Закрыть

Глубина промерзания грунта в ленинградской области: Глубина заложения труб водоснабжения и канализации в Санкт-Петербурге. Глубина заложения самотечного трубопровода и напорного водопровода в Санкт-Петербурге для различных типов грунтов — Водоснабжение и канализация

Содержание

Глубина заложения труб водоснабжения и канализации в Санкт-Петербурге. Глубина заложения самотечного трубопровода и напорного водопровода в Санкт-Петербурге для различных типов грунтов — Водоснабжение и канализация

 

1. Глубина заложения трубопроводов канализации в Санкт-Петербурге по СНиП 2.04.02-84. Глубина траншеи под канализацию.

Минимальная глубина заложения самотечных трубопроводов канализации должна приниматься исходя из условий:

  • предотвращения промерзания труб
  • предотвращения механического разрушения труб под воздействием внешних нагрузок
  • обеспечения самотечного присоединения к трубопроводам внутриквартальных сетей и боковых веток

Расчет минимальной глубины заложения напорных канализационных трубопроводов в Санкт-Петербурге следует принимать как для водопроводных труб.

Минимальную глубину заложения канализационных трубопроводов следует принимать на основании опыта эксплуатации подземных коммуникаций в данной местности. При отсутствии таких даных, минимальная глубина заложения (до низа трубы) может вычисляться по следующим формулам:

В качестве минимальной глубины заложения труб канализации следует принимать большее из двух значений, полученных из нижеприведенных таблиц

 

1.1 Минимальная глубина заложения канализации в Санкт-Петербурге в зависимости от глубины промерзания

Вычисляется как разность глубины промерзания грунта и коэфициента, который зависит от диаметра трубопровода. При диаметре трубы до 0,5м включительно, коэффициент будет равен 0,3 м. Во всех других случаях: 0,5 м.

Тип грунта Трубопроводы канализации
до 500мм включительно
Трубопроводы канализации
более 500мм
Глины и суглинки 0.68 м 0.28 м
Cупеси, мелкие
и пылеватые пески
0.90 м 0.50 м
Пески средней крупности,
крупные и гравелистые
0.
98 м
0.58 м
Крупнообломочные грунты 1.15 м 0.75 м


1.2 Минимальная глубина заложения самотечной канализации в Санкт-Петербурге, исходя из защиты трубопроводов от механического разрушения в результате воздействия

Рассчитывается как сумма диаметра трубопровода в метрах и коэффициента запаса, равного 0,7м

Диаметр трубопровода канализации Минимальная глубина заложения
50 мм 0.75 м
75 мм 0.78 м
100 мм 0.80 м
125 мм 0.83 м
150 мм 0.85 м
200 мм 0.90 м
250 мм 0.95 м
300 мм 1.00 м
350 мм 1. 05 м
400 мм 1.10 м
450 мм 1.15 м
500 мм 1.20 м
550 мм 1.25 м
600 мм 1.30 м
700 мм 1.40 м
800 мм 1.50 м
900 мм 1.60 м
1000 мм 1.70 м
1100 мм 1.80 м
1200 мм 1.90 м
1250 мм 1.95 м
1300 мм 2.00 м
1400 мм 2.10 м
1500 мм 2.20 м
1750 мм 2.45 м
2000 мм 2.70 м
2500 мм 3.20 м

 

2. Глубина заложения трубопроводов водоснабжения в Санкт-Петербурге по СНиП 2.04.02-84. Глубина траншеи под водопровод.

Глубина заложения труб водоснабжения (или напорной канализации), считая до низа трубы, должна быть на 0,5 м больше расчетной глубины промерзания в Санкт-Петербурге.

Тип грунта Глубина заложения
Глины и суглинки 1.48 м
Cупеси, мелкие и пылеватые пески 1.70 м
Пески средней крупности, крупные и гравелистые 1.78 м
Крупнообломочные грунты 1.95 м

Уровень промерзания грунтов и его влияние на предпроектные расчеты

Физические нагрузки на элементы строительных конструкций, связанные с зимним пучением грунтов, требуется учитывать при проектировании строительных объектов: домов, скважин на воду, инженерных коммуникаций – водопроводных и канализационных систем. Прежде чем начать строительство дома или бурение скважины в Ленинградской области, следует выяснить максимальный уровень промерзания грунта в зимний период. Почему максимальный?

Глубина промерзания грунтов – величина переменная, зависит от климатических условий данной местности и от конкретного местонахождения участка для строительства. В низинах уровень выше, на возвышенностях – ниже. Местные проектные организации обладают информацией о глубине промерзания грунта. Не поленитесь, и выясните нужные вам данные. От них могут зависеть стоимость бурения скважины на воду, выбор типа канализационной системы, финансовые затраты на возведение фундамента.

Пучение грунтов

Уровень подземных вод – важный показатель состояния грунтов. Если уровень высокий, а глубина промерзания ниже этого уровня, то грунт, пропитанный водой промерзает, вода расширяется и возникает явление, носящее название зимнее пучение грунтов.

Вспучивание грунта не всегда равномерно, поэтому порой возникают проблемы с возведением фундаментов, так как в течение года грунты то поднимаются, то опускаются, нанося непоправимый вред строительным конструкциям, возведенным без учета пучинистых свойств грунта.

Средняя глубина промерзания грунта в Ленинградской области достигает 1,4 м, а в морозные годы до 1,6 м. Следовательно, инженерные системы следует прокладывать на уровне 1,7 м, а фундамент или отдельные его элементы заглублять еще больше, так как на них приходится наибольшая нагрузка.

Для примера: вы проводите обустройство скважины на воду и создаете систему водоснабжения, которой будете пользоваться круглый год. Глубина кессона должна быть не менее двух метров, чтобы трубопровод, соединяющий скважину и водопроводную систему дома, оказался ниже уровня промерзания грунтов.

Глубина промерзания грунта в Ленинградской области по СНиП для заложения фундамента и коммуникационных систем

Под глубиной промерзания грунта подразумевают толщину слоя земной коры, которая имеет отрицательную температуру в период наиболее холодных малоснежных зим. Нижняя граница зоны промерзания соответствует изолинии 0 градусов Цельсия. Глубина промерзания грунта в Ленинградской области составляет 1 — 1,5 м.

Сезонное промерзание грунтов учитывается при закладке фундамента. Нижняя граница фундамента не должна находиться выше нулевой изотермы. Желательно, чтобы она была на 15 — 20 см ниже этого уровня. Такой фундамент называют заглублённым.

Частое промерзание и последующее оттаивание пород могут приводить к их деформациям, что может сказаться на стабильности зданий и сооружений. Непромерзающие породы более стабильны, поэтому именно они и должны быть опорой для основания и фундамента.


Факторы, влияющие на глубину промерзания

На глубину промерзания грунта оказывают влияние различные факторы. Климатический (погодный) является наиболее существенным, и именно на его основе строятся карты глубины сезонного промерзания грунта. Однако важным является и микроклиматический фактор, который зависит от рельефа местности, плотности застройки, размера населённого пункта (в городах минимальные температуры существенно выше), наличия или отсутствия древесной растительности и т.д.

Большое значение имеют свойства грунта. Различные типы пород промерзают с разной скоростью и деформируются по-разному. Рыхлые, насыщенные водой породы дадут больше деформаций при прохождении цикла промерзания-оттаивания.

Глубина промерзания грунта в Ленинградской области

Климатические условия в нашей стране таковы, что основная часть территории оказывается в зоне промерзающих грунтов, что связано с географическим положением. В Ленинградской области глубина промерзания грунта меньше, чем в среднем по России. Это объясняется расположением города вблизи западных границ РФ, где влияние тёплой Атлантики максимально.

В наиболее благоприятных условиях находится Краснодарский край: там глубина сезонного промерзания минимальна (менее 80 см). Рост глубины промерзания отмечается при движении в северо-восточном направлении, что связано с возрастанием роли Азиатского антициклона, ведущего к выхолаживанию воздуха. В Ленинградской области глубина промерзания грунта составляет 100 – 140 см, увеличиваясь в пределах данных цифр с запада на восток. В будущем глобальное изменение климата может привести к уменьшению этих показателей, однако пока зимы остаются достаточно холодными, несмотря на общий тренд потепления.

Нормативная глубина промерзания грунта (СНиП)

Нормативное промерзание грунтов – легко определяемая величина. Установленные в СНиП нормы и правила по проектированию строительных работ позволяют учесть и исключить основные факторы риска, что дает гарантию долговечности и надёжности возводимых строений. СНиП «Основание зданий и сооружений» представляет собой нормативную правовую базу, предназначенную для проектировщиков, инженеров, частных лиц, архитекторов. Она была создана усилиями геологов и инженеров ещё в советские времена, однако её продолжают успешно применять и в настоящее время. В соответствии с документами 2.02.01-83 и 23-01-99, глубина залегания проектируемого фундамента определяется, исходя из следующих факторов:

  • Конструкция и вес здания.
  • Функциональное назначение строящегося дома.
  • Общая глубина сезонного промерзания для данного региона.
  • Гидрологические и геологические условия местности.
  • Глубина залегания фундаментов у соседних зданий.
  • Особенности рельефа местности.
  • Физические характеристики грунта (плотность, пористость, наличие или отсутствие пустот, слоистость грунта и т.д.).

Расчёт глубины промерзания грунта

Глубина промерзания грунта определяется как корень квадратный из суммы среднемесячных температур при условии, что они отрицательные – М, умноженный на коэффициент – К, который является справочной величиной и зависит от типа грунта. Для глины К — 0,23, для мелкого песка – 0,28, для крупного песка – 0,3, для пород, состоящих из крупных обломков – 0,34. Крупнообломочный материал промерзает сильнее, чем мелкозернистый. Также глубина промерзания зависит от содержания воды в грунте: чем её больше, тем быстрее идёт промерзание. Степень деформации грунта определяет показатель вспучивания.

Наиболее выражено морозное вспучивание у глинистых и мелкодисперсных грунтов. В этих случаях объём породы при замерзании может возрастать до 10 процентов. Для каменистых грунтов показатель практически нулевой.

Дополнительные факторы

При расчёте глубины промерзания стоит обратить внимание и на такой показатель, как снежность зим. Наличие снега, как и отопление в доме, уменьшают скорость промерзания, поэтому в реальных условиях этот показатель меньше теоретического на 20 – 40 процентов. Можно ещё больше снизить глубину промерзания, если обложить фундамент с внешней стороны утепляющим материалом. Это позволит уменьшить глубину фундамента и затраты на его сооружение.

Глубина промерзания может увеличиться, если регулярно очищать приусадебный участок от снега, поэтому делать это не всегда рекомендуется.

В местах с особо холодным климатом глубина промерзания может быть больше двух метров. В таком случае сооружение стандартного фундамента может оказаться делом сложным и затратным. В таких случаях прибегают к возведению свайных конструкций или устанавливают неглубокий фундамент в местах, где породы не склонны деформироваться при морозе.

Для определения особенностей грунтов и геологических условий местности нанимают специалистов. Стоимость исследования составляет около 1000 долларов. Многие организации, предлагающие услуги по строительству частных коттеджей, руководствуются общими схемами и не проводят исследований. Однако это может нести риск для строений. Поэтому лучше всё же потратить некоторую сумму, чтобы потом не потерять ещё большую.

что оказывает влияние на этот показатель

Еще до начала строительства во время проектирования любых зданий и построек такой показатель, как глубина промерзания грунта, является очень важным. Он влияет на правильность расчетов в отношении закладки фундаментов любых сооружений. На промерзание грунта влияют климатические условия, которые в зимний период времени по-разному себя проявляют.

Большой интерес вызывают показатели замерзания земли в Московской области, где строительные работы ведутся наиболее активно за последние годы. Величина глубины всегда связана с фундаментной конструкцией, поэтому ее важно знать точно, прежде чем начинать строительные работы.

Что может влиять на глубину замерзания почвы?

Вода в почве обязательно кристаллизуется в лед, с наступлением морозов. Объем грунта увеличивается , а когда это происходит, то грунт начинает сдавливать заложенный фундамент с очень большой силой. Он давит на него с силой, равной нескольким десяткам тонн. Если строить с нарушениями, не учитывать глубину промерзания, то в скором времени основание здания начнет подвергаться деформации, затем оно даст трещины и в скором времени может разрушиться. На такой важный показатель всегда

влияют следующие факторы:

  1. Тип грунта — у глинистой почвы пористость выше, чем у песчаного, отчего он промерзает сильней.
  2. Климатические условия — на уровень промерзания будет влиять среднегодовая температура, чем она ниже, тем больше промерзает почва.
  3. Уровень грунтовых вод — высокий показатель грунтовых вод будет сильней влиять при замерзании на основание строения.

Строительные нормы и правила (СНиП)

Существует нормативно-правовая база для строительных инженеров, проектантов, архитекторов, частных застройщиков. Документация с картой промерзания грунта была разработана геологами, инженерами еще во времена Советского Союза.

Прошло много лет, но документ, правильно и грамотно составленный, успешно используется и в настоящее время. Указанные в нем требования и основные положения позволяют сделать правильный расчет, и возвести надежное строение

. Глубина промерзания грунтов СНиП, согласно документам, зависит от таких условий:

  1. Назначение здания
  2. Особенности конструкции и общая нагрузка на фундамент
  3. Глубина, на которой планируется заложить инженерные коммуникации, а также глубина фундамента близкорасположенных зданий
  4. Рельеф зоны постройки существующей и планируемой
  5. Инженерно-геологические условия проектных работ
  6. Гидрогеологические условия местности под строительство
  7. Грунтовое промерзание в сезон холодов.

Глубина промерзания грунта в Московской области

Величина промерзания в Московской области колеблется в пределах от 60 см до 1 метра 80 см. Специалисты считают, что такая разница объясняется разной плотностью почвы. Когда грунт плотней, то в сильные морозы он больше промерзает. В почве, в которой больше влаги, уровень промерзания будет больше, чем в сухой. По СНиП средняя величина промерзания по Московской области —

1 метр 40 см. В эти данные были заложены жесткие погодные условия с большим уровнем грунтовых вод, без снега в зимний период и сильные морозы.

На самом деле глубина промерзания составляет максимум 1 метр, в крайне суровые зимы глубина может быть около 1,5 метра. Например, в Западной части Подмосковья глубина замерзания грунта будет примерно 65 см, а в остальных направлениях области до 75 см.

На глубину промерзания большое влияние оказывает тип почвы. Песчаная почва промерзает сильней, чем глинистая, поскольку она более плотная. В Подмосковье в основном почва песчаная, суглинки, торфяники и супесь, крупнообломочные почвы, последние начинают промерзать уже при 0оС.

Для песчаной почвы и супесей глубина будет составлять 132 см, а для глинистой и суглинистой почвы — 1 метр 20 см.

В настоящее время есть возможности для уменьшения глубины промерзания земли, если сделать утепление. С этой целью вокруг строения устанавливается теплоизоляционная отмостка. Хороший, качественный утеплитель, проложенный с шириной 1,5-2 метра вокруг строения поможет уменьшить эти показания промерзаний глубины земли, окружающей здание.

Глубина промерзания грунта по Ленинградской области

Почвенный покров этой области характеризуется большим разнообразием и сложностью. К основным почвообразующим породам нужно отнести глину, пески, торф и суглинки. Песчаный грунт слабо подвержен промерзанию. Песок имеет свойство уплотняться и хорошо пропускать через себя влагу. Глинистый грунт считается не самым лучшим для строительных работ. Его глубина промерзания доходит до 1, 5 метра, а когда морозы сильные, держатся длительное время, то может промерзнуть глубже.

Суглинки и супеси — это в основном глина и песок, поэтому важно знать чего в такой почве больше. Глубина замерзания здесь также высокая. Торфяники представляют собой осушенные болота, поэтому они очень сильно промерзают. Средняя глубина промерзания в Ленинградской области составляет 120-130 см. На этот показатель влияет качество почвы, ландшафт местности и погодные условия.

Влияние состава почвы и глубины вод

В СНиП существует таблица, по ней можно увидеть информацию по замерзанию почвы каждого региона страны. Специалисты считают, что закладка фундамента должна быть ниже уровня промерзания грунта. Воспользовавшись специальной формулой, можно самостоятельно выполнить расчет. Для этого необходимо вывести сумму среднемесячных отрицательных температур, затем извлечь из полученной цифры квадратный корень и затем умножить на коэффициент определенного вида почвы.

  • Глинистая почва и суглинок — 0,23
  • Песок и супеси — 0,28
  • Песок крупнозернистый — 0,3
  • Крупнообломочный грунт — 0,34.

На промерзание оказывает большое влияние уровень осадков в виде снежного покрова и льда. Они являются хорошими теплоизоляторами и могут снизить глубину замерзания на 20-40% от максимального показателя.

Большое значение имеют грунтовые воды, поэтому строители часто делают дренаж или осушают почву. Когда уровень грунтовых вод становится меньше, то и глубина промерзания также уменьшается. Если не учитывать влияние грунтовых вод, то зимой и летом строения будут смещаться и подниматься, а это приведет к тому, что здание быстро деформируется, а затем разрушится.

Заключение

По типу грунта можно определить его проседание и пучинистость, последний термин означает способность грунта вспучиваться в период замерзания, когда так происходит, то фундамент здания выталкивается из земли.

Согласно СНиП фундамент необходимо закладывать на песчаном грунте на 10 см ниже глубины замерзания, для глинистых и суглинков на 25 см.

Нормативная глубина промерзания грунта | Расчет сезонного промерзания грунта по СНиПу

Калькулятор ГПГ-Онлайн v.1.0

Калькулятор по расчету нормативной и расчетной глубины промерзания грунта для регионов РФ, Украины, Белоруссии и др. Два поиска: быстрый (по названию города) и расширенный. Пояснения и рабочие формулы можно найти под калькулятором.

Расширенный поиск:

Страна Выберите странуРоссийская ФедерацияАзербайджанская республикаРеспублика АрменияРеспублика БеларусьГрузияРеспублика КазахстанКыргызская республикаРеспублика МолдоваРеспублика ТаджикистанРеспублика УзбекистанУкраина

Республика, край, область Выберите регион:

Город Выберите город:

Нормативная глубина промерзания (СП 131.13330.2012)

ГородГрунтГлубина промерзания, м
Глина или суглинок0
Супесь, песков пылеватый или мелкий0
Песок средней крупности, крупный или гравелистый0
Крупнообломочные грунты0

Нормативная глубина сезонного промерзания грунта

Источники данных: СНиП 23-01-99* (СП 131. 13330.2012); СНиП 23-01-99; СП 22.13330.2011 (СНиП 2.02.01-83*); СНиП 2.02.01-83

Нормативная глубина сезонного промерзания грунта принимается равной средней из ежегодных максимальных глубин сезонного промерзания грунтов (по данным наблюдений за период не менее 10 лет) на открытой, оголенной от снега горизонтальной площадке при уровне подземных вод, расположенном ниже глубины сезонного промерзания грунтов.

Нормативную глубину сезонного промерзания грунта dfn, м, при отсутствии данных многолетних наблюдений следует определять на основе теплотехнических расчетов. Для районов, где глубина промерзания не превышает 2,5 м, ее нормативное значение допускается определять по формуле:

dfn = d0 * √Mt

где Mt — безразмерный коэффициент, численно равный сумме абсолютных значений среднемесячных отрицательных температур за зиму в данном районе, принимаемых по СНиП по строительной климатологии и геофизике, а при отсутствии в них данных для конкретного пункта или района строительства — по результатам наблюдений гидрометеорологической станции, находящейся в аналогичных условиях с районом строительства;

d0 — величина, принимаемая равной, м, для:
суглинков и глин — 0,23;
супесей, песков мелких и пылеватых — 0,28;
песков гравелистых, крупных и средней крупности — 0,30;
крупнообломочных грунтов — 0,34.

Значение d0 для грунтов неоднородного сложения определяется как средневзвешенное в пределах глубины промерзания.

Расчетная глубина сезонного промерзания грунта

Расчетная глубина сезонного промерзания грунта df, м, определяется по формуле:

df  = kh * dfn 

где dfn — нормативная глубина промерзания, определяемая;

kh — коэффициент, учитывающий влияние теплового режима сооружения, принимаемый: для наружных фундаментов отапливаемых сооружений — по табл.1; для наружных и внутренних фундаментов неотапливаемых сооружений kh = 1,1, кроме районов с отрицательной среднегодовой температурой.

П р и м е ч а н и я

  1. В районах с отрицательной среднегодовой температурой расчетная глубина промерзания грунта для неотапливаемых сооружений должна определяться теплотехническим расчетом в соответствии с требованиями СП 25.13330. Расчетная глубина промерзания должна определяться теплотехническим расчетом и в случае применения постоянной теплозащиты основания, а также если тепловой режим проектируемого сооружения может существенно влиять на температуру грунтов (холодильники, котельные и т. п.).
  2. Для зданий с нерегулярным отоплением при определении kh за расчетную температуру воздуха принимают ее среднесуточное значение с учетом длительности отапливаемого и неотапливаемого периодов в течение суток.

Таблица 1

Особенности сооружения

Коэффициент kh при расчетной среднесуточной
температуре воздуха в помещении, примыкающем к наружным фундаментам, °С

0

5

10

15

20 и более

Без подвала с полами, устраиваемыми:
по грунту

0,9

0,8

0,7

0,6

0,5

на лагах по грунту

1

0,9

0,8

0,7

0,6

по утепленному цокольному перекрытию

1

1

0,9

0,8

0,7

С подвалом или техническим подпольем

0,8

0,7

0,6

0,5

0,4

П р и м е ч а н и я
1 Приведенные в таблице значения коэффициента kh относятся к фундаментам, у которых расстояние от внешней грани стены до края фундамента af< 0,5 м; если af 1,5 м, значения коэффициента kh повышают на 0,1, но не более чем до значения kh= 1; при промежуточном значении af значения коэффициента kh определяют интерполяцией.
2 К помещениям, примыкающим к наружным фундаментам, относятся подвалы и технические подполья, а при их отсутствии – помещения первого этажа.
3 При промежуточных значениях температуры воздуха коэффициент kh принимают с округлением до ближайшего меньшего значения, указанного в таблице.

Строительные калькуляторы

Глубина промерзания грунта в различных регионах

   Глубина промерзания грунта является одной из основных характеристик, учитываемых при выборе конструктива фундамента строящегося дома. Но к сожалению среди частных застройщиков не редко случаются ошибки при попытках учесть значение этой характеристики. А именно: например, человек услышал, что ленточный фундамент нужно делать не выше глубины промерзания для его климатической зоны. Он заходит в интернет, вводит в поисковик фразу «какая глубина промерзания, к примеру, в Московской области» находит какую-то цифру (около 1,3-1,4 метра) и начинает копать траншею на эту глубину. При этом он не догадывается, что найденное им значение — это нормативная глубина промерзания.

    Но ведь при определении геометрических характеристик фундамента нужно учитывать не нормативное значение, а расчётное, которое определяется с учётом различных коэффициентов, характеризующих такие параметры, как конструкция цокольного перекрытия в доме и средняя температура в помещении в холодное время года. Ведь сам по себе отапливаемый дом прогревает грунт вокруг себя, и промерзание по его периметру порой значительно меньше нормативной величины. И это можно будет увидеть ниже.

    Чтобы узнать нормативные и расчётные значения глубины промерзания грунта в различных условиях, выберите ниже Ваши страну, регион и город и нажмите на кнопку «Определить глубину промерзания». Результаты будут представлены в виде двух таблиц. Если интересующего Вас населенного пункта в списке нет, выбирайте ближайший и желательно находящийся севернее от Вас.

Выберите странуРоссияАзербайджанАрменияБелоруссияГрузияКазахстанКыргызстанМолдоваТаджикистанУзбекистанУкраина

Выберите регион

Выберите город

    Таблица 1 заполняется на основании формулы из СП 22. 13330.2011 (актуализированная версия СНиП 2.02.01-83*):

dfn = d0∗√Mt ,

где dfn — нормативная глубина промерзания,м;

      d— величина, учитывающая тип грунта и равная для глин и суглинков — 0,23 м; для супесей и мелких и пылеватых песков — 0,28 м; для песков средней крупности, крупных и гравелистых — 0,30 м; для крупнообломочных грунтов — 0,34 м;

      M— безразмерный коэффициент, который определяется по СП 131.13330.2012 (актуализированная версия СНиП 23-01-99*) как сумма абсолютных значений среднемесячных отрицательных температур за зимний период в конкретном регионе.

    Примечание: СНиП допускает использование данной формулы при глубинах промерзания до 2,5 метров. При большем промерзании, а также в высокогорных районах с резкими перепадами рельефа и нестабильными климатическими условиями значение dfn должно уточняться специальным теплотехническим расчётом. В рамках данного калькулятора мы на нём не останавливаемся.

    Таблица 2 расчётных глубин промерзания (df) заполняется на основании формулы из того же СП 22.13330.2011 (актуализированная версия СНиП 2.02.01-83*):

d= kh∗dfn ,

где k— коэффициент, который учитывает тепловой режим в помещении в холодное время года. Значения его для отапливаемых помещений показаны в следующей табличке:

    Для неотапливаемых помещений коэффициент k= 1,1


Если калькулятор оказался для Вас полезным, пожалуйста нажмите на одну или несколько социальных кнопочек. Это очень поможет дальнейшему развитию нашего сайта. Огромное спасибо!!!

ГЛАВА 2 — ПОЧВА И ВОДА

ГЛАВА 2 — ПОЧВА И ВОДА



2.1 Почва
2.2 Поступление воды в почву
2. 3 Состояние влажности почвы
2.4 Доступная влажность
2.5 Уровень подземных вод
2.6 Эрозия почвы водой



2.1.1 Состав почвы
2.1.2 Профиль почвы
2.1.3 Текстура почвы
2.1.4 Структура почвы


2.1.1 Состав почвы

Когда сухая почва раздавливается рукой, можно увидеть, что она состоит из всевозможных частиц разного размера.

Большинство этих частиц возникает в результате разложения горных пород; их называют минеральными частицами. Некоторые происходят из остатков растений или животных (гниющие листья, кусочки костей и т. Д.), Их называют органическими частицами (или органическими веществами). Кажется, что частицы почвы касаются друг друга, но на самом деле между ними есть промежутки.Эти пространства называются порами. Когда почва «сухая», поры в основном заполнены воздухом. После полива или дождя поры в основном заполняются водой. Живой материал находится в почве. Это могут быть живые корни, а также жуки, черви, личинки и т. Д. Они способствуют аэрации почвы и тем самым создают благоприятные условия для роста корней растений (рис. 26).

Рис. 26. Состав почвы

2.1.2 Профиль почвы

Если вырыть в земле яму глубиной не менее 1 м, можно увидеть различные слои, разные по цвету и составу.Эти слои называются горизонтами. Эта последовательность горизонтов называется профилем почвы (рис. 27).

Рис. 27. Профиль почвы

Очень общий и упрощенный профиль почвы можно описать следующим образом:

а. Пахотный слой (толщина от 20 до 30 см): богат органическими веществами и содержит много живых корней. Этот слой подлежит подготовке почвы (например, вспашка, боронование и т. Д.) И часто имеет темный цвет (от коричневого до черного).

г. Глубокий пахотный слой: содержит гораздо меньше органических веществ и живых корней. Этот слой практически не подвержен нормальным подготовительным работам. Цвет более светлый, часто серый, а иногда пестрый с желтоватыми или красноватыми пятнами.

г. Подземный слой: почти нет органических веществ или живых корней. Этот слой не очень важен для роста растений, так как до него доходят лишь несколько корней.

г. Слой материнской породы: состоит из породы, в результате разложения которой образовалась почва.Эту породу иногда называют материнским материалом.

Глубина разных слоев сильно различается: некоторые слои могут вообще отсутствовать.

2.1.3 Текстура почвы

Минеральные частицы почвы сильно различаются по размеру и могут быть классифицированы следующим образом:

Название частиц

Пределы размеров в мм

Отличить невооруженным глазом

гравий

больше 1

очевидно

песок

от 1 до 0. 5

легко

ил

от 0,5 до 0,002

еле

глина

менее 0,002

невозможно

Количество песка, ила и глины, присутствующих в почве, определяет ее структуру.

На крупнозернистых почвах: преобладает песок (песчаные почвы).
В почвах средней толщины: преобладает ил (суглинистые почвы).
В мелкозернистых почвах: преобладает глина (глинистые почвы).

В поле текстуру почвы можно определить, потерев почву между пальцами (см. Рис. 28).

Фермеры часто говорят о легких и тяжелых почвах. Грунт с крупной структурой легкий, потому что с ней легко работать, а с мелкозернистой почвой тяжелее, потому что с ней тяжело работать.

Выражение, используемое фермером

Выражения, используемые в литературе

свет

песчаный

грубая

средний

суглинистый

средний

тяжелая

глинистый

штраф

Текстура почвы постоянная, фермер не может ее модифицировать или изменять.

Рис. 28а. Грунт крупнозернистый. — песчаный. Отдельные частички рыхлые и разваливаются в руке даже во влажном состоянии.

Рис. 28б. Грунт средней текстуры на ощупь очень мягкий (как мука) в сухом состоянии. Его можно легко отжать во влажном состоянии, после чего он станет шелковистым.

Рис. 28c. Грунт с мелкой текстурой прилипает к пальцам во влажном состоянии и может образовывать шарик при нажатии.

2.1.4 Структура почвы

Структура почвы означает группировку частиц почвы (песок, ил, глина, органические вещества и удобрения) в пористые соединения. Это так называемые агрегаты. Структура почвы также относится к расположению этих агрегатов, разделенных порами и трещинами (рис. 29).

Основные типы агрегатов показаны на рис. 30: гранулированная, блочная, призматическая и массивная структура.

Рис. 29. Структура почвы

Находясь в верхнем слое почвы, массивная структура блокирует вход воды; прорастание семян затруднено из-за плохой аэрации. С другой стороны, если верхний слой почвы зернистый, вода легко проникает в него, и семена лучше прорастают.

В призматической конструкции движение воды в почве преимущественно вертикальное, поэтому подача воды к корням растений обычно недостаточна.

В отличие от текстуры, структура почвы непостоянна. С помощью методов обработки почвы (вспашка, рыхление и т. Д.) Фермер пытается получить зернистую структуру верхнего слоя почвы для своих полей.

Фиг.30. Примеры грунтовых сооружений .

ЗЕМЛЯННЫЙ

БЛОКИРОВКА


ПРИЗМАТИЧЕСКИЙ


МАССИВНЫЙ


2. 2.1 Инфильтрация процесс
2.2.2 Скорость проникновения
2.2.3 Факторы влияет на скорость инфильтрации


2.2.1 Процесс инфильтрации

Когда на поле подается дождевая или поливная вода, она просачивается в почву. Этот процесс называется инфильтрацией.

Инфильтрацию можно визуализировать, налив воды в слегка утрамбованный стакан с сухой измельченной почвой. Вода просачивается в почву; цвет почвы становится темнее по мере ее увлажнения (см.рис.31).

Рис. 31. Инфильтрация воды в почву

2.2.2 Скорость инфильтрации

Повторите предыдущий тест, на этот раз с двумя стаканами. Один заполнен сухим песком, а другой — сухой глиной (см. Рис. 32а и б).

Вода проникает в песок быстрее, чем в глину. Говорят, что песок имеет более высокую скорость инфильтрации.

Рис. 32а. В каждый стакан подается одинаковое количество воды

Рис. 32b. Через час вода просочилась в песок, в то время как некоторое количество воды все еще остается на глине.

Скорость инфильтрации почвы — это скорость, с которой вода может просачиваться в нее. Обычно измеряется глубиной (в мм) слоя воды, которую почва может поглотить за час.

Скорость инфильтрации 15 мм / час означает, что для просачивания слоя воды толщиной 15 мм на поверхности почвы потребуется один час (см. Рис. 33).

Фиг.33. Почва со скоростью инфильтрации 15 мм / час

Диапазон значений скорости инфильтрации приведен ниже:

Низкая скорость инфильтрации

менее 15 мм / час

средняя скорость инфильтрации

от 15 до 50 мм / час

высокая скорость инфильтрации

более 50 мм / час

2. 2.3 Факторы, влияющие на скорость инфильтрации

Скорость инфильтрации почвы зависит от постоянных факторов, таких как текстура почвы. Это также зависит от различных факторов, таких как влажность почвы.

и. Текстура почвы

Грунты с крупнозернистой структурой состоят в основном из крупных частиц, между которыми имеются большие поры.

С другой стороны, мелкозернистые почвы в основном состоят из мелких частиц, между которыми имеются мелкие поры (см.рис.34).

Рис. 34. Интенсивность инфильтрации и структура почвы

В грубых почвах дождевая или поливная вода попадает и перемещается в более крупные поры; для проникновения воды в почву требуется меньше времени. Другими словами, скорость инфильтрации выше для крупнозернистых почв, чем для мелкозернистых почв.

ii. Влажность почвы

Вода проникает быстрее (скорость инфильтрации выше), когда почва сухая, чем когда она влажная (см. Рис.35). Как следствие, когда поливная вода подается на поле, вода сначала легко проникает, но по мере того, как почва становится влажной, скорость инфильтрации снижается.

Рис. 35. Интенсивность инфильтрации и влажность почвы

iii. Структура почвы

Вообще говоря, вода проникает быстро (высокая скорость инфильтрации) в зернистые почвы, но очень медленно (низкая скорость инфильтрации) в массивные и плотные почвы.

Поскольку фермер может влиять на структуру почвы (посредством культурных практик), он также может изменять скорость инфильтрации своей почвы.


2.3.1 Влажность почвы
2.3.2 Насыщенность
2.3.3 Полевая продуктивность
2.3.4 Постоянная точка увядания


2.3.1 Влажность почвы

Содержание влаги в почве указывает количество воды, присутствующей в почве.

Обычно выражается как количество воды (в мм водной глубины), присутствующее на глубине одного метра почвы. Например: когда количество воды (в мм водной глубины) составляет 150 мм на глубине одного метра почвы, влажность почвы составляет 150 мм / м (см. Рис. 36).

Рис. 36. Влажность почвы 150 мм / м

Содержание влаги в почве также может быть выражено в объемных процентах. В приведенном выше примере 1 м 3 почвы (например, с глубиной 1 м и площадью поверхности 1 м 2 ) содержит 0,150 м 3 воды (например.г. глубиной 150 мм = 0,150 м и площадью поверхности 1 м 2 ). Таким образом, содержание влаги в почве в объемных процентах составляет:

Таким образом, влажность 100 мм / м соответствует 10 объемным процентам.

Примечание: Количество воды, хранящейся в почве, не является постоянным во времени, но может меняться.

2.3.2 Насыщенность

Во время дождя или полива поры почвы заполняются водой.Если все поры почвы заполнены водой, почва считается насыщенной. В почве не осталось воздуха (см. Рис. 37а). В поле легко определить, насыщена ли почва. Если выжать горсть насыщенной почвы, немного (мутной) воды потечет между пальцев.

Растениям нужен воздух и вода в почве. При насыщении воздуха нет и растение пострадает. Многие культуры не выдерживают насыщенных почвенных условий в течение более 2-5 дней. Рис — одно из исключений из этого правила.Период насыщения верхнего слоя почвы обычно длится недолго. После прекращения дождя или орошения часть воды, находящейся в более крупных порах, уйдет вниз. Этот процесс называется дренированием или перколяцией.

Вода, стекающая из пор, заменяется воздухом. В крупнозернистых (песчаных) почвах дренаж завершается в течение нескольких часов. В мелкозернистых (глинистых) почвах дренаж может занять несколько (2-3) дней.

2.3.3 Вместимость поля

После прекращения дренажа большие поры почвы заполняются воздухом и водой, в то время как меньшие поры все еще полны водой.На этом этапе считается, что почва полностью заполнена. При урожайности полей содержание воды и воздуха в почве считается идеальным для роста сельскохозяйственных культур (см. Рис. 37b).

2.3.4 Постоянная точка увядания

Постепенно вода, хранящаяся в почве, поглощается корнями растений или испаряется с верхнего слоя почвы в атмосферу. Если в почву не подается дополнительная вода, она постепенно высыхает.

Чем суше становится почва, тем плотнее удерживается оставшаяся вода и тем труднее корням растений извлекать ее.На определенном этапе потребления воды недостаточно для удовлетворения потребностей растения. Растение теряет свежесть и увядает; листья меняют цвет с зеленого на желтый. В конце концов растение умирает.

Содержание влаги в почве на стадии отмирания растения называется точкой постоянного увядания. В почве все еще содержится немного воды, но корням слишком трудно высосать ее из почвы (см. Рис. 37c).

Рис. 37. Некоторые характеристики влажности почвы

Почву можно сравнить с резервуаром для воды для растений. Когда почва насыщен, резервуар полон. Однако часть воды быстро стекает ниже корневую зону до того, как растение сможет ее использовать (см. рис. 38a).

Рис. 38а. Насыщенность

Когда эта вода стечет, почва полностью заполнена. Корни растений вытягивают воду из того, что остается в резервуаре (см. Рис. 38b).

Рис. 38b. Вместимость поля

Когда почва достигает точки постоянного увядания, оставшейся воды больше нет доступны для завода (см. рис.38c).

Рис. 38c. Постоянная точка увядания

Количество воды, фактически доступной растению, — это количество воды, хранящейся в почве при заполнении поля, за вычетом воды, которая останется в почве при постоянной точке увядания. Это показано на рис. 39.

Рис. 39. Доступная влажность или влажность почвы

Доступное содержание воды = содержание воды на уровне поля — содержание воды в точке постоянного увядания. …. (13)

Доступное содержание воды во многом зависит от текстуры и структуры почвы. Диапазон значений для различных типов почв приведен в следующей таблице.

Почва

Доступное содержание воды в мм глубины воды на м глубины почвы (мм / м)

песок

от 25 до 100

суглинок

100 до 175

глина

175–250

Емкость поля, постоянная точка увядания (PWP) и доступная влажность называются характеристиками влажности почвы. Они постоянны для данной почвы, но сильно различаются от одного типа почвы к другому.


2.5.1 Глубина Уровень подземных вод
2.5.2 Подземные воды таблица
2.5.3 Капиллярный подъем


Часть воды, нанесенной на поверхность почвы, дренируется ниже корневой зоны и питает более глубокие слои почвы, которые постоянно насыщаются; верхняя часть насыщенного слоя называется уровнем грунтовых вод или иногда просто уровнем грунтовых вод (см.рис.40).

Рис. 40. Уровень грунтовых вод

2.5.1 Глубина уровня грунтовых вод

Глубина залегания грунтовых вод сильно варьируется от места к месту, в основном из-за изменений топографии местности (см. Рис. 41).

Рис. 41. Вариации глубины уровня грунтовых вод

В одном конкретном месте или поле глубина уровня грунтовых вод может изменяться во времени.

После сильных дождей или орошения уровень грунтовых вод повышается.Он может даже проникнуть в корневую зону и пропитать ее. В случае продолжительного действия такая ситуация может иметь катастрофические последствия для сельскохозяйственных культур, которые не могут противостоять «мокрым ногам» в течение длительного периода. Если уровень грунтовых вод выходит на поверхность, он называется открытым уровнем грунтовых вод. Так обстоит дело в заболоченных местах.

Уровень грунтовых вод может быть очень глубоким и удаленным от корневой зоны, например, после продолжительного засушливого периода. Чтобы корневище оставалось влажным, необходимо провести полив.

2.5.2 Верхний слой подземных вод

Слой грунтовых вод можно найти поверх водонепроницаемого слоя довольно близко к поверхности (от 20 до 100 см).Обычно он охватывает ограниченную территорию. Верхняя часть водного слоя называется возвышающимся уровнем грунтовых вод.

Непроницаемый слой отделяет залегающий слой грунтовых вод от более глубоко расположенного горизонта грунтовых вод (см. Рис. 42).

Рис. 42. Верхний уровень грунтовых вод

Почву с непроницаемым слоем не намного ниже корневой зоны следует орошать с осторожностью, потому что в случае чрезмерного орошения (слишком большого полива) верхний уровень грунтовых вод может быстро поднимаются.

2.5.3 Капиллярный подъем

До сих пор было объяснено, что вода может двигаться вниз, а также горизонтально (или сбоку). Кроме того, вода может двигаться вверх.

Если кусок ткани погрузить в воду (рис. 43), вода будет всасываться тканью вверх.

Рис. 43. Движение воды вверх или капиллярный подъем

Тот же процесс происходит с уровнем грунтовых вод и почвой над ним. Подземные воды могут всасываться почвой вверх через очень маленькие поры, которые называются капиллярами.Этот процесс называется капиллярным подъемом.

В мелкозернистой почве (глине) вода поднимается вверх медленно, но преодолевает большие расстояния. С другой стороны, в крупнозернистой почве (песке) вода поднимается вверх быстро, но охватывает лишь небольшое расстояние.

Текстура почвы

Капиллярный подъем (в см)

крупный (песок)

от 20 до 50 см

средний

от 50 до 80 см

мелкий (глина)

более 80 см до нескольких метров


2.6.1 Листовая эрозия
2. 6.2 Овощная эрозия


Эрозия — это перенос почвы из одного места в другое. Климатические факторы, такие как ветер и дождь, могут вызвать эрозию, но также и при орошении.

За короткий период процесс эрозии практически незаметен. Однако он может быть непрерывным, и весь плодородный верхний слой поля может исчезнуть в течение нескольких лет.

Водная эрозия почвы зависит от:

— склон: крутые, пологие поля более подвержены эрозии;
— структура почвы: легкие почвы более чувствительны к эрозии;
— объем или скорость потока поверхностных стоков: более крупные или быстрые потоки вызывают большую эрозию.

Эрозия обычно наиболее сильна в начале полива, особенно при поливе на склонах. Сухая поверхностная почва, иногда разрыхленная при культивации, легко удаляется проточной водой. После первого полива почва становится влажной и оседает, поэтому эрозия уменьшается. Недавно орошаемые участки более чувствительны к эрозии, особенно на ранних стадиях.

Существует два основных типа эрозии, вызываемой водой: пластовая эрозия и овражная эрозия. Их часто комбинируют.

2.6.1 Листовая эрозия

Листовая эрозия — это равномерное удаление очень тонкого слоя или «листа» верхнего слоя почвы с наклонной земли. Это происходит на больших площадях земли и вызывает большую часть потерь почвы (см. Рис. 44).

Рис. 44. Листовая эрозия

Признаками листовой эрозии являются:

— только тонкий слой верхнего слоя почвы; или недра частично обнажены; иногда обнажается даже материнская порода;

— достаточно большое количество крупного песка, гравия и гальки в пахотном слое, более мелкий материал удален;

— обнажение корней;

— отложение эродированного материала у подножия склона.

2.6.2 Эрозия оврагов

Эрозия оврагов определяется как удаление почвы концентрированным потоком воды, достаточно большим, чтобы образовать каналы или овраги.

Эти овраги несут воду во время сильного дождя или полива и постепенно становятся шире и глубже (см. Рис. 45).

Рис. 45. Эрозия оврага

Признаками овражной эрозии на орошаемом поле являются:

— неравномерное изменение формы и длины борозд;
— скопление эродированного материала на дне борозд;
— обнажение корней растений.

Пять крупнейших мировых экологических проблем | Окружающая среда | Все темы от изменения климата до сохранения | DW

1. Загрязнение воздуха и изменение климата.

Задача: Перегрузка атмосферы и вод океана углеродом. Атмосферный CO2 поглощает и повторно излучает инфракрасное излучение, что приводит к потеплению воздуха, почвы и поверхностных вод океана — и это хорошо: без этого планета замерзла бы до твердого состояния.

К сожалению, сейчас в воздухе слишком много углерода. Сжигание ископаемого топлива, вырубка лесов для сельского хозяйства и промышленной деятельности привели к увеличению концентрации CO2 в атмосфере с 280 частей на миллион (ppm) 200 лет назад до примерно 400 ppm сегодня. Это беспрецедентный рост как по размеру, так и по скорости. Результат: нарушение климата.

Углеродная перегрузка — это только одна из форм загрязнения воздуха, вызванная сжиганием угля, нефти, газа и древесины. По недавним оценкам Всемирной организации здравоохранения, каждая девятая смерть в 2012 году была вызвана заболеваниями, вызванными канцерогенами и другими ядами в загрязненном воздухе.

Решения: Замена ископаемого топлива возобновляемыми источниками энергии. Лесовосстановление. Уменьшите выбросы от сельского хозяйства. Измените производственные процессы.

Хорошая новость заключается в том, что чистой энергии в изобилии — ее просто нужно собирать. Многие говорят, что будущее 100% возобновляемых источников энергии возможно с существующими технологиями.

Но плохая новость заключается в том, что, хотя инфраструктура возобновляемых источников энергии — солнечные панели, ветряные турбины, системы хранения и распределения энергии — уже широко распространена и все время становится дешевле и эффективнее, эксперты говорят, что мы не применяем их достаточно быстро. для предотвращения катастрофического нарушения климата.Барьеры в политике и финансах еще предстоит преодолеть.

Картинная галерея: Большой смог: Города, страдающие от загрязнения воздуха

  • Большой смог: Города, страдающие от загрязнения воздуха

    Улан-Батор, Монголия

    Улан-Батор — не только одна из самых холодных столиц на Земле. это также город с сильным загрязнением воздуха. В зимние месяцы юрты, такие как «Цеги», отапливаются углем и дровами, которые составляют до 70 процентов смога в городе.Загрязнение воздуха в Улан-Баторе в семь раз выше, чем считается безопасным ВОЗ.

  • Большой смог: Города, страдающие от загрязнения воздуха

    Пекин, Китай

    Столица Китая страдает от такого сильного смога, что, по мнению ученых, город практически непригоден для проживания, хотя в нем проживает 20 миллионов человек. Согласно моделям, 3,5 миллиона человек во всем мире ежегодно умирают из-за загрязнения воздуха — почти половина из них — в Китае. Сказав это, было бы неожиданно узнать, что смог — еще большая проблема в других городах по всему миру.

  • Большой смог: Города, страдающие от загрязнения воздуха

    Лахор, Пакистан

    Загрязнение воздуха является одной из основных экологических проблем Пакистана. Ситуация особенно драматична во втором по величине городе страны Лахоре. Смог вызван в первую очередь интенсивным дорожным движением, сжиганием мусора и пылью из окружающих пустынь.

  • Большой смог: Города, страдающие от загрязнения воздуха

    Нью-Дели, Индия

    В почти 10-миллионном городе Нью-Дели количество автомобилей увеличилось с 180 000 до 3.5 миллионов за последние 30 лет. Тем не менее, наибольшую проблему вызывают угольные электростанции города. На их долю приходится около 80 процентов общего загрязнения воздуха в городе.

  • Большой смог: Города, страдающие от загрязнения воздуха

    Эр-Рияд, Саудовская Аравия

    Песчаные бури, как и здесь, в Эр-Рияде, могут способствовать образованию смога, поскольку они увеличивают количество частиц в воздухе. В таких странах, как Саудовская Аравия, интенсивные ультрафиолетовые лучи также превращают выбросы транспорта и промышленности в озон.

  • Большой смог: Города, страдающие от загрязнения воздуха

    Каир, Египет

    Плохое качество воздуха в Каире вызывает ряд заболеваний среди жителей города, таких как хронические респираторные проблемы и рак легких. Причина загрязнения воздуха — увеличение дорожного движения и процветающий промышленный сектор.

  • Большой смог: Города, страдающие от загрязнения воздуха

    Дакка, Бангладеш

    Согласно исследованию Института Макса Планка в Майнце, около 15 000 человек ежегодно умирают в Дакке из-за загрязнения воздуха.Исследователи обнаружили здесь самую высокую в мире концентрацию диоксида серы.

  • Большой смог: Города, страдающие от загрязнения воздуха

    Москва, Россия

    Даже если он выглядит одинаково во всем мире, смог бывает разным в зависимости от города. Смог в Москве, например, характеризуется высоким содержанием углеводородов. Западные ветры, которые регулярно пронизывают Москву, означают, что в западной части города в целом качество воздуха лучше.

  • Большой смог: Города, страдающие от загрязнения воздуха

    Мехико, Мексика

    Смог в Мехико усугубляется географическим положением.Город с трех сторон окружен горами. Из-за высокого уровня содержания в воздухе диоксида серы и углеводородов Мехико долгое время считался одним из самых загрязненных городов мира. В настоящее время ситуация улучшается благодаря новой транспортной политике и закрытию некоторых заводов.

    Автор: Юлия Вергин / al / ms


2. Вырубка лесов.

Проблема: Богатые видами дикие леса уничтожаются, особенно в тропиках, часто для того, чтобы освободить место для разведения крупного рогатого скота, плантаций сои или пальмового масла или других сельскохозяйственных монокультур.

Сегодня около 30 процентов суши планеты покрыто лесами — это примерно вдвое меньше, чем до того, как сельское хозяйство началось около 11 000 лет назад. Ежегодно уничтожается около 7,3 миллиона гектаров (18 миллионов акров) леса, в основном в тропиках. Раньше тропические леса покрывали около 15 процентов суши планеты; сейчас они снизились до 6-7 процентов. Большая часть этого остатка деградировала в результате регистрации или сжигания.

Естественные леса не только служат заповедником биоразнообразия, но и являются поглотителями углерода, удерживая углерод от попадания углерода в атмосферу и океаны.

Решения: Сохранение того, что осталось от естественных лесов, и восстановление деградированных территорий путем пересадки местными породами деревьев. Для этого требуется сильное управление, но многие тропические страны все еще развиваются, с растущим населением, неравномерным верховенством закона и широко распространенным кумовством и взяточничеством при распределении землепользования.

Картинная галерея: Сжигание Амазонки

  • Сжигание Амазонки

    Выжженная земля

    В 2013 году практика вырубки тропических лесов Бразилии снова была усилена.На Всемирном климатическом саммите в Варшаве министр окружающей среды Бразилии Изабелла Тейшейра признала, что к ноябрю этого года было вырублено около 5 843 квадратных километра леса. В 2012 году было потеряно 4571 квадратный километр. В 2004 году сгорело около 27 000 квадратных километров — мировой отрицательный рекорд.

  • Сжигание Амазонки

    Торговля древесиной на пшеницу

    Интенсивное выращивание сои и пшеницы отчасти виновато в уничтожении тропических лесов.В штате Пара в Бразилии произошли самые тяжелые расчистки. По данным института Imazon, разрушения там выросли на 136 процентов с августа 2012 года по июнь 2013 года. Только недалеко от города Ново Прогрессо было сожжено около 400 гектаров леса.

  • Сжигание Амазонки

    Плотины для городов

    Несмотря на то, что только около пяти процентов 200-миллионного населения Бразилии проживает в регионе Амазонки, строительство плотин там растет. ГЭС Teles Pires на одноименном притоке Амазонки должна начать работу в 2015 году.Пока используется только один процент гидроэнергетического потенциала региона. Национальный план Бразилии в области энергетики предусматривает значительный рост к 2030 году.

  • Сжигание Амазонки

    Хороший бизнес?

    После расчистки лес продается. Незаконно очищенные территории в районе Амазонки часто используются животноводами в качестве пастбищ. Согласно бразильскому законодательству, они могут стать полноправными собственниками, если будут использовать эту площадь «продуктивно» в течение пяти лет подряд.Расходы на расчистку лесного массива оцениваются примерно в 3 000 евро (4 040 долларов США) за гектар.

  • Сжигание Амазонки

    Штрафы за вырубку деревьев

    Этот поселенец был задержан полицией с поличным. Он незаконно вырубил деревья в национальном парке Джамансим. Бразильское агентство по охране окружающей среды Ibama регулярно патрулирует национальные парки и заповедники Амазонки. В 2012 году агентство наложило штрафы на сумму около полумиллиарда евро. В этом году цифра, вероятно, будет еще выше.

  • Сжигание Амазонки

    Где деревья — это продукты

    В прошлом году правительство Бразилии объявило, что ограничит уничтожение тропических лесов до 2020 года менее чем 4000 квадратных километров в год за счет усиления патрулирования. Но все больше деревьев теряется из-за лесорубов, золотоискателей и сельскохозяйственных компаний. Изображенный здесь незаконно вырубленный гигант из джунглей был обнаружен недалеко от города Ново Прогрессо в национальном парке Джамансим.

  • Сжигание Амазонки

    Полоса разрушений

    Шоссе Трансамазоника протяженностью 3000 километров должно было соединить Бразилию с ее латиноамериканскими соседями, Перу и Боливией. Но через сорок лет после того, как земля на знаменитой федеральной автомагистрали BR 230 Бразилии была заложена, гигантский проект все еще не завершен. И экологические организации не хотят этого менять.

  • Сжигание Амазонки

    Бар «Крокодил»

    Скромные бары вдоль «Трансамазоники», подобные этой, являются первой остановкой для водителей грузовиков и тех, кто ищет удачи в джунглях.В сезон дождей трасса часто превращается в непроходимую грязевую колею. Мелкие фермеры и золотоискатели поселились вдоль расселины, прорезанной в джунглях, вытеснив коренных жителей из их традиционных районов поселения.

  • Сжигание Амазонки

    Спасение золотоискателей

    Золотая лихорадка угрожает их жизни. Сотни яномами умерли от болезней, принесенных в их районы старателями. Поселенцы регулярно вторгаются в этот район, потому что в резервации Яномами есть большие запасы золота.В июне этого года бразильская армия уничтожила незаконные взлетно-посадочные полосы в резервации площадью почти 9,5 млн га на границе с Венесуэлой.

  • Сжигание Амазонки

    Происхождение древесного угля для барбекю

    Черное золото: посреди резервации «Альто-Рио-Гуама» гиганты джунглей, подобные этим, исчезают в круглых печах. Незаконно вырубленные деревья превращаются в древесный уголь. Этот снимок сделан с полицейского вертолета во время патрулирования в сентябре 2013 года.Резервация принадлежит сообществу «Новая Эсперанса-ду-Пирия» в бразильском штате Пара.

    Автор: Астрид Прейндж / nh


3. Исчезновение видов.

Задача: На суше на диких животных до исчезновения ведется охота из-за мяса диких животных, слоновой кости или «лекарственных» продуктов. В море огромные промышленные рыболовные суда, оснащенные донными траловыми или кошельковыми сетями, вычищают целые популяции рыб. Утрата и разрушение среды обитания также являются основными факторами, способствующими волне вымирания — беспрецедентной, поскольку она вызвана одним видом: людьми.Красный список МСОП видов, находящихся под угрозой исчезновения, продолжает расти.

Виды не только по своей природе заслуживают существования, они также предоставляют продукты и «услуги», необходимые для выживания человека. Подумайте, что пчелы и их способности опылять — необходимые для выращивания пищи.

Материальная модель с влиянием температуры для мерзлого грунта

[1] Лай, Ю.М., Янг, Ю.Г., Чанг, X.X., Ли, С.Ю., Критерий прочности и упругопластическая конститутивная модель мерзлого ила в обобщенной пластической механике [J]. Международный журнал пластичности, 2010 г., 26: 1641-1484.

DOI: 10.1016 / j.ijplas.2010.01.007

[2] Брэгг, Р.А., Андерсленд, О. Б., Влияние скорости деформации, температуры и размера образца на характеристики сжатия и растяжения мерзлого грунта [J]. Инженерная геология, 1981, 18: 35-46.

DOI: 10.1016 / 0013-7952 (81)

-2

[3] Алкир, Б.Д., Андерсленд О. Б. Влияние ограничивающего давления на механические свойства песчано-ледяных материалов [J]. Журнал гляциологии, 1973, 12 (66): 469-481.

DOI: 10.1017 / s0022143000031889

[4] Андерсленд, О.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *