Закрыть

Испытания силовых сетей: Проведения испытаний силовых кабельных линий до 10 кВ в электролаборатории

Содержание

Испытания кабельных линий :: Ангстрем

Испытания находящихся в эксплуатации силовых электрических кабельных линий — стандартная процедура, которую с определенной периодичностью обязаны проводить специализированные службы, обслуживающие эти линии.

Основная цель этих испытаний — подтверждение соответствия характеристик кабелей техническим требованиям, т. е. их пригодности к дальнейшей эксплуатации.

Вторая задача — выявление и последующее устранение скрытых дефектов, способных проявиться при эксплуатации и привести к выходу кабеля из строя.

Тема периодических испытаний силовых электрических кабелей в процессе их эксплуатации практически постоянно присутствует и, иногда довольно бурно, обсуждается на электронных и печатных площадках. Обсуждаются методы испытаний и альтернативы для них, эффективность испытаний и влияние их на эксплуатационные свойства кабелей. Один из вопросов реально насущный сегодня — испытание линий состоящих из комбинаций кабелей отличающихся и конструктивно и технологией изготовления и материалом изоляции.

Как появились комбинированные силовые кабели?

Исторически сложилось, что основу подземных силовых кабельных сетей среднего напряжения (6…35 кВ) составляют кабели с пропитанной бумажной изоляцией (ПБИ). В 2008г. их производство составляло более 50% общего объема выпускаемых в России силовых кабелей. Технология производства ПБИ-кабелей отрабатывалась десятилетиями. Общая история их использования насчитывает более века, и уже это, несомненно, служит для них самой показательной характеристикой. Но, совершенству нет предела.

На смену ПБИ кабелям приходят современные, превосходящие их по техническим характеристикам кабели с изоляцией из сшитого полиэтилена (СПЭ). Понятно, что быстро обновить всю огромную, в масштабах страны, силовую кабельную сеть никому не по силам ни экономически ни физически. Замена происходит по мере необходимости, как в плановом порядке, так и при очевидной нецелесообразности дальнейшей эксплуатации физически устаревших кабелей. Полная замена линий большой протяженности тоже бывает неподъемной задачей, и приходится менять самые слабые участки, чтобы хоть как-то обеспечить приемлемую эксплуатационную надежность. Если при этом есть возможность использовать новый, более надежный кабель, почему бы ей не воспользоваться? Так появляются комбинированные кабельные линии, в которых задействованы разные по технологии изготовления кабели, а именно: ПБИ и СПЭ.

Вот здесь и возникает проблема:

неопределенность в методах проведения периодических эксплуатационных испытаний.

Чтобы прояснить суть проблемы надо немного подробнее рассмотреть особенности высоковольтных испытаний кабелей разных типов.

Испытание кабелей с пропитанной бумажной изоляцией

Кабели ПБИ испытываются выпрямленным напряжением, в несколько раз превышающим номинальное рабочее переменное напряжение. Такой выбор продиктован практикой. Испытывать кабель номинальным переменным напряжением частотой 50 Гц не имеет смысла, т.к. это стандартный рабочий режим, который кабель должен выдерживать в течение всего срока эксплуатации.

Поскольку для проведения испытаний кабельная линия должна выводиться из эксплуатации, длительность испытаний не может быть очень продолжительной. Для проведения ускоренных испытаний необходимо использовать некие форсирующие факторы. В эксплуатационных условиях единственным практически применимым фактором может служить повышение испытательного напряжения. Выбор уровня испытательного напряжения должен учитывать возможные в эксплуатации коммутационные перенапряжения. На практике они до 2,5 раз превышают номинальные напряжения. Кроме того, уровень испытательного напряжения должен быть достаточным для выявления скрытых дефектов и, одновременно, не оказывать вредного влияния на надежность кабеля. Выполнение столь противоречивых требований до сих пор является предметом дискуссий. Можно только заметить, что любые ускоряющие (форсирующие) факторы, а в нашем случае это повышенное напряжение, по определению ускоряют процессы, в том числе и снижающие ресурс, т. е. надежность кабеля.

Испытание кабельной линии переменным, повышенным напряжением промышленной частоты требует испытательных установок большой мощности, а значит, и больших габаритов и массы. Причем чем длиннее кабельная линия, тем большую мощность должна иметь испытательная установка, чтобы компенсировать потери, неизбежные при испытании силовых кабелей переменным напряжением. Это определяет высокую стоимость оборудования, малую мобильность, связанную с его массогабаритными характеристиками, и значительную трудоемкость самого процесса испытаний.

Переход к испытаниям кабелей постоянным (выпрямленным) напряжением решает эту проблему. В этом случае от испытательных установок не требуется большая выходная мощность. Но здесь проявляется второй фактор. Электрическая прочность кабелей ПБИ на постоянном напряжении значительно больше, чем на переменном, промышленной частоты, т.е. для испытаний требуются установки со значительно большими, по сравнению с установками переменного напряжения, уровнями выпрямленного напряжения. Выполнение этого условия не вызывает проблем, поскольку и в этом случае требуемая выходная мощность не выходит за приемлемые пределы. Установка остается компактной и мобильной. Сейчас выпускается большое число моделей маломощных испытательных установок постоянного напряжения. Стоимость их вполне доступна для массового использования. Габариты и масса таковы, что они могут устанавливаться на малотоннажном, и даже легковом, автотранспорте, что обеспечивает высокую мобильность и оперативность в применении.

Испытание кабелей с изоляцией из сшитого полиэтилена

Особенности кабелей СПЭ диктуют иной подход к испытаниям. Известно, в том числе и по данным ВНИИКП, что кабели СПЭ при работе на переменном напряжении имеют значительно большую электрическую прочность по сравнению с ПБИ. Поэтому проблемы при испытаниях СПЭ-кабелей переменным напряжением 50 Гц такие же, и даже большие, чем для ПБИ кабелей. Однако использование для испытаний СПЭ-кабелей повышенного постоянного напряжения не допустимо, поскольку под его воздействием в основной изоляции кабелей зарождаются дефекты, приводящие к его быстрому выходу из строя. Решение этой проблемы оказалось одновременно простым и оригинальным. Выяснилось, что можно использовать переменное напряжение сверхнизкой частоты (СНЧ), порядка 0,05…0,1Гц. Практически это можно интерпретировать как постоянное напряжение, меняющее свою полярность медленно, с периодом в несколько секунд. Использование такого рода испытательного напряжения не приводит к вредным последствиям для СПЭ кабеля. Главное, что дает такой подход – возможность использовать для испытаний маломощные испытательные установки. Причем, чтобы обеспечить испытания СПЭ-кабелей большой протяженности, достаточно просто уменьшить частоту напряжения. Современные испытательные СНЧ установки имеют такую возможность.

Допустимая величина испытательного напряжения СПЭ кабелей существенно меньше, чем для ПБИ. Это объясняется тем, что СПЭ кабели имеют значительно меньшую по сравнению с ПБИ кабелями электропрочность по постоянному напряжению. Предлагаемые сегодня рынком высоковольтные СНЧ установки существенно дороже испытательных установок, используемых для ПБИ кабелей. Во многом стоимость связана с мощностью установок которая, в свою очередь, определяет возможную длину тестируемых линий. При этом импортные модели в разы дороже отечественных.

Из всего вышеизложенного видно, что испытания ПБИ и СПЭ кабелей радикально отличаются как по роду используемого испытательного напряжения (постоянное, переменное), так и по его уровню. Для ПБИ кабелей уровень испытательного напряжения значительно больше.

Как в таком случае испытывать линии состоящие из этих двух видов кабелей?

Проблема испытания комбинированных силовых кабелей

Данная проблема возникает все чаще. На практике специалисты должны находить ее решение незамедлительно, поскольку процедура проведения испытаний кабельных линий, находящихся в эксплуатации, является необходимой.

Нормативных документов, регламентирующих действия в подобном положении нет, и специалисты, эксплуатирующие такие линии, вынуждены принимать решения, руководствуясь собственным опытом, логикой и принципом «не навреди». Исходя из простой логики можно предположить, что для ПБИ кабелей не особенно важно будут происходить испытания при постоянной полярности выпрямленного напряжения или периодически меняющейся. Главное: его величина. Следовательно, СНЧ испытательную установку можно использовать и для ПБИ кабелей. Но вот величина испытательного напряжения, установленная нормативными документами для ПБИ кабелей, недопустимо велика для СПЭ кабелей. Теперь придется руководствоваться принципом «не навреди», т.е. испытывать комбинированную линию по требованиям, установленным к величине испытательного напряжения для СПЭ кабелей. Можно сказать, что ПБИ участок кабельной линии, условно говоря, остается «недоиспытанным». Поскольку явного вреда от этого не прослеживается, приходится идти на такой компромисс. Если учесть, что для «великовозрастных» ПБИ кабелей на многих предприятиях, чисто административными решениями, допускается проводить испытания с напряжением, сниженным до величины, устанавливаемой по усмотрению ответственных лиц, то вовсе все законно и бескомпромиссно.

Стандарт ПАО «РОССЕТИ» по испытаниям комбинированных кабельных линий

Два года назад ПАО «РОССЕТИ» утвердило новый стандарт организации (СТО 34.01-23.1-001-2017) по испытаниям электрооборудования. Один из разделов документа посвящен испытаниям электрических силовых кабелей. В нем, возможно впервые, сделана попытка единообразного подхода к эксплуатационным испытаниям ПБИ и СПЭ кабелей.

Эксплуатационные испытания силовых кабельных линий в этом разделе СТО разнесены в два пункта.

  • Первый пункт устанавливает правила эксплуатационных испытаний переменным СНЧ напряжением или переменным напряжением 50Гц и распространяется на кабели с пластмассовой изоляцией, ПБИ и кабели ПБИ со вставками кабеля с пластмассовой изоляцией.
  • Второй пункт устанавливает правила испытаний ПБИ кабелей выпрямленным напряжением, причем работа по этому пункту допускается в случае невозможности испытаний по правилам первого пункта.

Режимы эксплуатационных испытаний СПЭ и ПБИ типов кабелей в соответствии с ГОСТ на них и СТО приведены в таблице.

Таблица. Режимы эксплуатационных испытаний.

Тип КЛ Режим — частота/напряжение/время
ГОСТ 18410-73 ГОСТ 55025-2012 СТО 34.01-23.1-001-2017
ПБИ
Выпрямленное, для кабелей рабочим напряжением:
6-10кВ до 6 Uн/10мин
20-35кВ до 5 Uн/10мин
——— 1) 0,1Гц/3Uн/15мин, или 0,1Гц/2,5 Uн/30мин, или 0,1Гц/1,8 Uн/60мин или 50Гц/2Uо/60мин, или 50Гц/Uо/24час
2) Выпрямленное, для кабелей:
6 — 10кВ 6Uн/5мин
15 — 35кВ 5Uн/5мин
СПЭ ———— 50Гц/2Uо/60мин, или
50Гц/Uо/24час, или
0,1Гц/3Uо/60мин
0,1Гц/3Uн/15мин, или 0,1Гц/2,5 Uн/30мин, или 0,1Гц/1,8 Uн/60мин или 50Гц/2Uо/60мин, или 50Гц/Uо/24час
ПБИ+СПЭ ————- ————- 0,1Гц/3Uн/15мин, или 0,1Гц/2,5 Uн/30мин, или 0,1Гц/1,8 Uн/60мин или 50Гц/2Uо/60мин, или 50Гц/Uо/24час

Uо — фазное напряжение, Uн — линейное напряжение

Чем же все-таки руководствоваться специалистам при проведении испытаний: ГОСТ или СТО?

Из приведенной таблицы видно, что СТО однозначно устанавливает использование правил эксплуатационных испытаний изоляции кабельных линий, определенных для СПЭ кабелей, как для комбинированных кабельных линий, так и для ПБИ линий. Надо заметить, что режимы СНЧ испытаний в СТО значительно отличаются от предлагаемых ГОСТ 55025-2012 для СПЭ кабелей. Если это обоснованно, тогда встает вопрос о необходимости корректировки ГОСТа.

В ПАО «РОССЕТИ» проблема единого нормативного подхода к испытаниям ПБИ и СПЭ кабелей решена. Вопрос о «недоиспытанности» ПБИ кабелей оставлен за скобками. Можно дискутировать о применимости режимов испытаний СПЭ кабелей для ПБИ кабелей, однако главное то, что появилась определенность, узаконенность. Специалисты ПАО «РОССЕТИ» теперь могут работать не на свой страх и риск, а опираясь на конкретный нормативный документ, но тогда возникает вопрос:

  • Чем руководствоваться множеству других больших и малых предприятий эксплуатирующих комбинированные силовые кабельные линии?
  • Ссылаться на то, что ГОСТ является рекомендательным документом и продолжать руководствоваться собственным опытом и здравым смыслом?
  • Или пришла пора корректировать ГОСТы под требования времени?

Однозначных официальных ответов на эти вопросы в настоящее время нет.

Проверка электрических сетей и кабельных линий

Проверка электрических сетей и кабельных линий

ОБЩИЕ СВЕДЕНИЯ

Электрические сети являются самой распространенной совокупностью различных электроустановок. В общем случае это подстанции, распределительные устройства (РУ), воздушные и кабельные линии, а также токопроводы, с помощью которых передается и распределяется электрическая энергия.

По напряжению различают электрические сети до 1000 В и выше. Ниже приводятся объемы, нормы и методы испытаний некоторых распространенных элементов электрических сетей.
В комплектные распределительные устройства (КРУ) выше 1000 В входят сборные шины, которые связаны с различными присоединениями (вводными и отходящими линиями, силовыми и измерительными трансформаторами), а также коммутационные аппараты — воздушные и масляные выключатели.
Распределительные устройства до 1000 В выполняют также в виде КРУ, которые а зависимости от назначения могут быть силовыми или осветительными с установкой соответствующих коммутационных аппаратов (рубильников, контакторов, пускателей, автоматических выключателей, предохранителей).

Испытание и наладка КРУ напряжением выше 1000 В включают следующие операции:

  • измерение сопротивления изоляции первичных цепей мегаомметром на 2500 В. Сопротивление изоляции токоведущих частей КРУ, собранных по полной схеме, должно быть не менее 1000 МОм;
  • сопротивление соединений постоянному току не должно превышать: для болтовых соединений сборных шин (выборочно) более чем в 1,2 раза сопротивление участка шин той же длины, но без контакта; для разъемных соединений первичной цепи (выборочно) — значений, указанных в заводских инструкциях;
  • испытание изоляции повышенным напряжением промышленной частоты.


Схему собирают так, чтобы испытанию повышенным напряжением подвергалась вся изоляция первичных цепей (масляный выключатель, проходные и опорные изоляторы). Все тележки устанавливают в рабочее положение, выключатели включают. Тележки с измерительными трансформаторами выкатывают. Обычно испытания осуществляют до подключения отходящих и питающих кабелей и проводят пофазно при заземленных двух других фазах специализированными передвижными высоковольтными установками или с помощью аппарата АИИ-70. При испытаниях выполняют организационные и технические мероприятия по технике безопасности.
Испытательные напряжения изоляции оборудования КРУ приведены в табл. 1.

Таблица 1.Испытательные напряжения промышленной частоты изоляции КРУ.


Класс
напряжения,
кВ

Испытательное напряжений ячейки с изоляцией, кВ

керамической

из твердых полимерных материалов

3

24

21,6

6

32

28,8

10

42

37,8

Продолжительность их приложения — 1 мин. (для чистой керамической изоляции) и 5 мин. (для изоляции с элементами из твердых полимерных материалов).

ИСПЫТАНИЕ КАБЕЛЬНЫХ ЛИНИЙ

По окончании строительных и монтажных работ проводят приемосдаточные испытания кабельных линий. При этом проверяют целость жил, измеряют сопротивление изоляции, испытывают ее повышенным напряжением постоянного тока и проверяют фазировку линий.
При испытании силовых кабелей мегаомметром на 2500 В выявляют грубые нарушения целости изоляции — заземление фаз, резкую асимметрию в изоляции отдельных фаз и т. д. Для силовых кабелей до 1000 В сопротивление изоляции должно быть не менее 0,5 МОм, для кабелей выше 1000 В оно не нормируется.
Силовые кабели выше 1000 В испытывают повышенным напряжением выпрямленного тока для выявления местных сосредоточенных дефектов, которые могут быть не обнаружены мегаомметром.
В соответствии с ПУЭ силовые кабели после прокладки испытывают постоянным током выпрямленного напряжения 6Uном (для кабелей от 1 до 10 кВ) и 5 Uном (для кабелей 20 и 35 кВ). Продолжительность испытания каждой фазы 10 мин. Кабель считается выдержавшим испытание, если не произошло пробоя, не было скользящих разрядов и толчков тока или его нарастания после того, как он достиг установившегося значения. При испытании напряжение плавно (1—2 кВ/с) поднимают до предусмотренного нормами и поддерживают неизменным в течение всего периода. Отсчет времени начинают с момента приложения полного испытательного напряжения. На последней минуте испытаний каждой фазы кабеля отсчитывают по показаниям микроамперметра значения тока утечки. Определяют отношение большего тока к меньшему (коэффициент асимметрии). Для кабелей с хорошей изоляцией это отношение меньше двух, для кабелей с удовлетворительной изоляцией токи утечки находятся в следующих пределах: до 300—500 (для кабельных линий 6—10 кВ) и до 700 мкА (для линий 20 35 кВ). После испытаний повышенным напряжением кабель снова измеряют мегаомметром, выполняют фазировку и включают линию под рабочее напряжение.
Если при испытаниях кабельной линии были отмечены толчки тока, испытание прекращают и отыскивают место повреждения.

Определение мест повреждения в кабельных линиях.

Для отыскания места повреждения в кабелях требуется снизить переходное сопротивление в этом месте, для чего кабели прожигают. Специальных установок для прожигания кабелей промышленность не выпускает, поэтому они не рассматриваются в данном пособии. После окончания процесса прожигания сопротивление в месте пробоя снижается до нескольких десятков ом.
Для отыскания мест повреждения силовых кабелей используют следующие методы: относительные (с помощью которых определяют расстояние от места измерения до места повреждения) и абсолютные (с помощью которых достаточно точно указывают место повреждения непосредственно на трассе кабельной линии). В наладочной практике обычно применяют оба метода, при этом относительный метод позволяет быстро (но не точно) оценить расстояние, на которое должен отправиться оператор, и, пользуясь абсолютным методом , уточнить место для раскопок Из относительных методов наиболее распространен импульсный, из абсолютных — индукционный.
Импульсный метод основан на измерении времени прохождения импульса от одного конца линии до места повреждения и обратно. Для нахождения места повреждения в кабельной линии импульсным методом пользуются специальным прибором. При включении прибора в линию посылаются зондирующие импульсы, которые, распространяясь по ней, частично отражаются от неоднородностей волнового сопротивления и возвращаются к тому месту, откуда были посланы. При известной скорости распространения импульса v (средняя скорость распространения для большинства кабелей 3—35 кВ с бумажно-масляной изоляцией (160±1) м/мкс не зависит от их сечения и длины) и расстоянии до места повреждения lХ можно определить время пробега импульса tr—2lx/v, следовательно, lx = vtx/2.
В основу действия приборов положен принцип зондирования исследуемой линии импульсом напряжения с индикацией процессов, происходящих на экране электронно-лучевой трубки (ЭЛТ). При измерении отыскивают на экране ЭЛТ отраженный импульс от места повреждения и определяют сдвиг во времени между моментом посылки в линию зондирующего импульса и моментом прихода его отражения.

Рис. 1. Изображение на экране ЭЛТ отраженных импульсов:
1 — зондирующий импульс, 2 — соединительная муфта. 3 — переход на кабель с более высоким волновым сопротивлением, 4— ответвительная муфта с нагрузкой, 5 — ответвительная муфта беи нагрузки, 6 — короткое замыкание на оболочку, 7 наличие влаги в кабеле (утечка), 8 — обрыв или конец кабеля.
Полярность отраженного сигнала указывает на характер изменения волнового сопротивления в месте отражения. Выброс вверх соответствует увеличению волнового сопротивления (обрыв, конец линии, переход с большего сечения жилы на меньшее, наличие муфты, конец кабельной линии), выброс вниз указывает на его уменьшение (короткое замыкание, утечка, переход с меньшего на большее сечение). Изображение отраженных импульсов на экране ЭЛТ показано на рис. 1. В эксплуатации длительное время находятся импульсные измерители Р5-5, Р5-8, Р5-9, Р5-10, P5-I0/1, причем Р5-8 и Р5-9 используют для измерений на коротких расстояниях (начиная с 1 м).
Основные технические характеристики измерителя Р5-10 приведены ниже.
Длительность зондирующего импульса, мкс        0,05—100
Амплитуда зондирующего импульса, В …    2—20
Основная погрешность измерений, %    ..   ±1
Длительность развертки, мкс      3—1500
Масса, кг     9,8
Прибор имеет дополнительный режим зондирования линии1 единичным перепадом напряжения, который дает картину изменения волнового сопротивления вдоль этой линии. С помощью прибора Р5-10 можно использовать два метода зондирования линии: видеоимпульсом и ступенчатым напряжением (рис. 2). Выход прибора согласуется с волновым сопротивлением линии в диапазоне 30— 500 Ом. Его структурная схема показана на рис. 3. В приборе имеется блок входных цепей, предназначенных для обработки коммутации зондирующих и отраженных импульсов при различных измерениях на кабелях.
Индукционный метод предназначен для непосредственного отыскания мест повреждения на трассе кабельной линии, а также для определения трассы и глубины залегания кабеля. Метод основан на улавливании электромагнитных колебаний по поверхности земли вблизи трассы проверяемого кабеля при пропускании по нему тока звуковой частоты.


Рис. 2. Методы зондирования линии прибором Р5 10:
1 — характеристика волнового сопротивления линии, 2 — зондирующий сигнал (единичный перепад напряжения), —зондирующий сигнал (видеоимпульс), 4 — импульсная характеристика при зондировании видеоимпульсом, 5 — импульсная характеристика при зондировании единичным перепадом, I — кабельная вставка, II — конец кабеля.
Для отыскания места повреждения кабеля при замыкании между жилами применяют схему, показанную на рис. 4. От генератора G на две поврежденные жилы подается ток порядка 5 20 А и с помощью кабелеискателя определяется место повреждения. При этом оператор должен пройти по трассе с кабелеискателем. состоящим из приемной антенны Р в виде рамки, усилителя У и телефонной гарнитуры В.
Наводимый в приемной антенне сигнал, пропорциональный току в кабеле, усиливается усилителем и подается в телефон, при этом слышно характерное звучание. Для большего выделения сигнала генератора его частота может быть промодулирована по амплитуде.

Рис. 3. Структурная схема прибора Р5-10:
ГГ — тактовый генератор, ГПН — генератор пилообразного напряжения. ЗР — схема задержки развертки, УГО — усилитель горизонтального отклонения, ЗГ — задающий генератор, ЗГЗ—схема задержки генератора зондирующих импульсов, ГЗ — генератор зондирующих импульсов, В U — входные цепи, У ПС—усилитель приходящих сигналов, И индикатор (ЭЛТ), ФКМ — схема формирования калибрационных меток

Методика испытания силовых кабельных линий до 1 кв

1. Область применения.

1.  Настоящий документ разработан для применения электротехнической лаборатории при приёмо-сдаточных испытаниях электроустановок потребителей.

2.  Настоящий документ определяет методику выполнения измерения сопротивления изоляции и определения состояния изоляции силовых, осветительных проводок и кабельных линий напряжением до 1 кВ и испытаний изоляции вторичных цепей и аппаратов повышенным напряжением промышленной частоты.

3.  Испытания проводятся для определения наличия необходимого запаса прочности изоляции электрических проводников, отсутствия общих и местных дефектов после монтажных работ.

4.  Цель проверки – проверка соответствия состояния фарфоровых изоляторов требованиям ПУЭ.

2. Объект испытаний.

Испытаниям подлежат вторичные цепи электропроводки и силовые кабельные линии до 1000 В.

3. Определяемые характеристики.

При проведении проверки силовых кабельных линий до 1000 В производятся испытания в объёме:

4. Условия проведения испытаний.

Испытания силовых кабельных линий до 1000 В производятся при температуре окружающего воздуха не ниже +5° С и относительной влажности воздуха не более 90 %.

5. Средства измерения.

Технические данные средств измерения, применяемых при производстве испытаний силовых кабельных линий до 1000 В:

Наименование СИТип, условное обозначениеДиапазон измеренияПогрешность СИ
МегаомметрФ4108/10-50000 МОмОтносительная погрешность не более 10 %
Испытательная установкаАИД-700-70 кВ пост.

0-50 кВ перем.

Приведенная погрешность киловольтметра – 4,5 %

6. Порядок проведения измерений.

4.  Проверка работоспособности измерительных приборов в соответствии с инструкциями по эксплуатации.

7. Измерение сопротивления изоляции.

Перед использованием мегаомметр рекомендуется подвергнуть контрольной проверке, которая заключается в измерении показаний по шкале при разомкнутых и короткозамкнутых проводах самого мегаомметра. В случае разомкнутых проводов стрелка мегаомметра должна находиться у отметки шкалы «бесконечно», а в случае короткозамкнутых проводов – у отметки шкалы «0». Ознакомиться с электрической схемой объекта. Измерение сопротивления изоляции осуществлять при разомкнутой внешней цепи. Включить выключатели, питающие непосредственно группы освещения. Лампочки необходимо вывернуть. Защитное заземление с объекта разрешается снимать только после того, как к нему будет подключен прибор.

При измерении сопротивления изоляции необходимо выполнить следующие операции:

—  сопротивление изоляции проводок и кабелей измерять в направлении от питающих фидеров и далее по мере разветвления цепи. Измерение проводить между жилами и между каждой жилой  и «землей» поочередно.

—  для развития заданного напряжения на генераторе мегаомметра вращать рукоятку со скоростью 120 об/мин. Генератор снабжен центробежным регулятором, ограничивающим скорость вращения, благодаря чему напряжение на выходе остается постоянным.

—  измерения следует производить при устойчивом положении стрелки прибора. Показания следует снимать через 1 минуту после начала измерений.

—  после окончания измерений испытуемый объект необходимо разрядить путем кратковременного заземления.

—  замерить сопротивление изоляции кабелей в каждом распределительном шкафу ШР, идущих от группы предохранителей до щитков освещения ЩО.

—  показания всех измерений заносятся в рабочий журнал и анализируются. Изоляция считается непригодной к эксплуатации, если сопротивление ее ниже минимально-допустимого значения. При этом температура изоляции должна быть не ниже +5°С.

—  при определении больших сопротивлений изоляции, в сырую погоду (при повышенной влажности) для того, чтобы на показания мегаомметра не оказывали влияние токи утечки по поверхности изоляции, мегаомметрподключить к испытательному объекту с использованием зажима «экран» (Э). Вывод «экрана» подключить к токоведущему электроду, размещенному на изолированной обмотке кабеля возле воронки, либо на заземленную оболочку кабеля.

—  перед проведением измерений необходимо по возможности уменьшить количество факторов, вызывающих дополнительную погрешность.

8. Испытания изоляции повышенным напряжением

промышленной частоты.

Подготовка к выполнению испытаний:

—  перед испытанием снимаются все заземления и отсоединяется вся аппаратура, применение которой не допускает испытание повышенным напряжением.

—  Временные перемычки, которые необходимо поставить по условию объединения участков электросхемы, должны отличаться от проводов, которыми выполнены монтажные схемы.

—  перед подачей напряжения на испытательную установку необходимо:

а) проверить все ли члены бригады находятся на местах, нет ли посторонних лиц;

б) предупредить бригаду  словами «Подаю напряжение», после чего с ввода испытательной установки снять заземление и включить установку.

—  по окончании испытаний  производитель снимает напряжение с испытательной установки до нуля, отключает аппарат, заземляет вывод испытательной установки и сообщает работникам бригады словами: «Напряжение снято». Только после чего можно пересоединять провода от испытательной установки или отсоединить их по окончании испытаний.

Выполнение испытаний:

—  испытание изоляции напряжением повышенной частоты  производится по схеме рис.1

—  при большом числе разветвленных цепей, для предотвращения перегрузки испытательной установки емкостными токами, испытания следует производить по участкам.

—  изоляция считается выдержавшей испытания повышенным напряжением в том случае, если не было пробоя, частичных разрядов, выделения газа или дыма, резкого снижения напряжения и возрастания тока, местного нагрева изоляции.

Рис.1. Схема для испытания  изоляции вторичных цепей повышенным напряжением.

10. Обработка данных и оформление результатов измерений.

1.  На основании полученных данных оформляется протокол установленной формы.

В протокол заносится наименьшее из полученных значений сопротивления изоляции измеряемой цепи. Протокол оформляется в виде таблицы.

11. Требования безопасности и охраны окружающей среды.

1.  При выполнении испытаний необходимо руководствоваться требованиями «Межотраслевых правил по охране труда при эксплуатации электроустановок».

2.  Испытания сборных и соединительных шин опасности для окружающей среды не предоставляют.

Руководитель ЭТЛ:

Методика испытания кабельных линий 10кВ

7.1.Перед испытанием повышенным напряжением силового кабеля необходимо точно уста-новить начало и конец испытательного кабеля и обеспечить безопасность производства ра¬бот.
7.2 Проверить изоляцию кабеля мегаомметром по методике проверки изоляции МВИ-2 7.3.Установив источник испытательного напряжения (в дальнейшем -источник) близи ис-пытуемого объекта.
7.4. Заземлить источник гибким медным проводом сечением 4 мм2.
7.5.Кабели источника присоединить к соответствующим разъёмам пульта управления.
7.6. Удалить пульт управления аппарата от источника питания на расстояние не менее Зм. Заземлить пульт управления и присоединить его к питающей сети.
7.10. Лица, присутствующие при испытаниях, должны быть удалены от источника питания и испытуемого объекта на расстояние не менее 3 м.
7.7. Вставить спецключ от аппарата в переключатель пульта управления и включить необхо-димый вид испытательного напряжения , при испытании кабеля это постоянное напряжение, при этом должен загореться зелёный сигнал.

7.11. При работе на выпрямленном напряжении «-» во избежание выхода из строя источника, а также для правильного измерения величины испытательного напряжения, необходимо следить за положением тумблера «KV»
7.12. Вращая ручку регулятора испытательного напряжения против движения часовой стрел-ки, установить её в исходное положение до упора.
7.13. Включить испытательное напряжение кнопкой «СТОП», при этом должен загореться красный сигнал.
7.14. Вращая ручку регулятора испытательного напряжения по направлению движения часо-вой стрелки и наблюдая за показаниями киловольтметра, установить необходимую величину испытательного напряжения.
При испытании емкостных объектов, в том числе кабелей, необходимо помнить, что после прекращения вращения ручки регулятора напряжения, испытательное напряжение на объек¬те продолжает увеличиваться (стрелка киловольтметра продолжает отклоняться) по зарядки ёмкости.
7.14. При работе на выпрямленном испытательном напряжении « — » измерение тока нагруз¬ки величиной до 1 мА следует производить микроамперметром, при этом следует нажать кнопку, шунтирующую этот прибор.
7.15. После окончания испытания необходимо ручку регулятора испытательного напряже¬ния, вращая её против движения часовой стрелки, установить в исходное положение до упо¬ра.
7.16. Кнопкой «СТОП» отключить испытательное напряжение и только после этого отключить аппарат от сети установить его в положение «О».
Контроль за снятием остаточного емкостного заряда с испытуемого объекта необходимо осуществлять, наблюдая за киловольтметром аппарата- стрелка киловольтметра должна сто¬ять на числовой отметке шкалы «0».
7.17.Подъем напряжения до 25-30% испытательного может производиться с любой скоро¬стью, однако скорость подъема ограничена бросками зарядного тока в кабеле.
Далее напряжение повышают до испытательного плавно со скоростью 1-2% испытательного напряжения в секунду, общая продолжительность подъема напряжения, выраженная в секундах, должна быть не менее значения, численно равного значению испытательного на-пряжения, выраженного в киловаттах.
7.18.Во время испытания необходимо периодически проверять ток утечки, значение этого тока не нормируется, но его колебание или нарастание являются первым признаком дефект-ности кабеля.
7.19.При удовлетворительном состоянии кабеля ток утечки при подъеме напряжения сначала резко возрастает (за счет заряда емкости кабеля), затем быстро опадает до 10-20% максимального значения.
7.20.При испытании обращается внимание на асимметрию тока утечки по фазам, т.е. наи-большую разность значений тока утечки, у кабеля имеющего удовлетворительную изоляцию, коэффициент асимметрии не превосходит 2 для кабеля 6кВ. и 3 для кабеля 10кВ.
7.21.После выдержки положенного времени напряжение плавно снижается до 30% испыта-тельного, затем понижение напряжения может быть ускорено.
7.22.После снятия напряжения на испытываемом кабеле еще длительно сохраняет напряже¬ние заряда, все соседние кабеля, хотя и не были присоединены к источнику питания, также заряжаются до напряжения, опасного для жизни человека, поэтому перед испытанием кабеля все его жилы, кроме испытуемой, должны быть заземлены. Заземляются также и соседние кабеля, если они не находятся под напряжением.
7.23.После снятия испытательного напряжения отключения испытательной установки от се¬ти кабеля необходимо разрядить, для этого используется специальная разрядная штанга или сопротивление примерно 20000 ОМ.
7.24.Разрядить испытанную жилу кабеля необходимо сначала через сопротивление, а потом без него, затем наложить заземление.
7.25.По окончании испытания всех жил кабеля повторно измеряется сопротивление изоляции каждой жилы относительно земли и между собой мегаомметром 2500В., после чего кабель снова необходимо разрядить.
7.26.Результаты испытания кабеля считаются удовлетворительными, если не наблюдалось скользя¬щих разрядов, толчков тока утечки или нарастания его после достижения установившегося значения и если сопротивление изоляции, измеренное мегаомметром после испытания, осталось прежним. 7.27.Испытательное напряжение принимается в соответствии с таблицей №7.1 с учетом ме-стных условий работы силовых кабельных линий.
7.28.Для кабелей напряжением до 10кВ с бумажной и пластмассовой изоляцией длитель¬ность приложения полного испытательного напряжения при приёмосдаточных испытаниях составляет 10мин., а в процессе эксплуатации 5мин.
7.29.Для кабелей с резиновой изоляцией на напряжение 3-10кВ длительность наложения ис¬пытательного напряжения 5мин.
7.30.Допустимые токи утечки в зависимости от испытательного напряжения и допустимые значения коэффициента асимметрии при измерении тока утечки приведены в таблице№7.2.

Таблица №7.1

Категория ис­пытания

Кабели с бумажной изоляцией на напряжение, кВ

1

2

3

6

10

П

6

12

18

36

60

К

2,5

10-17

15-25

36

60

м

10-17

15-25

36

60

Категория ис­пытания

Кабели с пластмассовой изоляци­ей на напряжение, кВ

Кабели с резиновой изоляцией на напряжение, кВ

3

6

10

3

6

10

П

15

36

60

6

12

20

К

7,5

36

60

6

12

20

м

7,5

36

60

6**

12**

20**

П — при вводе в эксплуатацию нового электрооборудования, прошедшего восстановительный или капитальный ремонт и реконструкцию на специализированном ремонтном предприятии.
К — при капитальном ремонте на энергопредприятии.
М — между ремонтами.
**- после ремонтов, не связанных с перемонтажем кабеля, изоляция проверяется мегаоммет-ром на напряжение 2500В, а испытание повышенным выпрямленным напряжением не производится.

Таблица№7.2.

Кабели

напряжением кВ.

Испытательное напряжение кВ

Допустимые значения токов утечки, мА.

Допустимые значения коэффициента

асимметрии (Imax/ Imin)

6

36

0,2

2

10

50

0,5

3

7.31.Периодичность испытаний в процессе эксплуатации кабельных линий на напряжение 2-3 5кВ:
А) 1 раз в год для кабельных линий в течение первых пяти лет после ввода в эксплуатацию, а в дальнейшем:
-1 раз в два года для кабельных линий, у которых в течение первых пяти лет не наблюдалось аварийных пробоев и пробоев при профилактических испытаниях и один раз в год для ка-бельных линий, на трассах которых производились строительные и ремонтные работы и на которых систематически происходят аварийные пробои изоляции.
-1 раз в три года для кабельных линий на закрытых территориях, (подстанции, заводы и др.) -во время капитальных ремонтов оборудования для кабельных линий присоединённых к агрегатам, кабельных перемычек 6-10кВ между сборными шинами и трансформаторами в ТП и РП.
Б) допускается не проводить испытания:
-для кабельных линий длиной до 60 м., которые являются выводами из РУ и ТП на воздуш-ные линии и состоят из двух параллельных кабелей.
-для кабельных линий со сроком эксплуатации более 15 лет, на которых удельное число от-казов из-за электрического пробоя составляет 30 и более отказов на 100км. в год.
-для кабельных линий, подлежащих реконструкции или выводу из работы в ближайшие 5лет. 7.32.Запрещается производить высоковольтные испытания кабельных линий в грозу, и при наличии конденсата на стенах внутри высоковольтного отсека передвижной лаборатории высоковольтных испытаний.
7.33.Изоляция считается выдержавшей испытание повышенным напряжением в том случае, если не было пробоев, падения напряжения и поднятия тока утечки.

Лицевая панель пульта управления аппарата АИД-70М

1. Кнопка выключения сети
2. Кнопка выбора переменного напряжения
3. Кнопка выбора постоянного напряжения
4. Регулятор испытательного напряжения
5. Кнопка «СТОП»
6. Кнопка включения испытательного напряжения
7. Кнопка шунтирующая миллиамперметр

Требования и нормы испытаний кабельных линий 6-10-35 кВ / Справка / Energoboard

Все работы по испытаниям и ОМП могут проводиться персоналом, допущенным к этим работам и имеющим соответствующую отметку в удостоверении по ТБ. При проведении этих работ можно пользоваться только испытательными и измерительными установками, прошедшими проверку и ежегодную аттестацию в СИИ электрических сетей. Использование персоналом электрических сетей установок, принадлежащих другим организациям (ЦП, абонентам) — запрещается.

КЛ 6-10-35 кВ испытываются:

  • вновь проложенные и после перекладки — перед засыпкой траншеи и перед включением;
  • находящиеся в эксплуатации — плановые по графику, внеплановые — после ремонта или длительного отключения (в раскопке и т.д.).

КЛ до 1 кВ испытываются:

  • вновь проложенные и после перекладки — перед включением;
  • внеплановые — после ремонта.

КЛ 6-10-35 кВ испытываются:

  • 1 раз в год — для ПКЛ и РКЛ питающих особо ответственных потребителей;
  • 1 раз в 3 года — все остальные ПКЛ;
  • 1 раз в 5 лет — все остальные РКЛ;
  • внутренние кабельные перемычки в РП и ТП испытываются только вновь проложенные и после ремонта.

Нормами допускается не испытывать КЛ длиной до 60 м, являющихся выводами из РП, ТП на воздушные линии.

Допускается единовременное испытание нескольких последовательно соединенных РКЛ с отключением силовых трансформаторов; пучков параллельных КЛ; сдвоенных или спаренных КЛ.

Величина и длительность испытательного напряжения, прикладываемого к жилам КЛ, приведена в табл. 1.

Табл.1

Цель и объекты испытания Uраб, кВ Uраб, кВ Длительность, мин.
1. Кабельные линии с бумажной
изоляцией
 
1.1. Перед включением
(КЛ полностью или частично выполнены новым кабелем)
до
1 кВ
2,5 (мегаомметром)
R изоляции должно быть не ниже 0,5 MOM
6 36 10
10 60 10
35 175 10
1.2. В эксплуатации плановые по графику и внеплановые до
1 кВт
2,5 (мегаомметром после ремонта)
6 30 5
10 50 5
35 175 5
КЛ, проходящие по сложным трассам и питающие особо ответственных потребителей (исключая КЛ, проходящие в туннелях метро) 6 20 5
10 40 5
КЛ со сроком эксплуатации
более 15 лет (кроме кабелей в туннелях метро)
6 20 5
10 40 5
КЛ со сроком эксплуатации
более 25 лет
6 18 5
10 30 5
1.3.При переводе КЛ с 6кВ на 10 кВ
при конструктивном выполнении кабеля на 10 кВ
10 50 5
при конструктивном выполнении кабеля на 6 кВ 40 5
1.4. Перед включением, если КЛ
находилась в отключенном состоянии более 5 дней
6 УПК
-0,1М
 
10
1.5. Вновь проложенные кабели с конструктивным выполнением 10 кВ включенных в сеть 6 кВ 6 60 10
2. Кабельные линии с пластмассовой изоляцией      
вновь проложенные до
0,66
3,5 5
2,5
(мегаомметром) переменное
напряжение 50 Гц
после ремонта до
0,66
3. Кабельные перемычки в РП, ТП,  
в том числе:      
выполненные одножильным кабелем с изоляцией из сшитого полиэтилена 6 12 5
10 18 5
20 25 10
4. КЛ, выполненные одножильным кабелем с изоляцией из сшитого полиэтилена   переменное напряжение 0.1 Гц (сверхнизкой частоты-СНЧ)
 
6 12
(3Uф)
30
20
(после
ремонта)
10 18
(3Uф)
20 36
(3Uф)
5. Пластмассовые оболочки (шланги одножильных кабелей с изоляцией из сшитого полиэтилена) от 10
и
выше
10 1

виды, методы и правила проведения

На сегодняшний день люди активно используют разнообразное электрическое оборудование, силовые кабели, электрические соединения и прочее. Так как в некотором оборудовании напряжение может достигать огромных значений, способных причинить серьезный урон человеческому здоровью, то требуется периодический контроль. Испытание повышенным напряжением — один из методов выявления дефектов изоляции.

Что собой представляет и зачем проводится проверка

Основное предназначение таких испытаний — это проверка изоляции. С помощью повышения напряжения можно выявить локальные дефекты. Причем некоторые из проблем можно определить лишь таким методом и никаким больше. Кроме этого, испытания повышенным напряжением изоляции позволяют проверить ее способность выдерживать перенапряжение и, в случае успеха, дают определенную уверенность в качестве обмотки. Суть испытания достаточно проста. К изоляции прикладывается напряжение, которое превышает номинальное рабочее и считается перенапряжением. Нормальная изоляционная обмотка выдержит, а вот дефектная будет пробивать.

Здесь стоит отметить, что при помощи испытаний повышенным напряжением можно проверить возможность изоляции проработать до следующего ремонта, контроля, смены и т. д. Однако данный тип проверки позволяет лишь косвенно определить этот параметр. Основная задача этого метода — выявить отсутствие грубых локальных дефектов обмотки.

Далее стоит отметить, что испытание изоляции повышенным напряжением для некоторых силовых приборов проводится лишь в случае номинального рабочего напряжения не выше 35 кВ. В случае превышения этого параметра сами установки обычно слишком громоздки. На сегодняшний день существует три основных вида испытаний методом перенапряжения.

Сюда относят испытания при помощи перенапряжения промышленной частоты, выпрямленное постоянное напряжение и импульсное испытательное перенапряжение (моделирование стандартного грозового импульса).

Виды испытаний. Промышленная частота и постоянный ток

Первый и основной вид испытаний — повышенной напряжение промышленной частоты. В данном случае к изоляции прикладывается перенапряжение на 1 минуту. Считается, что обмотка прошла испытание, если в течение этого времени не наблюдалось пробоев, а сама изоляция осталась невредимой. Для некоторых случаев частота перенапряжения может составлять 100 или 250 Гц.

В том случае, если емкость проверяемой изоляции будет больше, то потребуется брать и испытательную аппаратуру с большей мощностью. В данном случае речь идет об испытании кабельных линий повышенным напряжением. Для таких случаев чаще используют второй метод, с применением повышенного постоянного напряжения. Однако здесь нужно учитывать, что при применении постоянного напряжения диэлектрические потери в изоляции, которые, собственно, и приводят к нагреву, будут существенно ниже, чем при использовании переменного напряжения с теми же значениями. К тому же интенсивность протекания частичных разрядов будет уменьшена. Все это ведет к тому, что при испытании повышенным напряжением кабельных линий с использованием метода постоянного тока нагрузка на изоляцию будет значительно меньше. По этой причине следует увеличивать мощность подаваемого перенапряжения, чтобы удостовериться в качестве изоляции и отсутствии пробоев.

Помимо прочего, здесь нужно добавить, что во время испытаний постоянным током следует учитывать еще один такой параметр, как ток утечки через изоляцию. Что касается времени приложения перенапряжения, то оно составляет от 5 до 15 минут. Изоляция будет считаться качественной не только при условии, что не было выявлено пробоя, но еще и при условии, что ток утечки к концу испытательного периода не изменился или же снизился.

При сравнении двух методов хорошо видно, что испытание повышенным напряжением промышленной частоты гораздо удобнее, однако этот метод не удается применить всегда.

Кроме того, есть еще один недостаток постоянного тока. Во время испытаний напряжение будет распределяться по изоляционной обмотке в соответствии с сопротивлениями слоев, а не их емкости. Хотя при рабочем напряжении или же обычном перенапряжении ток будет расходиться по толщине изоляции именно по такому принципу. Из-за этого часто происходит так, что значение испытательного напряжения и рабочего слишком сильно разнятся.

Испытание грозовыми импульсами

Испытание электрооборудования повышенным напряжением третьего вида — это использование стандартных грозовых импульсов. Напряжение в данном случае характеризуется фронтом 1,2 мкс и длительностью до полуспада в 50 мкс. Необходимость проверки изоляции таким импульсным напряжением обусловлена тем, что в процессе эксплуатации обмотка неизбежно будет подвергаться грозовому перенапряжению с похожими параметрами.

Здесь важно знать, что воздействие грозового импульса сильно отличается от напряжения с частотой в 50 Гц тем, что скорость изменения напряжения намного больше. Из-за больше скорости изменения напряжения оно по-другому будет распределяться по изоляционной обмотки сложных устройств, к примеру, трансформаторов. Испытание повышенным напряжением с такими характеристиками важно еще и потому, что сам процесс пробоя изоляции при малом количестве времени, будет отличаться от пробоя на частоте 50 Гц. С этим можно разобраться подробнее, если просмотреть вольт-секундную характеристику.

Из-за всех этих условий довольно часто бывает так, что испытаний трансформатора повышенным напряжением по первому методу бывает недостаточно — необходимо прибегать к проверке еще и третьим методом.

Срезанные импульсы, внешняя и внутренняя обмотка

В случае грозового перенапряжения у большинства оборудования срабатывает разрядник, который через несколько микросекунд будет срезать волну входящего импульса. По этой причине, при проведении испытаний трансформатора повышенным напряжением, к примеру, используют такие импульсы, которые специально срезают через 2-3 мкс. Они получили название срезанных стандартных грозовых импульсов.

У таких импульсов есть определенные характеристики, к примеру, амплитуда.

Это значение импульса будет выбираться исходя из возможностей устройства, которое будет защищать аппаратуру от перенапряжения, с определенным запасом. Кроме того, при выборе следует исходить из такого фактора, как возможность накопления скрытых дефектов при многочисленных импульсах. Что касается выбора конкретных величин, то правила подбора описаны в специальном государственном документе 1516.1-76.

Испытания оборудования повышенным напряжением для внутренней обмотки будут проводиться по принципу трехударного метода. Суть состоит в том, что на обмотку будут подаваться три импульса положительной и три импульса отрицательной полярности. Сначала будут подаваться полные по характеру протекания импульса напряжения, а потом срезанные. Также важно знать, что между каждым последующим импульсом должно пройти не менее 1 минуты. Изоляция будет считаться прошедшей испытание, если не будет обнаружено пробоев и сама обмотка не получит никаких повреждений. Стоит сказать, что такая методика проверки достаточно сложная и чаще всего осуществляется при помощи осциллографических методов контроля.

Что касается внешней изоляции, то здесь применяется 15-ударный метод. Суть проверки остается такой же. К обмотке с интервалом не менее 1 минуты будут прикладывать 15 импульсов сначала одной полярности, потом противоположной. Прикладываются как полные, так и срезанные импульсы. Испытания считаются пройденными успешно в том случае, если в каждой серии из 15 ударов было не больше двух полных перекрытий.

Как проходит процесс проверки

Испытания повышенным напряжением тока переменного или постоянного типа должны проводиться в строгом соответствии с правилами. Порядок проведения следующий.

  • Прежде чем приступать к проведению проверки, проверяющий обязан удостовериться в исправности испытательного оборудования.
  • Далее следует приступать к сборке испытательной цепи. Первым делом нужно обеспечить защитное и рабочее заземление для испытуемой техники. В некоторых случаях, если это требуется, обеспечивается еще и защитное заземление для корпуса испытуемого устройства.

Подключение оборудования

Прежде чем перейти к подключению оборудования к сети 380 или 220 В, следует на ввод высокого напряжения установки также наложить заземление. Здесь важно соблюдать следующее требование — сечение медного провода, накладываемого на ввод в качестве заземления, должно быть не меньше 4 квадратных миллиметров. Сборку цепи проводит персонал той бригады, который и будет проводить сами испытания.

  • Подсоединение испытуемой установки к цепи 380 или 220 В следует производить через специальный коммутационный аппарат, имеющий видимый разрыв цепи либо же штепсельную вилку, которая должна располагаться на месте управления данной установкой.
  • Далее провод присоединяется к фазе, полюсу испытуемого оборудования или же к жиле кабеля. Отсоединить провод можно только с разрешения лица, которое руководит проведением испытаний, а также после заземления.

Однако прежде чем подать ток на проверяемую установку, работник должен сделать следующее:

  • Необходимо удостовериться, что все члены проверяющего персонала заняли свои места, все посторонние лица были удалены и можно ли подавать напряжение на устройство.
  • Перед подачей напряжение обязательно следует уведомить об этом весь проверяющий персонал и только убедившись, что все сотрудники это услышали, можно снимать заземление с вывода проверяемой аппаратуры и подавать напряжение 380 или 220 В.
  • Сразу после снятия заземления вся техника, участвующая в испытании электрооборудования с подачей повышенного напряжения, считается находящейся под напряжением. Это означает, что любые изменения в схеме или присоединения кабелей или прочие изменения строго запрещены.
  • После того как испытания будут проведены, руководитель обязан понизить напряжение до 0, отключить все оборудование от сети, заземлить самостоятельно или отдать распоряжение о заземлении вывода установки. Обо всем этом необходимо сообщать бригаде рабочих. Только после этого допускается отсоединять провода, если испытания завершились или проводить их пересоединение, если требуется продолжение работ. Ограждения также убираются только после полного отключения установки и завершения работ.

Протокол испытания повышенным напряжением любой аппаратуры также должен составляться руководителем группы рабочих.

Проведение испытаний кабеля

Испытания кабеля так же проводятся по определенному плану.

  1. Для начала требуется обустроить заземление для аппаратуры и ручного разрядника. Бывает так, что трансформаторная высоковольтная установка и кенотронная приставка, вынесены за пределы пределы аппарата. В этом случае их также следует заземлить.
  2. После этого нужно откинуть дверцу, которая находится сзади сверху аппарата, и установить ее на кронштейне. Далее откидывается нижняя дверца, на нее монтируется кенотронная приставка, а ее лапы заводятся под скобу и выдавки дверцы.
  3. У верхней дверцы имеется отверстие, куда следует вставить рукоять переключения пределов. При помощи ключа рукоятка соединяется микроамперметром. Рукоятка подлежит заземлению.
  4. В запасных частях при проведении таких работ должна храниться специальная пружина. Одним своим концом она присоединяется к высоковольтному трансформатору повышающего типа, а вторым своим концом к выводу кенотронной приставки высоковольтного типа. Вывод располагается посередине приставки.
  5. Далее следует вилку приставки вставить в розетку пульта управления. Имеется специальная рукоятка с пометкой «Защита», ее нужно переставить в положение «Чувствительная».
  6. При помощи кабеля следует присоединить проверяемое оборудование к приставке. При этом нужно муфту кабеля накинуть на вывод микроамперметра до упора, после чего устанавливается защитное ограждение.
  7. Вилка аппаратуры после этого может быть подключена к сети, а после того как сотрудник встанет на резиновую подставку, можно включать и сам аппарата. В это время загорится зеленый диод, а после нажатия на кнопку включения — красный.
  8. У оборудования имеется рукоятка, которая вращается по часовой стрелке, тем самым увеличивая напряжение. Таким образом, ее следует вращать до достижения испытательного напряжения. Отсчет обычно ведется по шкале кВ, который отградуирован в максимальных киловольтах.
  9. Ток утечки можно менять при помощи переключения рукоятки пределов, нажимая кнопку в центре этой рукоятки.
  10. После проведения всех испытаний, необходимо снизить подаваемое напряжение до 0, а после этого нажать на кнопку отключения аппарата.

Протокол испытания кабеля повышенным напряжением также составляется после проведения всех работ главной проверяющей группы.

Проведение испытаний промышленной частотой РУ

По следующему порядку проводятся испытания для распределительных устройств РУ вместе с их коммутационными аппаратами.

Для начала требуется подготовить технику к работе. Для этого требуется отключить от распределительного устройства все трансформаторы напряжения и прочие, подключенные к нему устройства, которые закорочены или же заземлены. Все оборудование очищается от пыли, влаги, и любых других загрязнений. После этого, по правилам испытаний изоляции повышенным напряжением повышенной частоты, следует измерить и записать сопротивление обмотки испытуемого оборудования. Для этого берется мегаомметр с напряжением на 2,5 кВ.После этого вся установка подготавливается к проведению последующих работ так, как это описывалось ранее.

После этого проводятся все испытательные измерения распределительного устройства при помощи повышенного напряжения.

Проведение испытаний наиболее распространенными приборами

Одним из распространенных аппаратов для проверки является АИИ-70. Также достаточно часто используется установка с маркировкой УПУ-1М.

Прежде чем приступить к каким-либо испытаниям, необходимо, чтобы стрелки всех приборов стояли на нуле, автоматические выключатели были отключены. Рукоятка регулятора напряжения должна быть до отказа повернута против часовой стрелки. Что касается положения предохранителей, то оно должно соответствовать напряжению сети. Если требуется транспортировка высоковольтного трансформатора, то он должен быть очень надежно закреплен внутри аппарата, рукоять регулятора в этом случае должна быть утоплена, а дверцы плотно закрыты. Надежно закрепить следует и кенотронную приставку, если будут проводиться испытания кабеля, а также следует вынуть емкость с жидким диэлектриком из агрегата.

С помощью щупа во время транспортировки следует периодически проверять расстояние между электродами банки. Оно должно быть равно 2,5 мм. Щуп должен проходить между электродами не слишком туго, но и без качки.

Правила безопасности при проведении испытаний

Что касается правил безопасности и норм испытаний повышенным напряжением, то они следующие.

Во-первых, прежде чем приступать к любой работе, следует обустроить заземление при помощи медного провода с сечением минимум 4,2 квадратных миллиметра такие приборы, как сам аппарат, ручной разрядник, высоковольтный трансформатор и кенотронную приставку.

Любые работы без заземлений строго запрещены.

Во-вторых, следует обязательно установить защитное ограждение. Крепить его следует со стороны изоляционных труб к кенотронной приставке. На защитном ограждении должны быть предупреждающие надписи. Крепить ограждение следует и со стороны металлических стержней. Здесь оно соединяется с поворотными ушками каркаса пульта управления.

Что касается любых переключений высоковольтных и низковольтных частей аппарата, то они производятся только при полном отключении напряжения, а также при наличии подключенного и надежного заземления.

Как кабель, так и любой другой объект, который проходил испытания со значительной емкостью, должны быть заземлены после испытаний. Это обусловлено тем, что даже по завершении испытаний, объект способен сохранять в себе достаточно мощный заряд, способный нанести вред здоровью человека.

Как видно из всего вышесказанного, методики испытаний повышенным напряжением достаточно схожи между собой. Но есть и существенные различия, из-за которых иногда приходится проверять одно и то же оборудование разными способами.

Тестовая сеть

Переключить навигацию