала на 100% в Бельгии, но мощность испанской установки не могла быть использована полностью из-за ненадежных поставок анодов.

euroland.com

Что такое варакторный диод? — Определение, символ, работа, характеристика и схема настройки

Определение: Диод, внутренняя емкость которого изменяется в зависимости от изменения обратного напряжения. Такой тип диода известен как варакторный диод.Он используется для хранения заряда. Варакторный диод всегда работает в режиме обратного смещения, и это полупроводниковый прибор, зависящий от напряжения

Устройство, зависящее от напряжения, означает, что выход диода зависит от их входного напряжения. T Варакторный диод используется там, где требуется переменная емкость, и эта емкость регулируется с помощью напряжения. Варакторный диод также известен как варикап, вольт-конденсатор, переменная емкость по напряжению или настраивающий диод.

Обозначение варакторного диода

Обозначение варакторного диода аналогично обозначению диода с PN-переходом. Диод имеет два вывода: анод и катод. Один конец символа состоит из диода, а другой конец имеет две параллельные линии, которые представляют токопроводящие пластины конденсатора. Зазор между пластинами показывает их диэлектрик.

Работа варакторного диода

Варакторный диод изготовлен из полупроводникового материала n-типа и p-типа.В полупроводниковом материале n-типа электроны являются основными носителями заряда, а в материале p-типа дырки являются основными носителями заряда. Когда полупроводниковые материалы p-типа и n-типа соединяются вместе, образуется p-n-переход, а на PN-переходе создается область обеднения. Положительные и отрицательные ионы составляют область истощения. Эта область блокирует ток, поступающий из PN-области.

Варакторный диод работает только при обратном смещении. Из-за обратного смещения ток не течет. Если диод подключен в прямом смещении, ток начинает течь через диод, и их обедненная область становится меньше. Область обеднения не позволяет ионам перемещаться с одного места на другое.

Варакторный диод используется для хранения заряда, а не для протекания заряда . При прямом смещении общий заряд, накопленный в диоде, становится нулевым, что нежелательно. Таким образом, варакторный диод всегда работает в режиме обратного смещения.

Формула дает емкость варакторного диода,

Где, ε — Диэлектрическая проницаемость полупроводникового материала.
A — площадь PN-перехода
W — ширина обедненной области

Емкость варакторного диода увеличивается с увеличением n и области p-типа и уменьшается с увеличением области обеднения. Увеличение емкости означает, что в диоде хранится больше зарядов. Для увеличения емкости заряда область истощения (которая действует как диэлектрик конденсатора) диода должна быть небольшой.

Характеристика варакторного диода

Характеристическая кривая варакторного диода показана на рисунке ниже. График показывает, что при увеличении напряжения обратного смещения область обеднения увеличивается, а емкость диода уменьшается.

Преимущества варакторного диода

Ниже приведены преимущества варакторного диода.

  1. Варакторный диод производит меньше шума по сравнению с другим диодом.
  2. Он дешевле и надежнее.
  3. Варакторный диод имеет небольшие размеры и меньший вес.

Варакторный диод в цепи настройки

На рисунке ниже показано, что D 1 и D 2 — это два варакторных диода.Эти диоды обеспечивают переменное сопротивление в параллельном резонансном контуре. V c — это постоянное напряжение, используемое для управления обратным напряжением диода.

Где,

L — это индуктивность цепи, она измеряется в Генри. Резонансная частота цепи выражается как C 1 и C 2 — максимальное напряжение диода

.

Диоды

Диоды

Диод образован PN-переходом со стороной p, называемой анодом , и Русская сторона называется катодом . В связи с тем, что свободно перемещаемых носителями заряда в обедненной области вокруг PN-перехода, проводимость очень плохо. Однако, когда внешнее напряжение подается на два конца материала, проводимость может меняться в зависимости от полярности применяемого вольтаж.

  • Прямое смещение (положительный для P-типа, отрицательный для N-типа)

    Положительное напряжение, приложенное к P-типу, будет тянуть электроны в N-типе. и отталкивать дыры в P-типе так, чтобы оба носителя двигались к PN-переход.По мере того, как обедненная область становится тоньше, проводимость увеличивается из-за дрейфа тока через PN-переход от сторона P к стороне N, образованная основными носителями заряда (оба электроны и дырки) под действием приложенного напряжения. Проводимость увеличивается по мере увеличения приложенного напряжения.

  • Обратное смещение (отрицательное на P-тип, положительное на N-тип)

    Отрицательное напряжение, приложенное к P-типу, отталкивает электроны в N-типе. и притягивать дыры в P-типе так, чтобы оба носителя уходили от PN-переход.Поскольку обедненная область становится толще, чем раньше, нет тока через PN-переход со стороны P на сторону N. Однако существует очень небольшой ток, называемый обратный ток насыщения , за счет миноритарных перевозчиков. Скорость носителя увеличивается по мере увеличения приложенного напряжения. Однако при дальнейшем увеличении напряжения скорость достигнет максимальный уровень называется скорость насыщения .

Нелинейная зависимость напряжения от тока PN-перехода описывается формулой
или (2)
где
  • — это обратный ток насыщения , крошечный ток, который течет в обратном направлении, когда из-за меньшинства перевозчики.Поскольку этот ток ограничен доступными неосновными носителями, когда все они вносят свой вклад в этот ток, более высокое напряжение не приводит к большему току, т. е. ток насыщается. около A для Si и A для Ge.
  • — тепловое напряжение, где Джоуль / Кельвин — это Постоянная Больцмана, кулон — заряд электрона, а — температура в градусах К. При комнатной температуре ( ), .
  • — коэффициент идеальности, который варьируется от 1 до 2, в зависимости от о процессе изготовления и полупроводниковом материале.Во многих случаях можно принять примерно равным 1.
В частности,

Напряжение на диоде является функцией тока через диод. В диапазоне от 5 мА до 20 мА составляет около 0,7 В:

(3)

Сопротивление электрического устройства определяется как . Для диода, поскольку это не линейная функция, сопротивление можно найти как

(4)
Приближение связано с тем, что , я.е., . Мы предполагаем , , сопротивление диода не постоянная, а функция тока, т. е. диод не является линейным элементом:
(5)

Моделей диодов:

В общем, когда прямое напряжение, приложенное к диоду, превышает 0,6 до 0,7 В для кремния (или от 0,1 до 0,2 В для германия), диод предполагается проводящим с низким сопротивлением.

Пример: В схеме однополупериодного выпрямителя, показанной ниже, « — кремниевый диод.Найдите текущий через и напряжение поперек.

Диоды обычно используются в качестве выпрямителей, которые преобразуют переменное напряжение / ток. в DC, как показано в следующем примере.

Пример 2: Разработка преобразователя (адаптера), преобразующего мощность переменного тока. подача 115 В и 60 Гц к источнику постоянного напряжения 14 В. При нагрузке , изменение (пульсация) выходного постоянного напряжения должно быть 5% или меньше.

Это приближение, основанное на предположении, что ток нагрузки равен постоянная, так как падение напряжения невелико.В противном случае экспоненциальное убывание должно использоваться напряжение на конденсаторе, а ток равен:
(7)

Дополнительные схемы диодного выпрямления показаны ниже:

Работа диода — Energy Education

Рис. 1. p-n переход диода вместе с его соответствующими схематическими и реальными компонентами. [1] Катод и анод диода промаркированы так, что обычный ток течет от анода к катоду через диод.

Принцип работы диода может быть трудным для понимания, поскольку он включает довольно продвинутую квантовую механику. Однако на простейшем уровне работу диода можно понять, взглянув на поток положительных зарядов (или «дырок») и отрицательных зарядов (электронов). Технически полупроводниковый диод называется p-n переходом . Эти p-n-переходы также важны для работы фотоэлементов. Для правильной работы диода требуется процесс, известный как легирование.Полупроводники могут быть легированы материалами так, чтобы они имели избыток легко смещаемых электронов — обычно это называется областью отрицательных или n-типа . Кроме того, они могут быть легированы элементами, которые создают избыток дырок, которые легко поглощают эти электроны — обычно называемые положительной областью или p-типа . [2] [3] Отрицательная и положительная области диода также являются катодом и анодом компонента соответственно (см. Рисунок 1).

Различия между этими двумя материалами и их взаимодействие на очень коротких расстояниях (менее миллиметра) приводят к образованию диода при соединении двух типов. Соединение этих двух типов создает p-n-переход, а область между двумя сторонами называется обедненной областью, поскольку электроны из области n-типа диффундируют и заполняют некоторые дыры в области p-типа. Это создает отрицательные ионы в области p-типа и оставляет положительные ионы в области n-типа (см. Рисунок 2). [4] Он по-разному реагирует на электрические поля в зависимости от направления электрического поля. Это приводит к полезному поведению электроники в зависимости от способа приложения напряжения (или электрического поля), это называется смещением.

Смещение

Диод (PN переход) в электрической цепи позволяет току легче течь в одном направлении, чем в другом. Прямое смещение означает подачу напряжения на диод, позволяющее легко протекать току, в то время как обратное смещение означает подачу напряжения на диод в противоположном направлении.Напряжение с обратным смещением не вызывает протекания заметного тока. Это полезно для изменения переменного тока на постоянный. У него есть и другие применения для управления электронными сигналами.

Обратное смещение

Рис. 2. Обратносмещенный p-n переход с черными кружками, представляющими легко перемещаемые электроны, и белыми кружками, представляющими «дырки» с недостатком электронов. В таком соединении с обратным смещением, как этот, электроны покидают черные кружки и движутся к внешней цепи, оставляя больше положительных ионов, в то время как электроны из внешней цепи «заполняют дыры», создавая больше отрицательных ионов.

Если на диод подается напряжение таким образом, что половина диода n-типа была подключена к положительной клемме источника напряжения, а половина p-типа была подключена к отрицательной клемме, электроны из внешней цепи создаст больше отрицательных ионов в области p-типа, «заполняя дыры», и больше положительных ионов будет создано в области n-типа, поскольку электроны смещаются к положительному выводу источника напряжения (см. рисунок 2). Следовательно, область истощения будет увеличиваться, и напряжение между областями p-типа и n-типа также будет увеличиваться, поскольку общий заряд на каждой стороне перехода увеличивается по величине до тех пор, пока напряжение на диоде не станет равным приложенному напряжению и не будет противодействовать ему, и не компенсирует его, прекращая ток через цепь.Этот процесс происходит почти мгновенно и практически не приводит к протеканию тока через цепь, когда напряжение подается в этом направлении через диод. Это известно как p-n-переход с обратным смещением. [5]

Смещение вперед

Рис. 3. Частично и полностью смещенный в прямом направлении p-n переход. Обратите внимание, что для сжатия обедненной области требуется минимальное напряжение.

Когда на диод подается напряжение в противоположном направлении, область обеднения начинает сокращаться (см. Рисунок 3).В диоде с обратным смещением электроны и дырки будут отводиться от перехода, но сценарий с прямым смещением гарантирует, что электроны и дырки движутся к переходу, поскольку они отталкиваются от положительных и отрицательных выводов источника напряжения соответственно. . [1] [6] При достаточно большом приложенном напряжении и дырки, и электроны преодолеют область истощения и встретятся рядом с переходом, где они могут объединиться в непрерывный процесс, замыкая цепь и позволяя течь току. .

Прямое напряжение и напряжение пробоя

Существует минимальное пороговое напряжение, необходимое для преодоления области истощения, которое для большинства кремниевых диодов составляет значимые 0,7 вольт. Кроме того, напряжение обратного смещения индуцирует через диод небольшой ток, называемый током утечки, которым можно пренебречь для большинства целей. Наконец, достаточно большое обратное напряжение приведет к полному электрическому пробою диода и позволит току течь через диод в обратном направлении. [1]

Для получения дополнительной информации о диодах см. Все о схемах или гиперфизике.

Для дальнейшего чтения

Для получения дополнительной информации см. Соответствующие страницы ниже:

Список литературы

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *