Закрыть

Характеристика светодиодов: Светодиоды: классификация, назначение, основные характеристики

Содержание

Характеристики светодиодов: обзор основных параметров LED

Экономически оправданной альтернативы LED-источникам пока не изобрели, что прогнозирует повальный переход на этот тип освещения уже в ближайшие годы. Но для корректного использования этих источников необходимо разбираться в их основных характеристиках.

При классификации светодиодных источников света используются параметры, разработанные исключительно для данных типов осветительных приборов. Данная статья как раз и предназначена для ознакомления с особенностями, которые отличают характеристики светодиодов от традиционных источников света.

Сила и напряжение, потребляемого светодиодом тока

Почти все светоизлучающие диоды рассчитаны на стандартную силу тока 20 мА. При вычислении сопротивления светодиода по закону Ома используется именно эта величина.

Светодиод, как собственно и любой диод, способен пропускать ток только в одну сторону, для стабильной работы он должен быть постоянным. Источником питания для LED источников света является дроссель, который выдает необходимые характеристики потребляемого тока. Светодиодный кристалл рассчитан на напряжение, колеблющееся от 0,5 до 6 вольт.

На одной подложке может быть размещено несколько LED кристаллов. Сумма показателей напряжения всех кристаллов составит требуемый показатель для такого источника света.

Следует заметить, что в электрофизических значениях светодиодов существует допустимый разброс вольт амперной характеристики (ВАХ), это обусловлено технологией производства. Невозможно вырастить кристаллы с жестко ограниченными показателями. Подгон показателей производится методом калибровки.

Монтаж следует проводить в соответствии с обозначенной полярностью. При неправильном включении светодиод закроется, и работать не будет. Если напряжение превысит предел в 5 вольт, произойдет пробой, что приведет к порче изделия.

Для правильного подключения катод на DIP светодиодах обозначается более короткой ногой, на SMD это будет спил на подложке возле соответствующего контакта.

Интенсивность светового потока, угол рассеивания

Данная характеристика очень важна в освещении, особенно в помещениях. Интенсивность светового потока измеряется в Люменах (Лм). Для сравнения, обычная лампа накаливания в 100 Вт выдает показатель 1000 Лм. Для простого расчета напряжения лед-источника, который заменит лампу накаливания, необходимо вольтаж классики разделить на 8. Примером, лампе в 100 Вт будет соответствовать светодиод мощностью 12 – 12.5 Вт.

Важно осознавать, что рассматриваемый источник имеет одностороннее направление освещения, в то время как обычная лампа накаливания рассеивает свет во все стороны. Светодиоды имеют точечную направленность. Для увеличения угла рассеивания в конструкции применяются специальные линзы. Угол рассеивания колеблется в пределах 20 — 120˚.

Соотношение параметров эффективности разных источников света, приведенных для сравнения:

  1. Лампа накаливания – 10 Лм/Вт.
  2. Люминесцентная лампа – до 40 Лм/Вт.
  3. Светодиод – до 140 Лм/Вт.

Размер кристалла

В общих характеристиках светоизлучающих диодов можно встретить значение размера кристалла. Эта величина измеряется в Милах (mil), 1 mil соответствует 0,0254 мм. Стандартные размеры квадрата кристалла 24×24, 24×40, 35×35 и 40×40 mil. Считается, чем больше его площадь, тем больше потребляемая мощность, при этом снижается нагрев при работе и увеличивается предел перегрузки. Для сравнения размеры 40×40mil соответствуют 1,143 × 1,143 мм и потребляют около 1 Вт.

Естественно, большое значение имеет материал для изготовления и условия, при которых кристалл выращивался. Также значение имеет качество калибровки. Это к тому, что себе дешевле приобретать светодиоды известных брендов, показатели многих китайских лед источников света завышены.

Недобросовестные продавцы зачастую заявляют повышенную мощность. Обратив внимание на размеры кристалла, можно предостеречь себя от приобретения подделки.

CRI (индекс цветопередачи)

Для более ясного понимания этой характеристики, целесообразно ознакомиться с принципами восприятия цветов человеческим глазом. Белый свет включает в себя весь спектр. Попадая на окружающие нас предметы, отражается только та часть спектра, которая соответствует цвету предмета. Естественно, источник с искаженным спектром будет искажать человеческое цветовосприятие.

Для определения степени достоверности передачи цветов при освещении искусственным источником был разработан индекс цветопередачи (CRI). Степени значений индекса цветопередачи расположены в границах 0 – 100. Показатель 100 соответствует солнечному свету и является сравнительным эталоном.

Полноценный индекс CRI, при котором искажение будет минимальным, не должен быть ниже значения 90.

Цветовые характеристики

Свет имеет волновую природу, длина излучаемой волны определяет цвет и измеряется в нанометрах (нм). Человеческий глаз способен воспринимать диапазон от 380 до 760 нм, что соответствует видимому спектру.

Таблица цветовых характеристик

Примечательно, что человеческий глаз имеет наибольшую чувствительность при показателе 555 нм, следовательно, источник с таким параметром будет иметь наибольшую степень освещенности.

Цветовая температура

Данная характеристика выведена по аналогии цветовосприятия разогреваемого металла. Численные пределы размещены в рамках от 800 до 7500 и измеряются в Кельвинах (К). Наиболее низким показателем обладает красный свет – около 800 К, соответственно, наиболее высокий – у холодного синего.

Для освещения применяется белый свет. Цветные светодиоды в основном используются в декоративных и индикационных целях. Белый цвет по критериям цветовой температуры разделяется на три подкатегории:

  1. Теплый – 2700 – 3500 К.
  2. Нейтральный – 3500 – 5300 К (наиболее сбалансированный для восприятия).
  3. Холодный – 5300 – 7500 К.

Максимальная рабочая температура

Рабочая температура — одна из важнейших характеристик светодиода. При работе выделяется большое количество тепла, переизбыток которого может привести для начала к падению интенсивности светоизлучения, а в дальнейшем и к полной порче светодиода. Некоторые сверхяркие кристаллы способны разогреваться до температуры 150˚ С.

Производители ввели понятие «максимальная рабочая температура» для определения пределов температурного режима, в котором работа лед источника будет оптимальной. Значение допустимой температуры обозначаются в общих паспортных данных.

Для борьбы с избыточной температурой применяются алюминиевые и медные термоотводящие радиаторы. Маломощные SMD светодиоды монтируются на плату (подложку), которая также выступает и в роли охладителя. Для улучшенной теплоотдачи место соединения светодиода и радиатора смазывается термопастой.

Срок эксплуатации

Этот параметр указывает на предполагаемую продолжительность работы LED кристалла. Индикационные светодиоды имеют продолжительность работы до 100 000 часов. Для сверхярких источников этот показатель составляет максимум 60 000 часов. Производители из Поднебесной зачастую завышают и этот показатель.

Для продления срока эксплуатации необходимо соблюдать температурный режим работы лед светильника. Другими словами, чем эффективней охлаждение, тем дольше живет источник.

Для наглядного ознакомления рекомендуется посмотреть видео. Автор видео всего за несколько минут лаконично описывает основные параметры и характеристики, которые действительно важны при выборе светодиодов.

Вывод

При выборе светодиодов желательно отдавать предпочтение маркам, зарекомендовавших себя брендов. Стоимость данных источников света значительно выше традиционных, следовательно, срок окупаемости тоже увеличен. Позарившись на дешевое изделие с плохими характеристиками, можно просто выбросить деньги на ветер и, напротив, светодиодные изделия от проверенных производителей обычно отрабатывают заявленный срок. Более того, при приобретении брендовых осветительных приборов на основе LED, как правило, предоставляется гарантия.

Характеристики светодиодов

Рынок предлагает большое количество самых разных светодиодов по самой разной стоимости. Разобраться в этом многообразии и выбрать именно то, что нужно поможет понимание характеристик светодиодов.

Первое, на что нужно обратить внимание, это производитель светодиода. Вернее, важно не столько конкретное название производителя, сколько сама возможность его идентифицировать. Смысл в том, что если у светодиода есть конкретный производитель, то к остальным заявленным его характеристикам появляется какое-то доверие, которое тем больше, чем известней и именитей этот производитель есть. В противном случае, практически всегда заявленные характеристики окажутся завышенными, а сама покупка превращается в своего рода лотерею. Особая внимательность требуется, когда нужна серия светодиодов, которые будут работать вместе. Чем менее известен производитель таких светодиодов, тем более вероятность того, что светодиоды даже вроде бы из одной партии будут иметь разные оттенки, яркость и надежность свечения.

Пример плохой светодиодной ленты — светодиоды имеют разную температуру свечения

Следующая важная характеристика светодиодов это цвет для цветных или цветовая температура для белых светодиодов. На данный момент производятся светодиоды от ультрафиолетовых до инфракрасных. Каждый конкретный цветной светодиод излучает свет в узком спектральном диапазоне – 5-10 нм.

Соответствие излучаемой длины волны к цвету светодиода

Конкретная длина волны может быть важна при выборе светодиодов для растений или аквариума. Встречаются также трехцветные RGB-светодиоды, которые представляют собой фактически три светодиода – красный, синий, зеленый – размещенные на одной подложке. Обычно они имеют общий анод или катод. Также должна указываться длина волны каждого цвета. Бывают двухцветные (например, красный и зеленый) светодиоды. Это, как правило, индикаторные светодиоды совсем небольшой мощности.

RGB-светодиод

Белые светодиоды излучают свет широкого спектра и различаются оттенками – цветовой температурой – от теплой белой до холодной. Цветовая температура измеряется в кельвинах и должна указываться в характеристиках конкретного светодиода.

Цветовая температура — диаграмма

Ведущие производители, например, CREE, приводят в технической документации спектральные характеристики своих белых светодиодов. В каких-то случаях это может быть очень важно. Более подробно об источниках света производства этой компании читайте в статье «Светодиоды CREE».

Спектр белого светодиода на примере CREE MT-G2

Визуально – чем теплее белый свет, тем он желтее. Чем холоднее – тем синее.

Визуальные различия свечения разной температуры

Следующие связанные параметры светодиода – это его максимальный рабочий ток, падение напряжения и их произведение – максимальная потребляемая мощность светодиода. Потребляемая мощность во многом определяет область применения светодиода – десятые доли ватта (рабочий ток до 50мА) для индикаторных светодиодов и до десятков ватт для мощных осветительных светодиодов. Индикаторные светодиоды не требуют дополнительного охлаждения, могут иметь разные размеры и варианты исполнения для выводного или поверхностного монтажа.

Индикаторные светодиоды разных размеров

Достаточно распространены осветительные светодиоды для поверхностного монтажа малой и средней мощности. Такие светодиоды имеют размеры до 5х6 мм и рассчитаны на рабочий ток до 50мА. Монтируя линейки из нескольких таких светодиодов можно получить достаточно мощные источники света. Также часто такие светодиоды продаются в виде готовых осветительных лент.

SMD-светодиоды собранные на ленте

Мощные светодиоды в процессе работы на максимальных токах выделяют большое количество тепла и это, безусловно, необходимо учитывать при проектировании готового устройства. Обычно такие светодиоды припаиваются к алюминиевой подложке, которая, в свою очередь, крепится к радиатору.

Мощный светодиод на алюминиевой подложке — «звездочке»

Хороший теплоотвод очень важен, поскольку при перегреве снижается эффективность работы светодиода, значительно ускоряется деградация кристалла и, соответственно, уменьшается срок его службы. Опять же, если теплоотвода будет совсем недостаточно, то светодиод в итоге банально сгорит.

Мощность светодиода также определяет способ его питания. Для маломощных индикаторных светодиодов можно обойтись ограничивающими ток резисторами. Мощные светодиоды требуют более внимательного подхода и здесь уже не обойтись без подходящих по мощности драйверов.

Совсем не рекомендуется превышать максимальный рабочий ток светодиода – может произойти пробой и светодиод необратимо разрушится. Вообще, если рассчитывать на долговременную эксплуатацию, то реальный рабочий ток не должен превышать 70-75% от максимально допустимого. Безусловно, при достаточно эффективной системе теплоотвода.

Следующая важная характеристика светодиодов – это величина светового потока, излучаемого светодиодом. Световой поток измеряется в люменах на ватт мощности и определяется энергоэффективностью светодиода (подробнее – в статье «Энергоэффективность светодиодов»). Световой поток и освещенность связаны с физиологическими человеческими особенностями. Человеческий глаз наиболее чувствителен к желто-зеленому свету с длиной волны 555нм. Поэтому понятия энергоэффективности и величины светового потока фактически могут быть отнесены только к белым светодиодам. Более того, в силу различия излучаемого спектра, белые светодиоды с холодной цветовой температурой будут более эффективны, чем светодиоды с теплым белым светом. Сегодня лидером по энергоэффективности является компания CREE. Серийно производимые ими светодиоды на сегодня имеют эффективность до 200 люменов на ватт мощности. И эта цифра постоянно растет.

Для практического применения светодиодов также важен такой их параметр как угол распространения света. Плоский кристалл светодиода излучает свет узким пучком, что не всегда удобно. Для расширения светового пучка используются те или иные оптические системы. Обычно это небольшие рефлекторы и линзы, устанавливаемые на светодиод.

Оптические системы на индикаторных и мощных светодиодах

Тем не менее, мощность излучения существенно падает по мере увеличения угла. Это хорошо иллюстрирует следующий график.

Зависимость интенсивности свечения светодиода от угла рассеивания света

Часто в характеристиках светодиода указывается только одно число – угол рассеивания. Например, 130 градусов. Это означает, что наблюдатель, расположенный под углом в 65 градусов к центральной оси светового пучка, получит всего 10-20% светового потока.

Срок службы современных светодиодов составляет десятки тысяч часов, что, скорее всего, будет гораздо больше, чем период работы готового изделия в целом. По этой характеристике светодиоды разных производителей отличаются мало, разве что совсем уж непредсказуемый китайский производитель NoName преподнесет неприятный сюрприз.

Также при нормальных условиях эксплуатации световой поток светодиода совсем незначительно ухудшается с течением времени – единицы процентов на несколько тысяч часов. Заметно ухудшить этот параметр может системный перегрев светодиода в работе или превышение его максимального рабочего тока.

Светодиоды становятся все более доступны для самых разных областей применения. Многообразие их вариаций способно запутать самого искушенного потребителя. Знание и понимание самых разных характеристик светодиодов было и остается ключевым для того, чтобы то или иное принятое решение о покупке было единственно правильным.

Светодиоды: принципы работы, виды, характеристики, области применения | LIGHT-RU.RU

Светодиоды различных цветов

Сегодняшний мир невозможно себе вообразить без электрического освещения. Огромные мегаполисы и самые отдаленные уголки земного шара освещаются всевозможными электрическими источниками искусственного света. Однако, непрерывное развитие технологий приводит к тому, что мастодонт электрического освещения — «лампочка Ильича» — уверенно уступает лидирующие позиции современным высокотехнологичным и высокоэкономичным источникам электрического света, среди которых, безусловно, безоговорочно лидируют светодиоды.

Содержание статьи

Что такое светодиод и история его изобретения

Принцип действия светодиода

Светодиод — это полупроводниковый прибор, излучающий фотоны определенной частоты при пропускании через него электрического тока.

Часто термин «светодиод» заменяется англоязычной аббревиатурой LED от «led emitting diod» — светоизлучающий диод. Русскоязычный аналог данного словосочетания — СИД — используется значительно реже.

Эффект испускания фотонов достигается благодаря наличию в этих приборах электронно-дырочного перехода, рекомбинация электронов и дырок в котором сопровождается переходом электронов с одного энергетического уровня на другой, в результате чего избыток энергии высвобождается в виде свободного фотонного излучения.

Олег Лосев, советский ученый, изобретатель, один из праотцов светодиода

Впервые подобное явление было обнаружено в далеком 1907 году английским исследователем Генри Раундом. Позднее независимо от него советский ученый Олег Лосев в 1923 году также зафиксировал электролюминесценцию в точке контакта карбида кремния и стали под воздействием электрического тока и даже смог запатентовать своё изобретение под названием «Световое реле» в 1927 году. Но, как часто бывает, открытие не было должным образом оценено современниками и до победного шествия светодиодов оставались долгие десятилетия.

Технология создания инфракрасных светодиодов была освоена в США лишь в 1961 году, а первый реально применимый светодиод в видимом диапазоне спектра (красный) был создан в 1962 году Ником Холоньяком. Позднейшие исследования привели к созданию в 1971 году синего светодиода, а в 1972 году был создан первый жёлтый светодиод и были разработаны способы десятикратного увеличения яркости красных светодиодов.

Тем не менее, несмотря на очевидный прогресс в развитии светодиодной техники, светодиоды оставались чрезмерно дорогими вплоть до конца 60-х годов ХХ века. Их широкое промышленное производство и применение начинается лишь в 70-х годах ХХ века, а производство дешевых синих светодиодов началось лишь после 1990 года, когда японским ученым, получившим позднее за это Нобелевскую премию, удалось критически усовершенствовать технологию их создания.

Виды светодиодов в зависимости от химического состава полупроводников

Поскольку светодиоды являются полупроводниковыми приборами, то и материалы, используемые для их создания, являются традиционными для полупроводниковой техники. Самый распространенный, безусловно, галлий в химических соединениях с другими элементами. Широко применяются также индий, алюминий, кремний.

Использование разнообразных соединений дает возможность получать светодиоды, испускающие свет в диапазоне от инфракрасного до ультрафиолетового. А использование дополнительно нанесенных люминофоров и цветных пластиков еще больше расширяет цветовую палитру получаемого света.

Виды полупроводниковых материалов, используемых в светодиодах для получения излучения различного спектра
ЦветДлина волны, нмПадение напряжения, ВПолупроводниковые материалы
Инфракрасныйλ > 760ΔUАрсенид галлия (GaAs)
Алюминия галлия арсенид
(Aluminium gallium arsenide AlGaAs)
Красный6101,63Алюминия-галлия арсенид (AlGaAs)
(Aluminium gallium arsenide AlGaAs)
Галлия арсенид-фосфид (GaAsP)
Алюминия-галлия-индия фосфид (AlGaInP)
Галлия(III) фосфид (GaP)
Оранжевый5902,03Галлия фосфид-арсенид (GaAsP)
Алюминия-галлия-индия фосфид (AlGaInP)
Галлия(III) фосфид (GaP)
Жёлтый5702,10Галлия арсенид-фосфид (GaAsP)
Алюминия-галлия-индия фосфид (AlGaInP)
Галлия(III) фосфид (GaP)
Зеленый5001,9Индия-галлия нитрид (InGaN) / Галлия(III) нитрид (GaN)
Галлия(III) фосфид (GaP)
Алюминия-галлия-индия фосфид (AlGaInP)
Алюминия-галлия фосфид (AlGaP)
Синий4502,48Селенид цинка (ZnSe)
Индия-галлия нитрид (InGaN)
Карбид кремния (SiC) в качестве субстрата
Кремний (Si) в качестве субстрата — (в разработке)
Фиолетовый4002,76Индия-галлия нитрид (InGaN)
ПурпурныйСмесь нескольких спектров2,48Двойной: синий/красный диод,
синий с красным люминофором,
или белый с пурпурным пластиком
Ультрафиолетовыйλ3,1Алмаз (235 нм)
Нитрид бора (215 нм)
Нитрид алюминия (AlN) (210 нм)
Нитрид алюминия-галлия (AlGaN)
Нитрид алюминия-галлия-индия (AlGaInN) — (менее 210 нм)
БелыйШирокий спектрΔU ≈ 3,5Синий/фиолетовый диод с люминофором

Типоразмеры SMD светодиодов

SMD — Surface Mount Device — электронные детали или устройства, монтируемые на поверхность (как правильно, на поверхность платы). Именно такой тип монтажа стал самым распространенным в мире электроники и, соответственно, самыми распространенным являются и SMD светодиоды, т.е. светодиоды, предназначенные для поверхностного монтажа. Иногда их называют чип-светодиодами, но такое название скорее редкость.

Существует несколько самых распространенных размеров SMD светодиодов. Как правило, разные производители придерживаются общепринятых стандартов, хотя, например, световой поток светодиодов одного типоразмера у разных изготовителей может отличаться.

SMD 3528

Светодиод SMD 3528

Светодиоды для поверхностного монтажа типоразмера 3528 являются, пожалуй, одним из наиболее распространенных вариантов. Они имеют прямоугольную форму со сторонами 3,5 и 2,8 миллиметра. Толщина составляет 1,4 мм. Для облегчения монтажа на корпусе светодиода со стороны катода делается срез угла, позволяющий однозначно определить правильное расположение элемента. Светоизлучающая поверхность сформирована в виде круга и, как правило, покрыта люминофором, отличающимся в зависимости от целей использования светодиода. Существенной особенностью данных светодиодных элементов является сильная зависимость их яркости от температуры. Так, при нагревании светодиода до 80 °C его яркость может упасть на 25% и более.

SMD 5050

Светодиод SMD 5050

Светодиоды SMD 5050 обладают квадратным корпусом размером 5,0 на 5,0 мм, внутри которого расположены три кристалла по своим характеристикам идентичных тем, которые устанавливаются в SMD 3528. Фактически SMD 5050 можно считать более совершенной версией светодиодов 3528. Возможность установки трёх кристаллов в один корпус позволяет создавать более мощные и яркие светодиоды, а наличие возможности независимого управления каждым кристаллом позволяет создавать многоцветные RGB светодиоды, способные излучать практически весь видимый человеческим глазом световой спектр.

SMD 5630

Светодиод SMD 5630

Появление нового типа светодиодов с габаритами корпуса 5,6 на 3,0 мм засвидетельствовало не только внешние изменения привычных размеров SMD, но и ознаменовало внесение в их конструкцию заметных улучшений, влияющих на существенные показатели их работы. Применение новых материалов и инженерных решений позволило увеличить мощность и светоотдачу светодиодов 5630 по сравнению с их более ранними собратьями.

Несмотря на наличие в SMD 5630 четырёх выводов используется всего два из них. Второй является отрицательным катодом, а четвертый положительным анодом. При этом ключ катода расположен возле первого вывода. Размещение чипов SMD 5630 на металлической подложке является хорошим тоном, так как способствует значительному улучшению отвода тепла из рабочей зоны и, соответственно, продлению срока службы высокотехнологичного устройства.

На следующем рисунке наглядно представлена разница между направлением светового потока и углами обзора у светодиодов 3528, 5050 и 5630. Невооруженным глазом заметен рост данных показателей с увеличением форм-фактора чип-светодиода.

Сравнительная характеристика направления и угла излучения светодиодов 3528, 5050 и 5630

SMD 5730

Светодиод SMD 5730

Братья-близнецы светодиодов 5630 — светодиоды SMD 5730 — появились на рынке практически одновременно со своими младшими соплеменниками и во многом являются их аналогами. Среди конструктивных отличий необходимо отметить, что светоизлучающие диоды 5,7 на 3,0 мм имею лишь два контакта, в отличие от светодиодов 5630. При этом они несколько выше (приблизительно на 0,5 мм). Также светодиоды 5730 подразделяются по потребляемой мощности на два класса: 0,5 Вт и 1 Вт, и часто обозначаются соответственно SMD 5730-05 и SMD 5730-1. Устройства обоих этих классов являются высокоэффективными светоизлучающими устройствами с низким тепловым сопротивлением кристалл/подложка около 4 °C, что значительно повышает энергоэффективность и долговечность оборудования на их базе.

Сравнительные характеристики чип-светодиодов SMD5730-05 и SMD5730-1
Параметр SMDМаксимально допустимое значениеЕдиница измерения
SMD5730-05SMD5730-1
Прямой ток180350mA
Импульсный прямой ток400800mA
Рассеиваемая мощность0. 51.1W
Температура перехода130130°C
Рабочая температура— 40 / + 65— 40 / + 65°C
Температура хранения— 55 / + 100— 55 / + 100°C
Температура пайки300°C в течении 2 сек.300°C в течении 2 сек.

Как видно из приведенных данных, светодиоды 5730-1, имея вдвое большую рассеиваемую мощность, функционируют и при больших токах. Таким образом, при выборе между светодиодами 5730-05 и 5730-1 необходимо учитывать как условия отвода тепла в готовом изделии, так и электротехнические параметры работы светоизлучающего диода.

Сравнительная характеристика светодиодов различных типоразмеров
Параметр3528505056305730 (0,5 Вт)5730 (1 Вт)
Световая отдача (Лм/Вт)5154040100
Мощность, Вт0,060,20,50,51,0
Температура, °C+65+65+80+80+80
Ток, А0,020,060,150,150,30
Напряжение, В3,33,33,33,43,4
Размеры, мм3,5 х 2,85,0 х 5,05,6 х 3,05,7 х 3,05,7 х 3,0

SMD 3014

Светодиод SMD 3014

Сравнительно недавно появившиеся светоизлучающие диоды форм-фактора 3,0 на 1,4 мм не только имеют существенно меньшие внешние размеры, чем более ранние SMD, но и обладают значительно более высокой энергетической эффективностью.

Данные светодиоды работают при максимальном токе 30 мА, что позволяет отнести их к слаботочным устройствам. Также при их монтаже необходимо учитывать, что контакты анода и катода не только выведены на боковые поверхности, но и уходят под нижнюю часть изделия. Целью данного изменения было увеличение теплоотвода от меньшего по размеру, но более мощного потребителя.

SMD 2835

Светодиод SMD 2835

Светодиоды SMD 2835 вобрали в себя, пожалуй, самые лучшие черты других LED SMD. Несмотря на то, что размеры светодиодов 2835 совпадают с размерами светодиодов 3528 (3,5 х 2,8 мм), SMD2835 имеют иную конструкцию светоизлучающей поверхности, выполненной в форме прямоугольника, что снижает неэффективные потери энергии и повышает оптические показатели, в частности, угол обзора.

Конструктивные особенности светодиодов 2835 (использование контактов анода и катода в качестве теплоотводящей подложки) сближает эти устройства с SMD3014, в которых реализован такой же принцип. По электротехническим же характеристикам наиболее близкими к SMD2835 являются SMD5730-05

Энергетическая эффективность различных светодиодов

Развитие LED технологий направлено в первую очередь на увеличение их энергоэффективности. Средние показатели световой отдачи для различных типов чип-светодиодов составляют следующие значения:

  • SMD 3528 — 70 лм/Вт
  • SMD 5050 — 80 лм/Вт
  • SMD 5630 — 80 лм/Вт
  • SMD 5730-05 — 80 лм/Вт
  • SMD 5730-1 — 100 лм/Вт

Из приведенных данных видно, что со сменой поколений светодиодов кардинального роста световой отдачи не произошло. В тоже время, если сравнить светодиоды SMD3528 и светодиоды SMD5730-1, то можно обнаружить, что световой поток вырос почти в 22 раза, в то время как потребление энергии возросло всего в 15 раз.

Подключение светодиодов в электрическую цепь

Обозначение светодиода на электрической схеме

Штатное функционирование светоизлучающих диодов возможно только при подаче на анод положительного потенциала, а на катод — отрицательного, т.е. при прохождении через него тока только в прямом направлении.

Поскольку p-n переход имеет резко возрастающую вольт-амперную характеристику, светодиод должен подключаться к источнику тока. При подключении светодиода к источнику напряжения должна предусматриваться установка ограничивающих ток элементов (например, резисторов). Роль таких элементов может выполнять сама электрическая цепь. Модели светодиодов некоторых производителей поставляются с уже встроенными токолимитирующими элементами. В таких случаях в техническом описании к светодиодам указываются максимальные и минимальные допустимые значения подаваемого на светоизлучающий диод напряжения.

Вольт-амперная характеристика p-n перехода в светодиодах

Выход из строя светодиода может быть связан с подачей на его контакты напряжения, превышающего заявленные производителем пределы. В этом случае на светодиоде выделяется количество тепла, которое не может быть отведено теплоотводящими элементами, что приводит к перегреву SMD светодиода и его необратимому выходу из строя.

Токолимитирующая цепь для маломощных светодиодов (простейший вариант) может представлять собой элементарный резистор, включенный последовательно со светодиодом. В более сложных случаях, когда существует необходимость защиты мощных светодиодов, применяются схемы с широтно-импульсной модуляцией. Такой вариант позволяет решить сразу две задачи: во-первых, поддерживает среднее значение тока, идущего через светодиод на безопасном уровне и, во-вторых, позволяет диммировать светодиод, т.е. регулировать яркость его свечения.

Необходимо помнить, что при использовании источников питания с низким внутренним сопротивлением, не допускается подача на светодиод напряжения обратной полярности, т. к. у большинства светодиодов обратное пробивное напряжение составляет всего несколько вольт. В том случае, если светодиод используется в схеме, где есть вероятность появления обратного напряжения, светодиод следует защищать путём установки параллельно с ним обычного диода в обратной полярности.

Варианты защиты светодиодов от обратного напряжение (на примере подключения к сети переменного тока 220В)
Защита светодиодов от обратного напряжения диодом Встречно-параллельное подключение светодиода и диода Встречно-параллельное подключение двух светодиодов

Преимущества светодиодов по сравнению с другими источниками света

Являясь качественно новыми источниками электромагнитного излучения, светодиоды обладают рядом существенных преимуществ перед своими предшественниками, что способствует их широкому перманентному внедрению в различных областях народно-хозяйственного комплекса.

Среди преимуществ светодиодов необходимо выделить следующие их качества и характеристики:

  • Отсутствие в LED светодиодах чувствительных к механическим воздействиям конструктивных элементов (таких, например, как нить накаливания) определяет их повышенную вибро- и механическую стойкость к неблагоприятным воздействиям во время изготовления, транспортировки, монтажа и эксплуатации.
  • Крайне эффективное преобразование светодиодами электрической энергии в световую определяет крайне высокий коэффициент их световой отдачи. Натриевые газоразрядные и металлогалогенные лампы, бывшие многие десятилетия бесспорными лидерами на рынке по показателю световой отдачи, в настоящее время утратили свои лидирующие позиции из-за появления не менее эффективных светоизлучающих диодов. Так, если показатель световой отдачи у натриевых газоразрядных ламп составляет около 150 лм на Вт потребляемой мощности, то у самых современных светодиодов он достиг 146 лм/Вт и продолжает повышаться вместе с развитием технологий и применением новых конструкторских решений.
  • Срок эксплуатации светодиодов составляет от 30 тыс. до 100 тыс. часов, что значительно превышает показатели источников света, изготовленных по другим технологиями. Недостатком светоизлучающих диодов является то, что при длительной эксплуатации и/или неэффективном отводе тепла их кристаллы подвержены так называемой деградации, приводящей к плавному снижению яркости излучения.
  • Существенным плюсом светодиодов является независимость длительности их службы от количества итераций включения-выключения. Этим они выгодно отличаются от других светоизлучающих устройств (например, газоразрядных ламп и ламп накаливания), чувствительных к количеству циклов включения-выключения.
  • Излучению светодиодов имманентно присуща спектральная чистота, в то время как в других устройствах она достигается за счет использование различных светофильтров. Спектрографический анализ излучения красного светодиода
  • Экологическая безопасность LED обусловлена тем, что в их производстве не используются опасные элементы и соединения (ртуть, фосфор, галогениды металлов). Также в спектре их излучения отсутствует ультрафиолет, что приводит к отсутствию необходимости создания защиты от него.
  • Светодиоды безопасны в эксплуатации, т.к. обычно они питаются относительно низкими напряжениями и, благодаря высокой светоотдаче, редко нагреваются выше 50-60 °C
  • Немаловажным фактором, способствующим широкому применению светодиодов, является отсутствие инерционности их включения: максимальная яркость излучения достигается сразу после включения, в то время как у энергосберегающих люминесцентных ламп время включения колеблется от 1 секунды до 1 минуты, а выход на стопроцентную яркость происходит в течение 3-10 минут после начала работы (в зависимости от температуры окружающей среды и особенностей лампы).
  • Практически нулевая чувствительность светодиодов к низким и ультранизким температурам позволяет использовать их вне помещений в странах с суровым климатом. В тоже время, как уже отмечалось, светодиоды (как и любые другие полупроводниковые приборы) чувствительны к высоким температурам. В связи с этим при монтаже LED устройств всегда необходимо уделять особое внимание наличию достаточного уровня отвода тепла.
  • Широкое варьирование угла излучения у различных видов светодиодов (от 15° до 180°) позволяет решать различные конструкторские и технологические задачи при создании устройств с их использованием.
  • Наличие широкого спектра белых светодиодов (белый теплый, белый дневной, белый холодный) дает возможность использовать различные их типы для решения различных задач в зависимости от конкретной ситуации и необходимости получения того или иного эффекта от освещения.
  • Относительно низкая стоимость светодиодов (особенно индикаторных).
  • Высокие показатели коэффициента цветопередачи CRI.

Применение светодиодов

Благодаря широкому спектру преимуществ, светодиодные источники излучения нашли применения в разнообразных областях. Основными направлениями использования LED являются:

  • Исторически первой областью применения светодиодов было приборостроение. Именно здесь светодиоды стали массово применяться в качестве устройств индикации. Индикаторами могут быть как одиночные LED (например, индикатор включения в сеть), так и собранные в различные табло (цифровые, цифро-буквенные).
  • В последние десятилетия стали широко использоваться так называемые светодиодные кластеры. По сути это массив светодиодов, находящихся под общим цифровым (как правило) управлением. Обывателю такие кластеры знакомы в виде бегущих строк, больших экранов, размещаемых на улицах городов.
  • Также светодиоды обеспечивают подсветку жидкокристаллических экранов мобильных устройств, телевизоров и мониторов персональных компьютеров и ноутбуков.
  • Мощные и сверхмощные светодиоды нашли своё применение в фонарях уличного освещения, а также в современных светофорах. Применение LED излучателей в светофорах крупных городов не только способствует оптимизации потребления электроэнергии, но и за счет высокой светоотдачи и цветопередачи способствует снижению аварийности на дорогах.
  • Повышению безопасности на дорогах способствует и внедрение принципиально новых элементов дорожной обстановки: дорожных знаков на основе светодиодов. Такие знаки прекрасно видны в любое время суток и практически в любую погоду.
  • В последние годы светодиоды получили широкое распространение в качестве основных источников промышленного и бытового освещения. Светильники на основе LED, а также светодиодные ленты уверенно вытесняют с рынка другие виды источников света. В первую очередь это происходит за счет лавинообразного снижения цен на светодиоды в последнее время, а также благодаря появлению множества локальных производителей достаточно качественной светодиодной продукции.
  • Использование LED технологий в растениеводстве позволяет создавать узкоспециализированные источники освещения (фитолампы) с особым спектром излучения, обеспечивающим максимальную эффективность процесса фотосинтеза в листьях сельскохозяйственных растений. Применение подобных приборов особенно перспективно на территориях с северным климатом.
  • Стремительное развитие информационных технологий также обуславливает значительный спрос на светодиодную продукцию. Использование LED в качестве легкодоступных источников модулированного электромагнитного излучения широко распространено при создании систем передачи информации по оптическим волокнам.
  • Заняли свою нишу светодиоды и в сфере дизайна в виде цветных светодиодных лент, гибких шнуров дюралайт, светодиодных гирлянд. С их помощью оформляются как интерьеры жилых помещений, так и архитектурные и арт-объекты, а также концертные и выставочные залы, бары, дискотеки, ночные клубы.
  • Дешевизна и чарующая привлекательность LED привела к их повсеместному использованию в игрушках, детских играх, различных USB-устройствах.
  • Менее известно, но от того не менее широко распространено использование светодиодов в оптронах, позволяющих создавать разнообразные детекторы наличия, дискретные спидометры, детекторы начала и конца, а также устройства передачи сигнала без передачи электрического напряжения. Устройство и обозначение оптрона (оптопары)

LIGHT-ru.RU — С НАМИ СВЕТЛЕЕ!

Характеристики светодиодов, обзор предложений и подключение

Эти полупроводниковые приборы отличаются хорошими потребительскими характеристиками при разумной стоимости. Их применяют в быту, для решения коммерческих и производственных задач. Для правильного выбора надо знать не только общие характеристики светодиодов. Пригодятся сведения о современных моделях, электрических схемах рабочих устройств. В этой статье вы найдете ответы на эти и другие практические вопросы.

Чадящий факел и гаснущие от дуновения ветерка свечи выглядят интересно только в компьютерных играх. В реальной жизни Лара Крофт явно отдаст предпочтение универсальному фонарю на светодиодах

Содержание статьи

Что такое светодиод – принцип действия

Принцип действия полупроводникового светодиода

На этом рисунке схематично изображено излучение (hv) c длиной волны (Lp) примерно 250 мкм. Оно создано в p-n переходе (полупроводник прямосмещенного типа) при рекомбинационном переходе инжектированных носителей на другой энергетический уровень.

В этой фразе есть несколько общеизвестных слов. Для расшифровки специфических терминов и понятий нужно изучить соответствующий раздел науки. Но на самом деле углубление в физику процесса не имеет практического значения. Вполне достаточно знать, что светодиод – полупроводниковый прибор. Он излучает в видимом диапазоне спектра при пропускании тока ограниченной величины в прямом направлении.

Конструкция и типовые части светодиодаЭлектрическая схема подключения

Мир светодиодов: краткий обзор предложений современных производителей

Первые удачные эксперименты были проведены более ста лет назад. Но только в конце 70-х прошлого века удалось создать образцы, пригодные для коммерческого применения.

Разные комбинации полупроводниковых материалов создают волны определенной длины

Для зеленого цвета применяют AlGaInP (Алюминий-Галий-Фосфид индия). Красный получается с использованием AlGaAs (Алюминий-Арсенид галлия). Долгое время не могли найти комбинацию для синего. Только в 90-х годах был найден подходящий состав, за который авторы получили Нобелевскую премию. Сочетание перечисленных цветов позволило создать белый свет. С этого времени был дан старт массовому внедрению технологий данной категории в разные сферы человеческой деятельности.

Индикаторные светодиоды

Конструкция прибора DIP типа

Для концентрации светового потока функции отражателей выполняет опорная пластина и стенки. Такие приборы выпускают с выпуклыми линзами и прямоугольными торцами диаметром от 3 до 10 мм. Их подключают к источникам питания 2,5-5 В с ограничением по току до 20-25 мА. Угол рассеивания не превышает 140°. Яркость – до 1,1 люмен.

Индикаторные светодиоды ранее применяли для создания фонарей, светофоров, информационных стендов и рекламных табло. В наши дни появились новые модификации полупроводниковых приборов с большей силой света.

Оригинальная подсветка сценических костюмов

На практике пригодятся следующие преимущества индикаторных светодиодов:

  • низкая стоимость;
  • хорошая защищенность от влаги и других неблагоприятных внешних воздействий;
  • безопасные токи и напряжение питания;
  • небольшое потребление энергии.

Последний пункт надо дополнить низким выделением тепла. Такие устройства способны функционировать долгосрочно в широком температурном диапазоне без специальных охлаждающих радиаторов.

Осветительные светодиоды

Полупроводниковые приборы SMD, как наиболее распространенные изделия, подробно рассмотрены ниже. Их создают в стандартных размерах на специальной подложке, которая хорошо приспособлена для последующего монтажа на печатную плату.

Излучающее поле лампы, созданное из SMD светодиодов

Для улучшения защищенности полупроводники закрепляют на подложке внутри литого пластикового корпуса. Верхняя полусферическая часть образует линзу, что помогает сузить световой поток.

«Пиранья». Грозное название этой категории подчеркивает высокую эффективность приборов

Следующая группа изделий создана специально для освещения. На подложке размещают синие светодиоды. Сверху – слой люминофора. В данном случае применяют большее количество кристаллов на единицу поверхности по сравнению с технологией SMD. Это позволяет получить сильный световой поток.

Мощную матрицу категории COB (Chip On Board) надо охлаждать. Такие лампы устанавливают в автомобильные фары ближнего и дальнего светаТехнология Chip On Glass («Чип-на-стекле»)

На фото изображены основные стадии производственного процесса:

  1. Создается подложка из стекла нужной формы.
  2. На ней закрепляют последовательно полупроводниковые кристаллы.
  3. Сверху устанавливают слой люминофора.
  4. Далее – финишное защитное покрытие.

В цоколе лампочки размещают блок питания, который создает постоянное напряжение с нужной силой тока.

К сведению! При сравнении разных видов изделий надо отметить позитивно ремонтопригодность SMD модификаций. Светодиоды COB при выходе из строя приходится заменять.

Плюсы и минусы осветительных светодиодов

Выяснив, какие бывают светодиоды, надо перечислить их преимущества по сравнению с альтернативными изделиями:

  • Лучшие полупроводниковые приборы способны обеспечить более 200 люменов на 1 Вт энергии. Это потребление на 80-85 % меньше по сравнению с типовыми лампами накаливания.
  • Качественные светодиодные светильники устойчивы к вибрациям, перепадам напряжения в сети. Долговечность лучших изделий приближается к 100 тыс. часов, что эквивалентно белее чем 11 годам непрерывной эксплуатации.
  • Отсутствие ртутных и других вредных соединений вместе с прочной рассеивающей колбой повышает уровень безопасности.

Не забывайте, что в экономический расчет надо включать все сопутствующие расходы. Светодиодные источники, сделанные известными производителями, стоят дорого. Только через несколько лет получится окупить первоначальные инвестиции. Также надо отметить:

  • Мерцание при недостаточно качественной сборке блока питания.
  • Небольшой угол рассеивания.
  • Различные технические характеристики в одной товарной партии.
  • Узкий диапазон цветовой температуры, несоответствие параметра паспортным данным.

К сведению! Некоторые недостатки объясняются сомнительным происхождением готовой продукции. Для получения надежных гарантий приходится приобретать изделия известных торговых марок, что увеличивает затраты.          

Основные характеристики светодиодов

Изложенные ниже сведения следует изучить для более точного выбора изделий. В комплексной оценке учитывают следующие факторы:

  • параметры источника питания;
  • характеристики светового потока;
  • потребление электроэнергии;
  • долговечность.

Ток потребления

Приборы, которые причислены к индикаторной категории, потребляют не более 20 мА. Мощные осветительные светодиоды – до 300 мА и даже более того. Источник питания и провода должны быть рассчитаны на соответствующие нагрузки.

Следует подчеркнуть необходимость поддерживать стабильный ток светодиода. При незначительном повышении этого параметра меняются характеристики спектра, ускоряется деградация кристалла. Дальнейший рост приводит к разрушению полупроводника.

Чтобы исключить подобные негативные воздействия в цепь питания устанавливают специализированный стабилизатор тока («драйвер»)

Напряжение

Этот параметр определяет падение напряжения на светодиоде при прохождении через него номинального тока. Точная величина указана в техническом паспорте изделия. Значение не является единым даже для одинаковых групп. Так, например, на белом индикаторном светодиоде падение может составить 3 В, а на красном – 1,8 В.

Сопротивление

Минимальное электрическое сопротивление светодиодов заставляет применять в обязательном порядке защитные средства. Для ограничения силы тока при подключении к источнику питания надо обязательно использовать резистор

С применением указанных на рисунке ниже приведен пример, как рассчитать сопротивление для светодиода. Падение напряжения на нем будет составлять 7,2 В:

Uип (постоянное напряжение источника питания) – Uр (падение напряжения на светодиоде) = 9-1,8.

Сопротивление вычисляют по закону Ома:

R=U/I=7,2/0,02=360 Ом.

К сведению! Выбирайте изделие из стандартной номенклатуры с большим значением. Помните о том, что резисторы выпускают в разных классах точности, поэтому разница параметров может превышать 10% в одной партии.

При последовательном подключении складывают падение напряжения на каждом полупроводниковом элементе. Расчеты выполняют по приведенной выше схеме.

Исключите подключение светодиодов параллельно к одному резистору

Значительный разброс параметров полупроводниковых приборов будет сопровождаться разной интенсивностью свечения. Как отмечено ранее, даже небольшое превышение номинальной силы тока значительно ускоряет деградацию, увеличивает риск поломки изделия.

Мощность светодиодных ламп

Падение напряжения на подобных индикаторных светодиодах составляет 2,4 В, а ток – 20 мА

При этих исходных параметрах прибор потребляет 0,048 Вт в час (1,152 Вт – за сутки, 34,56 – за месяц). Но требования возрастают, когда нужно создать достаточно сильный источник света.

Допустим, необходим прожектор мощностью 100 Вт который составляется из полупроводниковых одноваттных матриц с падением напряжения 3 В на каждой. При параллельном подключении понадобится применить источник тока на 33 А (100 × 0,33). Это очень много. Для прокладки сети питания понадобится алюминиевый проводник сечением более 8 мм кв., соответствующий стабилизатор.Разумеется, подобные решения нецелесообразны.

Вместо них применяют такие электрические схемы

Подбирают количество элементов в каждой цепи так, чтобы напряжение питания составляло от 12 до 24 В. Для нашего примера можно применить группы по 8 светодиодов. Подойдет стабилизатор на ток 12×0,33=3,96 А, что не вызовет никаких существенных затруднений и лишних финансовых затрат.

Светоотдача, угол свечения

В наши дни почти забыты оценки эффективности осветительных приборов по мощности. Это правильно, так как «лампочка на 40 Вт» не является достаточно информативным определением. Действительное значение имеет то, какой именно результат будет обеспечен соответствующим устройством. Для этого применяют понятие светового потока. Он определяет количество энергии, которое перемещается волнами соответствующей части спектра через определенную площадь за единицу времени. Параметр измеряется в люменах.

Мощность разных осветительных приборов, ВтСветовой поток, лм
250400700900120018002500
Лампа накаливания20406075100150200
Люминесцентная лампа6-710-1215-1719-2026-2942-5064-80
Светодиоды1,5-2,54-66-88-1011-1417-1921-28

К сведению! Современные полупроводниковые приборы способны при потреблении 1 Вт создавать поток света до 140 лм. Это более чем в 10 раз эффективнее по сравнению с классической лампой накаливания.

Этот рисунок наглядно демонстрирует различные углы свечения

Узконаправленные источники применяют в нишах стен, для подсветки отдельных декоративных предметов, функциональных зон. Для увеличения угла рассеивания применяют специализированные линзы. Надо понимать, что наличие дополнительных элементов в оптическом тракте несколько снижает эффективность.

Цветовая температура

Этот параметр указывают на упаковке и в сопроводительной документации

Он характеризует самые мощные составляющие в спектре излучения. Каждый человек по-своему воспринимает волны разной длины, поэтому точные универсальные рекомендации не уместны.

Для корректной оценки надо учитывать коэффициент цветопередачи (обозначение – «CRI»). При значении параметра более 80 можно говорить о хорошем качестве. В ртутных газоразрядных лампах, например, CRI от 40 до 60. Не сложно убедиться на практике в том, как сильно искажаются соответствующими уличными фонарями естественные оттенки.

Размер чипов, кристаллов, дополнительные критерии качества

Для тщательного сравнения продукции разных брендов надо проверять одновременно несколько важных параметров. Допустим, что надо купить мощные светодиоды для фонариков. Характеристики в рекламном объявлении подходят, а цены разумные. Не делайте поспешные выводы.

Убедитесь, что правильно приведены размеры кристалла. Иногда указывают «mil». Но это не привычные миллиметры, а обозначение тысячной одного дюйма. Для перевода используйте коэффициент 0,0254:

35mil×0,0254=0,889 мм.

Современный штангенциркуль с цифровой индикацией выполняет измерения с точностью до 0,01 мм

Один кристалл на мощных светодиодах потребляет до 300 мА в нормальном (долговременном) режиме использования. По количеству этих элементов можно определить суммарные показатели светодиода.

Матрица на 100 Вт

Ответственные производители применяют стандартные равные размеры сторон 30-45 mil. Сомнения возникают при обнаружении меньших габаритов. Такие прямоугольники из полупроводников отличаются меньшими токами потребления (мощностью) на 50% и более того.

Без внимательного изучения подделку сложно отличить от оригинала

Совпадают посадочные размеры, похож внешний вид. Только после включения выясняется, что сила света меньше, либо спектр излучения не тот.

Эти данные помогут сделать правильный вывод:

  • Эффективный отвод тепла обеспечивает медь. Основания из алюминия дешевле. Они выполняют свои функции недостаточно качественно, что затрудняет поддержание оптимального температурного диапазона.
  • В изделиях известных торговых марок питание к кристаллу подводят двумя и большим количеством проводников из тончайших золотых нитей. Дешевая альтернатива – один медный проводник.
  • Современные качественные светодиоды способны выполнять свои функции на протяжении 60 тыс. часов и даже более при температуре +100°C. Недорогие подделки сомнительного качества менее долговечны. Они выходят из строя при нагреве от +60°C до +95°C.
Равномерное свечение кристаллов – признак хорошего качества

SMD светодиоды, характеристики, отличия популярных серий

Конструкция прибора

Эти светодиоды в базовом оснащении защищены от перегрева. Стандартные размеры, форма и расположение выводов упрощают монтаж с применением средств автоматизации. Такой подход позволяет применять современные производственные технологии, снижать издержки.

2835 SMD LED: параметры, особенности применения

В маркировке светодиодов зашифрованы размеры. 2835 SMD – это 2,8 мм глубина и 3,5 мм ширина по максимальным габаритам корпуса

Этот прибор создан с применением полимерных материалов, которые отличаются стойкостью к высокотемпературным воздействиям. Они без повреждений выдержат +240°С. Но такие экстремальные режимы следует исключить, чтобы не повредить полупроводниковый кристалл. Типовая деградация в качественных изделиях этой серии не превышает 5% за 3 тыс. часов. Особенность. Этой серии являются увеличенные габариты контактных элементов для ускорения отвода тепла.

Технические характеристики SMD 2835 приведены в таблице:

ПараметрЕд. измеренияВеличина (диапазон)
Высота корпусамм0,8
Ток потреблениямА25; 60; 150; 300
Мощность кристалловВт0,09; 0,2; 0,5; 1
Падение напряженияВ3,2
Бытовые лампы

Хорошие технические характеристики светодиода 2835 дополнены демократичной стоимостью. Эти приборы применяют для изготовления недорогих светильников, светодиодных лент.

Характеристики светодиодов 5050

Конструкция и особенности подключения выводов

Изделия этой серии отличаются хорошими показателями при компактных размерах. Именно на их основе в свое время были созданы первые специализированные лампы для автомобильной техники, светодиодные ленты. Разработчикам удалось разместить в небольшом корпусе три кристалла, которые при потреблении 1 Вт способны обеспечить световой поток до 80 лм.

Из этих компонентов были созданы первые «кукурузы», которые полноценно заменяли традиционные лампы накаливания мощностью 80-100 Вт

Уровень деградации за 3 тыс. рабочих часов в этих изделиях был снижен на 20% по сравнению с предыдущим примером (серия 2835). В отдельных модификациях стали применять диоды разных цветов комбинации R-G-B. Применив соответствующие контроллеры, можно организовать раздельное управление работы кристаллами.

ПараметрЕд. измеренияВеличина (диапазон)
Индекс CRI (цветопередача)Ra80-90
Ток потреблениямА20*3=60
Мощность кристалловмВт210
Падение напряженияВ3,3
Угол свеченияградусы125
Световой потоклм18

Светодиоды SMD 5730: характеристики, важные нюансы

Эти приборы – развитие популярной серии 5050. В таблице приведены средние данные по изделиям известных брендов с применением цветовой температуры кристаллов на уровне 6 тыс. Кельвинов.

ПараметрЕд. измеренияВеличина (диапазон)
Световой потоклм55
Ток потреблениямА150
Мощность кристалловмВт210
Падение напряженияВ3,4
Угол рассеиванияградусов120

Заметно увеличен световой поток, мощность. Улучшен теплоотвод. Деградация при контрольном времени 3 тыс. часов не превышает 1%. Эти приборы можно применять в схемах с питанием импульсным током (до 170 мА).

К сведению! Несмотря на повышение рабочей температуры, специалисты советуют строго соблюдать границы рекомендованного диапазона. В предельных режимах быстро вырабатывается ресурс.

Размеры светодиодов разных серий

Мощные светодиоды Cree

Если понадобились сверхяркие  светодиоды 3 Вольта надо обратить внимание на продукцию этого производителя из США.

Под брендом Cree выпускают мощные источники света для автомобилей, проекторной техники, стационарных и переносных прожекторов

Характеристики светодиодов Cree серии XM-L:

ПараметрЕд. измеренияВеличина (диапазон)
Световой потоклм165-300 (максимум- выше 1000 лм)
Ток потребления (номинальный)мА700
МощностьВт2
Индекс CRI (цветопередача)Ra80-90
Падение напряжения при токеВ/мА2,9/700; 3,1/1500; 3,35/3000
Угол свеченияградусов125
Рабочая температура°CОт -40 до +85
Улучшенные характеристики светодиодов XHP35 подходят для изготовления мощных фонарей

Эти приборы рассчитаны на максимальный ток потребления до 1050 мА, мощность – до 13 Вт. Падение напряжения составляет 11,3В при 350 мА. Коэффициент CRI более 90 обеспечивает отсутствие искажений в цветопередаче.

Для получения таких характеристик сверхяркие светодиоды данной серии были созданы по специальной технологии. Мощное излучение с равномерным распределением в спектре обеспечивают 4 области в одном кристалле. Такое решение позволило уменьшить размеры, увеличило прочность конструкции, устойчивость к механическим воздействиям.

Проверка светодиода с применением мультиметра

Для тестирования этих приборов подойдут те же методики, что и для обычных полупроводниковых диодов. Следует только учитывать большее падение напряжения (от 1,8 В в индикаторных до 11 В – в световых модификациях). При работе надо применять стандартные средства снятия электростатических зарядов, чтобы не повредить p-n переход.

Тестер включают в режим проверки диодов

Соблюдая полярность, касаются щупами выводов. Исправный прибор светится. Расположение анода и катода можно найти в техническом описании конкретного изделия.

Работоспособность светодиода уточнить проще, если в мультитестере есть режим проверки pnp переходов

Для более точной проверки понадобится стабилизированный источник питания.  Мультитестером замеряют ток и напряжение по стандартным схемам (последовательное и параллельное подключение). Далее выясняют соответствие полученных данных с номинальными вольтамперными характеристиками.

Маркировка светодиодов по цвету, правила расшифровки кода маркировки светодиодной ленты

С учетом этого параметра единой системы стандартов не существует. Маркировка светодиодов по цвету непосредственно на корпусе затруднена по причине миниатюрности изделий. Обозначения делают на лентах. Ниже приведена информация о продукции CREE.

Типовое название составлено следующим образом: АААВВВ-СК-0000-ZZZZZ. Первые три буквы («ААА») – это серия. Для рассмотренной выше модификации XM-L будут указано «XML». Следующие три позиции («BBB») – цвет:

  • GRN, BLU, RED и другие обозначения понятны в переводе с английского (зеленый, синий, красный соответственно).
  • WHT – белый цвет.
  • Однако BWT – тоже белый, но в этом варианте речь идет о приборах второго поколения.
  • HEW – еще одна модификация белого. Здесь отмечена особой аббревиатурой улучшенные энергетические характеристики прибора.

Далее на позициях «СК»указывают качество цветопередачи:

  • Для светильников наружного освещения этот параметр не является определяющим. Такие светодиоды маркируют «01».
  • Аббревиатурой L1 обозначают типовые изделия, характеристики которых определяются в технических паспортах.
  • При значениях коэффициента цветопередачи CRI от 70; 80; 85; 90 и выше применяют сочетания B1; h2; P1; U1 соответственно.

Что можно сделать из светодиодов своими руками?

Далее приведены проекты, которые можно реализовать с применением этих полупроводниковых приборов. Для индивидуальных коррекций следует изучить актуальный ассортимент производителей.

Стабилизатор тока для светодиодов

Для подключения мощных приборов рекомендуется применять импульсные источники питания

Такая схема пригодится для оснащения автомобиля. При хорошем КПД выделяется немного тепла. Доступно изменение напряжения на входе в широком диапазоне при сохранении функциональности.

ДХО из светодиодов

Такую линейку можно собрать из светодиодов 3Вт. Характеристики современных приборов подойдут для создания надежных и эффективных дневных ходовых огней транспортного средства

В данном случае пригодится длительное сохранение работоспособности устройства в условиях сложной эксплуатации.

Мигающие светодиоды

Все необходимое для успешного создания действующего устройства изображено на этом рисунке

Светомузыка на светодиодах

Эту простую схему можно применить для оснащения мобильной техники. Для питания можно применить аккумулятор на 9В

Индикатор напряжения на светодиодах

Схема точного индикатора напряжения для автомобиля. Здесь предусмотрена компенсация измерений при повышении/уменьшении температуры

Электрические схемы подключения светодиодов

В этой части статьи рассмотрены способы подключения полупроводниковых источников света к сетям питания. Применение следующих правил и рекомендаций предотвратит повреждение и продлит срок службы светодиодов.

Подключение к сети 220 В

Вместо драйвера можно применить такой вариант подключения

Резистор R1 ограничивает силу тока. Конденсатор C1 – гасит колебания. Для расчета характеристик резистора используйте рассмотренный выше алгоритм.

Подключение светодиодов к сети питания 12 В

Эта схема подойдет для подключения светодиодов общей мощностью до 1 Вт

Она обеспечивает ток потребления до 245 мА, напряжение от 12 до 24 В. Исходя из приведенных параметров выбирают подходящие светодиоды.

Если понадобилась дополнительная информация – пишите вопросы в комментариях к статье. Там же оставляйте свои предложения, приводите примеры удачных проектов.

Видео с пояснениями монтажа мощных светодиодов:

Предыдущая

ОсвещениеСхема подключения проходного выключателя с 2х мест: порядок выполнения монтажных работ

Следующая

ОсвещениеКак сэкономить на качестве: розетки и выключатели, лучшие бренды производителей

Понравилась статья? Сохраните, чтобы не потерять!

ТОЖЕ ИНТЕРЕСНО:

ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:

Характеристики светодиодов: достоинства и недостатки, применение

Основные характеристики светодиодов

1. Эффективность свечения (светоотдача)

Наиболее значимая характеристика светодиодов, обуславливающая экономическую целесообразность их использования в системах освещения различного назначения. Определяется, как отношение потока излучения к затрачиваемой мощности (Лм/Вт).
Для сравнения:
— 10-12лм/Вт — лампа накаливания;
— 40-150Лм/Вт — газоразрядные лампы;
— 50-120Лм/Вт — светодиоды.

Таким образом, светодиоды характеризуются прекрасными показателями светоотдачи, что дает возможность им выигрышно конкурировать с натриевыми, галогеновыми и люминесцентными лампами. Помимо этого, при выпуске светодиодных светильников не требуются отражатели, потому что их световой поток направляется в одной полуплоскости.

2. Мощность

— светодиоды малой мощности: до 0,5Вт;
— светодиоды средней мощности: 0,5-3Вт;
— светодиоды большой мощности: 3Вт и выше.

3. Цветовая температура

— 2500-4000К: белый теплый свет, схож с лампами накаливания;
— 4000-6500К: белый нейтральный свет;
— 6500-9500К: белый холодный свет.
В результате экспериментальных исследований установлено, что именно белый нейтральный свет отличается наибольшей четкостью передачи цветов и является наиболее удачным для работы с документами в офисных условиях.

4. Деградация

Это процесс постепенной потери показателей работоспособности светодиодов. Обычно производители указывают около 100 тыс. час. работы и более. Существенное влияние на ресурс светодиодов оказывает чрезмерное воздействие токов, превышающих их номинальное значение, и высоких температур, для предотвращения преждевременного старения применяются специальные конструкторские решения. 

К еще одной разновидности деградации светодиодов относится пусковое воздействие. Оно невысоко и составляет порядка 5-6%, выявляется обычно в первые 1000 часов горения светильника.

5. Угол свечения

Обычно у светодиодов он равен 120-140 градусов, а в индикаторных светодиодах — 15-45 градусов.


Технологические новшества в наше время происходят постоянно. Ежегодное появление новинок электроники, бытовой техники, автомобилестроения стало привычным явлением. То, что удивляло дватри года назад, часто уже безнадежно устарело к сегодняшнему дню. Большинство изменений касается улучшения существующих вещей, например, двигатель автомобиля становится более экономичным и экологически чистым от модели к модели. Вносимые улучшения понятны в основном узкому кругу специалистов.

 

Двигатели производятся теми же фирмами на тех же заводах. Внешне индустрия меняется довольно медленно и постепенно.

 

Гораздо реже происходят принципиальные изменения – технические революции. Во время революции меняется сам подход к решению задачи. Это приводит к кардинальному изменению свойств изделий и отрасли в целом.
Сегодня в мире осветительной техники происходит как раз такая техническая революция. Эта революция в течение следующих 3-5 лет может полностью изменить рынок светильников, а также повлиять на список ключевых игроков. Есть повод задуматься над ситуацией как существующим производителям, так и новым компаниям, не занимавшимся до сих пор этой сферой.
Приведем исторический пример.

 

До 70-х годов прошлого века основой радиотехнических устройств были электронные вакуумные приборы – радиолампы. Первые компьютеры были построены именно на лампах, и именно лампам они обязаны своими циклопическими размерами и стоимостью при вычислительной мощности калькулятора.

 

В 50-х годах началось активное развитие полупроводниковой техники, появились транзисторы, а позже интегральные схемы, содержащие сотни и тысячи транзисторов. Электронные лампы были полностью вытеснены из большинства областей, объемы их призводства упали в десятки раз. Многие компании-производители вынуждены были полностью переориентироваться или исчезнуть с рынка. Полупроводники завоевали мир, открыли возможности для тысяч компаний и огромного количества новых приложений. Ниже мы вернемся к этому примеру, чтобы увидеть интересные параллели между революцией полувековой давности и тем, что происходит сейчас на наших глазах.

 

Полупроводники, эти удивительные материалы — основа современной электроники. Они обладают важными свойствами, применяемыми в транзисторах и микросхемах. Однако этим их использование не ограничивается.
Еще в начале прошлого века был замечен эффект слабого свечения в области электрического контакта полупроводников разных типов проводимости. Тогда это явление не было понято и изучено. Как считается, первый полупроводниковый светодиод был изготовлен в 1962 году в США.

 

До 90-х годов ХХ века светодиоды получили широкое распространение в качестве устройств индикации и декоративных элементов. Использованию светодиодов в осветительной технике мешали трудности в получении белого цвета свечения. Дело в том, что кристалл, на котором построен диод, может излучать свет только строго определенной длины волны. Наш глаз воспринимает такое излучение как чистый цвет из спектра, например, красный или зеленый. Мы видим белый цвет, когда в наш глаз попадает очень широкий спектр длин волн или смесь нескольких определенных основных цветов.

 

Эту проблему можно решить тремя способами.

 

Первый – собрать на одном кристалле светодиоды трех цветов, например, красного, зеленого и синего.
Этот путь нашел свое применение в видеоэкранах и элементах декоративной подсветки с изменяющимся цветом.

 

Второй – использовать принцип люминесцентных ламп: излучение ультрафиолетового светодиода попадает на люминофор, светящийся белым светом под действием ультрафиолета.

 

Третий способ – использовать синий светодиод, покрытый желтым люминофором. Смесь желтого и синего цвета также воспринимается глазом как белый цвет (рис. 1).
Последний способ оказался самым удобным и эффективным для изготовления сверхъярких светодиодов. Такие светодиоды были впервые продемонстрированы в 1997 году. С этого времени начинается и использование светодиодов для решения задач общего освещения.

 

В настоящий момент общедоступными являются светодиоды, дающие световой поток до 140 люмен на 1 ватт потребляемой мощности. В лабораторных условиях получены устройства, излучающие до 200 люмен 1 на ватт. Теоретический предел сегодняшних технологий составляет порядка 300 люмен 1 на ватт.

 

{xtypo_quote}Для сравнения: лампа накаливания дает около 7 лм/Вт, а современная энергосберегающая люминесцентная лампа до 105 лм/Вт. Сравнимую со светодиодами эффективность на уровне 130 лм/Вт имеют натриевые лампы высокого давления. Существенным недостатком натриевых ламп является их почти монохроматический оранжево-желтый свет, ухудшающий цветопередачу предметов. {/xtypo_quote}

Световой поток источника, выраженный в люменах, характеризует его излучающую способность без учета диаграммы направленности. Когда мы оцениваем полезный эффект, производимый источником света, нам важно распределение света от светильника в пространстве. Например, дорожный светильник должен давать равномерное и яркое световое пятно на дороге, при этом не слепить водителей и не освещать дальний край обочины. Чтобы достичь этого, применяются рефлекторы и линзы – отражающая или фокусирующая оптика.

 

Эффективность любого рефлектора или линзы зависит, в значительно степени, от геометрии источника света. Светодиод – это практически точечный источник, который позволяет добиться 80-90% эффективности при формировании освещенной области. Лампа излучает во все стороны и имеет большие размеры поверхности, испускающей свет. Чтобы добиться нужной диаграммы направленности, придется пожертвовать от 40 до 70% света. По этой причине, даже при одинаковой энергетической эффективности (люмен на ватт), светодиод в полтора-два раза эффективней традиционной лампы.

 

У фирмы Osram имеется уникальное решение – светодиод со встроенной линзой, имеющий диаграмму направленности, идеально подходящую для освещения улиц и автомагистралей (рис. 2). При использовании такого диода нет необходимости в применении какой-либо вторичной оптики, следовательно, нет потерь света и дополнительных денежных затрат.

 

Светодиоды претендуют на то, чтобы стать серьезной альтернативой другим источникам света.

 

Рассмотрим их преимущества и недостатки, чтобы самостоятельно оценить, насколько оправданы эти ожидания.

 

Достоинства светодиодов

 

Итак, первое и самое главное достоинство – энергетическая эффективность. Электрический ток в светодиоде преобразуется непосредственно в кванты света – фотоны. Такое преобразование теоретически происходит без потери энергии – сколько энергии потрачено, столько и излучается. На практике потери, конечно, есть, но уже достигнуты впечатляющие результаты по сравнению с другими источниками. Светораспределение светильника создается с гораздо меньшими потерями света. 

 

Надежность и время жизни. Начнем с самого определения времени жизни устройства. Для светодиода за время жизни принято количество часов, которое он проработает до снижения его светового потока на 30%. Лидирующие производители (например, Osram) заявляют о времени жизни более 100 тыс. часов.

 

{xtypo_quote}Сравним: лампа накаливания – 1000 часов, стандартная люминесцентная лампа – 12 тыс. часов, газоразрядные лампы – до 40 тыс. часов. Данные по традиционным источникам света приведены по критерию полного выхода источника из строя. {/xtypo_quote}

Малый размер светодиода. Мощный одноваттный светодиод серии OSLON производства Osram имеет размер корпуса 3х3 мм. Это позволяет вписы-вать его в любую конструкцию светильника, а также создавать миниатюрные и при этом очень мощные осветительные приборы. (рис. 3).
Экологическая безопасность.

 

Светодиод сам по себе содержит сотые доли грамма вещества в кристаллической, крайне химически инертной форме. Люминесцентная лампочка содержит очень опасные для человека и природы вещества, такие как ртуть. Утилизация таких ламп дорогостоящий и сложный процесс.

 

Время включения-выключения и управление яркостью. Светодиоду требуются доли микросекунд (150 нс для белого одноваттного светодиода Golden Dragon Plus) для начала работы с полной отдачей после подачи на него электрического тока. Это дает возможность регулировать световой поток путем подачи коротких импульсов тока, следующих с высокой частотой.

 

Таким образом, яркость светильника может регулироваться в любых пределах с сохранением 100 % эффективности. Можно отметить и еще один эффект – светодиод некритичен к количеству циклов включений-выключений, что является бичом, например, недорогих энергосберегающих ламп.

 

Механическая прочность и стойкость к ударам. Светодиод – это твердый кристалл в пластиковой или керамической оболочке. При желании его можно уничтожить при помощи молотка. На практике он абсолютно не чувствителен к вибрациям и другим воздействиям, характерным для условий промышленного применения.

 

Стабильная работа при низких температурах без сокращения срока службы и потери яркости. Светодиодному светильнику не требуется запуск, он практически мгновенно выходит на заданный температурный режим.

Недостатки светодиодов

Самой большой проблемой при проектировании светодиодных светильников является решение вопроса о том, что делать с выделяемым теплом. Как уже говорилось, светодиод преобразует электрический ток непосредственно в световой поток.

 

Это достоинство, которое превращается в недостаток, когда речь заходит об отводе тепла. Дело в том, что светодиод практически не излучает мощности в инфракрасном диапазоне спектра. Инфракрасное излучение мы ощущаем как тепло, исходящее от лампочки. Оно бесполезно с точки зрения наших глаз, но очень хорошо отводит лишнее тепло от источника света.

{xtypo_quote}На практике в свет превращается около 25% энергии, а остальное переходит в тепло. Полупроводники не любят нагрев, их срок службы существенно падает при температуре выше 130-150 0С. (для сравнения – спираль лампочки накаливания нагревается до 2300 0С, а у галогенной – до 2700 0С). {/xtypo_quote}

 

Итак, недостаток № 1: нужно отводить тепло и делать это приходиться при помощи радиаторов, а иногда даже активных систем охлаждения. Для того, чтобы получить ожидаемую эффективность светодиодного светильника, требуется позаботиться о правильном источнике питания. Источник должен обеспечивать стабилизированный ток (а не напряжение, как требует подавляющее большинство устройств) на уровне от 100 мA до 1 А в зависимости от типа диода. Для достижения эффективности обычно используются импульсные источники с коррекцией коэффициента мощности.

 

Недостаток № 2 – относительно сложная схема питания.

 

Недостаток № 3, вероятно существующий лишь временно, – высокая цена светодиодов. В светотехнической отрасли принято говорить о люменах, получаемых на затраченный доллар или евро. На сегодняшний момент эта величина составляет до 3 евроцентов за 1 люмен, что на порядок выше, чем стоимость 1 люмена в люминесцентной лампе. Это основной фактор, препятствующий широкому распространению светодиодных светильников в быту. Однако в тех областях, где значение имеет стоимость владения, включающая стоимость обслуживания, светодиоды уже обходятся дешевле обычных ламп.

 

Чтобы в этом убедиться, достаточно подсчитать стоимость работ с применением автовышки по замене ламп в мачтах уличного освещения, не говоря уж о существенной экономии электроэнергии. Очень часто переход на светодиоды производится просто изза физической нехватки электрической мощности в районе.

 

Не случайно в начале статьи приведена история о радиолампах и транзисторах. Помимо лучших технических характеристик, которыми, кстати, первые транзисторы не особенно могли похвастаться, полупроводники открыли дорогу в отрасль для тысяч мелких компаний. С их появлением резко уменьшился финансовый и технологический барьер для выхода на рынок. Первые компьютеры новой эры были собраны в гаражах. Гиганты потеряли монополию, и в электронную индустрию пришла невероятно сильная конкуренция.

{xtypo_quote}Появление светодиодов открывает дорогу к производству светильников огромному количеству компаний, которые ранее этим не занимались. Все, что нужно на первом этапе, – это обычное оборудование для сборки электронных плат. В нашей стране существует избыток такого производства, который ждет своего часа.{/xtypo_quote}

Параметры светодиоды. Технические характеристики светодиодов.

Сравнительные таблицы

Параметры светодиоды. Технические характеристики светодиодов. Сравнительные таблицы

Условно все светодиоды можно разделить на две большие группы:

Осветительные это те, которые могут обеспечить световой поток не меньше, чем у традиционных источников света. Некоторые модели даже их превосходят.
К ним можно отнести 4 популярных вида:

К индикаторным относится dip светодиоды. Рассмотрим сперва их.

Сокращение DIP расшифровывается как Direct In-line Package. Именно их в первую очередь начали массово выпускать в недалеком прошлом.

Трудно представить, но первые неказистые экземпляры для рядовых пользователей стоили от 200$ за штуку.

На сегодняшний день они уже не так распространены, но все же применяются:

  • в устройствах индикации
  • в панелях электронных приборов
  • световых табло
  • или елочных украшениях

По форме корпуса они могут быть круглыми, овальными или прямоугольными. Самые популярные типоразмеры с выпуклыми линзами – 3,5,8,10мм.

Напряжение питания 2,5-5В, при токе до 25мА.

Бывают разноцветными и многоцветными (RGB). Это когда в одном корпусе спрятано 3 перехода, а внизу есть 4 вывода.

В электрических схемах все светодиоды обозначаются как обычный диод с двумя стрелочками.

Обратите внимание

Несмотря на малые размеры и свою “древность”, отдельные модели из-за специфической формы корпуса, могут выдать в 1,5-2 раза больше яркости, чем некоторые SMD.

К тому же потребление энергии у DIP меньше чем SMD, да и стоят они дешевле. Однако SMD технология не стоит на месте и с каждым годом их параметры стремительно сближаются.

Вот таблицы с основными техническими характеристиками (сила света, рабочее напряжение, сила тока, угол свечения, цена) для индикаторных светодиодов DIP разных типоразмеров.

А также расшифровка маркировки их названий и обозначений (для просмотра нажмите на соответствующую вкладку):

Данный вид на сегодня является самым популярным. SMD расшифровывается с английского = Surface-Mount-Device.

В своей конструкции они имеют полупроводниковый чип или кристалл, установленный на подложку. Снизу расположены контакты для подключения.

Каждый такой светодиод закрывается в корпусе, который напрямую можно припаивать к любой поверхности. Поэтому то их и называют ”изделиями поверхностного монтажа”.

Несмотря на одинаковое название “СМД”, в продаже можно встретить модели обладающие абсолютно разными:

О популярности данного типа могут говорить следующие цифры. Общее количество производимых светодиодов SMD, только в одном корпусе 2835, за год составляет несколько миллиардов штук.

Почему они так популярны? Конечно из-за своих достоинств:

  • продолжительный срок службы
  • ну а самое главное – высокая светоотдача

Именно SMD вид используется в большинстве светодиодных лампочек и светильников.

Таблицы всех технических характеристик наиболее популярных марок светодиодов марки SMD 2835, 3528, 5050, 5730:

COB – Chip On Board. У этого вида большое количество маленьких кристаллов размещено на единой подложке и все это собрано в одном корпусе.

Схема соединения этих кристаллов – последовательно параллельная. Сверху они заливаются люминофором.

По-другому их называют светодиодными матрицами. Их достоинства:

  • разнообразная форма сборки светодиодов

Все эти преимущества очень кстати подошли для изготовления ярких и компактных прожекторов. Также КОБы активно применяют там, где нужна акцентированная и декоративная подсветка.

Однако из-за близости расположения кристаллов друг к другу, происходит сильный нагрев корпуса, даже если вы и обеспечите нормальное охлаждение. Поэтому если вам нужна качественная фокусировка, придется использовать силиконовую оптику.
Она стойка не только к высоким температурам, но самое главное выдерживает без последствий огромное количество циклов нагрев-остывание.

На абы какую поверхность COM матрицы ставить нельзя. Ее необходимо предварительно подготовить.

Как определить марку SMD светодиода. Описание, виды и особенности маркировки SMD диодов

Светодиод – полупроводниковый прибор, преобразующий электрический ток в световое излучение. В отличие от ламп накаливания и энергосберегающих, долговечней и энергоэффективней. По исполнению делятся на два основных типа – DIP и SMD (СМД).

Различаются по конструкции корпуса и расположением контактов. В статье мы расскажем про SMD диоды.

Что такое smd

Surface Mounted Device (SMD) – прибор, монтируемый на поверхность. Говоря другими словами, если DIP светодиод имеет длинные контактные ножки и монтируется через отверстия в электрической плате, то СМД аналоги – прямо на плату или в светодиодную ленту, так как имеют маленькие контакты.

Япония – лидер развития технологий светодиодов, СМД диода в частности. Поэтому лучшая продукция у них.

Корпуса smd элементов

Основной тип – пластмассовый корпус прямоугольной формы.

Массовое производство налажено именно для такого типа. Если брать обычные диоды, а не источники света, то там ещё есть корпус металлостеклянный цилиндрической формы. Для нужд именно освещения смысла в таком исполнении нет.

Более важны размеры СМД светодиодного элемента. Их можно узнать по маркировке.

Маркировка smd полупроводников

Четыре цифры в маркировке обозначают длину и ширину в сотых миллиметра. Например, диод 1206 длинной 12 мм и шириной 6 мм.

Приписка RGB обозначает, что светодиод может выдавать один из трех цветов – красный, зеленый или голубой.

Для радиолюбителя обычно достаточно знания этих двух параметров в маркировке СМД диодов.

Краткие технические характеристики и применение

Популярны СМД светодиоды с маркировками 5050, 3528 и 5630 (5730). Именно в светодиодной ленте используются такие SMD кристаллы, благодаря чему получили широкое распространение.

Но других типоразмеров достаточно много. Вот основные из них (краткая характеристика и сферы применения, наиболее распространенных из них):

0603. Мощность 1,9 – 2, 3 ватт. Обычно применяется в приборных панелях автомобиля и в подсветки экрана в некоторых мобильных телефонах.

2835. Мощность 0, 2 – 1. Применяются в LED-лампочках, в карманных и тактических фонариках. Хорошо экономят энергию. Но в основном только белый цвет.

3528. Появился давно. В отличие от 2835 выпускается в разных цветах: теплый и холодный белый, красный, зеленый, желтый и синий.

3014. Мощность 0, 1 Вт. Современные светодиоды. Конкретную сферу применения назвать сложно, в интернете информации мало.

3030. 1,5 — 2, 2 Вт. Для ремонта ЖК и LED телевизоров.

3535. 1-3 Вт. Заняли твердое место на рынке из-за высокой теплоотдачи. Активно применяются в уличном освещении и на производстве.

5050. 0, 2 или 0, 26 Ватт. В сущности, это просто три диода 3528 в одном корпусе. Используется для красивого общего освещения – барах, ресторанах, гостиницах и проч.

5630. 0, 5 Ватт. Лучшее применение в светодиодных лентах. Требуют хорошего охлаждения, потому почти не используются в других сферах.

0805 и 1206 мало распространены. Применяются в основном радиолюбителями или для подсветки телефонов (смартфонов).

5730. Мощность от 0,5 до 1 ватта. Средние характеристики и невысокая цена. Встречается в светильниках всех видов: от декоративного освещения до уличного и промышленного. Один из самых распространенных кристаллов.

Полезное

В заключение

Светодиодные системы сегодня вытесняют лампы накаливания и энергосберегающие аналоги. Промышленники и жильцы домов любят их за низкое потребление электроэнергии и долгий срок службы. Дизайнеры за высокое качество света и безопасность. Радиолюбители за компактность и множество сфер применения. И наиболее популярные типы светодиодов – это SMD (СМД).

Пишите комментарии и делитесь статьей в социальных сетях, если узнали что-то новое и полезное о маркировке или сферах применения осветительных диодов.

Сверхяркие светодиоды характеристики. Конструкция мощного светодиода и угол рассеивания света

Мощные сверхяркие светодиоды устроены почти так же, как и стандартные. Различие состоит лишь в расположении кристаллов. В стандартном диоде они установлены на специальном основании, в ультраярком установочная площадка оснащена теплоотводом. По этой причине прибор может генерировать световой поток 100 Лм.

Компоненты, которые входят в состав мощного полупроводникового осветительного прибора:

  1. Корпусным основанием служит металлокерамическая подложка, имеющая высокую теплопроводность. За счет этого достигается минимум теплового сопротивления и корпус кристалла электрически изолирован от теплоотвода.
  2. Кристаллы из карборунда.
  3. Подложка. Она изготовлена на основе карборунда и алюмонитрида. В результате в кристалле не возникают механические напряжения при смене температуры.
  4. Отражатель. Данную функцию выполняет металлический корпус.
  5. Линза плавающая. Материал, из которого она произведена, — кварцевое стекло. Линза не закреплена жестко в корпусе. Ее положение сохраняется за счет сцепления с желеобразным герметиком. Благодаря этому исключено появление механического напряжения и выполняется автофокусировка в широком температурном интервале.

Полупроводниковые осветительные приборы отличаются от стандартных углом рассеивания.

Последние излучают свет равномерно во все стороны пространства. Светодиод может иметь угол рассеивания 15-120? Для увеличения указанного параметра используют рассеивающую линзу. Собирательную применяют для сужения угла, например, для создания точечного освещения.

Яркость светового потока диода изменяется в пределах угла. Максимальная освещенность достигается в центре, минимальная — по краям угла рассеивания. Данная характеристика влияет на стоимость светодиода. Например, у прибора, имеющего угол 180 гр, цена выше, чем у светодиода с параметром 60 гр.

Основные характеристики светодиодов.

Классификация светодиодов по их области применения

Изначально светодиоды применялись в качестве индикаторов

Элементы led-освещения различаются по области их применения. Основные типы светодиодов: индикаторные и осветительные. Устройства не одинаковы, каждые имеют свои отличительные особенности и технические параметры.

Индикаторные светодиоды

Первый LED-светильник появился в середине прошлого века. Прибор имел тусклое красноватое свечение, небольшую энергетическую эффективность. Несмотря на недостатки, разработки в данном направлении были продолжены. Спустя 20 лет появились варианты с желтым и зеленым оттенком. К началу 90-х сила светового потока достигла 1 Люмена. К началу 2000-х значение достигло уровня 100 Люменов.

В 1993 году японские инженеры представили светодиод синего цвета. Свет устройства стал значительно ярче предшественников. С этого момента на рынке стали появляться устройства с разным свечением – сочетание синего, зеленого, желтого и красного позволяют создавать любой цвет и оттенок.

В настоящее время разработки продолжаются. Появляются новые виды светодиодов. При этом сохраняется низковольтное потребление при увеличении силы светового потока.

Осветительные светодиоды

Первые модели с низкой светимостью (DIP) были пригодны для индикаторной работы (например, в темноте виден выключатель – горит небольшой красный светодиод). Современные устройства позволяют освещать значительные площади – бытовые и промышленные помещения. Мощность светодиода выросла – LED-прибор для фонарика с показателем 3Вт аналогичен лампе накаливания на 25-30Вт. Потребление электроэнергии меньше примерно в 10 раз.

Такие светодиоды получили название осветительные благодаря основной области применения. Используются в лентах, фарах, лампах, других изделиях. Изготавливаются в отдельных корпусах, которые допускают поверхностный монтаж.

Основное отличие – выдают только белый свет холодного или теплого оттенков. Классификация:

  • SMD – популярны модели с рассеивающим элементом на 100-130°; подложка для лампы из меди или алюминия, не нагреваются;
  • СОВ – более мощные, сверхъяркие, состоят из множества небольших кристаллов, угол рассеивания значительный;
  • Filament – обладают самым низким КПД (в сравнении с SMD), часто используются как декоративные элементы, изготавливаются различных размеров и форм.

Исходя из назначения и параметров помещения, выбирают оптимальный вариант. Характеристики осветительных устройств указаны на упаковке и в технической документации.

Ток светодиода. Как делают светодиоды

Светодиоды – это кристаллы, выращенные или наращенные из химических элементов на основе полупроводников. Они помещаются в специальный для каждого вида светодиодов корпус. Технологии изготовления светодиодов разнятся в зависимости от вида светодиода. Изготавливают светодиоды с добавлением различных химических элементов. Среди них полупроводники и не полупроводниковые металлы и их соединения. А также легирующие, то есть придающие составу определенные характеристики, примеси.

Изготовление светодиодов

Процесс изготовления светодиодов выглядит, примерно, следующим образом:

Пластины, служащие в качестве подложки будущих кристаллов светодиодов, помещают в специальную герметичную камеру. Такие пластины изготавливают из удобных для наращивания светодиодов материалов. Например, из искусственного сапфира, у которого подходящая для этого кристаллическая решетка. Прежде всего камеру заполняют смесью газообразных химических веществ на основе полупроводников и легирующих добавок. Затем внутренность такой камеры начинают нагревать. В процессе этого нагрева химические элементы, находящиеся до этого в газообразном состоянии, осаждаются на пластинах.

Процесс длится несколько часов. В итоге на подложке наращивается несколько десятков слоев общей толщиной лишь несколько микрон. Отличие в толщине пластины до и после наращивания не различимо на глаз.

Затем с помощью трафарета на пластину напыляются золотые контакты. После чего ее разрезают на мельчайшие части. Каждая такая часть – это отдельный кристалл светодиода со своими контактами. Размеры ее очень малы. По крайней мере, разглядеть ее в деталях можно лишь под микроскопом.

На следующем этапе готовые кристаллы вставляют в корпус. После того, по необходимости покрывают слоем люминофора. Тип корпуса и количество кристаллов зависят от того, где и как данный светодиод будет использоваться.

Все светодиоды отличаются друг от друга как отпечатки пальцев. То есть нет двух идентичных по своим характеристикам светодиодов. Потому на следующем этапе и происходит сортировка светодиодов по двум-трем сотням параметров. Чтобы отобрать наиболее близкие друг другу по мощности, цветовой температуре и другим характеристикам светодиоды.

В конце концов светодиоды проверяют на работоспособность на испытательных стендах. И лишь затем из них изготавливают светодиодные лампы, ленты или используют в других сферах применения.

Видео светодиоды. Основные параметры

Устройство светодиода принцип работы светодиода преимущества

Светодиод: устройство, принцип работы, преимущества

Интерес к светодиодам растет быстрее, чем территория их применения в светотехнике. Производители и потребители, продавцы и покупатели — все как будто замерли на старте, боясь отстать от других. И только дизайнеры уже вовсю пользуются уникальными возможностями светодиодов. Давно прошло то время, когда светодиоды были интересны одним лишь ученым. Теперь светодиодная тема у всех на слуху. Говорят, за ними будущее.

Светодиоды излучают не только уникальный по своим характеристикам свет, но и завидный оптимизм по поводу своего места на рынке светотехники. Особенно активно экспансия LED разворачивается в области интерьерного оформления и светодизайна.

Настоящая публикация не случайно построена в форме вопросов и ответов (FAQ, frequently asked questions — часто задаваемые вопросы). Именно так заинтересованный человек подходит к новому для него объекту, с тем чтобы «пощупать» его с разных сторон и уж потом решить: нужен — не нужен. А мне задавать правильные вопросы и находить на них верные ответы помогал профессор МГУ Александр Эммануилович Юнович, один из ведущих российских специалистов по светодиодам.

1. Что такое светодиод?

Светодиод — это полупроводниковый прибор, преобразующий электрический ток непосредственно в световое излучение. Кстати, по-английски светодиод называется light emitting diode, или LED.

2. Из чего состоит светодиод?

Из полупроводникового кристалла на подложке, корпуса с контактными выводами и оптической системы. Современные светодиоды мало похожи на первые корпусные светодиоды, применявшиеся для индикации.

Рис. 1. Конструкция светодиода Luxeon фирмы Lumileds lighting.

3. Как работает светодиод?

Свечение возникает при рекомбинации электронов и дырок в области p-n-перехода. Значит, прежде всего нужен p-n-переход, то есть контакт двух полупроводников с разными типами проводимости. Для этого приконтактные слои полупроводникового кристалла легируют разными примесями: по одну сторону акцепторными, по другую — донорскими.

Но не всякий p-n-переход излучает свет. Почему? Во-первых, ширина запрещенной зоны в активной области светодиода должна быть близка к энергии квантов света видимого диапазона. Во-вторых, вероятность излучения при рекомбинации электронно-дырочных пар должна быть высокой, для чего полупроводниковый кристалл должен содержать мало дефектов, из-за которых рекомбинация происходит без излучения. Эти условия в той или иной степени противоречат друг другу.

Реально, чтобы соблюсти оба условия, одного р-п-перехода в кристалле оказывается недостаточно, и приходится изготавливать многослойные полупроводниковые структуры, так называемые гетероструктуры, за изучение которых российский физик академик Жорес Алферов получил Нобелевскую премию 2000 года.

4. Означает ли это, что чем больший ток проходит через светодиод, тем он светит ярче?

Разумеется, да. Ведь чем больше ток, тем больше электронов и дырок поступают в зону рекомбинации в единицу времени. Но ток нельзя увеличивать до бесконечности. Из-за внутреннего сопротивления полупроводника и p-n-перехода диод перегреется и выйдет из строя.

5. Чем хорош светодиод?

В светодиоде, в отличие от лампы накаливания или люминесцентной лампы, электрический ток преобразуется непосредственно в световое излучение, и, теоретически, это можно сделать почти без потерь. Действительно, светодиод (при должном теплоотводе) мало нагревается, что делает его незаменимым для некоторых приложений. Далее, светодиод излучает в узкой части спектра, его цвет чист, что особенно ценят дизайнеры, а УФ- и ИК-излучения, как правило, отсутствуют. Светодиод механически прочен и исключительно надежен, его срок службы достигает 100 тысяч часов, что в 100 раз больше, чем у лампочки накаливания, и в 10 раз больше, чем у люминесцентной лампы. Наконец, светодиод — низковольтный электроприбор, а стало быть, безопасный.

6. Чем плох светодиод?

Только одним — ценой. Пока что цена одного люмена, излученного светодиодом, в 100 раз выше, чем галогенной лампой. Но специалисты утверждают, что в ближайшие 2-3 года этот показатель будет снижен в 10 раз.

7. Когда светодиоды начали применяться для освещения?

Первоначально светодиоды применялись исключительно для индикации. Чтобы сделать их пригодными для освещения, необходимо было прежде всего научиться изготавливать белые светодиоды, а также увеличить их яркость, а точнее светоотдачу, то есть отношение светового потока к потребляемой энергии.

В 60-х и 70-х годах были созданы светодиоды на основе фосфида и арсенида галлия, излучающие в желто-зеленой, желтой и красной областях спектра. Их применяли в световых индикаторах, табло, приборных панелях автомобилей и самолетов, рекламных экранах, различных системах визуализации информации. По светоотдаче светодиоды обогнали обычные лампы накаливания. По долговечности, надежности, безопасности они тоже их превзошли. Одно было плохо — не существовало светодиодов синего, сине-зеленого и белого цвета.

К концу 80-х годов в СССР выпускалось более 100 млн светодиодов в год, а мировое производство составляло несколько десятков миллиардов.

8. От чего зависит цвет светодиода?

Исключительно от ширины запрещенной зоны, в которой рекомбинируют электроны и дырки, то есть от материала полупроводника, и от легирующих примесей. Чем «синее» светодиод, тем выше энергия квантов, а значит, тем больше должна быть ширина запрещенной зоны.

9. Какие трудности пришлось преодолеть ученым, чтобы изготовить голубой светодиод?

Голубые светодиоды можно сделать на основе полупроводников с большой шириной запрещенной зоны — карбида кремния, соединений элементов II и IV группы или нитридов элементов III группы. (Помните таблицу Менделеева?)

У светодиодов на основе SiC оказался слишком мал КПД и низок квантовый выход излучения (то есть число излученных квантов на одну рекомбинировавшую пару). У светодиодов на основе твердых растворов селенида цинка ZnSe квантовый выход был выше, но они перегревались из-за большого сопротивления и служили недолго. Оставалась надежда на нитриды.

Нитрид галлия GaN плавится при 2000 °С, при этом равновесное давление паров азота составляет 40 атмосфер; ясно, что растить такие кристаллы непросто. Аналогичные соединения — нитрилы алюминия и индия — тоже полупроводники. Их соединения образуют тройные твердые растворы с шириной запрещенной зоны, зависящей от состава, который можно подобрать так, чтобы генерировать свет нужной длины волны, в том числе и синий. Но… проблему не удавалось решить до конца 80-х годов.

Первым, еще в 70-х, голубой светодиод на основе пленок нитрида галлия на сапфировой подложке удалось получить профессору Жаку Панкову (Якову Исаевичу Панчечникову) из фирмы IBM (США). Квантовый выход был достаточен для практических применений, однако руководство сказало: «Ну, это ж на сапфире — дорого и не так уж ярко, к тому же p-n-переход нехорош. ..» — и работы Панкова не поддержали.

Между тем группа Сапарина и Чукичева из МГУ обнаружила, что под действием электронного пучка GaN с примесью цинка становится ярким люминофором, и даже запатентовала устройство оптической памяти. Но тогда загадочное явление объяснить не удалось.

Это сделали японцы — профессор И. Акасаки и доктор X. Амано из университета Нагоя. Обработав пленку GaN с примесью магния электронным пучком со сканированием, они получили ярко люминесцирующий слой р-типа с высокой концентрацией дырок. Однако разработчики светодиодов не обратили должного внимания на их публикации.

Лишь в 1989 году доктор Ш. Накамура из фирмы Nichia Chemical, исследуя пленки нитридов элементов III группы, сумел воспользоваться результатами профессора Акасаки. Он так подобрал легирование (Мд, Zn) и термообработку, заменив ею электронное сканирование, что смог получить эффективно инжектирующие слои р-типа в GaN-гетероструктурах. Вот как был получен голубой светодиод.

Фирма Nichia запатентовала ключевые этапы технологии и к концу 1997 года выпускала уже 10-20 млн голубых и зеленых светодиодов в месяц, а в январе 1998 года приступила к выпуску белых светодиодов.

10. Что такое квантовый выход светодиода?

Квантовый выход — это число излученных квантов света на одну рекомбинировавшую электроннодырочную пару. Различают внутренний и внешний квантовый выход. Внутренний — в самом p-n-переходе, внешний — для прибора в целом (ведь свет может теряться «по дороге» — поглощаться, рассеиваться). Внутренний квантовый выход для хороших кристаллов с хорошим теплоотводом достигает почти 100%, рекорд внешнего квантового выхода для красных светодиодов составляет 55%, а для синих — 35%.

Внешний квантовый выход — одна из основных характеристик эффективности светодиода.

11. Как получить белый свет с использованием светодиодов?

Существует три способа получения белого света от светодиодов. Первый — смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет. Второй способ заключается в том, что на поверхность светодиода, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, соответственно, голубой, зеленый и красный свет. Это похоже на то, как светит люминесцентная лампа. И, наконец, в третьем способе желто-зеленый или зеленый плюс красный люминофор наносятся на голубой светодиод, так что два или три излучения смешиваются, образуя белый или близкий к белому свет.

12. Какой из трех способов лучше?

У каждого способа есть свои достоинства и недостатки. Технология RGB в принципе позволяет не только получить белый цвет, но и перемещаться по цветовой диаграмме при изменении тока через разные светодиоды. Этим процессом можно управлять вручную или посредством программы, можно также получать различные цветовые температуры. Поэтому RGB-матрицы широко используются в светодинамических системах. Кроме того, большое количество светодиодов в матрице обеспечивает высокий суммарный световой поток и большую осевую силу света. Но световое пятно из-за аберраций оптической системы имеет неодинаковый цвет в центре и по краям, а главное, из-за неравномерного отвода тепла с краев матрицы и из ее середины светодиоды нагреваются по-разному, и, соответственно, по-разному изменяется их цвет в процессе старения — суммарные цветовая температура и цвет «плывут» за время эксплуатации. Это неприятное явление достаточно сложно и дорого скомпенсировать.

Белые светодиоды с люминофорами существенно дешевле, чем светодиодные RGB-матрицы (в пересчете на единицу светового потока), и позволяют получить хороший белый цвет. И для них в принципе не проблема попасть в точку с координатами (0.33, 0.33) на цветовой диаграмме МКО. Недостатки же таковы: во-первых, у них меньше, чем у RGB-матриц, светоотдача из-за преобразования света в слое люминофора; во-вторых, достаточно трудно точно проконтролировать равномерность нанесения люминофора в технологическом процессе и, следовательно, цветовую температуру; и наконец в-третьих — люминофор тоже стареет, причем быстрее, чем сам светодиод. Промышленность выпускает как светодиоды с люминофором, так и RGB-матрицы — у них разные области применения.

13. Каковы электрические и оптические характеристики светодиодов?

Светодиод — низковольтный прибор. Обычный светодиод, применяемый для индикации, потребляет от 2 до 4 В постоянного напряжения при токе до 50 мА. Светодиод, который используется для освещения, потребляет такое же напряжение, но ток выше — от нескольких сотен мА до 1А в проекте. В светодиодном модуле отдельные светодиоды могут быть включены последовательно, и суммарное напряжение оказывается более высоким (обычно 12 или 24 В).

При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5В для одного светодиода. Яркость светодиода характеризуется световым потоком и осевой силой света, а также диаграммой направленности. Существующие светодиоды разных конструкций излучают в телесном угле от 4 до 140 градусов. Цвет, как обычно, определяется координатами цветности и цветовой температурой, а также длиной волны излучения.

Для сравнения эффективности светодиодов между собой и с другими источниками света используется светоотдача: величина светового потока на один ватт электрической мощности. Также интересной маркетинговой характеристикой оказывается цена одного люмена.

14. Как реагирует светодиод на повышение температуры?

Говоря о температуре светодиода, необходимо различать температуру на поверхности кристалла и в области p-n-перехода. От первой зависит срок службы, от второй — световой выход. В целом с повышением температуры p-n-перехода яркость светодиода падает, потому что уменьшается внутренний квантовый выход из-за влияния колебаний кристаллической решетки. Поэтому так важен хороший теплоотвод.

Падение яркости с повышением температуры не одинаково у светодиодов разных цветов. Оно больше у AlGalnP- и AeGaAs-светодиодов, то есть у красных и желтых, и меньше у InGaN, то есть у зеленых, синих и белых.

15. Почему нужно стабилизировать ток через светодиод?

Как видно из рисунка 2, в рабочих режимах ток экспоненциально зависит от напряжения и незначительные изменения напряжения приводят к большим изменениям тока. Поскольку световой выход прямо пропорционален току, то и яркость светодиода оказывается нестабильной. Поэтому ток необходимо стабилизировать. Кроме того, если ток превысит допустимый предел, то перегрев светодиода может привести к его ускоренному старению.

Рис. 2. Зависимость силы тока от напряжения питания светодиода.

16. Для чего светодиоду требуется конвертор?

Конвертор (в англоязычной терминологии driver) для светодиода — то же, что балласт для лампы. Он стабилизирует ток, протекающий через светодиод.

17. Можно ли регулировать яркость светодиода?

Яркость светодиодов очень хорошо поддается регулированию, но не за счет снижения напряжения питания — этого-то как раз делать нельзя, — а так называемым методом широтно-импульсной модуляции (ШИМ), для чего необходим специальный управляющий блок (реально он может быть совмещен с блоком питания и конвертором, а также с контроллером управления цветом RGB-матрицы). Метод ШИМ заключается в том, что на светодиод подается не постоянный, а импульсно-модулированный ток, причем частота сигнала должна составлять сотни или тысячи герц, а ширина импульсов и пауз между ними может изменяться. Средняя яркость светодиода становится управляемой, в то же время светодиод не гаснет. Небольшое изменение цветовой температуры светодиода при диммировании несравнимо с аналогичным смещением для ламп накаливания.

18. Чем определяется срок службы светодиода?

Считается, что светодиоды исключительно долговечны. Но это не совсем так. Чем больший ток пропускается через светодиод в процессе его службы, тем выше его температура и тем быстрее наступает старение. Поэтому срок службы у мощных светодиодов короче, чем у маломощных сигнальных, и составляет в настоящее время 20-50 тысяч часов. Старение выражается в первую очередь в уменьшении яркости. Когда яркость снижается на 30% или наполовину, светодиод надо менять.

19. «Портится» ли цвет светодиода с течением времени?

Старение светодиода связано не только со снижением его яркости, но и с изменением цвета. В настоящее время нет стандартов, которые позволили бы выразить количественно изменение цвета светодиодов в процессе старения и сравнить с другими источниками.

20. Не вреден ли светодиод для человеческого глаза?

Спектр излучения светодиода близок к монохроматическому, в чем его кардинальное отличие от спектра солнца или лампы накаливания. Хорошо это или плохо — доподлинно не известно, потому что, насколько я знаю, серьезных исследований в этой области нигде не проводилось. Какие-либо данные о вредном воздействии светодиодов на человеческий глаз отсутствуют.

Есть надежда, что вскоре влияние светодиодов на зрение будет изучено досконально. Проблемой заинтересовался академик Михаил Аркадьевич Островский — крупный специалист в области цветного зрения. Тема, за решение которой он взялся, называется так: «Психофизическое восприятие светодиодного освещения системой зрения человека».

21. Когда и как сверхъяркие светодиоды появились в России?

Об этом лучше всех расскажет профессор Юнович.

Люминесценцию карбида кремния впервые наблюдал Олег Владимирович Лосев в Нижегородской радиотехнической лаборатории в 1923 г. и показал, что она возникает вблизи p-n-перехода. Первая научная статья о кристаллах нитрида галлия была опубликована профессором МГУ Г.С. Ждановым в 30-х гг. Люминесценцию в гетероструктурах на основе арсенида галлия впервые исследовали в лаборатории Ж. И. Алферова в 60-х гг. и показали, что можно создать структуры с внутренним квантовым выходом близким к 100%. Разработки структур и светодиодов на основе нитрида галлия велись в ленинградских Политехническом и Электротехническом институтах, в Калуге, в Зеленограде в 70-х гг., но они тогда не привели к созданию эффективных голубых светодиодов.

В 1995 году я прочел первые статьи Накамуры и понял, что «голубая проблема» в принципе решена. Тогда же я получил грант соросовского фонда. В декабре на эти деньги я смог поехать на конференцию в США, и там профессор Жак Панков познакомил меня с Ш. Накамурой. Я забросил наживку: мол, хочу приобщить студентов Московского университета к передовым достижениям в области голубых светодиодов и рассказать им о столь замечательном изобретении. Рыбка клюнула, и в феврале я получил от д-ра Ш. Накамуры из Японии бандеролью 10 светодиодов от фиолетового до зеленого. Все потом оказалось просто — фирма Nichia Chemical начинала выпуск светодиодов на рынок и была заинтересована в научной рекламе. В лаборатории МГУ мы их досконально исследовали, сняли все характеристики и получили новые научные результаты. Д-р Ш. Накамура дал любезное согласие на совместную публикацию наших первых статей.

Одновременно специалисты из группы Бориса Ферапонтовича Тринчука в Зеленограде продемонстрировали образцы зеленых светодиодов начальникам из ГАИ и получили положительный отзыв. Все дело в том, что эта группа сделала опытный образец светодиодного светофора, но у них не было хороших зеленых светодиодов. Светофоры с новыми сверхъяркими зелеными светодиодами намного превосходили светофоры с лампами, и московское правительство сделало заказ на 1000 светодиодных светофоров к 850-летию Москвы. Такое везение!

Как раз тогда у нас гостила киргизская скрипачка Райкан Карагулова — выпускница Московской консерватории, ученица моей жены, которая работала в Японии первым концертмейстером симфонического оркестра в Осаке. Выяснилось, что место ее работы находится неподалеку от фирмы Nichia Chemical! Б.Ф. Тринчук дал ей тысячу долларов и попросил купить на них и прислать на мой адрес 200 зеленых светодиодов. Из них были изготовлены первые светофоры из той юбилейной тысячи. Москва стала первым в мире городом с массовым применением светодиодных светофоров.

Наши ученые и инженеры в НИИ «Сапфир» пытались повторить достижение японцев и изготовить структуры на основе нитридов для голубых и зеленых светодиодов на старой эпитаксиальной установке, которую пришлось модернизировать, чтобы достичь более высоких температур и давлений. Но инициатива заглохла из-за отсутствия денег и интереса руководства.

22. Какие на сегодняшний день существуют технологии изготовления светодиодов и светодиодных модулей?

Что касается выращивания кристаллов, то основная технология — металлоорганическая эпитаксия. Для этого процесса необходимы особо чистые газы. В современных установках предусмотрены автоматизация и контроль состава газов, их раздельные потоки, точная регулировка температуры газов и подложек. Толщины выращиваемых слоев измеряются и контролируются в пределах от десятков ангстрем до нескольких микрон. Разные слои необходимо легировать примесями, донорами или акцепторами, чтобы создать p-n-переход с большой концентрацией электронов в n-области и дырок — в р-области.

Рис. 3. Схематическое представления светодиода.

За один процесс, который длится несколько часов, можно вырастить структуры на 6-12 подложках диаметром 50-75 мм. Очень важно обеспечить и проконтролировать однородность структур на поверхности подложек. Стоимость установок для эпитаксиального роста полупроводниковых нитридов, разработанных в Европе (фирмы Aixtron и Thomas Swan) и США (Emcore), достигает 1,5-2 млн долларов. Опыт разных фирм показал, что научиться получать на такой установке конкурентоспособные структуры с необходимыми параметрами можно за время от одного года до трех лет. Это технология, требующая высокой культуры.

Важным этапом технологии является планарная обработка пленок: их травление, создание контактов к n- и р-слоям, покрытие металлическими пленками для контактных выводов. Пленку, выращенную на одной подложке, можно разрезать на несколько тысяч чипов размерами от 0,24 x 0,24 до 1 x 1 мм2/.

Следующим шагом является создание светодиодов из этих чипов. Необходимо смонтировать кристалл в корпусе, сделать контактные выводы, изготовить оптические покрытия, просветляющие поверхность для вывода излучения или отражающие его. Если это белый светодиод, то нужно равномерно нанести люминофор. Надо обеспечить теплоотвод от кристалла и корпуса, сделать пластиковый купол, фокусирующий излучение в нужный телесный угол. Около половины стоимости светодиода определяется этими этапами высокой технологии.

Необходимость повышения мощности для увеличения светового потока привела к тому, что традиционная форма корпусного светодиода перестала удовлетворять производителей из-за недостаточного теплоотвода. Надо было максимально приблизить чип к теплопроводящей поверхности. В связи с этим на смену традиционной технологии и несколько более совершенной SMD-технологии (surface montage details — поверхностный монтаж деталей) приходит наиболее передовая технология СОВ (chip on board). Светодиод, изготовленный по технологии СОВ, схематически изображен на рисунке.

Светодиоды, выполненные по SMD- и СОВ-технологии, монтируются (приклеиваются) непосредственно на общую подложку, которая может исполнять роль радиатора — в этом случае она делается из металла. Так создаются светодиодные модули, которые могут иметь линейную, прямоугольную или круглую форму, быть жесткими или гибкими, короче, призваны удовлетворить любую прихоть дизайнера. Появляются и светодиодные лампы с таким же цоколем, как у низковольтных галогенных, призванные им на замену. А для мощных светильников и прожекторов изготавливаются светодиодные сборки на круглом массивном радиаторе.

Раньше в светодиодных сборках было очень много светодиодов. Сейчас, по мере увеличения мощности, светодиодов становится меньше, зато оптическая система, направляющая световой поток в нужный телесный угол, играет все большую роль.

23. Кто в мире сегодня производит светодиоды?

Чтобы делать качественные светодиоды в нужном количестве, понадобилось слияние двух отраслей — электронной и светотехнической. Все западные гиганты, производящие светодиоды для светотехники по полному циклу, начиная с производства чипов и заканчивая различными светодиодными модулями и сборками, а также светильниками на их основе, идут по этому пути. General Electric заключила союз с производителем полупроводниковых приборов Emcore, создав компанию GEL Core. Philips Lighting совместно с Agilent, дочерней компанией Hewlett-Packard, создали предприятие LumiLeds. Osram объединяет усилия с полупроводниковыми предприятиями своей материнской компании Siemens. Как заметил Макаранд Чипалкатти, менеджер по маркетингу из подразделения Opto Semiconductors компании Osram Sylvania, специализирующемуся на устройствах LED, производители светотехники сами уничтожают свой бизнес. Но если сегодня не «наступить на горло собственной песне», то завтра придут другие и сделают это куда более жестко.

Впрочем, существуют компании, специализирующиеся только на производстве чипов. Это предприятия радиоэлектронной промышленности, и они не занимаются светотехникой. К их числу относится Nichia Corporation.

24. Каковы основные производители светодиодных модулей и сборок и представленные ими модельные ряды?

Чипы и отдельные светодиоды производят компании Nichia Corporation, Сгее, LumiLeds Lighting, Opto Technology, Osram Opto Semiconductors, GEL Core. Массовое производство структур и чипов для светодиодов ведут тайваньские фирмы Lite-On, Taiwan Oasis и др.

В России светодиоды производят компании Корвет Лайт, Светлана Оптоэлектроника, Оптэл, Оптоника. По конструкции и технологическому исполнению наши светодиоды не уступают зарубежным, специалисты перечисленных компаний имеют соответствующие патенты. В Москве и Санкт-Петербурге есть возможность выращивать собственные чипы — например, эпитаксиальная установка имеется в Санкт-Петербургском физтехе, — но для промышленного производства необходимо крупное финансирование, и пока наши компании используют зарубежные чипы.

25. Где сегодня целесообразно применять светодиоды?

Светодиоды находят применение практически во всех областях светотехники, за исключением освещения производственных площадей, да и там могут использоваться в аварийном освещении. Светодиоды оказываются незаменимы в дизайнерском освещении благодаря их чистому цвету, а также в светодинамических системах. Выгодно же их применять там, где дорого обходится частое обслуживание, где необходимо жестко экономить электроэнергию, и где высоки требования по электробезопасности.

26. Возможности и применение

Изобретение первых светодиодов — полупроводниковых диодов в эпоксидной оболочке, выделяющих монохроматический свет при подключении к электротоку — относится к 1960-м годам. Однако до 1980-х низкая яркость, отсутствие светодиодов синего и белого цветов, а также высокие затраты на их производство ограничивали их массовое применение в качестве источников света. Поэтому светодиоды в основном использовали в наружных электронных табло, ими оборудовали системы регулирования дорожного движения, применяли в оптоволоконных системах передачи данных и медицинском оборудовании.

Появление сверх ярких, а также синих (в середине 1990-х годов) и белых диодов (в начале XXI века) и постоянное снижение их рыночной стоимости привлекли внимание многих производителей к данным источникам света. Светодиоды стали использовать в качестве индикаторов режимов работы электронных устройств, в подсветке жидкокристаллических экранов различных приборов, в том числе — мобильных телефонов и пр. Впоследствии применение светодиодов основных цветов (красного, синего и зеленого) позволило получать цвета вывесок фактически любых оттенков, а также конструировать из них дисплеи с выводом полноцветной графики и анимации.

Светодиоды, за счет их малой потребности в электроэнергии, — оптимальный выбор декоративного освещения в местах, где существуют проблемы с энергетикой.

Срок службы светодиодов, превышающий в 6-8 раз долговечность люминесцентных ламп, относительная простота в работе с ними на этапе сборки изделий, отсутствие необходимости в регулярном обслуживании и их антивандальные качества делают эти источники света конкурентоспособными с более традиционными газоразрядными, люминесцентными лампами и лампами накаливания. Одним из немногих и существенных аспектов, за счет которого неон удерживает свои позиции в сегменте подсветки вывесок, является пока еще более высокая стоимость светодиодов.

27. Преимущества

Экономично…

Одним из достоинств светодиодов является их долговечность. Данные источники света обладают ресурсом использования 100 000 часов, а ведь это 10-12 лет непрерывной работы. Для сравнения — максимальный срок работы неоновых и люминесцентных ламп составляет 10 тыс. часов.

За это же время в световом модуле, использующем люминесцентные лампы, их нужно будет сменить 8-10 раз, а лампы накаливания придется заново «вкручивать» от 30 до 40 раз. Использование светодиодных модулей позволяет снизить затраты на электроэнергию до 87%!

Удобно…

Светодиодный модуль — многокомпонентная структура с неприхотливой схемой подключения. В цепочке, скажем, из полусотни светодиодов один-два неисправных не только не выводят рекламный фрагмент из строя, но даже не влияют на суммарное световое излучение. Гигантский ресурс работы светодиодов практически решает проблемы, связанные с необходимостью их замены. Кроме того, светоизлучающие диоды способны надежно функционировать в самом широком диапазоне рабочих температур.

Надежно…

Есть надежность совершенно особого рода — та, от которой порою зависят человеческие жизни. Применение светодиодов в устройствах отображения информации (дорожные знаки, светофоры, информационные табло и т.д.) ведет к значительному увеличению расстояния их восприятия человеческим глазом. Неслучайно во многих крупных городах развитых стран уже нет обычных светофоров, а светодиодные схемы используются в воздушных и надводных навигационных системах.

Другим аспектом, благодаря которому светодиодам некоторыми заказчиками отдается предпочтение, являются их прочность и антивандальные качества. В отличие от стеклянных трубок данные источники света изготовлены из пластика. За счет этого их нелегко вывести из строя посредством механических повреждений. Характерное напряжение, необходимое для работы одного светодиода, — 3-4 вольта. Поэтому в условиях, когда требуется соблюдение повышенных мер безопасности или нет возможности использовать высокие напряжения, светодиоды являются оптимальным выбором. Рабочее напряжение светодиодных модулей, как упоминалось ранее, составляет 10-12 В. Очевидно, что при низком напряжении не требуется применять провода большого сечения с сильной изоляцией. Это также облегчает подключение светодиодов к электросети. У газоразрядных трубок, в отличие от светодиодов, есть порог срабатывания: чтобы источник света загорелся, в начале необходимо подать на разряд необходимое напряжение. Светодиоды же начинают излучать свет сразу при подключении к электросети, и их яркость легко регулировать наращиванием или снижением напряжения практически сразу после включения. Одним из важных преимуществ светодиодов является устойчивость к воздействию низких температур. Известно, что на морозе внутри газоразрядных источников света происходит вымерзание ртути, и это приводит к снижению яркости свечения. При отрицательных температурах также возникают проблемы с включением неона. Светодиоды лишены этих минусов.

Красиво…

Если бы LED-технологии не изобрели светотехники, их бы создали дизайнеры. Светодиоды, в отличие от ламп с неоном, имеют практически неограниченные возможности для «игры» со спектрами, цепочки которых можно выстроить таким образом, чтобы световые акценты точно работали на образ. Плавные, почти незаметные для глаза световые переходы от пика к пику в плане выразительности, конечно, уступают живописи, но оставляют далеко позади другие источники света. Изощренная цветодинамика, характерная для светодиодных модулей, способна удовлетворить требования самого требовательного дизайнера. Интересно, что игра со спектрами имеет и экологическое значение. Ведь кривые чувствительности, скажем, растений и человеческого глаза не совпадают: те спектры, которые комфортны для нашего глаза, часто дискомфортны для растений, и наоборот. Зональное использование различных светодиодных «цепочек» в тех интерьерах, где одновременно пребывают и растения, и человек, снимают эту проблему.

Представительно…

Светодиодные модули необычайно компактны. Различные сувениры, миниатюрные стенды и компактные табло, украшенные светодиодной символикой компании, смотрятся на удивление выразительно и необычно. Доля рынка светотехнических изделий, занимаемая светодиодами, составляет ничтожную долю. В развитых странах, особенно в крупных городах и столицах, она медленно, но верно возрастает. Своеобразным символом этой нежной и неизбежной революции стало гигантское 500-метровое полотно из светодиодов, непрерывно протянувшееся над главной улицей Лас-Вегаса.

Светоизлучающий диод (LED) — рабочий, обозначение цепи, характеристики

Посмотрите видео, приведенное ниже, чтобы лучше понять, как работает светодиод?
macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=6,0,40,0″>

Светоизлучающий диод (LED), как известно, является одним из лучших оптоэлектронных устройств из всей партии. Устройство способно излучать довольно узкую полосу пропускания видимого или невидимого света, когда его внутренний диодный переход достигает прямого электрического тока или напряжения.Видимый свет, который излучает светодиод, обычно бывает оранжевым, красным, желтым или зеленым. Невидимый свет включает инфракрасный свет. Самым большим преимуществом этого устройства является его высокая эффективность преобразования мощности в свет. То есть КПД почти в 50 раз больше, чем у простой вольфрамовой лампы. Также известно, что время отклика светодиода очень быстрое и составляет 0,1 микросекунды по сравнению со 100 миллисекундами для вольфрамовой лампы. Благодаря этим преимуществам, устройство широко применяется в качестве визуальных индикаторов и в качестве танцующих световых индикаторов .

Мы знаем, что соединение P-N может соединить поглощенную световую энергию с ее пропорциональным электрическим током. Здесь тот же процесс обратный. То есть переход P-N излучает свет, когда к нему прикладывается энергия. Это явление обычно называется электролюминесценцией, которую можно определить как излучение света полупроводником под действием электрического поля. Носители заряда рекомбинируют в прямом P-N-переходе, когда электроны пересекают N-область и рекомбинируют с дырками, существующими в P-области.Свободные электроны находятся в зоне проводимости энергетических уровней, а дырки — в валентной энергетической зоне. Таким образом, уровень энергии дырок будет меньше уровней энергии электронов. Некоторая часть энергии должна рассеиваться, чтобы рекомбинировать электроны и дырки. Эта энергия излучается в виде тепла и света.

Электроны рассеивают энергию в виде тепла для кремниевых и германиевых диодов. Но в полупроводниках галиий-арсенид-фосфор (GaAsP) и галиий-фосфор (GaP) электроны рассеивают энергию, испуская фотоны.Если полупроводник является полупрозрачным, переход становится источником света при его испускании, превращаясь, таким образом, в светоизлучающий диод (LED). Но когда переход смещен в обратном направлении, светодиод не будет излучать свет, и, наоборот, устройство также может быть повреждено.

Конструктивная схема светодиода показана ниже.

Светодиодная конструкция

Могут использоваться все перечисленные выше полупроводники. Эпитаксиальный слой N-типа выращивается на подложке, а P-область создается посредством диффузии .P-область, которая включает рекомбинацию носителей заряда, показана вверху. Таким образом, P-область становится поверхностью устройства. Чтобы обеспечить большую площадь поверхности для испускания света, металлические анодные соединения выполняются на внешних краях P-слоя. Чтобы свет t максимально отражался к поверхности устройства, на дно поверхности нанесена золотая пленка. Эта настройка также позволяет обеспечить катодное соединение. Проблема реабсорбции решается включением в устройство куполообразных линз.Все провода в электронных схемах устройства защищены кожухом устройства. Свет, излучаемый устройством, зависит от типа используемого полупроводникового материала. Инфракрасный свет создается с использованием арсенида галлия (GaAs) в качестве полупроводника. Красный или желтый свет получают при использовании галлия-арсенида-фосфора (GaAsP) в качестве полупроводника. Красный или зеленый свет получают при использовании галлий-фосфорного (GaP) полупроводника.

Обозначение цепи светодиода

Обозначение схемы светодиода состоит из двух стрелок, которые указывают излучение, излучаемое диодом.

Обозначение цепи светодиода

Характеристики светодиода

Характеристики светодиода

Кривая напряжение-ток прямого смещения (V-I) и кривая выходных характеристик показаны на рисунке выше. Кривая V-I практически применима в охранной сигнализации . Для получения значительного прямого тока необходимо прямое смещение приблизительно 1 вольт. Второй рисунок используется для представления кривой прямого тока излучаемой мощности.Вырабатываемая выходная мощность очень мала, и, следовательно, эффективность преобразования электрической энергии в лучистую очень низка.

На рисунке ниже показан последовательный резистор R серии , подключенный к светодиоду. Как только прямое смещение устройства превышает, ток будет увеличиваться с большей скоростью в соответствии с небольшим увеличением напряжения. Это показывает, что прямое сопротивление устройства очень низкое. Это показывает важность использования внешнего резистора, ограничивающего последовательный ток.Последовательное сопротивление определяется по следующему уравнению.

R серия = (питание В, — В) / I

В питание — напряжение питания

В — напряжение прямого смещения светодиода

I — текущий

Схема светодиодов

Коммерчески используемые светодиоды имеют типичное падение напряжения от 1,5 до 2,5 вольт или ток от 10 до 50 миллиампер. Точное падение напряжения зависит от тока светодиода, цвета, допуска и так далее.

Светодиод как индикатор

Схема, показанная ниже, является одним из основных применений светодиодов. Схема спроектирована путем включения обратной параллели с нормальным диодом, чтобы предотвратить обратное смещение устройства. Значение последовательного сопротивления должно быть половинным по сравнению с сопротивлением цепи постоянного тока.

LED как индикатор

LEDS дисплеи предназначены для отображения чисел из сегментов. Одной из таких конструкций является семисегментный дисплей, показанный ниже. Любые желаемые цифры от 0 до 9 могут отображаться, пропуская ток через правильные сегменты.Для подключения такого сегмента может использоваться конфигурация общего анода или катода с общим катодом. Оба соединения показаны ниже. Светодиоды включаются и выключаются с помощью транзисторов.

Преимущества светодиодов

  • Для работы светодиода достаточно очень низкого напряжения и тока.
  • Диапазон напряжения — от 1 до 2 вольт.
  • Ток — от 5 до 20 миллиампер.
  • Общая выходная мощность будет менее 150 милливатт.
  • Время отклика очень меньше — всего около 10 наносекунд.
  • Устройство не требует времени на нагрев и прогрев.
  • Миниатюрный размер и, следовательно, легкий вес.
  • Имеют прочную конструкцию и, следовательно, выдерживают удары и вибрации.
  • Срок службы светодиода превышает 20 лет.

Недостатки

  • Небольшое превышение напряжения или тока может повредить устройство.
  • Известно, что устройство имеет гораздо более широкую полосу пропускания по сравнению с лазером.
  • Температура зависит от выходной мощности излучения и длины волны.
Определение светодиодных диодов

— конструкция, характеристики, применение

Светодиод (LED, LED diode) — тип полупроводникового диода , который также относится к разряду оптоэлектронных компонентов. Типовая конструкция светодиода основана на «полупроводниковом кристаллическом переходе p-n» (подробнее о «p-n переходе» здесь, ) . После того, как светодиод будет поляризован положительным электрическим напряжением (прямое смещение), которое превышает его пороговое значение напряжения, он начнет излучать электромагнитное излучение в видимом и инфракрасном спектре света.

Рис. 1. Светодиодный символ

Светодиодная конструкция

Цвет и длина волны светового излучения, излучаемого светодиодами, тесно связаны с полупроводниковым материалом, из которого он был изготовлен. Обычно их изготавливают из соединений (двухкомпонентных и многокомпонентных) химических элементов 3-й и 5-й группы Периодической таблицы Менделеева (например, GaAs — арсенид галлия, GaP — фосфид галлия, GaAsP — арсенофосфид галлий с правым легированием).Элементный состав диода подбирается таким образом, чтобы полученная в процессе полупроводниковая структура позволяла излучать свет в желаемом спектральном диапазоне. «P-n-переходы» светодиодов с GaAs в основном производятся с использованием диффузионного метода . Это обеспечивает высокую квантовую эффективность. Группа соединенных между собой диодов используется в различных типах дисплеев, например в семисегментных дисплеях.

LED Разделение по цвету светового излучения
Цвет Длина волны λ [нм]
Ультрафиолет (УФ) <380
фиолетовый 380–435
Синий 435–500
Сине-зеленый 500–520
Зеленый 520-565
Желтый 565–590
Оранжевый 590–625
Красный 625–700
Инфракрасный (ИК)> 700

Плавное изменение длины волны сопровождается аналогичным изменением цвета.В приведенной выше таблице мы расположили диапазоны значений длин волн по длине, чтобы улучшить представление о связи между длиной волны и цветом диода.

Светодиод Вольт-амперные характеристики

Характеристики светодиода показывают, что цвет диода влияет на мощность, потребляемую этим светодиодом. Светодиоды , излучающие инфракрасный цвет , потребляют меньше всего энергии, а белый цвет — больше всего. Это связано с тем, что разные диоды имеют разное пороговое напряжение.Вы можете видеть, что на светодиоде характеристики показаны ниже.

Рис. 2. Группа вольт-амперных характеристик светодиодов, показывающих разницу пороговых напряжений у светодиодов разных цветов

Светодиод прямого напряжения

Ассортимент качеств этого семейства светодиодов очень широк, и в настоящее время нет подходящего подхода, чтобы сузить их и технологически «свести» их к еще более явной и поддающейся количественной оценке форме.Тем не менее, они несколько ограничены (сужены) и охватывают обычные значения, разделив светодиоды на классы, выбирая цвет света, поскольку он является стандартом для вашей отрасли.

Светодиод Прямое напряжение — это минимальное напряжение, при котором светодиод начинает светиться из-за потока тока. Рекомендации относительно максимального прямого тока, характеризующего подтвержденный диод, можно найти в примечаниях к каталогу, тем не менее, это сложно, особенно если мы не знаем источник диода, поскольку вы не можете найти на светодиодах маркировку производителя.В среднем светодиоды будут иметь максимальный прямой ток 20-30 мА, однако многие обычные светодиоды (с линзами) хорошо работают при токе ниже 10 мА, многие обычно 2-3 мА. Прямое напряжение светодиода в диоде зависит от тона освещения и материала, из которого он изготовлен.

Светодиод Принцип действия

Принцип действия светодиода основан на явлении электролюминесценции (создание электромагнитного излучения под действием электрического поля).Электролюминесценция возникает в результате рекомбинации (аннигиляции) пары носителей (электронов и электронных дырок) в области «p-n-перехода». В то время как электроны текут с более высокого уровня на более низкий, рассеивание мощности происходит в виде тепла (безызлучательная рекомбинация — в полупроводниках с n-наклонной запрещенной зоной) или света (излучательная рекомбинация — полупроводники с простой запрещенной зоной) . Во время этого потока энергия электронов преобразуется в квант электромагнитного излучения .

Гибкие светодиодные экраны

Динамическое развитие электроники, которое мы наблюдаем сегодня, было бы невозможно без одновременных исследований в области междисциплинарной науки под названием нанотехнологии . Мы достигли такого уровня, что нас не удивляют гибкие светодиодные экраны , используемые в телевизорах, мобильных телефонах, умных часах или даже в одежде.

Рис. 3. Источник: digitaltrends.com

Устройство в целом (электронная схема и компоненты) заключено в тонкую как бумагу и даже прозрачную фольгу .Быстрый рост технологии OLED также стал одной из причин дальнейшего развития и роста популярности гибкой электроники . Такие решения позволяют пользователям взаимодействовать с такими устройствами, скручивая их на , сгибая или складывая в обеих плоскостях . В качестве преимуществ гибкого дисплея мы можем рассматривать, например, более дешевый производственный процесс, эксплуатация, что может привести к окончательному снижению цены в магазинах электроники в будущем.

Примеры разновидностей светодиодов
  • RGB LED (Red Green Blue LED) — имеет три цвета в «одной коробке», что позволяет генерировать любой цвет,
  • IR (Инфракрасный) — он излучает инфракрасное излучение, которое используется, например, при передаче данных, а также в старых моделях мобильных телефонов (некоторые из вас, возможно, не помнят этого!),
  • HB LED (High Brightness LED) — диоды с повышенной яркостью. Они используются в автомобилях, светофорах, уличных фонарях или в передних велосипедных фонарях.

LED — Преимущества
  • возможность выбора цвета света (длина волны),
  • низкое рабочее напряжение (для работы одиночных светодиодов требуется от 2 до 4 В),
  • низкое энергопотребление,
  • малогабаритный компонент (по сравнению со стандартной лампой даже очень маленький),
  • высокоэффективный,
  • малые потери энергии,
  • прочный.

Типичная световольтная характеристика (L — V), показывающая включение светодиода …

Контекст 1

… была выполнена для устройств, о которых здесь говорится. На рисунке 5 показан типичный результат данных, полученных Morgan et al. 4 Вывод, сделанный из этих данных, состоит в том, что свет перестает излучаться, когда потенциал падает ниже критического экспериментального значения V c, которое близко к напряжению включения V 0 идеализированной характеристики диода, принятому при моделировании. Выше этого напряжения в очень хорошем приближении интенсивность света составляет Lr Vr — V c, в соответствии с данными рис.5. …

Контекст 2

… из этих данных следует, что свет перестает излучаться, когда потенциал падает ниже критического экспериментального значения V c, которое близко к напряжению включения V 0 идеализированного характеристика диода, принятая при моделировании. Выше этого напряжения, в очень хорошем приближении, интенсивность света составляет Lr Vr — V c, в соответствии с данными на рис. …

Контекст 3

… более низкие токи возбуждения 5 мА длина затухания D быстро спадает, причина этого следует из рис.5. Ток возбуждения уменьшается за счет уменьшения напряжения на клеммах диода. При высоких напряжениях, например, соответствующих напряжениям в области X на рисунке 5, на радиальных расстояниях r, таких, что r — r 0 D, тогда V D V c, то есть диод все еще излучает. В этих обстоятельствах оптический профиль точно следует расширяющемуся …

Контекст 4

… управляющий ток уменьшается за счет уменьшения напряжения на клеммах, приложенного к диоду. При высоких напряжениях, например, соответствующих напряжениям в области X на Рисунке 5, на радиальных расстояниях r, таких, что r — r 0 D, тогда V D V c, i.е., диод все еще излучает. В этих условиях оптический профиль точно следует профилю растекающегося тока. …

Контекст 5

… например, соответствующие напряжениям в области X на рисунке 5, на таких радиальных расстояниях r, что r — r 0 D, затем V D V c, т.е. диод все еще излучает. В этих условиях оптический профиль точно следует профилю растекающегося тока. При более низких токах возбуждения контактный потенциал близок к напряжению отсечки e.g., область Y на рис. 5, и диод перестает излучать свет при таких значениях r, что r — r 0 D; тогда произойдет отсечка интенсивности, что даст уменьшенное и ложное значение D, которое согласуется с рис. …

Light Emitting Diodes

  • Изучив этот раздел, вы сможете:
  • • Опишите типичные методы изготовления светодиодов.
  • • Изучите работу светодиодов.
  • • Цветные светодиоды
  • • Способы производства белых светодиодов.
  • • Ограничение тока для светодиодов.
  • • Несколько светодиодных матриц.
  • • Опишите методы тестирования светодиодов.

Рисунок 2.5.1. Светодиоды

Светодиоды (светодиоды)

На рис. 2.5.1 показан ряд светодиодов, иллюстрирующих некоторые из множества доступных стилей и размеров светодиодов. Цвета варьируются в диапазоне видимого света от темно-красного до ультрафиолетового, а также до оттенков белого.Кроме того, инфракрасные светодиоды используются во многих датчиках и приложениях дистанционного управления.

Слева направо светодиоды на рис. 2.5.1: теплый белый 5 мм, синий 10 мм сверхвысокой яркости, стандартные 5 мм красно-зеленый, миниатюрный желто-зеленый, трехцветный (красный / зеленый / синий), инфракрасный опто — муфта, инфракрасный передатчик / приемник и инфракрасный оптоизолятор. Ниже представлена ​​тёпло-белая светодиодная лампа 230 В, 8 Вт, 230 люмен и 7-сегментный дисплей.

Рисунок 2.5.2. Светодиодная конструкция


(вид сбоку)

Рисунок 2.5.3. Светодиодная конструкция


(вид сверху)

Как работают светодиоды

В полупроводниковых диодах всякий раз, когда электрон рекомбинирует с дыркой, на короткий момент выделяется энергия в виде фотона. Обычные кремниевые диоды не подходят для излучения света, так как в кремниевом PN переходе производимые фотоны в основном преобразуются в тепло внутри кремния, и только очень небольшое количество света может покинуть структуру диода. Этот свет также имеет длину волны, ограниченную инфракрасной областью.В течение нескольких десятилетий в светодиодах использовались такие материалы, как арсенид галлия (GaAs), фосфид арсенида галлия (GaAsP) или фосфид галлия (GaP), которые делают PN-переходы более эффективными при производстве света. Эти составные материалы также содержат тщательно контролируемые количества добавленного индия (In) или алюминия (Al) и могут быть легированы другими элементами, такими как магний (Mg). Это позволяет производить более распространенные цвета светодиодов: красный, оранжевый, желтый и зеленый. Синие светодиоды теперь также стали возможны благодаря использованию карбида кремния (SiC) и нитрида галлия (GaN).Цвет и яркость светодиода зависят от комбинации используемых материалов и энергетических зазоров материалов P и N по обе стороны от перехода.

Энергетическая щель (количество энергии, необходимое для перемещения электрона из валентной зоны атома в зону его проводимости) полупроводникового материала на эфирной стороне PN-перехода различается в разных полупроводниковых материалах, и поскольку ток течет через В светодиодах электроны в более высокой энергетической зоне рекомбинируют через переходной слой с дырками в нижней энергетической зоне.При этом электроны теряют некоторую энергию, и именно эта энергия излучается светодиодом в виде света.

Чем больше энергии теряют электроны в этом процессе, тем выше частота (и короче длина волны) производимого света. На рис. 2.5.4 показаны различные комбинации полупроводниковых материалов, используемых для получения света разных цветов.

Рисунок 2.5.4. Цвета LED

Обычно свет, возникающий в результате каждой рекомбинации электронов / дырок, очень направлен и недолговечен, но миллионы рекомбинаций, происходящие, когда светодиод смещен вперед, производят свет непрерывно.Поскольку свет излучается узкими лучами под разными углами, чтобы сделать этот рассеянный свет более полезным, светодиодный чип устанавливается в точке фокусировки чашки отражателя, которая фокусирует свет, излучаемый чипом, в луч конической формы.

Прозрачный пластиковый корпус светодиода также содержит линзу для лучшей фокусировки света в пучок. В некоторых светодиодах используется цветной пластиковый корпус, обычно красный, желтый или зеленый, но цвет корпуса предназначен только для определения цвета светодиода в его неосвещенном состоянии и практически не влияет на цвет, излучаемый светодиодным чипом.Диапазон различных цветов, доступных для светодиодов, показан на рис. 2.5.4

Рисунок 2.5.5. Шестигранный светодиодный чип


Рисунок 2.5.6. Светодиодный чип Pyramid


Максимизация светоотдачи

Проблема с традиционными светодиодами, однако, заключается в том, что количество света, выходящего из светодиодного чипа, может составлять только около 20% от фактических фотонов, генерируемых внутри чипа. Причина этого в том, что когда луч света (фотон) приближается к стенке чипа под углом, перпендикулярным поверхности, легко проходит от чипа в окружающую среду (например.грамм. прозрачный пластик корпуса светодиода), свет, приближающийся к поверхности чипа под другими углами, отклоняется за счет преломления, поскольку он встречается на границе раздела между чипом и окружающим материалом. Это связано с изменением скорости света между разными материалами. Когда луч света достигает границы раздела чипа и окружающей пластмассы под углом, превышающим «критический угол» для двух рассматриваемых материалов, он отражается обратно в чип, где энергия фотонов рассеивается в виде тепла.

Чтобы преодолеть эту проблему и увеличить световой поток от чипа, а также уменьшить количество тепла, выделяемого во время работы, ряд производителей производят светодиодные чипы, которые не имеют правильной прямоугольной формы, путем разрезания отдельных чипов на многоугольники вместо прямоугольников. как показано на рис. 2.5.5. Другой подход — отрезать стороны прямоугольной стружки под углом, образуя частичную пирамиду, как показано на рис. 2.5.6. Эти методы увеличивают вероятность того, что фотоны, отраженные изнутри, попадут на другую поверхность чипа под углом, который позволяет им проходить через поверхность, увеличивая светоотдачу.

Рисунок 2.5.7. Внутреннее отражение

Путем замены сторон, расположенных под прямым углом друг к другу, сторонами под разными углами, вероятность того, что фотон, излучаемый из перехода светодиода под любым случайным углом, достигнет границы микросхемы под углом, который позволяет ему покинуть микросхему скорее чем внутреннее отражение увеличивается, как показано на рис. 2.5.7. Таким образом увеличивается светоотдача и уменьшается внутреннее тепловыделение, что позволяет производить более эффективные светодиоды.

Белые светодиоды

Доступны три основных типа белых светодиодов, первый — это фактически синий светодиод, в котором излучаемый свет активирует покрытие желтого люминофора, чтобы создать эффект белого света, однако белый свет, создаваемый этой комбинацией синего / желтого, в отличие от солнечного света делает не имеют равномерного распределения энергии по всему световому спектру, поэтому не особенно подходят для приложений точного согласования цветов.

Второй тип белого светодиода состоит из трех светодиодов (красный, зеленый и синий) в одном корпусе.Этот тип дает более ровный световой спектр, а некоторые версии позволяют независимо изменять каждый из трех отдельных цветов. Это важная особенность, потому что одна проблема со светодиодами заключается в том, что их выходная мощность может изменяться в зависимости от температуры, а красный, зеленый и синий светодиоды не различаются на одинаковую величину при заданном изменении температуры. Таким образом, эти светодиоды требуют более сложных (чувствительных к температуре) схем управления, если необходимо поддерживать чистый белый цвет, однако эта система также дает возможность создавать переменное многоцветное освещение.

Третий подход заключается в использовании ультрафиолетового светодиода для стимуляции смеси люминофоров, предназначенных для получения белого света, покрывающего весь видимый спектр без «зазоров», оставленных сине-желтой системой, и потому что только один (невидимый) светодиод задействован, преодолевая проблемы стабильности температуры трех светодиодной системы.

Рисунок 2.5.8. Характеристики светодиодов в сравнении

Цвет светодиода

Светодиоды

в настоящее время охватывают широкий диапазон цветов, светоотдачи и требований к мощности и, как правило, во много раз более надежны и потребляют гораздо меньше энергии, чем альтернативные лампы накаливания или люминесцентные лампы конкурентов.

Для того, чтобы светодиод светился, необходимо смещать диод в прямом направлении в достаточной степени, чтобы пропускать соответствующее количество тока, обычно чем короче длина волны излучаемого света, тем выше напряжение, необходимое для прямого смещения, а типичные напряжения прямого смещения варьируются от 1,5. от 1,7 В для инфракрасных светодиодов до 3,3 В или более для синего и ультрафиолетового. Обычные красно-желтые и зеленые версии требуют прямого смещения около 2 В, а белые светодиоды — около 3,6 В.

На рис. 2.5.8 показаны типичные характеристики светодиодов различных цветов.Обратите внимание на значительную разницу между прямым напряжением (V F ) для синих типов и красного и зеленого типов. Синие светодиоды также обычно имеют больший обратный ток утечки (I REV ), чем другие светодиоды, но безопасным пределом для большинства светодиодов считается около -5 В, ОЧЕНЬ НИЗКОЕ значение по сравнению с кремниевыми диодами, которые могут иметь измеренное напряжение обратного пробоя. в десятки или сотни вольт. Поэтому светодиоды более легко повреждаются относительно небольшими значениями избыточного прямого тока или обратного напряжения по сравнению с обычными кремниевыми диодами, поэтому, чтобы воспользоваться превосходной надежностью светодиода, необходимо позаботиться о том, чтобы любой светодиод работал в пределах своей безопасности. рабочая зона.

Подключение светодиодов

Рисунок 2.5.9. Светодиодный резистор ограничения тока

Чтобы убедиться, что прямой ток через светодиод соответствует типу используемого светодиода, лучше всего обратиться к соответствующему листу данных. Если соответствующий лист данных недоступен, хорошие и исчерпывающие данные о светодиодах доступны на веб-сайтах специализированных производителей, таких как Kingbright.

Найдя подходящую величину для прямого тока, резистор ограничения тока (R LIM ), такой как показанный на рис.2.5.9 можно легко рассчитать, вычтя соответствующее прямое напряжение для светодиода (V F ) из напряжения питания (V S ), чтобы получить необходимое напряжение на резисторе (V R ), а затем разделив V R на необходимый прямой ток (I F ). Маловероятно, что результатом ваших расчетов будет предпочтительное значение резистора, в этом случае выберите следующее более высокое предпочтительное значение.

As резисторы доступны в диапазоне стандартных номинальных мощностей, например.g 0,25 Вт 0,5 Вт и т. д., рассеиваемая мощность (мощность), необходимая для R LIM , должна быть следующей более высокой доступной мощностью, большей, чем мощность, рассчитанная путем умножения выбранного предпочтительного значения R LIM на квадрат диода. прямой ток. R LIM x I F 2 .

Светодиодные матрицы

Рисунок 2.5.10. Последовательно-параллельная светодиодная матрица

светодиодов часто используются в виде нескольких массивов, как показано на рис.2.5.10, и типичный метод подключения заключается в последовательном соединении ряда светодиодов, питаемых через один ограничивающий резистор от источника более высокого напряжения (V S ), чем требуется для одного светодиода. Ток через каждый последовательно соединенный светодиод идентичен току, необходимому для одного светодиода, но напряжение на четырех светодиодах на рис. 2.5.10 в четыре раза больше, чем требуется для одного светодиода (т. Е. V F1 + V F2 + V F3 + V F4 ).

Несколько одинаковых последовательных групп могут быть соединены параллельно, как показано на Рис.2.5.10. У этого способа подключения есть несколько преимуществ:

1. Напряжение питания не должно быть таким высоким, как если бы несколько светодиодов были подключены последовательно, что делает этот метод более подходящим для батарейного питания.

2. Требуется меньшее количество ограничивающих резисторов, только один на группу последовательно, а не один на светодиод, по сравнению с полностью параллельным подключением.

3. Уменьшается влияние неисправного светодиода на общую светоотдачу. Если в одном из светодиодов возникнет короткое замыкание, только этот светодиод не загорится, однако остальные светодиоды в группе из четырех последовательных диодов будут испытывать увеличение тока на 25%.Чем больше светодиодов в группе, тем меньше этот эффект. Если какой-либо из диодов разомкнется, то только четыре светодиода в соответствующей группе не загорятся, остальные светодиоды будут работать нормально.

D1 обычно может быть включен в цепь с батарейным питанием, чтобы предотвратить повреждение от любого случайного подключения батареи с обратной полярностью.

Тестирование светодиодов

Рисунок 2.5.11. Полярность светодиода

Рисунок 2.5.12. Тестирование светодиода

При подключении светодиодов необходимо соблюдать правильную полярность, и, к сожалению, анодные и катодные соединения светодиодов не всегда видны.На рис. 2.5.11 показаны два способа указания полярности на стандартных 5-миллиметровых светодиодах, но они зависят от того, что соединительные провода не укорачиваются (как это часто бывает) или от возможности видеть небольшую «плоскую» поверхность возле катодного вывода, которая не всегда легко. С большими прозрачными светодиодами можно определить катод устройства, глядя на внутреннюю структуру светодиода. В этом случае катодом из двух внутренних выводных структур является катод (см. Рис. 2.5.2).

Поскольку светодиоды доступны во многих формах и размерах, часто невозможно определить, что является анодом, а какие — катодными соединениями.Для решения этой проблемы на рынке существует ряд устройств для тестирования, цена которых варьируется от менее 10 долларов до примерно 160 долларов, но простые (и более дешевые) тесты могут быть выполнены с помощью базового мультиметра, переключенного на диодный диапазон, который не только покажет полярность диода, но также показывает, неисправен ли светодиод. На рис. 2.5.12 показана типичная проблема, когда миниатюрный зеленый светодиод, установленный в проводном держателе, нуждается в проверке.

Простого подключения проводов мультиметра обычно достаточно, чтобы светодиод светился (часто слабо), когда красный провод подключен к аноду, а черный — к катоду.Переключение выводов не приведет к свечению диода, поэтому в этом случае обнаруживается, что желтый вывод на держателе светодиода подключен к аноду. Обратите внимание, однако, что счетчик по-прежнему показывает 1 на своем дисплее, указывая на разрыв цепи светодиода, хотя это явно не потому, что он работает!

Некоторые светодиоды не загораются в этом тесте, независимо от того, в каком направлении подключены провода измерителя, что указывает на диод разомкнутой цепи, но в то же время дает показание на бесконечность (1 на дисплее) в одном направлении, что указывает на очень сильное отклонение. высокое сопротивление и показание, возможно, несколько сотен или, возможно, чуть более 1 кОм в другом направлении, что указывает на исправный светодиод.Результаты зависят как от характеристик диода и используемого счетчика, так и от состояния батареи счетчика. Если все это кажется запутанным, просто предположите, что при тестировании светодиода вне цепи:

Если проверка светодиода «вне цепи» на предмет свечения или других значений сопротивления, как описано выше, указывает на исправность светодиода, то, скорее всего, это хороший светодиод.

Если оба теста указывают на неисправный светодиод, очень вероятно, что светодиод неисправен.

Начало страницы

Что такое светодиод?

Что такое светодиод?
Далее: Что такое независимый Up: фон Предыдущее: Что такое резистор?

Диод — двухполюсный полупроводниковый прибор.Это можно рассматривать как электронный клапан, который позволяет только ток течет в одном направлении. Символ для диод показан на рисунке 5 слева. Символ имеет форму стрелки, обозначающей направление, в котором может течь ток. Терминал отмечен с положительным знаком называется анодом и клемма, обозначенная отрицательным знаком, называется катодом . Правая рука Картинка изображает физическое устройство. Похоже на резистор, за исключением того, что он имеет одну полосу на одном конце.В диоде с прямым смещением ток будет течь от конец без ленты до конца цилиндра с группа.

Рисунок 5: Диод

Когда напряжение положительное и больше минимальное пороговое напряжение, то диод говорят быть смещением вперед . Диод с прямым смещением проводите ток в направлении, указанном на фигура. Если диод не смещен в прямом направлении, мы говорим это смещен в обратном направлении .Диод с обратным смещением также проводят ток, имеющий противоположное значение что показано на рисунке 5. Это обратное ток, однако, будет крайне мал, так что диод с прямым смещением рассматривается как проводящий, тогда как диод с обратным смещением считается непроводящим.

Как и резистор, диод полностью охарактеризовать, как только мы узнаем отношения напряжение и ток. ВАХ диода удовлетворяет следующему уравнению


где — заряд электрона, есть Постоянная Больцмана ( Дж / К), и — температура материала (Кельвин).Ссылка ток обычно очень мал, порядка или амперы. Построение этой функции приводит к ВАХ, показанной слева график фигуры 6. Обратите внимание, что этот график на самом деле V-I кривой, поскольку она показывает, как ток изменяется в зависимости от Напряжение.
Рисунок 6: ВАХ диода

Левый график на рисунке 6 имеет три различных регионы деятельности. Область прямого смещения соответствует тем положительным напряжениям, которые выше заданный пороговый уровень.Пороговое напряжение, , является функцией физических свойств полупроводниковый материал. Общие ценности для этого пороговые напряжения лежат между и вольт. Для напряжений ниже этого порога диод по существу перестает проводить. Есть небольшая утечка тока то есть порядка. Но как уже отмечалось раньше этот ток был крайне мал. Если мы дальше понижаем напряжение, затем входим в другую область операция, известная как область поломки.

Обычно мы работаем с диодом в прямом или прямом направлении. режимы с обратным смещением. В частности, мы обычно идеализировать это поведение, чтобы мы могли думать о диоде как о клапан, который открыт, когда больше, чем пороговое напряжение и закрывается в противном случае. Эти соображения приводят к упрощенной ВАХ что показано на правом графике рисунка 6. В этом упрощенном На графике мы видим, что область обратного смещения идеализирована так что в этой области проходит нулевой ток, если.Если диод смещен в прямом направлении, то ток потенциально неограничен, что означает, что диод ведет себя как короткое замыкание. Другими словами, нападающий смещенный диод ведет себя как короткое замыкание и обратное смещенный диод действует как разомкнутая цепь.

Светодиод — это светоизлучающий диод . Светодиод излучает светится, когда он смещен вперед, и не излучает свет, когда это обратное смещение. Интенсивность света пропорционально квадрату тока, протекающего через Устройство.На рисунке 7 показано изображение ВЕЛ. Обратите внимание, что светодиоды имеют два вывода. Один вывод длиннее чем другой. Эти выводы используются, чтобы указать, на каком конце диода положительный (анод) и отрицательный (катод). Во многих случаях более длинный вывод является анодом, но вы можете легко проверить это, подключив светодиод к батарее и видя, в какой ориентации загорается светодиод.

Рисунок 7: Светоизлучающий диод


Далее: Что такое независимый Up: фон Предыдущее: Что такое резистор?
Майкл Леммон 2009-02-01

CCT Характеристика светодиодных уличных фонарей и развитие технологий

С точки зрения световых свойств, у светодиодных уличных фонарей есть четыре ключевых технических момента: эффективность света, распределение света, затухание света и цветовая температура.В последние годы технология светодиодного уличного освещения меняется с каждым днем, а его оптические характеристики постоянно улучшаются. В настоящее время многие недавно выпущенные уличные фонари не только значительно улучшили световую эффективность, но также значительно улучшили уровень распределения света. и проблема затухания света также была значительно улучшена. Таким образом, светодиодные уличные фонари стали основным продуктом проекта уличного освещения.

Во многих ключевых технических моментах CCT светодиодных уличных фонарей вызвала споры.Некоторые люди предпочитают холодный белый свет с высокой CCT, в то время как другие предпочитают традиционный теплый желтый свет с низкой CCT. В городах ночью уличные фонари «приглушают» свет. Их цветовая температура определяет «цвет фона» ночью. а изменение цветовой температуры тесно связано с повседневной жизнью горожан. Независимо от того, какая цветовая температура выбрана, некоторым это не понравится.

Эти две высококонтрастные цветовые температуры уличных фонарей сравнивались неоднократно.Сначала это было сравнение светодиодных уличных фонарей как нового источника света и традиционных уличных фонарей HPS. Позже, с постоянным развитием технологий, многие производители светильников предложили опциональные светодиодные решения для уличного освещения CCT. Содержание сравнения сменилось выбором цветовой температуры светодиодных уличных фонарей.

Однако корень проблемы остается нерешенным, и выбор цветовой температуры для уличных фонарей остается спорным.Некоторые думают, что белый свет с высокой цветовой температурой имеет промежуточный визуальный эффект при использовании в дорожном освещении. Он имеет хорошую видимость и выглядит ярче. Другие считают, что желтый свет более пропускает туман, кажется более теплым и более популярен среди населения, чем белый свет. Приведенное выше утверждение, каждое из которых имеет свою логику и причину, также имеет определенную рациональность.

Практическое применение — это лучший тест продукта и лучший отзыв о его опыте. Новые требования отражают ожидания людей в отношении продукта с точки зрения их физиологии и психологии.Физиологические исследования в основном включают видимость, способность распознавания и другие показатели, которые должны быть получены исследователями с помощью тщательно спланированных экспериментов. Психологическое исследование в основном включает такие показатели, как комфорт и удовлетворенность, и необходимо провести ситуационный опрос и анкетирование достаточного количества граждан.

Психологическое чувство — это субъективное чувство. У разных людей разные предпочтения к разной цветовой температуре.В этом когнитивном измерении нет правильного или неправильного. Поэтому простая оценка достоинств белого и желтого света не является ни строгой, ни научной.

Светодиодные уличные фонари

имеют практическое значение при широкомасштабном использовании в дорожном освещении. Световые решения с опцией цветовой температуры учитывают предпочтения только некоторых людей. Как только соотношение предпочтений цветовой температуры изменится, это также повлияет на комфорт и удовлетворение публики цветовой температурой уличных фонарей.После этого может последовать серия жалоб. Однако очевидно, что модернизировать все уличные фонари просто из-за цветовой температуры невозможно. Поскольку стоимость ремонта огромна, общественные деньги будут потрачены зря.

Как отрегулировать цветовую температуру в соответствии с потребностями без особых затрат стало настоящей проблемой перед людьми. Решения для уличного освещения с регулируемой цветовой температурой позволяют избежать дилеммы выбора.

Отдел управления общественными объектами может гибко регулировать цветовую температуру уличных фонарей в зависимости от различных обстоятельств, при этом нет необходимости в ремонте светильников.Можно установить разную цветовую температуру в разное время дня или в разное время года. Его также можно отрегулировать в соответствии с погодой и общественными предпочтениями. Например, при сильном тумане цветовую температуру можно отрегулировать до теплого желтого цвета с высокой способностью проникновения тумана. При интенсивном движении цветовую температуру можно отрегулировать до холодного белого света с хорошей видимостью и т. Д.

Осветительные решения с регулируемой цветовой температурой имеют большое значение не только для уличного освещения, но также могут быть использованы в других областях освещения в будущем, даже в промышленном освещении.

Термисторы PTC (ПОЗИСТОР) | библиотека

Отличительные характеристики «ПОЗИСТОРА» можно получить, добавив небольшое количество редкоземельных элементов в титанат бария (BaTiO3).
Электроды изготавливаются из керамики, в которой титанат бария используется в качестве основного ингредиента для создания ПОЗИСТОРА, при этом широко используются типы свинца и типы чипов.

Три характеристики POSISTOR можно проиллюстрировать следующим образом.

Сопротивление практически остается постоянным между комнатной температурой (25 ° C) и точкой Кюри.
Когда температура превышает точку Кюри, сопротивление внезапно увеличивается. Используя эту характеристику, обнаруживаются ненормальные условия, когда контур перегревается сверх заданной температуры, и контур может быть отключен.

Что можно сделать, используя эту характеристику?
Когда температура становится больше, чем температура обнаружения, ПОЗИСТОР может уменьшить ток!

Пример, светодиодные лампы; Светодиодные элементы
, составляющие основу светодиодных ламп, представляют собой электронные компоненты, которые очень слабо нагреваются.
Когда через светодиодный элемент протекает большой ток, когда на светодиодный элемент подается тепло, светодиодный элемент будет поврежден.

ПОЗИСТОР вступает в игру в таких условиях! !

ПОЗИСТОР определяет температуру вокруг светодиодного элемента, и когда температура достигает заданной температуры (температуры обнаружения), сопротивление ПОЗИСТОРА внезапно увеличивается, чтобы уменьшить ток. Соответственно, ПОЗИСТОР предотвращает повреждение светодиодных элементов нагреванием.

Поскольку сопротивление ПОЗИСТОРА внезапно увеличивается, цифровое преобразование информации о температуре не требуется.
Температуру можно определить с помощью простой схемы!

Murata предлагает различные ПОЗИСТОРЫ, от 40 ° C до 130 ° C.

Соотношение между током и напряжением при приложении напряжения к ПОЗИСТОРУ показано на следующем рисунке.

На рисунке сплошной линией показаны характеристики ПОЗИСТОРА, а пунктирной линией показаны характеристики фиксированного сопротивления.
Во-первых, давайте посмотрим на относительные значения сопротивления и температуры.

Фиксированное сопротивление показывает почти постоянное сопротивление даже при повышении температуры. (Точка B ‘)
С другой стороны, сопротивление ПОЗИСТОРА внезапно увеличивается от до точки C (точка Кюри) (точка B)

Теперь давайте посмотрим на соотношение между током и напряжением.

Согласно закону Ома, ток фиксированного сопротивления увеличивается вместе с приложением напряжения.

С другой стороны, ток в ПОЗИСТоре остается таким же, как фиксированное сопротивление до точки C, согласно закону Ома.
Однако, когда ток превышает точку C из-за самонагрева, и сопротивление самого ПОЗИСТОРА увеличивается, ток ПОЗИСТОРА уменьшается вместе с увеличением напряжения.
Таким образом, ПОЗИСТОР имеет свойство поддерживать постоянную электрическую мощность.

Что можно сделать, используя эту характеристику?

  • Нагреватель
    ПОЗИСТОР используется в нагревательных элементах с постоянной температурой, нагревателях и т. Д., воспользовавшись этими характеристиками. ПОЗИСТОР отличается от нихромового нагревателя и т. Д. И поддерживает постоянную температуру без включения / выключения.
  • Защита от перегрузки по току
    Когда в электронной цепи возникает аномалия, протекает большой ток (перегрузка по току). Используя эту характеристику, ПОЗИСТОР ограничивает ток в цепи, так что сверхток не протекает в другие электронные компоненты, когда этот ток перегрузки протекает. ПОЗИСТОР ограничивает ток в цепи для защиты от сверхтоков.

На следующем рисунке показана взаимосвязь между током и временем, когда на ПОЗИСТОР подается напряжение. Красная линия показывает характеристику ПОЗИСТОРА, а синяя линия показывает характеристику фиксированного сопротивления.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *