Обозначение gnd на схеме | Авто Брянск
Провод GND на материнской плате/схеме означает земля (масса, минус). Стандартный цвет — черный, белый. Варианты цвета провода питания — красный, синий, зеленый, оранжевый, желтый.
Пример — обозначение черного провода маркировкой GND на разьеме подключения USB к материнской плате:
GND на материнской плате/схеме — важная информация
- GND (GROUND, перевод — земля) — точка нулевого потенциала микросхемы.
- VEE (Voltage Emitter Emitter, перевод — напряжение эмиттер) — минус питания относительно GND.
- VCC (Voltage Collector Collector, перевод — коллектор напряжения) — плюс питания относительно GND.
Стоит учитывать также:
- GND (DGND, GNDD) — обозначения цифровой земли.
- AGND (GNDA) — обозначения аналоговой земли.
Важный комментарий по поводу обозначений:
Простыми словами.
- Желтый + черный = 12 вольт.
- Красный + черный = 5 вольт.
Еще по поводу молекса. Возможно так задумано, но кажется для подключения нужно использовать провода, которые идут рядышком. Например желтый и черный (12 вольт), красный и черный (5 вольт) — они идут рядом. Два черных провода GND возможно специально предназначены для двух видов подключения.
Под молекс разьемом подразумеваю данный тип коннектора (к нему подключаются жесткие диски например):
Также на плате/коннекторах можете заметить маркировку POWER — означает питание (плюс).
Подключая устройства, например переднюю панель ПК к материнке — будьте очень аккуратны, читайте инструкцию к материнской плате, чтобы не спалить например порты USB. Также смотрите на коннекторы и гнезда — иногда их конструкция исключает неправильное подключение. На заметку — кнопки компьютера, например включение, перезагрузка — неважно как подключить, дело в том, что здесь главное — замыкание. Неважно где плюс/минус, важно — замыкание контактов на секунду, что и делает кнопка, что и приводит к включению/выключению/перезагрузки компа.
Главное — правильно соблюдайте полярность, перед подключением не ленитесь сто раз проверить, чтобы быть уверенными. Ведь короткое замыкание — почти всегда ведет к неисправности…
Надеюсь информация кому-то пригодилась. Удачи и добра!
Добавить комментарий
Отменить ответЭтот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.
Автор: Kavka
Опубликовано 23.05.2013.
Создано при помощи КотоРед.
Крошка-сын к отцу пришел,
и спросила кроха:
— Что такое Vcc, Vee, Vdd, Vss…
и что их так много?
Каждый человек увлекающийся электроникой сталкивается с материалами иностранного происхождения. И будь то схема электронного устройства или спецификация на чип, там могут встречаться множество различных обозначений цепей питания, которые вполне могут ввести в замешательство начинающего или незнакомого с этой темой радиолюбителя. В интернете достаточно информации чтобы внести ясность в этот вопрос. Далее кратко изложено то что было найдено о происхождении обозначений и их применении.
VCC, VEE, VDD, VSS — откуда такие обозначения? Обозначения цепей питания проистекают из области анализа схем на транзисторах, где, обычно, рассматривается схема с транзистором и резисторами подключенными к нему. Напряжение (относительно земли) на коллекторе (collector), эмиттере (emitter) и базе (base) обозначают VC, VE и VB. Резисторы подключенные к выводам транзистора обозначим RC, RE и RB. Напряжение на дальних (от транзистора) выводах резисторов часто обозначают VCC, VEE и VBB. На практике, например для NPN транзистора включенного по схеме с общим эмиттером, VCC соответствуют плюсу, а VEE минусу источника питания.
Соответственно для PNP транзисторов будет наоборот.Аналогичные рассуждения для полевых транзисторов N-типа и схемы с общим истоком дают объяснение обозначений VDD и VSS (D — drain, сток; S — source, исток): VDD — плюс, VSS — минус.
Обозначения напряжений на выводах вакуумных ламп могут быть следующие: VP (plate, anode), VK (cathode, именно K, не C), VG (grid, сетка).
Как написано выше, Vcc и Vee используются для схем на биполярных транзисторах (VCC — плюс, VEE — минус), а Vdd и Vss для схем на полевых транзисторах (VDD — плюс, VSS — минус). Такое обозначение не совсем корректно, так как микросхемы состоят из комплементарных пар транзисторов. Например, у КМОП микросхем, плюс подключен к P-FET истокам, а минус к N-FET истокам. Тем не менее, это традиционное устоявшее обозначение для цепей питания независимо от типа проводимости используемых транзисторов.
Для микросхем питающихся от одного или нескольких источников одной полярности минус часто обозначают GND (земля). Земля может быть разной, например, сигнальная, соединение с корпусом, заземление.
Вот перечень некоторых обозначений (далеко не полный).
Как видно, часто обозначения образуются путём добавления слова, одной или нескольких букв (возможно цифр), которые соответствуют буквам в слове отражающем функцию цепи (например, как Vref).
Совмещение в современных микросхемах различных технологий, традиции, или какие-то другие причины, привели к тому, что нет чёткого критерия для выбора того или иного обозначения. Поэтому бывает, что обозначения «смешивают», например, используют VCC вместе с VSS или VDD вместе с VEE, но смысл, обычно, сохраняется — VCC > VSS, VDD > VEE. Например, практически повсеместно, можно встретить в спецификации на микросхемы серии 74HC (HC = High speed CMOS), 74LVC и др., обозначение питания как Vcc. Т.е. в спецификации на CMOS (КМОП) микросхемы используется обозначение для схем на биполярных транзисторах.
Земля в электронике — узел цепи, потенциал которого условно принимается за ноль, и все напряжения в системе отсчитываются от потенциала этого узла. Выбор земли произволен, однако на практике чаще всего за землю принимают один из выводов источника питания. При однополярном источнике обычно землёй считают его отрицательный вывод, при двуполярном источнике за землю принимают его среднюю точку. Иногда в англоязычной литературе на схемах обозначается GND (от англ. Ground , земля).
Содержание
Разновидности [ править | править код ]
Сигнальная земля [ править | править код ]
Сигнальная земля — узел цепи, относительно которого отсчитываются потенциалы сигналов в схеме. Соответственно, сигналы подаются в схему (и снимаются со схемы) таким образом, что один вывод источника (приёмника) сигнала подключен к сигнальной земле.
Виртуальная земля [ править | править код ]
В электронных схемах могут существовать такие узлы, потенциал которых равен потенциалу земли, при том, что они не имеют короткого соединения с землёй. Узел, обладающий такими свойствами, называют виртуальная земля. Классическим случаем виртуальной земли является инвертирующий вход операционного усилителя, включенного как инвертирующий усилитель.
«Мекка» заземления [ править | править код ]
В некоторых случаях даже сплошной медный проводник не обеспечивает достаточной эквипотенциальности по всей своей длине.
От этой же точки следует брать потенциал для обратной связи в стабилизаторе, который регулирует напряжение для нагрузок, подключённых к «мекке» заземления. При этом можно быть уверенным, что выходное напряжение стабилизатора стабилизировано относительно «мекки» заземления, а не какой-либо другой точки шин заземления.
Что такое gnd на плате
Провод GND на материнской плате/схеме означает земля (масса, минус). Стандартный цвет — черный, белый. Варианты цвета провода питания — красный, синий, зеленый, оранжевый, желтый.
Пример — обозначение черного провода маркировкой GND на разьеме подключения USB к материнской плате:
GND на материнской плате/схеме — важная информация
- GND (GROUND, перевод — земля) — точка нулевого потенциала микросхемы.
- VEE (Voltage Emitter Emitter, перевод — напряжение эмиттер) — минус питания относительно GND.
- VCC (Voltage Collector Collector, перевод — коллектор напряжения) — плюс питания относительно GND.
Стоит учитывать также:
- GND (DGND, GNDD) — обозначения цифровой земли.
- AGND (GNDA)
Важный комментарий по поводу обозначений:
Простыми словами. Я подключал в компьютерном корпусе дополнительный вентилятор. Ноль вентилятора, черный провод — подключал к проводу молекс-разьема блока питания, который также имеет черный цвет (важно — это и есть GND). Питание на вентиляторе был желтым — его подключал к желтому проводу питания молекса. На молексе главное нужно понимать:
- Желтый + черный = 12 вольт.
- Красный + черный = 5 вольт.
Еще по поводу молекса. Возможно так задумано, но кажется для подключения нужно использовать провода, которые идут рядышком. Например желтый и черный (12 вольт), красный и черный (5 вольт) — они идут рядом. Два черных провода GND возможно специально предназначены для двух видов подключения.
Под молекс разьемом подразумеваю данный тип коннектора (к нему подключаются жесткие диски например):
Также на плате/коннекторах можете заметить маркировку POWER — означает питание (плюс).
Подключая устройства, например переднюю панель ПК к материнке — будьте очень аккуратны, читайте инструкцию к материнской плате, чтобы не спалить например порты USB. Также смотрите на коннекторы и гнезда — иногда их конструкция исключает неправильное подключение. На заметку — кнопки компьютера, например включение, перезагрузка — неважно как подключить, дело в том, что здесь главное — замыкание. Неважно где плюс/минус, важно — замыкание контактов на секунду, что и делает кнопка, что и приводит к включению/выключению/перезагрузки компа.
Главное — правильно соблюдайте полярность, перед подключением не ленитесь сто раз проверить, чтобы быть уверенными. Ведь короткое замыкание — почти всегда ведет к неисправности..
Надеюсь информация кому-то пригодилась. Удачи и добра!
Добавить комментарий
Отменить ответЭтот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.
Обозначение цепей питания в иностранных материалах
Автор: Kavka
Опубликовано 23.05.2013
Создано при помощи КотоРед.
Крошка-сын к отцу пришел,
и спросила кроха:
– Что такое Vcc, Vee, Vdd, Vss.
и что их так много?
Каждый человек увлекающийся электроникой сталкивается с материалами иностранного происхождения. И будь то схема электронного устройства или спецификация на чип, там могут встречаться множество различных обозначений цепей питания, которые вполне могут ввести в замешательство начинающего или незнакомого с этой темой радиолюбителя. В интернете достаточно информации чтобы внести ясность в этот вопрос. Далее кратко изложено то что было найдено о происхождении обозначений и их применении.
VCC, VEE, VDD, VSS – откуда такие обозначения? Обозначения цепей питания проистекают из области анализа схем на транзисторах, где, обычно, рассматривается схема с транзистором и резисторами подключенными к нему. Напряжение (относительно земли) на коллекторе (collector), эмиттере (emitter) и базе (base) обозначают VC, VE и VB. Резисторы подключенные к выводам транзистора обозначим RC, RE и RB. Напряжение на дальних (от транзистора) выводах резисторов часто обозначают VCC, VEE и VBB. На практике, например для NPN транзистора включенного по схеме с общим эмиттером, VCC соответствуют плюсу, а VEE минусу источника питания. Соответственно для PNP транзисторов будет наоборот.
Аналогичные рассуждения для полевых транзисторов N-типа и схемы с общим истоком дают объяснение обозначений VDD и VSS (D — drain, сток; S — source, исток): VDD — плюс, VSS — минус.
Обозначения напряжений на выводах вакуумных ламп могут быть следующие: VP (plate, anode), VK (cathode, именно K, не C), VG (grid, сетка).
Как написано выше, Vcc и Vee используются для схем на биполярных транзисторах (VCC – плюс, VEE — минус), а Vdd и Vss для схем на полевых транзисторах (VDD – плюс, VSS — минус). Такое обозначение не совсем корректно, так как микросхемы состоят из комплементарных пар транзисторов. Например, у КМОП микросхем, плюс подключен к P-FET истокам, а минус к N-FET истокам. Тем не менее, это традиционное устоявшее обозначение для цепей питания независимо от типа проводимости используемых транзисторов.
Для схем с двух полярным питанием VCC и VDDмогут интерпретироваться как наибольшее положительное, а VEE и VSS как самое отрицательное напряжение в схеме относительно земли.
Для микросхем питающихся от одного или нескольких источников одной полярности минус часто обозначают GND (земля). Земля может быть разной, например, сигнальная, соединение с корпусом, заземление.
Вот перечень некоторых обозначений (далеко не полный).
Обозначение цепей питания в иностранных материалах
Автор: Kavka
Опубликовано 23.05.2013
Создано при помощи КотоРед.
Крошка-сын к отцу пришел,
и спросила кроха:
– Что такое Vcc, Vee, Vdd, Vss.
и что их так много?
Каждый человек увлекающийся электроникой сталкивается с материалами иностранного происхождения. И будь то схема электронного устройства или спецификация на чип, там могут встречаться множество различных обозначений цепей питания, которые вполне могут ввести в замешательство начинающего или незнакомого с этой темой радиолюбителя. В интернете достаточно информации чтобы внести ясность в этот вопрос. Далее кратко изложено то что было найдено о происхождении обозначений и их применении.
VCC, VEE, VDD, VSS – откуда такие обозначения? Обозначения цепей питания проистекают из области анализа схем на транзисторах, где, обычно, рассматривается схема с транзистором и резисторами подключенными к нему. Напряжение (относительно земли) на коллекторе (collector), эмиттере (emitter) и базе (base) обозначают VC, VE и VB. Резисторы подключенные к выводам транзистора обозначим RC, RE и RB. Напряжение на дальних (от транзистора) выводах резисторов часто обозначают VCC, VEE и VBB. На практике, например для NPN транзистора включенного по схеме с общим эмиттером, VCC соответствуют плюсу, а VEE минусу источника питания. Соответственно для PNP транзисторов будет наоборот.
Аналогичные рассуждения для полевых транзисторов N-типа и схемы с общим истоком дают объяснение обозначений VDD и VSS (D — drain, сток; S — source, исток): VDD — плюс, VSS — минус.
Обозначения напряжений на выводах вакуумных ламп могут быть следующие: VP (plate, anode), VK (cathode, именно K, не C), VG (grid, сетка).
Как написано выше, Vcc и Vee используются для схем на биполярных транзисторах (VCC – плюс, VEE — минус), а Vdd и Vss для схем на полевых транзисторах (VDD – плюс, VSS — минус). Такое обозначение не совсем корректно, так как микросхемы состоят из комплементарных пар транзисторов. Например, у КМОП микросхем, плюс подключен к P-FET истокам, а минус к N-FET истокам. Тем не менее, это традиционное устоявшее обозначение для цепей питания независимо от типа проводимости используемых транзисторов.
Для схем с двух полярным питанием VCC и VDDмогут интерпретироваться как наибольшее положительное, а VEE и VSS как самое отрицательное напряжение в схеме относительно земли.
Для микросхем питающихся от одного или нескольких источников одной полярности минус часто обозначают GND (земля). Земля может быть разной, например, сигнальная, соединение с корпусом, заземление.
Вот перечень некоторых обозначений (далеко не полный).
Gnd на усилителе что значит
Ответы
Wolfsangel 6 (17779) 2 3 14 8 лет
B+ => battery positive, плюс питания, жирный провод.
Rem – Remote – кидается или на ACC или к магнитоле – по сигналу с этого провода, усилок включается и выключается – нужно чтобы не жрал ток при выключенном мафоне/двигле и чтобы не ставить на него отдельный выключатель.
GND – ground – корпус, он же минус.
На усилителе, rem. Обычно обозначает дистанционное управление. Для автомобильного аудиоусилителя удаленное соединение может быть для пульта дистанционного управления. Обычно это набор на одном конце и телефонный разъем, например, соединение с другим. Это позволяет вам уменьшить коэффициент усиления или громкость на усилителе, где бы вы ни захотели смонтировать пульт. Если имеется клемма (винт и зажим для крепления проводов) под меткой rem, то для дистанционного отключения. Дистанционное отключение для внешних усилителей, например, для сабвуферов или громкоговорителей верхнего уровня, соединяет тонкий синий провод от головного устройства или радиостанции к усилителю. Для головных устройств или радиостанций дистанционное соединение подключается к системе зажигания. Оба они позволяют выключить усилитель, когда ключ или радио находятся в выключенном состоянии. Для усилителей домашнего кинотеатра удаленное соединение может быть для нескольких вещей. Это может быть для ИК-приемника или инфракрасного приемника или для управления с другого устройства. Эти два обычно представляют собой 3,5-миллиметровый гнездовой разъем. Если он выглядит как 2-контактная розетка 110V, он отключит питание на другом устройстве, когда усилитель отключится.
Магнитола представляет собой встроенное устройство, предназначенное для подключения к бортовой системе автомобиля и дополнительным девайсам, для которых выступает в качестве головного устройства. Чтобы обеспечить подобные коммуникации, для этих целей разработаны стандартизованные интерфейсы, обеспечивающие подключение к определенным выводам на электронной схеме. Для каждого подобного вывода разработан не только стандартный интерфейс, но и название, упрощающее поиск и подключение. В этом обзоре дана самая распространенная расшифровка обозначений магнитол на примере Пионер.
Подсоединение магнитолы
Как правильно подключиться к электронному устройству
Понятие интерфейса в том виде, котором мы сейчас его знаем, появилось в 1960-х годах. Вернее, в 1964 году, когда компания разработала свой легендарный мейнфрейм IBM System/360. Именно тогда были сформулированы основные задачи любого интерфейса – физического или виртуального. Они состояли в том, чтобы обеспечить типовое подключение для всех устройств.
Евро разьемы
Изначально быть сделано всего несколько типов стандартных входов, обеспечивающих совместимость продукции, выпущенной разными производителями. Это был порт PS/2 для клавиатуры, LPT – для принтера и разъем для PCI платы. Сейчас на каждый тип подключения разработан свой стандартный интерфейс, такой подход в значительной мере упрощает разработку и продажу любых типов девайсов и позволяет разобраться с их встроенными возможностями. Приведем описания основных коммуникационных элементов, прежде всего, обозначение кнопки на магнитоле, которые используются на панелях автомагнитол Пионер и других.
Описание кнопок на передней панели магнитолы для управления (расшифровка)
Обозначения кнопок | Функция кнопок |
AF | Другая частота RDS, автоматический поиск при плохом приеме |
ALL OFF | Все выключено |
AMS | Музыкальный сенсор, работает по принципу проигрывания количества треков, равное количеству нажатий |
ANG | Регулировка панели |
ATA | Автоматически включается радио при выключении и перемотке медиатреков |
ATT | Быстро уменьшает громкость |
BAND | Выбор радиоприемника |
BEER | Включение звукового сопровождения нажатия кнопок |
Blank Skip | Пропускает паузы более 8 секунд |
BMS | Компенсирует низкие частоты при падении за счет основного устройства |
BTM | Запоминает качественную частоту сильных станций |
CLK ADJ | Регулирует время |
COLOR | Цвет |
DISP | Активация дисплея |
DNPP | Выбор CD в чейнджере |
DNPS | Ввод названий дисков |
DSP | Активация звукового процессора |
EJECT | Извлечь кассету в кассетном приемнике или диск |
EON | Прием дорожной информации |
FUNCTION | Переключает наиболее используемые функции |
INTO SCAN | Воспроизводит запись по 10 с для поиска |
LOS | Ищет станции, пропуская со слабым приемом |
LOUD | Компенсация тонов |
M. RDM | Случайное воспроизведение дисков |
PI | Автоматический поиск |
PI SOUND | Переключение на другую частоту |
PI MUTE | Приглушенный звук |
POWER | Выключение |
PS | Прослушивание по сохраненным настройкам |
PTY | Выбор жанра |
RDS | Поиск станции по мета-данным |
RDM | Воспроизведение дорожек диска в любой последовательности |
REG | Переход на частоту радиостанции с RDS |
Repeat Play | Повторноепроигрываниедорожки |
SCAN | Сканирование дорожек с воспроизведением начала |
SEL | Настройка |
SHUFFLE PLAY | Воспроизведение в случайном порядке доступной музыки |
SYSTEM Q | Отслеживание фактором улучшения звука и показ их на дисплее |
TA SEEK | Поиск станции с RDS |
TC | Вызов тюнера при перемотке |
Распиновка разъема (расшифровка)
Распиновка разъема – это единственный элемент интерфейса питания, имеющий индивидуальную схему. Иными словами интерфейс всегда разный и зависит от конкретной модели магнитолы, но обозначение распиновки магнитолы всегда одинаковое. Описание обычно приводится в документации.
Распиновка разъема
Существуют методики определения выходов пинов опытным путем в том случае, если невозможно получить оригинальное описание контактов. Это характерно для китайских устройств, выпускавшихся под брендами-однодневками. Необходимость восстановления часто необходима, так как устройство оказывается действительно неплохого качества и может еще использоваться в медийных целях.
Детальное описание разьемов
Описание разъемов управления
В инструкции по эксплуатации указана обычная схема с условными обозначениями, описание которых приводится ниже. Данные должны учитывать название контактов магнитол, которые имеются на задней панели. Универсального варианта нет, так как чем больше интерфейсов, тем более развернутую функциональность поддерживается. Пионер практикует большое количество интерфейсов, другие – нет.
Но количество – это не панацея, а только один из вариантов элементов интерфейса. Лучше всего понять сказанное можно с помощью иллюстрации с указанием разъемов для ToyotaPrado. Обозначения на распиновке описаны в инструкции к магнитоле и приведены ниже.
Название проводов и выходов питания автомагнитолы
BAT, K30, Bup+, B/Up, B-UP, MEM +12, BATTERY | Питание от батареи |
GND, GROUND, K31, «минус» | Провод на «массу» |
A+, ACC, KL 15, S-K, S-kont, SAFE, SWA | Питание с зажигания |
N/C, n/c, N/A | Пустой контакт |
LAMP, 15b, Lume, iLLUM, K1.58b, «солнышко». |
В отдельных случаях имеется два провода -iLL+ и iLL
Приведенный список не является исчерпывающим. Интерфейсы автомагнитолы – это забота производителей, поэтому расшифровка проводов всегда индивидуальна и приводится в инструкции к каждой автомагнитоле. Контакты, как уже говорилось, и их количество зависят от функциональности автомагнитолы и особенностей управления, поэтому и считаются прерогативой производителя.
Схема монтажа — Подкапотный блок R6
Схема внешних выводов
Обозначение внешних выводов
Устройство выпускается с текстовой или цветной маркировкой
GND | Масса (–) |
BAT | Питание (+) |
IGN | Зажигание (+) |
NO | Нормально разомкнутый контакт реле (НР) |
NC | Нормально замкнутый контакт реле (НЗ) |
COM | Общий контакт реле |
UNLOCK | Открытие замка капота |
LOCK | Закрытие замка капота |
INPUT | Вход концевого выключателя капота (–) |
OUTPUT | Выход на сирену (+) |
EXT | Вход датчика температуры |
Провод IGN — вход подключения к зажиганию автомобиля. На проводе IGN должен быть потенциал +12 В во время включения зажигания и работы двигателя.
Провода NO, NC, COM — выходы встроенного электромеханического реле, подключаются к блокируемой цепи. Для осуществления блокировок можно использовать как нормально замкнутые (COM и NC), так и нормально разомкнутые (COM и NO) контакты. При монтаже цепей необходимо следить за длиной и сечением проводов, используемых при коммутации, поскольку коммутируемый ток может быть значительным. Если ток в блокируемой цепи превышает 10 А, то необходимо использовать дополнительное внешнее реле.
Провода UNLOCK, LOCK — силовые выходы управления электроприводом замка капота. Выходы построены по силовой схеме (максимальный выходной ток 12А), поэтому для управления замками не требуются дополнительные силовые модули. При отпирании замка капота на проводе UNLOCK появляется импульс +12 В на 0,8с. При запирании замка капота на проводе LOCK появляется импульс +12 В на 0,8с.
Выход | Импульс «Открыть» | Импульс «Закрыть» |
---|---|---|
UNLOCK | + | — |
LOCK | — | + |
Провод INPUT — подключается к концевому выключателю капота, это позволит системе отслеживать состояние капота.
Провод OUTPUT — выход управления сиреной. Максимальный допустимый ток 2 А. Для подключения соедините один из проводов сирены с проводом OUTPUT, а второй провод соедините с «массой».
Провод EXT — вход подключения датчика температуры. Двухпроводной датчик температуры подключается к проводам EXT и GND, полярность подключения не важна.
Места подключения проводов датчика температуры должны находиться как можно ближе к блоку, чтобы обеспечить максимальную точность измерений датчика температуры двигателя.
Audio gnd что это – Тарифы на сотовую связь
87 пользователя считают данную страницу полезной.
Информация актуальна! Страница была обновлена 16.12.2019
Обозначения, расшифровка контактов и проводов автомобильных магнитол.
Акустическая группа:
R = Динамик правый.
L = Динамик левый.
FR+, FR- или RF+, RF- = Динамик передний — правый (Соответственно плюс или минус).
FL+, FL- или LF+, LF- = Динамик передний — левый (Соответственно плюс или минус).
RR+, RR- = Динамик задний — правый (Соответственно плюс или минус).
LR+, LR- или RL+, RL- = Динамик задний — левый (Соответственно плюс или минус).
GND SP = Общий провод динамиков.
Разъём питания магнитол:
B+ или BAT или K30 или Bup+ или B/Up или B-UP или MEM +12 = Питание от аккумулятора (плюс)
GND или GROUND или K31 или просто указан минус = Общий провод (Масса), минус аккумулятора.
A+ или ACC или KL 15 или S-K или S-kont или SAFE или SWA = +12 с замка зажигания.
N/C или n/c или N/A = Нет контакта. (Физически вывод имеется но никуда не подключен).
ILL или LAMP или обозначение солнышка или 15b или Lume или iLLUM или K1.58b = Подсветка панели. На контакт подаётся +12 вольт при включении габаритных огней. На некоторых магнитолах есть два провода, -iLL+ и iLL- Минусовой провод гальванически отвязан от массы.
Ant или ANT+ или AutoAnt или P.ANT = После включения магнитолы с этого контакта подаётся питание +12 вольт на управление выдвижной антенной, если такова, естественно, присутствует.
MUTE или Mut или mu или изображение перечеркнутого динамика или TEL или TEL MUTE = Вход выключения или приглушения звука при приеме звонка телефона или других действиях (например движения задним ходом).
Другие возможные контакты в магнитолах:
Power Control = это управление включением усилителя
P.CONT/ANT.CONT = это управление антенной, питание подается после включения радио
ILL + и ILL — = это провода регулировки яркости подсветки магнитолы
Amp = Контакт управления включением питания внешнего усилителя
DATA IN = Вход данных
DATA OUT = Выход данных
Line Out = Линейный выход
REM или REMOTE CONTROL = Управляющее напряжение (Усилитель)
ACP+, ACP- = Линии шины (Ford)
CAN-L = Линия шины CAN
CAN-H = Линия шины CAN
K-BUS = Двунаправленная последовательная шина (К-line)
SHIELD = Подключение оплётки экранированного провода.
AUDIO COM или R COM, L COM = Общий провод (земля) входа или выхода предварительных усилителей
CD-IN L+, CD-IN L-, CD-IN R+, CD-IN R- = Симметричные линейные входы аудио сигнала с ченжера
SW+B = Переключение питания +B батареи.
SEC IN = Второй вход
DIMMER = Изменение яркости дисплея
ALARM = Подключение контактов сигнализации для выполнения магнитолой функций охраны автомобиля (магнитолы PIONEER)
SDA, SCL, MRQ = Шины обмена с дисплеем автомобиля.
LINE OUT, LINE IN = Линейный выход и вход, соответственно.
D2B+, D2B- = Оптическая линия связи аудиосистемы
Маркировка и цветовое обозначение проводов
Разберем цветовое обозначение проводов авто магнитол:
- Черный (обозначается GROUND или GND) — это минус аккумуляторной батареи;
- Красный (маркировка АCC или А+) — это плюс замка зажигания;
- Желтый (обозначается ВАТ или В+)- это плюс от аккумуляторной батареи;
- Белый с полосой (маркировка FL-) — это минус переднего левого динамика;
- Белый без полосы (обозначается FL+) — это плюс переднего левого динамика;
- Серый с полосой (маркировка FR-) — это минус правого переднего динамика;
- Серый без полосы (обозначается FR+) — это плюс правого переднего динамика;
- Зеленый с полосой (маркировка RL-) — это минус левого заднего динамика;
- Зеленый без полосы (обозначение RL+) — это плюс левого заднего динамика;
- Фиолетовый с полосой (маркировка RR-) — это минус правого заднего динамика;
- Фиолетовый без полосы (обозначение RR+) — это плюс правого заднего динамика.
Провод GND на материнской плате/схеме означает земля (масса, минус). Стандартный цвет — черный, белый. Варианты цвета провода питания — красный, синий, зеленый, оранжевый, желтый.
Пример — обозначение черного провода маркировкой GND на разьеме подключения USB к материнской плате:
GND на материнской плате/схеме — важная информация
- GND (GROUND, перевод — земля) — точка нулевого потенциала микросхемы.
- VEE (Voltage Emitter Emitter, перевод — напряжение эмиттер) — минус питания относительно GND.
- VCC (Voltage Collector Collector, перевод — коллектор напряжения) — плюс питания относительно GND.
Стоит учитывать также:
- GND (DGND, GNDD) — обозначения цифровой земли.
- AGND (GNDA) — обозначения аналоговой земли.
Важный комментарий по поводу обозначений:
Простыми словами. Я подключал в компьютерном корпусе дополнительный вентилятор. Ноль вентилятора, черный провод — подключал к проводу молекс-разьема блока питания, который также имеет черный цвет (важно — это и есть GND). Питание на вентиляторе был желтым — его подключал к желтому проводу питания молекса. На молексе главное нужно понимать:
- Желтый + черный = 12 вольт.
- Красный + черный = 5 вольт.
Еще по поводу молекса. Возможно так задумано, но кажется для подключения нужно использовать провода, которые идут рядышком. Например желтый и черный (12 вольт), красный и черный (5 вольт) — они идут рядом. Два черных провода GND возможно специально предназначены для двух видов подключения.
Под молекс разьемом подразумеваю данный тип коннектора (к нему подключаются жесткие диски например):
Также на плате/коннекторах можете заметить маркировку POWER — означает питание (плюс).
Подключая устройства, например переднюю панель ПК к материнке — будьте очень аккуратны, читайте инструкцию к материнской плате, чтобы не спалить например порты USB. Также смотрите на коннекторы и гнезда — иногда их конструкция исключает неправильное подключение. На заметку — кнопки компьютера, например включение, перезагрузка — неважно как подключить, дело в том, что здесь главное — замыкание. Неважно где плюс/минус, важно — замыкание контактов на секунду, что и делает кнопка, что и приводит к включению/выключению/перезагрузки компа.
Главное — правильно соблюдайте полярность, перед подключением не ленитесь сто раз проверить, чтобы быть уверенными. Ведь короткое замыкание — почти всегда ведет к неисправности..
Надеюсь информация кому-то пригодилась. Удачи и добра!
Добавить комментарий
Отменить ответЭтот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.
Магнитола представляет собой встроенное устройство, предназначенное для подключения к бортовой системе автомобиля и дополнительным девайсам, для которых выступает в качестве головного устройства. Чтобы обеспечить подобные коммуникации, для этих целей разработаны стандартизованные интерфейсы, обеспечивающие подключение к определенным выводам на электронной схеме. Для каждого подобного вывода разработан не только стандартный интерфейс, но и название, упрощающее поиск и подключение. В этом обзоре дана самая распространенная расшифровка обозначений магнитол на примере Пионер.
Подсоединение магнитолы
Как правильно подключиться к электронному устройству
Понятие интерфейса в том виде, котором мы сейчас его знаем, появилось в 1960-х годах. Вернее, в 1964 году, когда компания разработала свой легендарный мейнфрейм IBM System/360. Именно тогда были сформулированы основные задачи любого интерфейса – физического или виртуального. Они состояли в том, чтобы обеспечить типовое подключение для всех устройств.
Евро разьемы
Изначально быть сделано всего несколько типов стандартных входов, обеспечивающих совместимость продукции, выпущенной разными производителями. Это был порт PS/2 для клавиатуры, LPT – для принтера и разъем для PCI платы. Сейчас на каждый тип подключения разработан свой стандартный интерфейс, такой подход в значительной мере упрощает разработку и продажу любых типов девайсов и позволяет разобраться с их встроенными возможностями. Приведем описания основных коммуникационных элементов, прежде всего, обозначение кнопки на магнитоле, которые используются на панелях автомагнитол Пионер и других.
Описание кнопок на передней панели магнитолы для управления (расшифровка)
Обозначения кнопок | Функция кнопок |
AF | Другая частота RDS, автоматический поиск при плохом приеме |
ALL OFF | Все выключено |
AMS | Музыкальный сенсор, работает по принципу проигрывания количества треков, равное количеству нажатий |
ANG | Регулировка панели |
ATA | Автоматически включается радио при выключении и перемотке медиатреков |
ATT | Быстро уменьшает громкость |
BAND | Выбор радиоприемника |
BEER | Включение звукового сопровождения нажатия кнопок |
Blank Skip | Пропускает паузы более 8 секунд |
BMS | Компенсирует низкие частоты при падении за счет основного устройства |
BTM | Запоминает качественную частоту сильных станций |
CLK ADJ | Регулирует время |
COLOR | Цвет |
DISP | Активация дисплея |
DNPP | Выбор CD в чейнджере |
DNPS | Ввод названий дисков |
DSP | Активация звукового процессора |
EJECT | Извлечь кассету в кассетном приемнике или диск |
EON | Прием дорожной информации |
FUNCTION | Переключает наиболее используемые функции |
INTO SCAN | Воспроизводит запись по 10 с для поиска |
LOS | Ищет станции, пропуская со слабым приемом |
LOUD | Компенсация тонов |
M. RDM | Случайное воспроизведение дисков |
PI | Автоматический поиск |
PI SOUND | Переключение на другую частоту |
PI MUTE | Приглушенный звук |
POWER | Выключение |
PS | Прослушивание по сохраненным настройкам |
PTY | Выбор жанра |
RDS | Поиск станции по мета-данным |
RDM | Воспроизведение дорожек диска в любой последовательности |
REG | Переход на частоту радиостанции с RDS |
Repeat Play | Повторноепроигрываниедорожки |
SCAN | Сканирование дорожек с воспроизведением начала |
SEL | Настройка |
SHUFFLE PLAY | Воспроизведение в случайном порядке доступной музыки |
SYSTEM Q | Отслеживание фактором улучшения звука и показ их на дисплее |
TA SEEK | Поиск станции с RDS |
TC | Вызов тюнера при перемотке |
Распиновка разъема (расшифровка)
Распиновка разъема – это единственный элемент интерфейса питания, имеющий индивидуальную схему. Иными словами интерфейс всегда разный и зависит от конкретной модели магнитолы, но обозначение распиновки магнитолы всегда одинаковое. Описание обычно приводится в документации.
Распиновка разъема
Существуют методики определения выходов пинов опытным путем в том случае, если невозможно получить оригинальное описание контактов. Это характерно для китайских устройств, выпускавшихся под брендами-однодневками. Необходимость восстановления часто необходима, так как устройство оказывается действительно неплохого качества и может еще использоваться в медийных целях.
Детальное описание разьемов
Описание разъемов управления
В инструкции по эксплуатации указана обычная схема с условными обозначениями, описание которых приводится ниже. Данные должны учитывать название контактов магнитол, которые имеются на задней панели. Универсального варианта нет, так как чем больше интерфейсов, тем более развернутую функциональность поддерживается. Пионер практикует большое количество интерфейсов, другие – нет.
Но количество – это не панацея, а только один из вариантов элементов интерфейса. Лучше всего понять сказанное можно с помощью иллюстрации с указанием разъемов для ToyotaPrado. Обозначения на распиновке описаны в инструкции к магнитоле и приведены ниже.
Название проводов и выходов питания автомагнитолы
BAT, K30, Bup+, B/Up, B-UP, MEM +12, BATTERY | Питание от батареи |
GND, GROUND, K31, «минус» | Провод на «массу» |
A+, ACC, KL 15, S-K, S-kont, SAFE, SWA | Питание с зажигания |
N/C, n/c, N/A | Пустой контакт |
LAMP, 15b, Lume, iLLUM, K1.58b, «солнышко». |
В отдельных случаях имеется два провода -iLL+ и iLL
Приведенный список не является исчерпывающим. Интерфейсы автомагнитолы – это забота производителей, поэтому расшифровка проводов всегда индивидуальна и приводится в инструкции к каждой автомагнитоле. Контакты, как уже говорилось, и их количество зависят от функциональности автомагнитолы и особенностей управления, поэтому и считаются прерогативой производителя.
Распиновка usb на материнской плате
Буквенное обозначение радиоэлементов в схеме
Давайте еще раз рассмотрим нашу схему.
Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.
Итак, давайте первым делом разберемся с надписями. R – это значит резистор. Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер “2”. В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 Килоом. Ну как-то вот так…
Как же обозначаются остальные радиоэлементы?
Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды – это группа, к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов:
А – это различные устройства (например, усилители)
В – преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся.
С – конденсаторы
D – схемы интегральные и различные модули
E – разные элементы, которые не попадают ни в одну группу
F – разрядники, предохранители, защитные устройства
G – генераторы, источники питания,
H – устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации
K – реле и пускатели
L – катушки индуктивности и дроссели
M – двигатели
Р – приборы и измерительное оборудование
Q – выключатели и разъединители в силовых цепях. То есть в цепях, где “гуляет” большое напряжение и большая сила тока
R – резисторы
S – коммутационные устройства в цепях управления, сигнализации и в цепях измерения
T – трансформаторы и автотрансформаторы
U – преобразователи электрических величин в электрические, устройства связи
V – полупроводниковые приборы
W – линии и элементы сверхвысокой частоты, антенны
X – контактные соединения
Y – механические устройства с электромагнитным приводом
Z – оконечные устройства, фильтры, ограничители
Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента. Ниже приведены основные виды элементов вместе с буквой группы:
BD – детектор ионизирующих излучений
BE – сельсин-приемник
BL – фотоэлемент
BQ – пьезоэлемент
BR – датчик частоты вращения
BS – звукосниматель
BV – датчик скорости
BA – громкоговоритель
BB – магнитострикционный элемент
BK – тепловой датчик
BM – микрофон
BP – датчик давления
BC – сельсин датчик
DA – схема интегральная аналоговая
DD – схема интегральная цифровая, логический элемент
DS – устройство хранения информации
DT – устройство задержки
EL – лампа осветительная
EK – нагревательный элемент
FA – элемент защиты по току мгновенного действия
FP – элемент защиты по току инерционнго действия
FU – плавкий предохранитель
FV – элемент защиты по напряжению
GB – батарея
HG – символьный индикатор
HL – прибор световой сигнализации
HA – прибор звуковой сигнализации
KV – реле напряжения
KA – реле токовое
KK – реле электротепловое
KM – магнитный пускатель
KT – реле времени
PC – счетчик импульсов
PF – частотомер
PI – счетчик активной энергии
PR – омметр
PS – регистрирующий прибор
PV – вольтметр
PW – ваттметр
PA – амперметр
PK – счетчик реактивной энергии
PT – часы
QF – выключатель автоматический
QS – разъединитель
RK – терморезистор
RP – потенциометр
RS – шунт измерительный
RU – варистор
SA – выключатель или переключатель
SB – выключатель кнопочный
SF – выключатель автоматический
SK – выключатели, срабатывающие от температуры
SL – выключатели, срабатывающие от уровня
SP – выключатели, срабатывающие от давления
SQ – выключатели, срабатывающие от положения
SR – выключатели, срабатывающие от частоты вращения
TV – трансформатор напряжения
TA – трансформатор тока
UB – модулятор
UI – дискриминатор
UR – демодулятор
UZ – преобразователь частотный, инвертор, генератор частоты, выпрямитель
VD – диод, стабилитрон
VL – прибор электровакуумный
VS – тиристор
VT – транзистор
WA – антенна
WT – фазовращатель
WU – аттенюатор
XA – токосъемник, скользящий контакт
XP – штырь
XS – гнездо
XT – разборное соединение
XW – высокочастотный соединитель
YA – электромагнит
YB – тормоз с электромагнитным приводом
YC – муфта с электромагнитным приводом
YH – электромагнитная плита
ZQ – кварцевый фильтр
Обозначение цепей питания в иностранных материалах » Портал инженера
Каждый человек увлекающийся электроникой сталкивается с материалами иностранного происхождения. И будь то схема электронного устройства или спецификация на чип, там могут встречаться множество различных обозначений цепей питания, которые вполне могут ввести в замешательство начинающего или незнакомого с этой темой радиолюбителя. В интернете достаточно информации чтобы внести ясность в этот вопрос. Далее кратко изложено то что было найдено о происхождении обозначений и их применении.
VCC, VEE, VDD, VSS — откуда такие обозначения? Обозначения цепей питания проистекают из области анализа схем на транзисторах, где, обычно, рассматривается схема с транзистором и резисторами подключенными к нему.
Напряжение (относительно земли) на коллекторе (collector), эмиттере (emitter) и базе (base) обозначают VC, VE и VB. Резисторы подключенные к выводам транзистора обозначим RC, RE и RB. Напряжение на дальних (от транзистора) выводах резисторов часто обозначают VCC, VEE и VBB. На практике, например для NPN транзистора включенного по схеме с общим эмиттером, VCC соответствуют плюсу, а VEE минусу источника питания. Соответственно для PNP транзисторов будет наоборот.
Аналогичные рассуждения для полевых транзисторов N-типа и схемы с общим истоком дают объяснение обозначений VDD и VSS (D — drain, сток; S — source, исток): VDD — плюс, VSS — минус.
Обозначения напряжений на выводах вакуумных ламп могут быть следующие: VP (plate, anode), VK (cathode, именно K, не C), VG (grid, сетка).
Как написано выше, Vcc и Vee используются для схем на биполярных транзисторах (VCC — плюс, VEE — минус), а Vdd и Vss для схем на полевых транзисторах (VDD — плюс, VSS — минус).
Такое обозначение не совсем корректно, так как микросхемы состоят из комплементарных пар транзисторов. Например, у КМОП микросхем, плюс подключен к P-FET истокам, а минус к N-FET истокам. Тем не менее, это традиционное устоявшее обозначение для цепей питания независимо от типа проводимости используемых транзисторов.
Для схем с двух полярным питанием VCC и VDD могут интерпретироваться как наибольшее положительное, а VEE и VSS как самое отрицательное напряжение в схеме относительно земли.
Для микросхем питающихся от одного или нескольких источников одной полярности минус часто обозначают GND (земля). Земля может быть разной, например, сигнальная, соединение с корпусом, заземление.
Вот перечень некоторых обозначений (далеко не полный).
Обозначение | Описание | Заметки |
GND | Земля (минус питания) | Ground |
AGND | Аналоговая земля (минус питания) | Analog ground |
DGND | Цифровая земля (минус питания) | Digital ground |
VccVddV+VS+ | Плюс питания(наибольшее положительное напряжение) | |
VeeVssV-VS− | Земля, минус питания(самое отрицательное напряжение) | |
Vref | Опорное напряжение(для АЦП, ЦАП, компараторов и др.) | Reference (эталон, образец) |
Vpp | Напряжение программирования/стирания | (возможно pp = programming power) |
VCOREVINT | Напряжение питания ядра(например, в ПЛИС) | Core (ядро) Internal (внутренний) |
VIOVCCIO | Напряжение питания периферийных схем(например, в ПЛИС) | Input/Output (ввод/вывод) |
Как видно, часто обозначения образуются путём добавления слова, одной или нескольких букв (возможно цифр), которые соответствуют буквам в слове отражающем функцию цепи (например, как Vref).
Иногда обозначения Vcc и Vdd могут присутствовать у одной микросхемы (или устройства), тогда это может быть, например, преобразователь напряжения. Так же это может быть признаком двойного питания. В таком случае, обычно, Vcc соответствует питанию силовой или периферийной части, Vdd питанию цифровой части (обычно Vcc>=Vdd), а минус питания может быть обозначен Vss.
Совмещение в современных микросхемах различных технологий, традиции, или какие-то другие причины, привели к тому, что нет чёткого критерия для выбора того или иного обозначения. Поэтому бывает, что обозначения «смешивают», например, используют VCC вместе с VSS или VDD вместе с VEE, но смысл, обычно, сохраняется — VCC > VSS, VDD > VEE. Например, практически повсеместно, можно встретить в спецификации на микросхемы серии 74HC (HC = High speed CMOS), 74LVC и др., обозначение питания как Vcc. Т.е. в спецификации на CMOS (КМОП) микросхемы используется обозначение для схем на биполярных транзисторах.
Текстов какого либо стандарта (ANSI, IEEE) по этой теме найти не удалось. Именно поэтому в тексте встречаются слова «может быть», «иногда», «обычно» и подобные. Несмотря на это, приведённой информации вполне достаточно, чтобы чуть лучше ориентироваться в иностранных материалах по электронике.
Информация собрана из различных источников в сети Интернет.Специально для сайта radiokot.ru
Расшифровка проводов магнитол для автомобилей
Расшифровка проводов магнитол — обозначения, расшифровка контактов и проводов автомобильных магнитол.
Акустическая группа
R = Динамик правый.L = Динамик левый.FR+, FR- или RF+, RF— = Динамик передний — правый (Соответственно плюс или минус).FL+, FL- или LF+, LF— = Динамик передний — левый (Соответственно плюс или минус).RR+, RR— = Динамик задний — правый (Соответственно плюс или минус).LR+, LR- или RL+, RL— = Динамик задний — левый (Соответственно плюс или минус).GND SP = Общий провод динамиков.
Разъём питания магнитол
- В+ или ВАТ или КЗО или Вир+ или B/Up или B-UP или MEM + 12 = Питание от аккумулятора (плюс)
- GND или GROUND или К31 или просто указан минус = Общий провод (Масса), минус аккумулятора.
- А+ или АСС или KL 15 или S-K или S-kont или SAFE или SWA = +12 с замка зажигания.
- N/C или n/с или N/A = Нет контакта. (Физически вывод имеется но никуда не подключен).
- ILL или LAMP или обозначение солнышка или 15Ь или Lume или iLLUM или К1.58Ь = Подсветка панели. На контакт подаётся +12 вольт при включении габаритных огней. На некоторых магнитолах есть два провода, -iLL+ и iLL- Минусовой провод гальванически отвязан от массы.
- Ant или ANT+ или AutoAnt или P.ANT = После включения магнитолы с этого контакта подаётся питание +12 вольт на управление выдвижной антенной, если такова, естественно, присутствует.
- MUTE или Mut или mu или изображение перечеркнутого динамика или TEL или TEL MUTE = Вход выключения или приглушения звука при приеме звонка телефона или других действиях (например движения задним ходом)
Другие возможные контакты в магнитолах
Power Control = это управление включением усилителяP.CONT/ANT.CONT = это управление антенной, питание подается после включения радиоILL + и ILL — = это провода регулировки яркости подсветки магнитолыAmp = Контакт управления включением питания внешнего усилителяDATA IN = Вход данныхDATA OUT = Выход данныхLine Out = Линейный выходREM или REMOTE CONTROL = Управляющее напряжение (Усилитель)АСР+, АСР— = Линии шины (Ford)CAN-L = Линия шины CANCAN-H = Линия шины CANK-BUS = Двунаправленная последовательная шина (K-line)SHIELD = Подключение оплётки экранированного провода.AUDIO СОМ или R COM, L СОМ = Общий провод (земля) входа или выхода предварительных усилителейCD-IN L+, CD-IN L-, CD-IN R+, CD-IN R— = Симметричные линейные входы аудио сигнала с ченжераSW+B = Переключение питания +В батареи.SEC IN = Второй входDIMMER = Изменение яркости дисплеяALARM = Подключение контактов сигнализации для выполнения магнитолой функций охраны автомобиля (магнитолы PIONEER)SDA, SCL, MRQ = Шины обмена с дисплеем автомобиля.LINE OUT, LINE IN = Линейный выход и вход, соответственно.D2B+, D2B— = Оптическая линия связи аудиосистемы
Маркировка и цветовое обозначение проводов
Разберем цветовое обозначение проводов авто магнитол:
- Черный (обозначается GROUND или GND) — это минус аккумуляторной батареи;
- Красный (маркировка АСС или А+) — это плюс замка зажигания;
- Желтый (обозначается ВАТ или В+)- это плюс от аккумуляторной батареи;
- Белый с полосой (маркировка FL-) — это минус переднего левого динамика;
- Белый без полосы (обозначается FL+) — это плюс переднего левого динамика;
- Серый с полосой (маркировка FR-) — это минус правого переднего динамика;
- Серый без полосы (обозначается FR+) — это плюс правого переднего динамика;
- Зеленый с полосой (маркировка RL-) — это минус левого заднего динамика;
- Зеленый без полосы (обозначение RL+) — это плюс левого заднего динамика;
- Фиолетовый с полосой (маркировка RR-) — это минус правого заднего динамика;
- Фиолетовый без полосы (обозначение RR+) — это плюс правого заднего динамика.
Далее, можно посмотреть как выполняется распиновка разъема автомагнитолы
Источники звука
Схема подключения магнитолы
Практически все современные автомобильные магнитолы применяют для подачи питания три провода желтого, красного и черного цвета. Минусу аккумулятора соответствует черный провод. Желтый является плюсом аккумуляторной батареи и питает силовые потребители энергии. Если по определенным причинам желтый провод испортился, необходимо его полностью поменять на новый соответствующего сечения. Красный провод является плюсом замка зажигания.
Подробная схема подключения автомагнитолы
Для начала стоит разобраться с подключением черного и желтого провода. Многие автомобилисты подсоединяют черный провод в первый свободный болт на массу, а желтый подключается от замка зажигания или прикуривателя. На самом деле этот способ неправильный.
Подсоединив эти провода к аккумулятору можно получить качественный звук большой мощности. Сами провода лучше всего брать многожильные, медные толщиной от 4-х кв. мм. Отступив 30-40 см., на желтом проводе устанавливается предохранитель на 10-20 А с хорошей изоляцией. Плюсовое значение имеет и красный провод, однако, соединять его требуется с замком зажигания. А если быть предельно точным, он подключается к цепи, на которую подается напряжение в положении ключа ACC.
Бывает, что автолюбители подключают вместе желтый и красный провод. Преимуществом таких действий является то, что аудиосистема постоянно работает и не зависит от включения или выключения зажигания. Конечно, минусом в этом случае будет то, что магнитола все время находится в режиме ожидания. Это повлияет на работу аккумулятора. Скорость разряда батареи увеличится. Этот показатель зависит от каждой отдельно взятой магнитолы, поэтому конкретно рассчитать, как быстро будет посажена батарея достаточно проблематично.
Распиновка для различных марок авто и магнитол
Приступая к работе, ознакомьтесь с инструкцией к ресиверу, а также обратите внимание на маркировку и фишки самого изделия. На распиновку магнитол влияют штатные разъемы в разных автомобилях
Схема распиновки iso разъемов к магнитолам pioneer
Подключение акустики этого хорошо известного, пользующегося популярностью у автомобилистов бренда, имеет некоторые особенности. Перед началом работы обязательно изучите руководство к установке. Монтаж прост, главное разобраться в назначении каждого цвета. Помимо инструкции в комплект входят две «фишки» с 4 парами контактов: для питания и акустики.
В распиновке штекера 10-20 выходов, функционал каждого разъема меняется зависимости от модели. Для серии KEH характерна следующая схема: № 1 — антенна, № 2 — зажигания, № 3-6 и 8-11 — усилители. Чтобы не запутаться внимательно изучите инструкцию.
Чтобы не сжечь акустику, перед подключением динамиков нужно подсоединить магнитолу, проверить, чтобы она светилась и переключалась.
toyota
Распиновку акустики этой марки осуществляют по стандартным схемам. Оптимально выбрать систему питания от АКБ, в этом случае нет риска его разрядки.
ISO разъем:
№ 1 | А+ |
№ 2 | GND |
№ 3 | BAT+ |
№ 4 | Подсветка |
№ 5 | Антенна |
№ 6 | Динамики (RR+, RR-, RF+, RF-, LF+, LF-, LR+, LR-) |
sony
При подключении магнитолы используются стандартные схемы.
№ 1 | ANT |
№ 3 | LR. Линейный выход |
№ 4 | GND. Линейных выход |
№ 5 | RR. Линейный выход |
№ 6 | CD – LCH |
№ 7 | CD – GND |
№ 8 | CD – RCH |
№ 9 | CD – Reset |
№ 10 | CD – CD clock out |
№ 11 | CD – DSPL select |
№ 12 | CD – data out |
№ 13 | CD – clock in |
№ 14 | CD – data in |
№ 16 | A+ |
№ 17 | GND |
№ 18 | ANT GND |
№ 22-27 | Динамики (LF-, LR+, RF-, RR+, LF+, LR-, RF+, RR-) |
№ 28 | Mute |
№ 29-30 | Динамики (LF-, LR+, RF-, RR+, LF+, LR-, RF+, RR-) |
№ 31 | ANT CONT |
№ 32 | CD ACC Постоянный |
№ 33 | AMP Постоянный |
№ 34 | B UP |
nissan
Универсальный разъем:
№ 1-6 | Динамики (LR+, RR+, LR-, RR-, LF+, RF+) |
№ 7 | А+ |
№ 8 | Подсветка |
№ 9 | BAT+ |
№ 10 | Динами LF- |
№ 11 | динамик RF- |
№ 12 | Антенна |
№ 13 | GND |
honda
Все модели автомобильных магнитол оборудованы универсальным европейским штекером для подключения к гнезду.
№ 1 | Динамик RR+ |
№ 2 | Динамик LR+ |
№ 3 | Подсветка |
№ 4 | BAT+ |
№ 5 | A+ |
№ 6 | Антенна |
№ 7-10 | Динамики LF+, RF+, RR-, LR- |
№ 13 | GND |
№ 14-15 | Динамики LF-, RF- |
bmw
Стандартная европейская разводка выводов.
№ 1 | А+ |
№ 2 | BAT+ |
№ 3 | GND |
№ 4 | — |
№ 5-12 | Динамики RR+, RR-, LF+, LF-, RF+, RF-, LR+, LR- |
alpine
Alpine TDE-7823W: 1 – BAT+,
№ 2-5 | Динамики LR-, LR+, RR-, RR+ |
№ 7 | Усилитель |
№ 8 | Антенна |
№ 9 | GND |
№ 10-13 | Динамики LF-, LF+, RF-, RF+ |
№ 5-12 | А+ |
mitsubishi
Во всех моделях используется стандартная европейская распиновка акустической системы.
№ 1-2 | Динамики RR+, LR+ |
№ 3 | Управление антенной |
№ 4 | Управление подсветкой |
№ 5-8 | Динамики LF+, RF+, RR-, LR- |
№ 10 | А+ |
№ 11 | BAT+ |
№ 12 | Управление подсветкой |
№ 13-14 | Динамики LF-, RF- |
GND |
Объясните мне пожалуйста что значат обозначения на схеме.
напряжение питания, общий.
Грунт-русское слово по американски GRD сокращ. VCC-питание
По поводу VCC и GND вам уже все сказали. Нужно плясать не от ножек, а от марки микросхемы FT245R. Схема релизует FIFO-стек (First-In-First-Out, первым пришел-первым вышел) . Ножки RD, WR, TXE позволяют записать данные в стек, минуя USB-интерфейс. Удобны для отладки или наращивания мощи схемы. Кстати, контакт RESET слева (номер 19) тоже в кружочке. Значит эти контакты имеет смысл вывести на панельку, чтобы потом к ним можно было без проблем подключиться. Поищите даташит на схему и вам все станет ясно.
Чисто коммент к ответу Андрея Котоусова: «Поищите даташит на схему и вам все станет ясно. » Вообще-то описание микросхемы FTDI занимает два приличных тома страниц по 50 каждый, отдельно — подключение, отдельно — программирование Так что насчёт «всё сразу ясно» Андрей погорячился.. . Тем более, что в данной схеме используется режим асинхронный бит-банг, мягко говоря не самый очевидный по временной привязке в частности… . А RXF, TXE, RD, WR нужны ВОВСЕ НЕ ДЛЯ ЗАПИСИ В СТЕК — а для режима СИНХРОННЫЙ БИТ-БАНГ, где используется hand-shake (рукопожатие) , кстати, тоже заметно отличающееся от классического в худшую сторону, половинчатое какое-то… . Но, поскольку у вас АСИНХРОННЫЙ режим — вам эти выводы НИКОГДА не понадобятся… . А по поводу Vcc и GND — это действительно +5 В и Общий. Но если вы хотите питать ваши светодиоды от компьютера (от USB в смысле) — то надо просто соединить все Vcc с выводом Vсс разъёма USB, а все GND — с выводом GND того же разъёма….
Переходники для iso разъемов
Срезка нестандартного штатного штекера и присоединение проводов напрямую не рекомендуется, потому что со временем соединение разболтается, может окислиться, придется спаивать не только проводку, потребуется дополнительный ремонт, замена перегоревших предохранителей. Иногда встречается акустика с тремя выходами, но она имеет стандаризированную маркировку и электросхемы, позволяющие соединить с помощью распиновки штатные кабели с устройством. Можно купить любой тип переходника для ИСО разъёмов от одной модели к другой.
Автомобиль может быть не оснащен коннекторами, тогда нужно подключать разъем магнитолы к кабелю напрямую. Это делают скручиванием, пайкой либо применяют клеммную колодку, которая не требует последующей изоляции. При скручивании и пайке используют термоусадочные трубки для безопасного использования оборудования.
Оцените статью:Урок 4 — Источники питания
Источники питания радиолюбительских конструкций
Величина напряжения питания
Каждая электронная схема корректно работает в строго оговоренном диапазоне напряжения источника питания, и эту величину мы обязательно указываем в инструкции.
Например, в инструкции может быть написано так: «напряжение питания: 9…12В».
Если напряжение питания будет менее 9В, то схема может не включиться совсем, либо работать некорректно (тусклое свечение светодиодов, слабый звук и т.п.).
Гораздо более грубая ошибка – превышать напряжение питания. Например, при напряжении питания более 12В отдельные элементы схемы могут перегреваться или даже выйти из строя. Это может произойти через какое-то время (секунды, минуты, часы). В таком случае можно, заметив проблему в виде повышенного нагрева каких-то компонентов, успеть выключить питание и спасти конструкцию от выхода из строя.
Но процесс выхода из строя схемы может произойти и мгновенно после подачи напряжения питания – в таком случае придётся менять вышедшие из строя радиодетали.
Полярность напряжения питания
У любого источника питания, будь то батарея или сетевой блок питания, есть полярность: выводы «+» и «-». Очень часто в электронике вывод «-» называют «общим» проводом схемы, либо проводом «земли». По-английски вывод схемы «минус» иногда обозначают как «GROUND» или «GND». На схеме вывод для подключения плюсового вывода источника питания обозначается явно: «+», либо «+Vcc».
Очень часто в радиотехнике плюсовой вывод источника питания подключается проводом красного цвета, а минусовой – чёрным или синим проводом. Конечно, на качестве работы схемы цвет проводов не сказывается, да и не всегда это правило соблюдается, но знание этого правила может оказаться полезным, а соблюдение его означает высокий уровень радиолюбительской культуры разработчика.
Очень важно соблюдать правильную полярность подключения питания: в случае неправильного подключения полярности схема может не только не заработатЬ, но и моментально выйти из строя.
(Чтобы не запутывать начинающего радиолюбителя, здесь я не рассматриваю двуполярные источники питания со средней точкой – в схемах для начинающих радиолюбителей такое питание практически никогда не используется).
Тип источника питания
Вы можете питать свою конструкцию от батарей, аккумуляторов или сетевого источника питания.
Самые распространённые стандарты (или, как говорится, типоразмеры) батарей: элементы типа «АА» («пальчиковые» элементы питания напряжением 1,5В), «ААА» («мизинчиковые» элементы напряжением 1,5В), батареи типа «Крона» (9В).
Как же быть, если рекомендованное напряжение питания схемы, допустим, 5В?
Питать такую схему от батареи типа «Крона» напряжением 9 Вольт недопустимо – схема может выйти из строя. Но можно соединить несколько элементов напряжением 1,5 В последовательно, при этом напряжение получившейся батареи будет 4х1,5=6В. Как правило, для простых радиолюбительских конструкций такое превышение напряжения от номинального допустимо. Другой вариант: соединить последовательно три батареи и питать схему напряжением 4,5В: но в этом случае схема может либо изначально не заработать, либо по мере разряда батарей начать работать некорректно.
Принцип последовательного соединения батарей показан на рисунке:
Чтобы не паять контакты батарей, отдельные элементы удобно собирать в батарею с помощью так называемых батхолдеров – держателей батарей. На рисунке ниже показан батхолдер на 4 элемента типа «АА». Общее напряжение получившейся батареи – 6В. Держатели батарей можно купить в магазинах радиотоваров, либо заказать по почте в интернет-магазинах «Десси», «ДКО Электронщик» и подобных.
Батарейное (аккумуляторное) питание незаменимо для мобильных устройств.
Но батареи разряжаются, и их приходится заменять, что не всегда удобно и всегда невыгодно. Хорошая альтернатива – аккумуляторы, которые можно периодически заряжать. Аккумулятор стоит в среднем в пять раз дороже батарейки аналогичного типоразмера, кроме того, требуется приобрести зарядное устройство. Однако способность аккумулятора к многократной перезарядке делает такую покупку выгодной.
Но питать электронную конструкцию в домашних условиях от батарей или аккумуляторов – непозволительная роскошь. В таких случаях выгоднее применять сетевые источники питания (другое название – сетевые адаптеры). Вы можете приобрести новый сетевой адаптер, либо использовать уже имеющийся адаптер от ненужной бытовой техники.
Главные параметры адаптера: его номинальное напряжение и ток. Эти параметры указываются на корпусе адаптера. Например, ели на адаптере написано: «12V 0,5A» — это значит, что адаптер выдаёт 12 Вольт с максимальным током до 0,5 Ампер = 500 мА. Встречается другой вариант написания, например: «5V 10W». Это значит, что адаптер имеет выходное напряжение 5В и допустимую мощность нагрузки – 10 Вт, или допустимый ток нагрузки: 10/5=2A.
Адаптер, как правило, имеет на конце провода разъём. В радиолюбительской практике часто удобнее пользоваться двумя проводками – «+» и «-». В таком случае, просто откусите разъём кусачками. Как же определить, какой вывод адаптера – «плюс», а какой – «минус»?
Часто на проводе «+» есть белые метки, но это правило не обязательно всегда выполняется производителем. Проще всего для определения полярности воспользоваться мультиметром, о работе с которым мы поговорим в следующий раз.
Сетевой адаптер можно приобрести в магазинах радиотоваров, либо в интернет-магазинах «ДКО Электронщик», «Десси» и т.п.
Потребляемый ток
Любая электронная схема может быть более или менее «прожорливой». Например, радиоприёмник и фонарик питаются одним и тем же напряжением – 4,5В (от трёх батареек). Но приёмник может работать от батарей несколько суток, а фонарик разряжает эти же батарейки за несколько часов непрерывной работы. Дело в том, что разные электронные конструкции имеют разный ток потребления.
Ток потребления обычно указывается в миллиамперах. Зная ток потребления схемы, мы можем примерно оценить время работы конструкции от комплекта батарей или аккумуляторов.
Например, алкалиновый элемент типа «АА» имеет ёмкость около 1500…3000 мА/ч, алкалиновый элемент типа «АА» — около 1000 мА/ч, батарея типа «Крона» — около 100 мА/ч. Не ищите эти цифры на корпусе батареи: производители не считают нужным их указывать. Знайте только, что алкалиновые элементы питания имеют гораздо большую ёмкость и срок хранения, чем солевые. Поэтому, несмотря на несколько более высокую цену, рекомендую всегда приобретать алкалиновые элементы питания.
Таким образом, от комплекта батарей типа «АА» схема с током потребления100 мА может проработать ориентировочно 2000/100 = 20 часов. Эта же конструкция от батареи типа «Крона» проработает только 100/20 = 5 часов.
Если батарея собрана из нескольких последовательно соединённых элементов питания, ёмкость батареи определяется ёмкостью каждого элемента. Например, ёмкость батареи из десяти последовательно соединённых элементов ёмкостью по 1600 мА/ч каждая будет иметь ёмкость также 1600 мА/ч.
Это очень примерный расчёт. На практике время работы устройства зависит от многих факторов: фирмы-производителя батарей, режимом эксплуатации схемы (непрерывная работа или периодическое включение-выключение), температурой эксплуатации.
Значение тока потребления схемы важно знать и при выборе сетевого адаптера.
Каждый адаптер имеет максимально допустимый ток, который он может выдать в нагрузку. Этот параметр указывается на корпусе адаптера (см. выше).
Если схема потребляет 500 мА (0,5А), а адаптер способен выдавать только 0,3А – адаптер будет перегреваться и может необратимо выйти из строя (если это дешёвый адаптер), либо аварийно отключиться (это касается более качественных адаптеров, имеющих защитные цепи).
Обратная ситуация: если ток адаптера гораздо выше тока потребления схемы – абсолютно допустима и нормальна. Например, если адаптер способен обеспечить ток до 2А, а схема потребляет всего 50 мА (0,05A) – ничего страшного. Схема никогда не «возьмёт» от сетевого адаптер ток больший, чем ей необходимо.
Скачать урок в формате PDF
Что такое земля в электронных схемах?
Когда вы начинаете изучать схемы, вы непременно спросите: «Что такое земля?» в тот или иной момент. Вы действительно собираетесь подключить свою цепь к земле?
Прежде всего: заземление в электронике отличается от заземления в розетках (хотя они иногда подключаются).
Заземление в электронике
Недавно я получил письмо от читателя:
«Символ заземления продолжает появляться в разных точках цепи, и я не мог понять, почему для заземления было выбрано то или иное место.Что такое земля? »
Заземление кое-что означает просто соединение с землей.
А в электронике земля — это просто имя, которое мы даем определенной точке в цепи.
Например, в цепи с одной батареей (с положительной и отрицательной клеммами) мы обычно называем отрицательную клемму заземлением.
А чтобы упростить рисование схемы, мы используем символ.
Символ землиТаким образом, вместо того, чтобы рисовать линии ко всем местам, которые должны быть соединены с минусом, вы вместо этого помещаете туда символ земли.Это делает принципиальную схему намного чище при большом количестве выводов на минус.
Пример схемы с использованием символов заземленияПротекание тока при отображении символа заземления
Чтобы увидеть, как протекает ток на принципиальной схеме с символами заземления, просто соедините все точки с символами заземления. Это то, что вы делаете, когда строите схему.
Схема с использованием обозначений заземления Та же схема без обозначений заземленияЦепи с положительным, отрицательным и заземлением
На некоторых принципиальных схемах вы найдете соединение с положительной клеммой, отрицательной клеммой и клеммой заземления.
Это часто встречается, например, в схемах усилителя:
Итак, как это работает?
В этом сценарии земля является средней точкой между положительной и отрицательной клеммами. Вы можете создать эти три точки напряжения, например, последовательно соединив два источника питания:
Земля при использовании двойного источника питанияПоскольку клемма заземления находится посередине между + 9 В и -9 В, это нормально называть ее нулевым вольт (0 В).
Щелкните здесь, чтобы узнать, что такое отрицательное напряжение.
Что такое заземление в розетках?
Иногда, однако, заземление относится к фактическому соединению с землей. Это тот случай, когда мы говорим о разводке розеток в вашем доме. В этом случае заземление — это фактическое соединение с землей за пределами вашего дома.
Это соединение предназначено для безопасности и часто подключается к корпусу устройства. Идея состоит в том, что если возникает проблема, когда провод под напряжением контактирует с шасси, ток направляется на землю, а не через ваше тело, если вы касаетесь шасси.
В некоторых случаях, например, в усилителях звука, часто заземление сигнала также подключается к шасси и, следовательно, к земле тоже.
Вопросы? Дайте мне услышать их в комментариях ниже!
555 — Что такое сигнальная земля
Давайте рассмотрим эту схему / систему, которая имеет SignalGround длиной 13 футов, идущую от 100-микровольтного возвратного провода кассеты для воспроизведения виниловых пластинок с подвижной катушкой, через 5 ‘коаксиальный кабель, через предусилитель RIAA, через 3’ коаксиального кабеля к 100 ватт усилителя мощности звука, затем через 5 футов возвратного провода динамика к динамику (пиковый пик которого составляет около 100 вольт, что в 1000000 раз больше, чем сигнал датчика).
смоделировать эту схему — Схема создана с помощью CircuitLab
Сигнальная земля проходит на всем пути от датчика MovingCoil, который является крайней левой индуктивностью 1 мкГн (нижний узел этой индуктивности является «землей»), через 5 футов кабеля к J1 JFET, к конденсаторам RIAA (C3 и C4), через остальные малошумящие транзисторы предусилителя RIAA, через КОАКСИАЛЬНЫЙ КАБЕЛЬ на 100-ваттный усилитель мощности звука и, наконец, на ONE, проводов к динамику.
Незаземленный провод динамика будет иметь значительное напряжение сигнала (100 Вт и 8 Ом => ~ 30 вольт RMS или 100 вольт PeakPeak), и электрические поля будут соединяться с ЗЕМЛЕЙ, с этими токами необходимо найти путь домой .
Дизайнер получает возможность РАЗРАБОТАТЬ все эти пути. Это постепенный процесс обучения. А пока начните с просмотра листа меди как земли.
Ток (зарядный или смещающий) через конденсатор равен I = C * dV / dt.
Значение dV / dT для 100 вольт при 60 Гц равно 100 * (60 * 2 * pi) = 100 * 377 = 37,700 вольт в секунду.
Теперь нам нужна «емкость».
Какая емкость между вами и землей через вашу обувь?
Какая емкость между двумя проводами? найдите формулу емкости провод-провод (электрические поля между двумя проводами)
Какая емкость между проводом и пластиной?
После того, как вы зададите эти вопросы и соберете всего несколько (4-5?) Формул, вы сможете выполнить свой собственный анализ паразитных токов, индуцированных электрическим полем.Вы начнете думать об экранировании и будете на пути к разработке схем и систем с высокой точностью (высоким отношением сигнал-шум).
Напряжение— «Земля» против «Земли» против общего против отрицательного вывода
Проблем:
Первый , токи не «исходят» от положительной клеммы. Это очень распространенное заблуждение, которое в школьных учебниках по электричеству называется «последовательной ошибкой». Основная проблема в том, что провода не похожи на пустые трубы.И блок питания их не заполняет. Вместо этого провода уже предварительно заполнены зарядом, так что токи всегда появляются повсюду в цепи, все в одно и то же время. («Ток» означает поток заряда. Когда круг движущихся зарядов начинает течь, «ток» появляется во всем кольце. Это основное правило схемы.)
Другими словами, электрические цепи ведут себя как колеса и ремни. Точно так же металл велосипедной цепи не «исходит» из определенного места на звездочке.Это не «начинается» в какой-то момент. Вместо этого весь круг состоит из цепочки. Кроме того, вся цепочка существовала до того, как появился источник питания. В велосипедных цепях, когда прилагается сила, все крутится. В схемах, когда применяется разность потенциалов , все подвижные заряды внутри кольца (внутри цепи) начинают двигаться как единое целое, как сплошная цепь по полному кругу. Но эти заряды уже были внутри проводов до того, как была подключена какая-либо батарея.Провода похожи на шланги с водой.
Во-вторых, электрический потенциал может существовать только между двумя точками, и одна единственная точка в цепи никогда не «имеет напряжение». Это верно, потому что напряжение немного похоже на высоту: объект не может «иметь высоту», поскольку высоту можно измерить только между двумя точками. Бессмысленно обсуждать высоту, длину или высоту объекта. Высота над чем? Над полом? Над землей вне здания? Высота над центром Земли? У любого объекта одновременно может быть бесконечно много высот!
Voltage имеет точно такую же проблему: одна клемма может «иметь напряжение» только по сравнению с другой клеммой.Напряжение действует как длина: напряжение и длина — это двусторонние измерения. Или, другими словами, один вывод в цепи всегда имеет много разных напряжений одновременно, в зависимости от того, где мы размещаем другой измерительный провод .
Третий , в схемах движущая сила обеспечивается положительными клеммами и отрицательными выводами источника питания, оба одновременно. И, самое главное: в ток проходит через блок питания. Блоки питания — короткие замыкания.Идеальный блок питания действует как резистор с нулевым сопротивлением. Подумайте об этом: в динамо-катушке заряды проходят через катушку и снова выходят обратно. У провода очень низкое сопротивление. То же самое и с батареями: путь тока от до батареи и обратно. Пластины аккумулятора закорочены из-за очень проводящего электролита.
Пример:
- Вот правильное описание фонарика. Обвинения начинаются внутри вольфрамовой нити.Когда переключатель замкнут и цепь замкнута, один конец нити накаливания заряжается положительно, другой отрицательный. Это заставляет собственные заряды нити начать течет. Заряды выходят из нити накала в одну проволоку, в то же время на другой конец нить. Эти заряды поставляются металлическими проводами (и, до включения переключателя все проводники были уже заполнены движимых обвинений.) Продолжая, обвинения, которые были в нить накала потечет в один провод, потихоньку продвигайтесь к батарее (дорога занимает несколько минут или часов), затем течет через батарею и обратно.Они выходят из другой клеммы аккумулятора, текут обратно на другой конец нити, а затем оказываются там, где они начали. «Полная схема». Обвинения подобны приводной ремень, вращающееся колесо или велосипедная цепь. Батарея выдвигает обвинения, но не предъявляет обвинения. Медь а вольфрам поставляет заряды, которые текут в фонарике. схема. Заряды движутся довольно медленно, но поскольку они все начинают двигаться при этом лампочка загорается мгновенно, даже если провода довольно длинные.
Четвертое: любые положительные ионы внутри батареи чрезвычайно подвижны . Они определенно не заблокированы. Если бы они были таковыми, то батареи были бы изоляторами и не работали бы. Некоторые батареи основаны на потоке положительных ионов в одном направлении и отрицательных ионов в другом. Свинцово-кислотные аккумуляторы бывают разные. В кислоте текут только протоны. Кислоты являются проводниками протонов.
Но будьте осторожны: батареи создают дополнительную сложность, которая может помешать объяснению.
Вместо этого замените батарею фонарика на большую катушку и супермагнит. Подключите его к лампочке. Вставьте супермагнит в катушку, и лампочка ненадолго вспыхнет. Откуда взялись обвинения? Как движущийся магнит может создавать заряды? ЭТО НЕ. Динамо-машины и аккумуляторы — это зарядные насосы. Движущийся магнит заставляет собственные заряды проволоки начать движение. (Насос не подает перекачиваемый материал!) Движущийся магнит вызывает ток , потому что он прикладывает ЭМ накачивающую силу к подвижным зарядам, уже находящимся внутри металла.
Плохой проводник. Плохо!
Вот пояснение. Во многих вводных учебниках дается неправильное определение «дирижер»; совершенно неверно и крайне вводит в заблуждение. Они научат вас, что проводники «пропускают заряды» (или что «электричество» проходит, или ток). Нет. Проводники не похожи на полые трубы. Проводники непрозрачны для электричества. Вместо этого «проводник» означает «материал, полный мобильных зарядов». Проводники подобны цистернам, наполненным водой.Они похожи на аквариумы или на предварительно заполненные трубы. Проводники подчиняются закону Ома: всякий раз, когда мы прикладываем разность напряжений к концам провода, поток собственных зарядов проводника зависит от сопротивления провода: I = V / R. Это мобильный заряд провода, который делает поток. Подумайте об этом, вакуум — это изолятор. Как вакуум может блокировать поток зарядов? В вакууме нет необходимости, поскольку в вакууме нет подвижных зарядов. Вот что делает его изолятором,
Все это приводит к важной концепции.Всякий раз, когда мы берем кусок проволоки и соединяем концы вместе, образуя замкнутую петлю, мы создаем «невидимый приводной ремень», петлю с подвижным зарядом внутри неподвижной проволоки. Воткните полюс магнита в металлическую петлю, и все заряды проволоки будут двигаться как один, вращаясь, как маховик. Это бассейн в форме кольца, и если мы надавим на воду, мы сможем заставить всю воду вращаться, как маховик, в то время как сам бассейн останется неподвижным.
FIFTH , токи не в обратном направлении, потому что электрические токи не являются потоками электронов.
В частности, полярность протекающих зарядов зависит от типа проводника. Да, в твердых металлах подвижными зарядами являются электроны. Но существует большое количество проводников, по которым электроны не могут двигаться. Ближайшие из них — это ваш мозг и нервная система: одновременные потоки положительных и отрицательных атомов в противоположных направлениях: движущиеся ионы, без каких-либо потоков электронов. «Электролиты», соленая вода, включая влажную землю и океаны; это не электронные проводники.
Более странный пример: кислоты являются проводящими, потому что они полны положительных ионов водорода + H. Другое название иона + H -… «протон». Когда мы пропускаем через кислоту несколько ампер, ток представляет собой поток протонов. (Хех, если в грязи есть токи заземления, а также грязь скорее кислая, чем соленая, то эти подземные токи — протонные потоки!)
Другими словами, «амперы» могут быть протекающими электронами или протонами, или положительным натрием, проходящим через отрицательный хлорид, идущим в другую сторону.Или быстрые электроны движутся в одну сторону в искре, а медленные ионы азота движутся вперед или назад в зависимости от того, положительно они или отрицательно ионизированы. А в полупроводниках p-типа ток — это поток «вакансий решетки» в кристалле! (Каждая вакансия обнажает избыточный протон кремния, поэтому каждая вакансия несет настоящий положительный заряд. «Дырки» перемещаются за счет переноса электрона, но каждая дырка действительно заряжена положительно.)
При всей вышеупомянутой сложности, как мы можем описать то, что происходит внутри схем? Легко: это уже сделано за нас.Мы прикрываем движущиеся заряды и игнорируем их. Мы игнорируем их скорость потока и их количество. Мы игнорируем их полярность. Вместо этого мы складываем все различные заряды, которые могут быть внутри любого проводника, вычисляем общий расход и называем это «амперами». Ваш проводник заполнен соленой водой из шланга? Оберните вокруг него токоизмерительные клещи и снимите показания в амперах. Плотность ионов не имеет значения. Скорость ионов не имеет значения, и это может быть даже кислотный шланг, полный протонов, вместо шланга с морской водой.Амперы есть амперы.
Ампер также называют «обычным током» или просто «электрическим током».
Очень важно: амперы не являются зарядовыми. У проводника может быть один ампер, но это ничего не говорит нам о зарядах внутри. Может быть несколько быстрых зарядов или много медленных. Могут быть положительные заряды, идущие вперед, или отрицательные, идущие назад, или и то, и другое одновременно (как в случае с человеческими телами, получающими электрический ток постоянного тока). Все это прикрыто, и все, что у нас осталось, — это амперы…ампер условного тока.
Хорошо, вернемся к GND против COM против ЗЕМЛИ.
«Земля» сбивает с толку, потому что это слово почти всегда используется неправильно.
В схемах мы почти всегда выбираем одну клемму источника питания в качестве «общей» и подключаем к ней один вывод вольтметра. Он не заземлен, поэтому нам не следует называть его «землей» (он не подключен к металлическому стержню, вбитому в грязь!). Вместо этого «общий» — это просто традиционная точка для снятия показаний напряжения.Мы никогда явно не объясняем этот факт (это молчаливое соглашение!). Поскольку напряжения — это сложные двусторонние измерения, все упрощается, если мы, , представим , что они несимметричные. Итак, подключите черный провод вольтметра к «общей цепи», а затем проигнорируйте его.
Теперь представьте, что красный щуп на вашем вольтметре действительно может измерять напряжение КОНТАКТА. Но клеммы не могут «иметь напряжение»! Да, именно так. Но мы молча делаем вид, что это так.Любая точка в цепи может иметь напряжение … по отношению к другой точке цепи. Если бы мы говорили о высоте, мы всегда могли бы делать наши измерения относительно уровня моря, затем никогда не упоминать уровень моря, а затем, наконец, притвориться, что объекты и места могут «иметь высоту», хотя на самом деле это невозможно, поскольку высота — это длина, а не место.
Итак, новички в области электроники обычно сбиваются с толку, когда мы обсуждаем «напряжение на клеммах». На самом деле мы имели в виду «напряжение, которое появляется между клеммой a и общим контуром.«Но это слишком много, чтобы повторять все время. Мы молча говорим« напряжение между, напряжение между », в то время как на самом деле говорим« напряжение в этом месте »или в этом другом месте. Затем все новые студенты начинают думать, что один единственный клемма может иметь напряжение, даже если напряжение так не работает.
Отрицательная клемма питания является общей цепью? Да, обычно. Я видел очень старые радиоприемники с транзисторами PNP и отрицательный источник питания с «положительным заземлением».«Положительный полюс аккумулятора — это общий контур. Все измерения на схеме относятся к отрицательному напряжению. За исключением радиоприемников 1950-х годов, то же самое происходит в старых VW Beetles и некоторых мотоциклах. Положительный полюс аккумулятора подключен к шасси, поэтому «клемма питания» — отрицательная. Не устанавливайте обычное автомобильное радио в старый VW, потому что при включении зажигания произойдет короткое замыкание или загорение. Питание было наоборот.
Все, что нам нужно сделать, это избавиться от всех коллекционных японских PNP-транзисторных радиоприемников 1950-х годов, жуков VW и мотоциклов с положительным заземлением, и тогда общая цепь всегда и навсегда будет отрицательной клеммой питания! Ну, если только это не какая-то странная электрически плавающая промышленная сенсорная система со смесью питания переменного тока и схем операционного усилителя с виртуальным заземлением.
Конструкция цепи— несколько разных заземлений на одной схеме
Для детей символы заземления не используются до тех пор, пока не будет понятно, что заземление в электронике означает просто опорное напряжение 0 В по отношению к другим местным напряжениям.
Для электрика «Земля» также означает опорное напряжение 0 В, но с напряжением сети переменного тока может также означать «заземление» с некоторым низким, но на практике никогда не нулевым импедансом. Кроме того, в то же время все источники напряжения никогда не имеют нулевого сопротивления, за исключением теории или идеальных моделей, поскольку все имеет некоторое ненулевое сопротивление, даже провод любой длины!
============
Схемадолжна учитывать стандартные практики предполагаемого читателя с использованием корпоративных, отраслевых, академических или глобальных стандартов, таких как IEEE, IPC, NEMA, IEC и т. Д.
Вы должны понимать, что схемы должны передавать достаточно информации для предполагаемой цели и также называются «логическими схемами».
Может быть логичным упростить схему, чтобы показать, что источники напряжения идеально подходят для простых академических целей или реальных, таких как плавающие заземления, аналоговые заземления, заземления постоянного тока или заземленные заземления переменного тока, или заземление шасси, или радиочастотное заземление, или оптически изолированные земля, поэтому есть много символов земли на выбор. Есть звездообразные или радиально распределенные заземления, заземляющие площадки и плоскости заземления.Все они не идентичны, поэтому могут быть выбраны разные символы в соответствии с вашими намерениями или конкретными потребностями. Например. чтобы указать, что они являются плавающими источниками с ограничением напряжения изоляции или просто плавающими источниками с «источником постоянного тока» и «обратным током» с указанием полярности, например Vdd, Vss или V +, V-.
Но если вы помните схемы как простые «логические диаграммы» для простоты понимания и никогда не отражаете фактические «реальные» импедансы, если это не критично для производительности, то это также должно быть задокументировано с помощью системы или чертежа более высокого уровня. показать взаимосвязи.сюда входят разделительные конденсаторы и примечания по размещению.
Даже инструмент схемы, используемый на этом сайте, имеет 3 разных символа Gnd, но в вашем случае вы хотите указать, что они плавающие, но не имеют контрольных точек, отмеченных для документов.
Я предлагаю всегда проектировать так, чтобы тест был возможен и читался, поэтому включайте метки и контрольные точки.
В вашем случае это простой теоретический академический пример, поэтому мы не знаем целевую аудиторию и цель.может быть приемлемым просто показать метки V +, V- и неиспользуемый символ заземления, чтобы указать, что он плавающий, или ничего не показать.
Например, на схеме IC никогда не будет отображаться символ заземления, если он не используется в тестовой цепи или эталонном проекте оценки, потому что IC является плавающей.
Но в реальных коммерческих схемах можно использовать символы ИЛИ или метки обоих для заземления переменного тока, аналогового заземления постоянного тока, цифрового заземления, радиочастотного заземления и т. Д.
Что такое заземление усилителя и где заземлить усилитель — Мой новый микрофон
При работе с электрическими системами (включая усилители, предусилители и т.п.) понимание электрического заземления имеет решающее значение.
Что такое заземление усилителя и где мы должны заземлить усилитель? Заземление усилителя относится к проводу заземления, который безопасно обеспечивает наименьшее электрическое сопротивление заземлению или заземлению шасси, чтобы свести к минимуму вероятность поражения электрическим током. Усилители обычно заземляются через розетки электросети и / или источники питания. или к шасси автомобиля.
В этой статье мы обсудим электрическое заземление более подробно; его важность для различных усилителей звука и способы подключения усилителей к земле, если они еще не подключены.
Что такое электрическое заземление?
Электрическое заземление в схемотехнике является точкой отсчета, в которой измеряются все напряжения в цепи (обычно устанавливаются на 0 В). Земля действует как общий обратный путь для электрического тока.
Термин «электрическая земля» или другой его термин «электрическая земля» относится к тому факту, что реальная земля / земля обычно идеализируется как бесконечный источник или сток для электрического заряда. Земля в идеальном мире будет поглощать неограниченное количество тока без изменения своего потенциала.
В электронике мы часто ссылаемся на 3 различных электрических «заземления»:
3 наземные символыВсе три «типа» заземления указывают на подключение к [теоретической] точке нулевого напряжения. В действительности, заземление обычно будет иметь переменное (но незначительное) напряжение из-за неизбежного сопротивления обратного пути заземления.
Однако каждый из них относится к электрическому заземлению в разном контексте:
- Сигнальная земля: определяется как опорная точка 0 В (нулевой потенциал) в цепи.
- Заземление шасси: определяется как точка заземления, которая подключается к металлическому шасси электрического устройства.
- Заземление: определяется как путь к «земле», обычно через заземляющее соединение сетевой вилки и электросети.
Давайте углубимся в детали и добавим детали о заземлении усилителя по мере того, как мы это делаем.
Сигнальная земля
Заземление сигнала — это опорная точка, от которой измеряется сигнал.В случае усилителей это аудиосигнал, представляющий собой переменный ток с частотами от 20 Гц до 20 000 Гц (или более). Он также служит точкой отсчета для напряжений источника питания и т.п.
Для аудиоустройств требуется чистое сигнальное заземление, чтобы не наводить шум в сигнале. Многие аудиосигналы имеют низкий уровень напряжения и требуют чистых схем для поддержания высокого отношения сигнал / шум.
Усилителиобычно работают с относительно низковольтными аудиосигналами (особенно на их входах) и относительно высоковольтными источниками питания.Возможно наличие отдельного сигнального заземления для каждой отдельной схемы усилителя, и даже предлагается свести к минимуму индуцированный землей шум в сигнале.
Хотя это может показаться нелогичным, заземление сигнала должно быть в одной точке соединено с заземлением шасси усилителя.
Допустим, некоторые помехи наводятся непосредственно на шасси или косвенно на заземляющем проводе аудиокабеля (который может подключаться к заземлению шасси). Чтобы сохранить связь между сигналом и землей шасси, на самом деле полезно, чтобы земля сигнала колебалась вместе с землей шасси.
Хотя флуктуации не обязательно являются желаемым явлением, они случаются, и усилители должны быть спроектированы так, чтобы эффективно с ними справляться.
Это сигнальное заземление может быть подключено к заземлению через заземление шасси. Систему, в которой сигнальное заземление не подключено к другой цепи или к земле, часто называют плавающей землей или «двойной изоляцией».
Шасси Земля
Заземление шасси — это точка, которая подключается к металлическому корпусу электрического устройства (усилителя).
Заземление корпуса представляет собой общую точку для сигнального заземления и заземления (через заземляющий провод сигнального соединения и подключения к электросети, соответственно). Заземление корпуса полезно для защиты и предотвращения поражения электрическим током.
Заземление шасси усилителя обычно выполняется в одной точке и предотвращает два нежелательных явления:
- Путь обратного тока через доступный, но нежелательный путь
- Ток, циркулирующий через шасси
Ток, протекающий через шасси усилителя (или другого аудиоустройства), может и чаще всего вызывает замыкание на землю.Поэтому лучше всего заземлять корпус только в одной точке.
Контуры заземления — это ужасный гул 60 Гц (или 50 Гц, в зависимости от географического расположения электросети). Это вызвано наличием двух или более разных потенциалов заземления, подключенных к шасси, что заставляет ток течь и индуцироваться в шасси и аудиоустройстве.
Обратите внимание, что на самом деле два отдельных заземления редко имеют одинаковый электрический потенциал.
Поскольку шасси также может подключаться к сигнальной земле на аудиоразъемах, оно может дополнительно добавлять нежелательные электромагнитные помехи во входные и / или выходные сигналы усилителя.
Контур заземления более подробно обсуждается в моей статье «Причины гудения и шипения динамика» (как устранить и то, и другое).
Земля Земля
Заземление — это более или менее мера предосторожности. Для усилителей предусмотренный обратный путь заземления будет обеспечиваться от заземляющего провода источника питания усилителя (на трехконтактном силовом разъеме).
Это заземление обеспечивает безопасный путь для любого паразитного тока, идущего на землю (а не через тело человека, например, когда человек касается оголенной части силовых (или звуковых) цепей).
Любой потенциально опасный / смертельный ток будет безопасно рассеиваться на землю и, как мы надеемся, сработает предохранитель, чтобы выключить оборудование, чтобы избежать любого повреждения.
Заземление особенно важно, когда для работы цепи требуется высокое напряжение.Это часто имеет место с усилителями, даже если сами аудиосигналы имеют относительно низкое напряжение.
Обзор
Заземление сигнала является опорной точкой (обычно 0 вольт) для аудиосигнала в цепи / соединении усилителя, по которому передаются аудиосигналы.
Заземление шасси — это точка, которая соединяется с металлическим корпусом электрического устройства (усилителя) и представляет собой общую точку для заземления сигнала и заземления. Это помогает с защитой и предотвращением поражения электрическим током.
Это заземление обеспечивает безопасный путь к земле для любого паразитного тока.
Почему усилители должны быть заземлены
Чтобы продолжить по пунктам, перечисленным выше, давайте обсудим, почему аудиоусилитель должен быть заземлен?
Во-первых, из соображений безопасности необходимо заземлить усилитель. Что еще более важно, усилитель должен быть подключен к тому же потенциалу земли, что и все остальное аудиооборудование в системе.
Правильно заземляя усилитель (и другое звуковое оборудование) на тот же потенциал земли, мы обеспечиваем безопасный путь для прохождения любого паразитного тока.Это должно быть основным соображением безопасности при настройке студий и систем громкой связи. Подробнее об этом в разделе «Заземление усилителя гитары / баса».
Плохая проводка и заземление могут привести к травмам, если кто-то прикоснется к цепям усилителя и фактически станет кратчайшим путем к заземлению. Неправильное заземление также может привести к неисправности и повреждению усилителя и подключенных к нему аудиоустройств.
Обратите внимание, что опасность усилителя заключается не столько в продукте звукового сигнала переменного тока, который имеет относительно низкое напряжение.Скорее, риск исходит от источника питания и схемы питания, которая питает усилитель более высоким напряжением.
Связывание всей системы с одним потенциалом земли также помогает устранить (или, по крайней мере, уменьшить) гул контура заземления, который проявляется в аудиосистемах как ужасный гул с 50 или 60 циклами.
Аудиосхемы усилителя должны быть заземлены на землю с нулевым потенциалом для дальнейшего снижения шума в сигнале. Это особенно важно для усилителей, поскольку они предназначены для усиления сигнала и любых шумов в сигнале.
Обратите внимание, что для получения оптимальных результатов рекомендуется сбалансированная передача сигнала. Все симметричные сигналы работают с сигнальной землей. Подробнее о симметричных сигналах читайте в разделе «Примечание о симметричных аудиоподключениях».
Усилителитакже должны иметь заземление шасси для подключения к сигнальному и заземляющему заземлению в одной точке.
Заземление шасси полезно для экранирования аудиосигнала усилителя и предотвращения поражения электрическим током. Это также помогает предотвратить протекание тока в нежелательное место, дополнительно повышая безопасность усилителя.
Заземление автомобильного усилителя мощности
Автомобильные усилители следует заземлять с помощью одного провода, который соединяет шасси усилителя с оголенным металлическим участком кузова автомобиля.
Общее практическое правило — делать это соединение с кузовом автомобиля на расстоянии менее 18 дюймов от места расположения усилителя.
Место общего заземления — у любого болта, соединенного с металлическим шасси автомобиля. Точно так же стойка стойки в багажнике автомобиля является полезным местом подключения, если усилитель расположен в багажнике.
Убедитесь, что заземляющий провод касается голого металла, а не ржавчины. Для удержания заземляющего провода может потребоваться клей. Просто убедитесь, что клей не отделяет провод от металлического шасси автомобиля.
Заземление усилителя мощности живого звука
При заземлении усилителя мощности живого звука лучше всего подключать его к тому же источнику питания (розетка или кондиционер), что и микшер.
Использование усилителя мощности в системе PA обычно означает, что динамики и микшер пассивны.Это означает, что динамики не нужно будет подключать к розеткам (что устраняет необходимость в нескольких подключениях к возможным соединениям с различным потенциалом заземления в системе).
Смесителю по-прежнему потребуется источник питания для своих предусилителей и активной схемы. Следовательно, подключение усилителя мощности и микшера к одному источнику питания (с одинаковым потенциалом заземления) уменьшит любой фоновый шум и возможность поражения электрическим током.
Обратите внимание, что заземление шасси усилителя должно быть подключено к заземлению шасси микшера.
Инструменты, если они активны, которые подключаются к микшеру, также должны быть заземлены, даже если достижение того же источника питания (потенциал земли), что и усилитель и микшер, маловероятно.
Заземление домашнего / студийного усилителя мощности
Во избежание возможного гудения контура заземления и опасности поражения электрическим током домашний / студийный усилитель мощности должен быть подключен к той же розетке, что и микшер и / или другое устройство источника звука.
Опять же, это помогает снизить риск поражения электрическим током, а также снижает вероятность гудения в подключенных динамиках.
Заземление усилителя гитары / баса
Правильное заземление невероятно важно при одновременной игре через гитарный усилитель и другие аудиосистемы.
Существует бесчисленное количество случаев, когда гитаристы были потрясены, по-видимому, от прикосновения к микрофону, когда они играли через свой усилитель.
По сути, некоторая часть оборудования в общей системе заземлена на другой потенциал, чем другое.
Допустим, активный микшер, который принимает сигнал микрофона, усиливает этот сигнал и отправляет его на динамик PA, заземлен с определенным потенциалом (розетка A).
Гитара подключена к гитарному усилителю, который либо не заземлен, либо заземлен с другим потенциалом (розетка B).
Во время игры гитарист может дотронуться до микрофона (или даже приблизиться к нему). Это может привести к образованию цепи, когда электричество системы будет проходить через исполнителя на землю, что приведет к поражению электрическим током или к чему-то еще худшему.
Важно, чтобы все оборудование было заземлено, а обеспечение равного заземления (различных розеток) еще более важно для безопасности исполнителей.
Для получения дополнительной информации по этой теме ознакомьтесь с моей статьей Почему я получаю поражение электрическим током при прикосновении к микрофону?
Предусилители заземления
Предварительные усилителитоже должны быть заземлены.
Шасси предусилителяследует подключить к сигнальной земле подключенного аудиокабеля. Они также должны быть заземлены на выходное соединение.
Чтобы правильно заземлить предусилитель на землю, убедитесь, что он подключен к соответствующему источнику питания, и убедитесь, что источник питания подключен к розетке, которая является общей для другого аудиооборудования в аудиосистеме.
Примечание о сбалансированных аудиоподключениях
Следует отметить, что аудиоподключения (входы и выходы) усилителя также могут быть «заземлены».
Сбалансированная передача звука / соединения имеют два сигнальных провода (положительной и отрицательной полярности) и общий провод заземления.
Как работают симметричные соединения? Давайте взглянем на несколько диаграмм, чтобы лучше понять.
Во-первых, сбалансированный звук обычно передается через кабели XLR (хотя его также можно передавать через TRS и другие соединения).Давайте посмотрим на простую схему разъема XLR с его контактами.
Штекерные и женские контакты XLR- Контакт 1: Заземление
- Контакт 2: + сигнал (положительная полярность)
- Контакт 3: — сигнал (отрицательная полярность)
Контакт 1 симметричного соединения XLR (рукав TRS-соединения) ) обеспечивает общее заземление для сигнальных проводников (контакты 2 и 3 или наконечник и гильза TRS). Этот заземляющий провод также будет экранировать кабель, помогая уменьшить шум и помехи, а также подключаться к заземляющему шасси источника и / или входа.
Вход симметричного соединения обычно заземлен и имеет дифференциальный усилитель, который суммирует различия между двумя сигнальными проводниками.
Сбалансированное аудио соединениеПоскольку различия суммируются, общий шум / помеха на обоих сигнальных проводах нейтрализуется. Это подавление известно как подавление синфазного сигнала, которое обычно измеряется в децибелах и указывается в спецификациях как CMRR (коэффициент подавления синфазного сигнала).
Чтобы узнать больше о сбалансированных аудиоподключениях, ознакомьтесь с моей статьей «Микрофоны выводят сбалансированный или несбалансированный звук?»
Может ли усилитель разрядить аккумулятор вашего автомобиля? Автомобильные усилители подключаются к автомобильному аккумулятору и получают питание от него.Правильная проводка и соответствие номинальной мощности сохранят вещи в безопасности, а генератор переменного тока обеспечит бесперебойную работу. Неправильная проводка и согласование могут привести к полной разрядке аккумулятора усилителем.
Как выбрать усилитель для колонок? При выборе / согласовании усилителя и динамиков полезно провести исследование. Следует учитывать несколько важных характеристик:
- Сравните номинальное сопротивление динамика с * номинальным выходным сопротивлением усилителя.Громкоговорители с более низким импедансом сложнее управлять (более энергоемкие и более низкие коэффициенты демпфирования), поэтому ищите усилитель с достаточно низким * номинальным выходным импедансом.
- Сравните характеристики управляемой мощности динамика и характеристики выходной мощности усилителя, чтобы убедиться, что усилитель достаточно мощный, чтобы управлять динамиками. Можно использовать усилители со слишком большой мощностью, но их следует поддерживать на более низком уровне, чтобы не повредить динамик и / или сам усилитель.
- Посмотрите на рейтинг чувствительности динамика и определите, сколько мощности требуется для достижения желаемых уровней звукового давления при прослушивании.
* Номинальное выходное сопротивление усилителя не является его фактическим выходным сопротивлением (которое намного ниже). Номинальный выходной импеданс просто позволяет нам лучше сравнивать и согласовывать импедансы между усилителем и динамиком.
Для получения дополнительной информации об импедансе динамиков, мощности и чувствительности ознакомьтесь со следующими статьями My New Microphone соответственно:
• Полное руководство по импедансу динамика (4 Ом, 8 Ом, 16 Ом и др.)
• Полное руководство по управлению мощностью динамика и Номинальная мощность
• Полное руководство по рейтингам чувствительности и эффективности громкоговорителей
при разделении земель | Analog Devices
ВОПРОС:
Куда подключить заземление импульсных регуляторов?
Ответ:
Что делать с импульсным стабилизатором с аналоговым заземлением (AGND) и заземлением питания (PGND)? Этот вопрос задают многие разработчики, проектирующие импульсный источник питания.Некоторые разработчики привыкли иметь дело с цифровым заземлением и аналоговым заземлением; однако их опыт часто подводит их, когда дело касается питания GND. Затем дизайнеры часто копируют макет платы для выбранного импульсного регулятора и перестают думать о проблеме.
PGND — это заземление, по которому протекают более высокие импульсные токи. В зависимости от топологии импульсного регулятора это означает токи через силовой транзистор или импульсные токи каскада силового драйвера.Это особенно актуально в случае переключения контроллеров, например, с внешними выключателями питания.
AGND, иногда называемое SGND (сигнальная земля), представляет собой соединение с землей, которое другие, обычно очень спокойные, сигналы используют в качестве опорной. Сюда входит внутренний источник опорного напряжения, необходимый для регулирования выходного напряжения. Напряжения плавного пуска и включения также относятся к соединению AGND.
Существуют две разные технические концепции и, следовательно, разные мнения экспертов относительно обращения с этими двумя заземляющими соединениями.
Согласно одной философии, соединения AGND и PGND на ИС импульсного регулятора должны быть соединены друг с другом рядом с соответствующими контактами. Это сохраняет смещение напряжения между двумя выводами относительно низким. Таким образом, можно защитить ИС импульсного регулятора от помех и даже разрушения. Все заземляющие соединения схемы и возможная заземляющая пластина будут связаны с этой общей точкой в звездообразной топологии. На рисунке 1 показан пример реализации этой философии.Схема платы LTM4600 показана здесь. Это понижающий микромодуль на 10 А. Отдельные соединения заземления на плате соединяются рядом друг с другом (см. Синий овал на Рисунке 1). Из-за паразитной индуктивности соответствующих соединительных проводов между кремнием и корпусом, а также индуктивностей соответствующих контактов уже существует определенная степень развязки PGND и AGND, что приводит к низкому уровню взаимных помех между цепями. на кремнии.
Фигура 1.Локальное подключение PGND и AGND прямо на паяных контактах.Другая философия предполагает дополнительное разделение AGND и PGND на плате на две отдельные плоскости заземления, соединенные друг с другом в одной точке. Благодаря этому соединению мешающие сигналы (смещение напряжения) остаются в основном в области PGND, в то время как напряжение в области AGND остается очень спокойным и очень хорошо развязано с PGND. Однако недостатком является то, что в зависимости от переходных процессов в импульсных токах и их сил может быть значительное смещение напряжения между PGND и AGND на соответствующих выводах.Это может привести к неправильному функционированию или даже повреждению микросхемы импульсного регулятора. На рисунке 2 показана реализация этой философии. Это исходит от ADP2386, понижающего импульсного стабилизатора на 6 А.
Рисунок 2. Разделенные AGND и PGND, подключенные на вкладке GND переходными отверстиями.Вопрос о заземлении сводится к компромиссу между сильным разделением с преимуществом разделения шума и помех и риском возникновения сдвигов напряжения между двумя заземлениями и, таким образом, причинения вреда кремнию и нарушения функциональности.Правильное решение, которое следует принять в отношении этого компромисса, в значительной степени основано на конструкции ИС, включая скорость переключения, уровни мощности, паразитные индуктивности на соединительных проводах и корпусе ИС, а также риск защелкивания каждой конструкции ИС с участием отдельного человека. полупроводниковый процесс.
Заключение
Ответ на вопрос, как бороться с основаниями AGND и PGND, не так прост. Поэтому обсуждение продолжается. Вначале я упомянул, что многие пользователи импульсных регуляторов перенимают компоновку платы и тип заземления из примера схемы, предоставленной производителем ИС.Эта процедура полезна, потому что обычно можно предположить, что производитель также тестировал соответствующую ИС в этой конфигурации. В примерах, приведенных на рис. 1 и 2, также можно увидеть, что соответствующая распиновка IC подходит для местного заземления рядом с PGND и AGND или для отдельного заземления.
Конечно, производитель ИС может совершить ошибки при разработке примерных схем. Вот почему хорошо получить дополнительную информацию о лежащих в основе философии.
Введение в принципиальные схемы | Набор для приготовления лука Omega2
Введение в электрические схемы
Почти во всех наших экспериментах будет использоваться принципиальная схема, чтобы точно выразить схему, которая будет построена. Также называемые схемами или принципиальными схемами, мы используем их как дополнительный способ убедиться, что мы на правильном пути. Кроме того, научиться их читать — очень полезный навык для всех видов электрических проектов в будущем!
Эта статья предназначена для использования в качестве справочника при чтении принципиальных схем. Поместите ее где-нибудь в закладки, если вы думаете, что еще вернетесь!
Общая структура
Обычно принципиальные схемы выглядят примерно так:
Это схема из одного из наших экспериментов, и она соответствует сути принципиальной схемы: линии, соединяющие символы.
На принципиальной схеме любые прямые линии означают электрическое соединение между вещами — неважно, через перемычку, провод или большую металлическую пластину, пока может течь электричество. Различные символы обозначают компоненты, которые соединяются проводами. Ниже мы подробно рассмотрим значение каждого символа.
Светоизлучающий диод
Светодиод — это компонент, который загорается при включении.
Каждый светодиод имеет две клеммы, обозначенные символом как плоский и заостренный концы треугольника.Это потому, что светодиод полярный, и направление, в котором он ориентирован, имеет значение. Плоский конец — это «анод» (+), а заостренный конец — «катод» (-), треугольник всегда должен указывать на землю, где бы он ни находился.
Резистор
Резистор — это элемент схемы, преобразующий электрическую энергию в тепло.
У резисторовдве неполярные клеммы, поэтому ориентация не имеет значения. Сопротивление на выводах резистора всегда находится в пределах некоторого процента от указанного значения.Сопротивление — это мера способности резистора преобразовывать электрическую энергию в тепло. Единица измерения — Ом (Ом). Чем больше Ом, тем больше энергии будет откачивать резистор. Ом — это единица СИ, поэтому префикс «k» (для килограммов) используется для чисел больше 1000.
1000 Ом = 1 кОм
Конденсатор
Конденсатор — это компонент, который блокирует быстрые изменения напряжения, но передает постоянное напряжение.
Конденсаторы в нашем комплекте имеют две неполярные клеммы.Они используются, когда нам нужно сгладить места, где напряжение может быстро меняться. Способность конденсатора сглаживать напряжения называется его емкостью и измеряется в фарадах (Ф). К сожалению, фарады плохо масштабируются — 1F — это огромная емкость. В этих экспериментах мы будем работать с 0,0000001 фарад или 100 нанофарад (нФ).
Вне наших экспериментов конденсаторы были обнаружены в схемах фильтрации, гарантирующих, что сигналы отправляются правильно, без дребезга.
Источник питания
Источник питания — движущая сила в любой цепи, которую мы создаем.
Блок питания делает то, что он назван — обеспечивает питание для наших цепей. Если мы моделируем электричество как водопад, ток — это количество протекающей воды, а напряжение — это высота водопада. Источник питания является источником как потока, так и высоты. На большинстве схем источник питания представляет собой «одиночный» вывод, однако его другой вывод фактически является выводом заземления — точно так же, как водопадам требуется заземление, чтобы указывать на их высоту.
Земля
Земля — это точка с наименьшей энергией в нашей цепи, весь ток будет стремиться течь к земле.
Заземление — это символ единственной клеммы, обычно обозначающий вывод GND на док-станции. В схемах, которые мы будем строить, мы также будем хорошо использовать направляющие для макетных плат для подключения многих устройств к одной и той же земле.
Кнопочный переключатель
Кнопочный переключатель представляет собой однополюсный однонаправленный переключатель с четырьмя контактами, переключающими один вход на один выход.
Кнопочный переключатель имеет четыре клеммы, подключенные к каждой стороне переключателя попарно.Каждая пара соединена друг с другом, поэтому переключатель закрывает единственный разрыв в цепи. «Однополюсный» относится к одиночному выходу, подключенному к двум контактам, а «однополюсный» относится к одиночному входу, подключенному к другой паре контактов.
Переключатель — однополюсный, двусторонний
Однополюсный двухпозиционный переключатель — это переключатель с двумя входами, которые переключаются на один выход.
Коммутатор имеет три клеммы, по одной для каждого из входов (обозначены L1
, L2
) и по одной для выхода (здесь обозначены COM
).Входы никогда не будут подключены, и один вход всегда подключен исключительно к выходу. Этот тип переключателя полезен для логических схем, потому что один вход может ссылаться на логический HIGH
, а другой логический LOW
без неоднозначности разомкнутой цепи.
«Однополюсный» в SPDT относится к единственному выходу, в то время как «двойной ход» относится к двум эксклюзивным входам.
Интегрированный чип (IC)
Интегральная схема (ИС) — это небольшая схема, построенная как модульный компонент более крупных схем, с выводами и входами в зависимости от расположения схемы внутри.
Интегральная схема может иметь много клемм. В наших экспериментах с использованием микросхем мы более подробно рассмотрим назначение микросхемы и доступные входы и выходы.
Заголовки расширения
Этот символ используется для обозначения GPIO или другого вывода на док-станции Omega.
Во время наших экспериментов мы подключим к Omega множество цепей. Этот символ обозначает конкретный вывод, к которому должны подключаться части схемы.
Устройства
Этот символ используется для обозначения контактов на таких устройствах, как клавиатура и семисегментный дисплей, которые не имеют «официальных» символов, но все же требуют подключения к ним и от них.
Эти контакты всегда будут обозначены устройством, которое они представляют. Сами штырьки могут не располагаться в том же положении, что и контакты устройства, но все контакты будут присутствовать.
Серводвигатель
Сервопривод — это двигатель, который управляется для обеспечения точного и повторяемого движения
Сервоприводы обычно имеют три клеммы — линию питания ( Vcc
), вход сигнала ( SIG
) и соединение с землей ( GND
).Эти клеммы обычно объединены в один выходной кабель, заканчивающийся тремя перемычками-перемычками. Принимаемые сигналы обычно представляют собой сигнал с широтно-импульсной модуляцией (ШИМ) 50 Гц.