Закрыть

Из чего делают трансформаторы: режимы, схема, назначение, из чего состоит

Содержание

Устройство и принцип работы трансформатора

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем знакомство с электронными компонентами и в этой статье рассмотрим устройство и принцип работы трансформатора.

Трансформаторы нашли широкое применение в радио и электротехнике и применяются для передачи и распределения электрической энергии в сетях энергосистем, для питания схем радиоаппаратуры, в преобразовательных устройствах, качестве сварочных трансформаторов и т.п.

Трансформаторы

Трансформатор предназначен для преобразования переменного напряжения одной величины в переменное напряжение другой величины.

В большинстве случаев трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя катушками (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки мотают медным изолированным проводом и размещают на магнитопроводе.

Одна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке ниже.

Схематичное устройство трансформатора

1. Принцип работы трансформатора.

Принцип работы трансформатора основан на явлении электромагнитной индукции.

Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС –

е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.

Работа трансформатора без нагрузки

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.

Работа трансформатора под нагрузкой

В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.

Формула магнитного потока

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.

Из сказанного следует, что при определенных значениях магнитного потока

Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют

разделительным.

Схематичное изображение разделительного трансформатора

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.

Схематичное изображение повышающего трансформатора

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.

Схематичное изображение понижающего трансформатора

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

2. Устройство трансформатора.

2.1. Магнитопровод. Магнитные материалы.

Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением. Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях. Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.

Магнитные материалы, используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями.
Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.

Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.

Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали, имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.

Магнитопроводы из электротехнической стали

Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.

Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.

Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.

Магнитопроводы из сплавов с высокой магнитной проницаемостью

Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы, которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.

Магнитопроводы из магнитомягких прессованных ферритов

Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.

2.2. Типы магнитопроводов.

Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.

Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.

Шихтованные магнитопроводы

Магнитопровод из плоских шихтовых пластин

Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.

Ленточные магнитопроводы

Трансформатор с ленточным магнитопроводом

Тороидальный трансформатор из ленточного магнитопровода

В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые, броневые и тороидальные. При этом каждый из этих типов может быть и стрежневым и ленточным.

Стержневые.

В магнитопроводах стержневого типа обмотки располагается на двух стержнях (стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.

Схематичное изображение трансформатора стержневого типа

Трансформатор стержневого типа

Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.

Броневые.

В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.

Схематичное изображение трансформатора броневого типа

Трансформатор броневого типа

Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.

Тороидальные.

Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.

Схематичное изображение тороидального трансформатора

Тороидальный трансформатор

Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.

Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.

За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.

Новые формы магнитопроводов

На этом пока закончим. Продолжим во второй части.
Удачи!

Литература:

1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.
2. В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.
3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.
4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.
5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

Трансформаторы — устройство, принцип работы и область применения, основные типы и характеристики
Электрика » Электрооборудование » Трансформаторы

Трансформаторы

Трансформаторы — это устройства предназначенные для преобразования электроэнергии. Их основная задача — изменение значения переменного напряжения.

Трансформаторы используются как в виде самостоятельных приборов, так и в качестве составных элементов других электротехнических устройств.

Достаточно часто трансформаторы используются при передаче электроэнергии на дальние расстояния. Непосредственно на электрогенерирующих предприятиях они позволяют существенно повысить напряжение, которое вырабатывается источником переменного тока.

Повышая напряжение до 1150 кВт, трансформаторы обеспечивают более экономную передачу электроэнергии: значительно снижаются потери электричества в проводах и появляется возможность уменьшить площадь сечения кабелей, используемых в линиях электропередач.

Принцип работы трансформатора основан на эффекте электромагнитной индукции. Классическая конструкция состоит из металлического магнитопровода и электрически не связанных обмоток выполненных из изолированного провода. Та обмотка, на которую подается электроэнергия, называется первичной. Вторая — подсоединённая к устройствам, потребляющим ток, называется вторичной.

После того как трансформатор подсоединяют к источнику переменного тока в его первичная обмотка формирует переменный магнитный поток. По магнитопроводу он передается на витки вторичной обмотки, индуцируя в них переменную ЭДС (электродвижущую силу). При наличии устройства потребления в цепи вторичной обмотки возникает электрический ток.

Соотношение между входным и выходным напряжением трансформатора прямо пропорционально отношению количества витков соответствующих обмоток.

Эта величина называется коэффициентом трансформации: Ктр=W1/W2=U1/U2, где:

  • W1, W2 — количество витков первичной и вторичной обмоток соответственно;
  • U1,U2 — входное и выходное напряжения соответственно.

Обмотки могут быть расположены либо в виде отдельных катушек либо одна поверх другой. У маломощных устройств обмотки выполняются из провода с хлопчатобумажной или эмалевой изоляцией. Микро трансформатор имеет обмотки из алюминиевой фольги толщиной не более 20—30 мкм. В качестве изолирующего материала выступает оксидная пленка, полученная естественным окислением фольги.

ВИДЫ И ТИПЫ ТРАНСФОРМАТОРОВ

Трансформаторы — это достаточно широко распространенные устройства, поэтому существует множество их разновидностей. По конструктивному исполнению и назначению они делятся на:

Автотрансформаторы.
Они имеют одну обмотку с несколькими отводами. За счет переключения между этими отводами можно получить разные показатели напряжения. К недостаткам следует отнести отсутствие гальванической развязки между входом и выходом.
Импульсные трансформаторы.
Предназначены для преобразования импульсного сигнала незначительной продолжительности (около десятка микросекунд). При этом форма импульса искажается минимально. Обычно используется в цепях обработки видеосигнала.
Разделительный трансформатор.
Конструкция этого устройства предусматривает полное отсутствие электрической связи между первичной и вторичными обмотками, то есть обеспечивает гальваническую развязку между входными и выходными цепями. Используется для повышения электробезопасности и, как правило, имеет коэффициент трансформации равный единице.
Пик—трансформатор.
Используется для управления полупроводниковыми электрическими устройствами типа тиристоров. Преобразует синусоидальное напряжение переменного тока в пикообразные импульсы.

Стоит выделить способ классификации трансформаторов по способу их охлаждения.

Различают сухие устройства с естественным воздушным охлаждением в открытом, защищенном и герметичном исполнении корпуса и с принудительным воздушным охлаждением.

Устройства с жидкостным охлаждением могут использовать различные типы теплообменной жидкости. Чаще всего это масло, однако встречаются модели где в качестве теплообменного вещества используется вода или жидкий диэлектрик.

Кроме того производят трансформаторы с комбинированным охлаждением жидкостно-воздушным. При этом каждый из способов охлаждения может быть как естественным, так и с принудительной циркуляцией.

ХАРАКТЕРИСТИКИ ТРАНСФОРМАТОРОВ

К основным техническим характеристиками трансформаторов можно отнести:

  • уровень напряжения: высоковольтный, низковольтный, высоко потенциальный;
  • способ преобразования: повышающий, понижающий;
  • количество фаз: одно- или трехфазный;
  • число обмоток: двух- и многообмоточный;
  • форму магнитопровода: стержневой, тороидальный, броневой.

Один из основных параметров — это номинальная мощность устройства, выраженная в вольт-амперах. Точные граничные показатели могут несколько различаться в зависимости от количества фаз и других характеристик. Однако, как правило, маломощными считаются устройства, преобразовывающие до нескольких десятков вольт-ампер.

Приборами средней мощности считаются устройства от нескольких десятков до нескольких сотен, а трансформаторы большой мощности работают с показателями от нескольких сотен до нескольких тысяч вольт-ампер.

Рабочая частота – различают устройства с пониженной частотой (менее стандартной 50 Гц), промышленной частоты – ровно 50 Гц, повышенной промышленной частоты (от 400 до 2000 Гц) и повышенной частоты (до 1000 Гц).

ОБЛАСТЬ ПРИМЕНЕНИЯ

Трансформаторы получили широкое распространение, как в промышленности, так и в быту. Одной из основных областей их промышленного применения является передача электроэнергии на дальние расстояния и ее перераспределение.

Не менее известны сварочные (электротермические) трансформаторы. Как видно из названия, данный тип устройств применяется в электросварке и для подачи питания на электротермические установки. Также достаточно широкой областью применения трансформаторов является обеспечение электропитания различного оборудования.

В зависимости от назначения трансформаторы делят на:

Силовые.

Являются наиболее распространенным типом промышленного трансформатора. Применяются для повышения и понижения напряжения. Используется в линиях электропередач. По пути от электрогенерирующих мощностей до потребителя электроэнергия может несколько раз проходить через повышающие силовые трансформаторы, в зависимости от удалённости конкретного потребителя.

Перед подачей непосредственно на приборы потребления (станки, бытовые и осветительные приборы) электроэнергия претерпевает обратные преобразования, проходя через силовые понижающие трансформаторы.

Тока.

Выносные измерительные трансформаторы тока используются для обеспечения работоспособности цепей учета электроэнергии защиты энергетических линий и силовых автотрансформаторов. Они имеют различные размеры и эксплуатационные показатели. Могут размещаться в корпусах небольших приборов или являться отдельными, габаритными устройствами.

В зависимости от выполняемых функций различают следующие виды:

  • измерительные — подающее ток на приборы измерения и контроля;
  • защитные — подключаемые к защитным цепям;
  • промежуточные — используется для повторного преобразования.

Напряжения.

Они применяются для преобразования напряжения до нужных величин. Кроме того, такие устройства используются в цепях гальванической развязки и электро- радио- измерениях.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


принцип действия, разновидности, из чего состоит и хараткрестики

Трансформатор – это прибор, который пропускает через себя электрический ток, меняя его характеристики. Без этого аппарата не обходится почти никакое электрическое или электронное устройство. Энергетические системы и подстанции любого масштаба обязательно включают в себя различные виды трансформаторов.

3-х фазный силовой трансформатор

3-х фазный силовой трансформатор

История

В первой половине XIX века английский физик Фарадей проводил многочисленные опыты с электричеством. В результате экспериментов им было открыто такое явление, как электромагнитная индукция. 29 августа 1831 года учёный в своём дневнике описал результат своих исследований в этом направлении.

На кольцо из железа ø 150 мм и толщиной 20 мм были намотаны 2 медных провода длиной 150 мм и 180 мм. При подключении гальванической батареи к одной обмотке на зажимах другого проводника гальванометр фиксировал статическое напряжение. Так появился первый трансформаторный прототип.

Французский механик Румкорф в 1848 году сделал первую индукционную катушку. Она давала представление о том, что это такое трансформатор. В 1872 году профессор московского университета Столетов разработал теорию петли гистерезиса, а также обосновал доменную структуру ферритового сердечника.

30 ноября 1876 г. считается датой изобретения трансформатора переменного тока. В этот день был выдан патент на это изобретение знаменитому российскому физику Павлу Николаевичу Яблочкову. Прибор состоял из разомкнутого сердечника с двумя обмотками.

Устройство, изобретённое венгерскими инженерами в 1885 г., уже представляло собой прибор с замкнутым магнитопроводом. С тех пор сердечники стали делать из отдельных стальных листов. Приборы стали помещать в сосуды, заполненные маслом. Далее последовали различные усовершенствования конструкции преобразования тока. К этому приложили руку инженеры Эдисона, великий Никола Тесла, российские, английские и немецкие учёные.

Современные трансформаторы – это устройства, предназначенные для доставки потребителю электроэнергии с заданными характеристиками.

Базовые принципы действия

Определение преобразователя напряжения базируется на двух принципах действия:

  1. Электромагнетизм. Изменяясь в определённом временном промежутке, ток создаёт изменяющееся магнитное поле.
  2. Электромагнитная индукция. Проходящий магнитный ток через вторичную обмотку возбуждает в ней электродвижущую силу (ЭДС).

Закон Фарадея

Электромагнитная индукция вызывает электрический ток в замкнутом контуре во время изменения магнитного потока, проходящего сквозь площадь этого контура.

Закон Фарадея объясняет прямую пропорциальную зависимость ЭДС от скорости изменения магнитного потока. Эту зависимость отражает формула закона электромагнитной индукции:

Формула закона Фарадея

Формула закона Фарадея

  • ЭДС – индукция в контуре;
  • ∆Ф – величина магнитного потока;
  • ∆t – временной промежуток.

Важно! Минус в формуле закона Фарадея – это корректировка выражения, предложенная русским учёным Ленцем. Знак « – » означает, что индукционный ток в ограниченном контуре направлен на препятствование изменению магнитного потока.

Уравнение идеального трансформатора

Направлять электрический ток с изменёнными параметрами в электрические цепи или определённую область электронной схемы – для чего служат трансформаторы. Идеальный трансформатор – это прибор, который не несёт потерь на гистерезисе, вихревых токах и рассеивании обмотками энергии.

В идеальном устройстве мощности обеих обмоток равны. Электрический поток, проходя через первичную катушку, преобразуется в магнитный поток, который, в свою очередь, превращается в ЭДС вторичной цепи.

Что делает идеальный трансформатор, можно выразить следующим выражением:

P1 = I1U1 = P2 = I2U2,

где:

  • P1 – одномоментная мощность первичной цепи;
  • P2 – одномоментная мощность вторичной обмотки.

Преобразуя оба произведения силы и тока в соотношения, получают математическое определение идеального трансформатора:

U2/U1 = I1 /I2 = n,

где n – коэффициент трансформации.

Модель реального трансформатора

От идеального исполнения конструктивного решения прибора реальная модель трансформатора отличается такими признаками, как:

  1. Наличие ненулевого тока холостого хода;
  2. Возникновение ёмкостей;
  3. Нелинейная кривая намагниченности.
Ненулевой ток холостого хода

Обмотки реального трансформатора вместе с пластинами сердечника представляют собой магнитоэлектрическую систему, где по её контуру циркулирует вектор напряжения магнитного поля, равный полному току внутри этого контура.

Все типы действующих трансформаторов при включении без нагрузки испытывают всплески первичного тока. Это явление называют ненулевым током холостого хода. При расчётах защиты преобразовательных устройств проводят сравнение между действительными и идеальными сдвигами токов двух обмоток. Разницу между углами этих сдвигов называют углом погрешности. Этот показатель учитывают при определении класса приборов, особенно в тех моделях, которые предназначены для работы в системах учёта энергопотребления.

Возникновение ёмкостей

Проводники с разделительным диэлектрическим материалом провоцируют возникновение паразитных ёмкостей между обмотками, их слоями и витками. Благодаря им, из первичной катушки проникают во вторичную обмотку помехи высокой частоты. В расчёты характеристик приборов вводят теоретические величины эквивалентных ёмкостей. Это делается с целью резкого снижения риска проявления таких негативных явлений, как возникновение продольных и поперечных ёмкостей.

Нелинейная кривая намагниченности

Ферритовые сердечники трансформаторов содержатся в большинстве разновидностей преобразователей напряжения. Добиваясь этим большой величины ЭДС во вторичных обмотках, получают крайне нелинейную характеристику намагничивания. Соответственно, индуктивность тоже принимает нелинейный характер.

В результате создаётся феррорезонансный режим, при котором возникает риск выхода из строя преобразователя напряжения. Происходит чрезмерный нагрев магнитопровода, что вызывает потребность в охлаждении устройства.

Обратите внимание! Для гашения сопровождающих вихревых токов сердечники собирают из шихтованных ферромагнитных пластин с высоким удельным сопротивлением. Их делают из специальной кремнистой тонкой стали.

Режимы работы трансформаторов

Трансформаторы предназначены для работы в трёх режимах:

  • холостой ход;
  • нагрузка;
  • короткое замыкание.

Режим холостого хода

Холостым ходом называют такое состояние прибора, когда вторичная обмотка разомкнута, и потребитель не получает выходной энергопоток. В первичной катушке протекает ЭДС, которую называют током холостого хода. В этом режиме определяют КПД прибора, коэффициент трансформации и потери в магнитопроводе.

Режим нагрузки

Это стандартное рабочее состояние оборудования, когда первичная цепь подключена к источнику тока, а вторичная обмотка находится под нагрузкой. Характеристика нагрузки в основном определяет применение нужного вида трансформатора.

Состояние короткого замыкания

Выводы вторичной обмотки замыкают напрямую с целью выявления потерь на нагрев катушек в цепи устройства. Единственной нагрузкой остаётся собственное сопротивление витков вторичной обмотки.

Теория трансформаторов

Теоретические обоснования того, что делают трансформаторы, включают в себя несколько разделов:

  1. Уравнения линейного трансформатора;
  2. Т-образная схема замещения;
  3. Потери;
  4. Габаритная мощность;
  5. КПД.

Уравнения линейного трансформатора

Линейные уравнения отображают взаимосвязь между величинами характеристик трансформатора. К ним относятся:

  1. U1 = L1(di1/dt) +L1,2(di2/dt) + I1 R1;
  2. L2(dI2/dt) + L1.2 + I2R2 = – I2RH,

где:

  • U1 – мгновенное напряжение в первичной катушке;
  • I1 и I2 – сила тока в обмотках;
  • RH – сопротивление в нагрузке;
  • L1,2 – взаимная индуктивность обмоток;
  • L1, R1, и L2, R2 – индуктивность и сопротивление обеих катушек.

Т-образная схема замещения

Для тестирования электрической цепи какого-либо устройства трансформатор замещают Т-образной схемой, состоящей из элементов, указанных на нижнем рисунке.

Т-образная схема замещения

Т-образная схема замещения

Потери

Специалисты разделяют потери на траты в стали и меди. Потери в стали происходят в сердечнике, утрата части энергии в меди относится к медным виткам обмоток.

В стали

Утрата части энергии происходит по причине потерь в магнитопроводе и обмотках. Величина потерь в стали связана с конструкцией сердечника, качеством электротехнической стали. Траты энергии уходят на нагрев, гистерезис и образование вихревых токов.

Магнитопроводы, сделанные из трансформаторного железа с добавлением кремния, значительно уменьшают потери и повышают удельное сопротивление стали. Конструкцию сердечника улучшают промежуточным лакированием соприкасающихся поверхностей пластин.

В меди

Потери в обмотках вызваны ненулевым вектором активного сопротивления в катушках преобразователя напряжения. Потери в меди сопровождаются нагревом проводов в обмотках. Часто они вызваны несоответствием количества витков напряжению в обмотках.

Габаритная мощность

Габаритную мощность трансформатора рассчитывают следующей формулой:

Pgab = (P1 + P2)/2 = (U1I1 + U2I2)/2.

Этот параметр можно определить ориентировочно по сечению сердечника. Величина габаритной мощности зависит от ряда показателей, таких как качество и толщина листов магнитопровода, размер проёма, степень индукции, общее сечение проводов обмоток и качество диэлектрических слоёв между пластинами.

Дополнительная информация. Ещё один фактор влияет на габаритную мощность трансформатора – это его стоимость. Чем дешевле устройство, тем меньше этот показатель.

КПД трансформатора

Коэффициент полезного действия приборов можно рассчитать по нескольким формулам. Три из них представлены ниже:

Формула 1

Формула 1

Формула 2

Формула 2

Формула 3

Формула 3

Конструкция

Конструкция устройства базируется на 4-х основных элементах. Вот из чего состоят трансформаторы:

  1. Магнитопровод;
  2. Обмотки;
  3. Схемы соединения обмоток 3-х фазных трансформаторов;
  4. Бак.

Магнитопровод

Магнитная секция прибора делается из нескольких видов материалов: электротехническая сталь, пермаллой и ферромагнетики. Конструктив устройства обычно выглядит в виде рамки, на боковых сторонах (стержнях) которой помещаются обмотки. Части рамки, свободные от катушек, называют ярмом. Встроенные преобразователи зачастую оснащаются магнитопроводами тороидальной формы.

В зависимости от пространственного положения стержней магнитопровода, магнитные системы бывают плоскими, пространственными, симметричными и несимметричными конструкциями. В трансформаторах переменного тока сердечники образуют замкнутый контур. В приборах постоянного тока магнитопроводы делаются с зазором.

Отдельные виды магнитопроводов

Отдельные виды магнитопроводов

Обмотки

Катушки магнитопроводов состоят из множества витков провода. Витки располагаются параллельно относительно друг друга в строго последовательном порядке. Проводники тока, покрытые изоляционным лаком либо бумагой, охватывают спиралью стержни магнитопровода.

Первичная обмотка под напряжением создаёт вокруг себя магнитное поле, которое воздействует на витки второй катушки. В результате в ней индуцируется выходной электрический ток.

Схемы соединения обмоток 3-х фазных трансформаторов

В 3-х фазных трансформаторах обмотки соединяют тремя способами.

Звезда

Три обмотки сходятся одними своими концами в нейтральной точке. Бывают звёздные соединения с выводом из общей точки и без него.

Треугольник

Соединённые последовательно три обмотки образуют треугольник. У обмоток, соединённых треугольником, усложняется конструкция переключателя контактов из-за высокого напряжения.

Зигзаг

При такой схеме все три обмотки располагаются отдельно на 3 стержнях магнитопровода. Соединения катушек осуществляются встречно последовательно.

Бак

Баки, заполненные трансформаторным маслом, помимо опорной функции, обеспечивают защиту от перегрева силового оборудования. Перед заправкой герметичного бака маслом из него откачивают воздух. Ёмкости могут содержать различные добавки, активно поглощающие рассеивающий магнитный поток, не давая ему распространиться наружу.

Виды трансформаторов

В этом пункте раскрыта тема, какие разные бывают трансформаторы.

Силовой

Тип силового трансформатора переменного тока используют в сетях электроснабжения и в специальных установках. Название «Силовой» обозначает то, что оборудование обладает большой мощностью. Потребность в таком оборудовании объясняется согласованием различных величин напряжений линий электропередач.

Автотрансформатор

Его первичная и вторичная обмотки соединены напрямую, за счёт чего обеспечивается электромагнитная и электрическая связь. Достоинством автотрансформатора является высокий показатель КПД. Вторичная обмотка имеет несколько выводов, что позволяет варьировать несколькими величинами выходного напряжения. Прибор может фиксировать напряжение на уровне 220 вольт. Поэтому приборы популярны в быту, предохраняя лампы осветительных приборов, домашнее электрическое и электронное оборудование от скачков напряжения сетевого тока.

Трансформатор тока

Такой вид, как трансформатор тока, применяется в измерительных цепях, защитном оборудовании. Устройство используется как средство управления и различной сигнализации. Первичная катушка подсоединяется к источнику питания тогда, когда вторичная обмотка включается в схему измерительных, исполнительных, индикаторных и релейных приборов.

Трансформатор напряжения

Основное назначение – это преобразование тока высокого напряжения в низковольтное питание измерительных цепей и различных приборов. Понижающее оборудование применяют в логических защитных системах.

Импульсный

Импульсные преобразователи используются для передачи пульсирующего тока. Это необходимая часть видеотехники для обеспечения отсутствия искажений в трансформируемых видеосигналах.

Сварочный

Трансформаторы обеспечивают ток нужной характеристики для различных видов сварки. Регулировка сварочного тока происходит за счёт изменения индуктивного сопротивления и холостого хода вторичной обмотки. Сварочный трансформатор работает от сети напряжением 220 или 380 вольт.

Разделительный

Трансформаторы оснащены раздельными обмотками. Их применяют в цепях защитных систем. Они чутко реагируют на несанкционированное заземление и отключают электричество в аварийных случаях.

Согласующий

Трансформатор используется для согласования сопротивлений каскадов электронного оборудования с минимальным искажением сигналов. Также его применяют для гальванической развязки между различными частями электронных схем.

Пик-трансформатор

Преобразует синусоидальное напряжение в импульсы пикообразной формы. Применяется для управления газоразрядным оборудованием, таким как тиратроны, ртутные выпрямители и тиристоры.

Сдвоенный дроссель

Отличается от других видов преобразователей напряжения наличием двух абсолютно одинаковых обмоток. Основная функция – встречный индуктивный фильтр. По своим характеристикам значительно превосходит дроссель стандартной конструкции.

Трансфлюксор

Обладает большой степенью остаточной намагниченности сердечника. Этот вид трансформаторов используется как элемент блока памяти электронных устройств.

Вращающийся трансформатор

Передаёт сигналы на вращающиеся магнитные головки видеозаписывающей аппаратуры. Магнитопровод разделён на две части, одна из которых вращается с минимальным зазором относительно другой части сердечника. Обеспечивает качественный съём сигналов при большой скорости вращения.

Воздушный и масляный трансформаторы

Отличаются друг от друга способом охлаждения магнитопровода с обмотками. Масляный преобразователь напряжения погружён в герметичный бак, заполненный трансформаторным маслом с активными добавками. Воздушные приборы охлаждаются за счёт естественной или принудительной вентиляции внутреннего пространства корпуса трансформатора.

Трёхфазный

Этот вид оборудования относится к силовым трансформаторам, обладающим большой мощностью. Магнитопровод состоит из трёх стержней с обмотками. Стержень каждой из трёх фаз оснащён двумя катушками повышающего и понижающего напряжения.

Обозначение на схемах

На схематичном изображении трансформаторов обмотки представляют волнистыми линиями по обе стороны вертикального стержня. На нижнем рисунке видны одна первичная и две вторичные обмотки, разделённые вертикальной линией магнитопровода.

Обозначение трансформатора на схемах

Обозначение трансформатора на схемах

Сферы применения

В источниках электропитания

Основное предназначение трансформаторов – это изменение характеристик тока, поступающего от источника тока.

Другие

Кроме понижения и повышения напряжения, трансформаторы используются как разделительные, импульсные устройства, релейная защита автоматики. Также отдельные виды приборов выполняют измерительную и силовую функцию.

Эксплуатация

Срок службы

При правильном и своевременном обслуживании трансформаторное оборудование может прослужить до тех пор, пока морально не устареет. Срок службы зависит от условий эксплуатации, частоты возникновения аварийных ситуаций на участке электросети, где установлено оборудование.

Работа в параллельном режиме

Параллельный режим работы позволяет временно подменять мощное силовое оборудование трансформаторами средней или малой мощности. Это происходит тогда, когда на линии электропередачи падает нагрузка, что позволяет сокращать траты энергии при работе на холостом ходу.

Частота

При одинаковом напряжении частота тока может быть различной. Первичная обмотка, рассчитанная на частоту тока 50 Гц, без помех принимает входной ток частотой 60 Гц. В обратном случае трансформатор не будет полноценно исполнять свои функции. При меньшей номинальной частоте возрастает показатель индукции в сердечнике, что, как правило, вызывает резкое увеличение силы тока холостого хода. Если ток в сети имеет частоту, превышающую номинальную величину, то возникают паразитные токи в магнитопроводе. Сердечник и обмотки сильно перегреваются.

Регулирование напряжения трансформатора

Изменение напряжения в сети отображается на аналоговом экране или цифровом дисплее. Маломощные трансформаторы снабжены светодиодной индикацией уровня напряжения. С помощью органов управления устанавливается нужный уровень выходного напряжения в ручном или автоматическом режиме.

Изоляция трансформатора

Из-за частых перегревов обмоток и магнитопроводов изоляция может потерять свои диэлектрические свойства. Для осуществления контроля состояния изоляции проводятся регулярные испытания электрооборудования.

Перенапряжения трансформатора

В процессе интенсивной эксплуатации трансформаторы часто подвергаются перенапряжению. Оно бывает кратковременным и переходным.

Кратковременное превышение рабочих параметров оборудования происходит в течение от 1 секунды до нескольких часов. Переходное перенапряжение может набирать время, измеряемое в мили и наносекундах.

Перед тем, как покинуть завод-изготовитель, трансформаторы проходят тестовые испытания, в ходе которых создаются различные ситуации на грани потери работоспособности. В результате некондиция отсеивается от партии готовой продукции.

При установке того или иного трансформаторного оборудования нужно тщательно взвесить его возможности и состояние источника питания. Также принимают во внимание требуемые характеристики выходного напряжения для определённых потребителей.

Видео

Виды трансформаторов. Где и для чего применяются?

Здравствуйте, дорогие друзья! Сегодня поговорим про виды трансформаторов, рассмотрим их общее устройство и принцип работы, узнаем где применяются. И так…

В энергетике и электротехнике постоянно требуется преобразование тока из одного состояния в другое. В этих процессах активно участвуют различные виды трансформаторов, представляющие собой электромагнитные статические устройства, без каких-либо подвижных частей. В основе их действия лежит электромагнитная индукция, посредством которой переменный ток одного напряжения преобразуется в переменный ток другого напряжения. При этом частота остается неизменной, а потери мощности совсем незначительные.

Общее устройство и принцип работы

Каждый трансформатор оборудуется двумя или более обмотками, индуктивно связанными между собой. Они могут быть проволочными или ленточными, покрытыми изоляционным слоем. Обмотки наматываются на сердечник, он же магнитопровод, выполненный из мягких ферромагнитных материалов. При наличии одной обмотки, такое устройство называется автотрансформатором.

Принцип действия трансформатора довольно простой и понятный. На первичную обмотку устройства подается переменное напряжение, что приводит к течению в ней переменного тока. Этот переменный ток, в свою очередь, вызывает создание в магнитопроводе переменного магнитного потока. Под его воздействием в первичной и вторичной обмотках происходит наведение переменной электродвижущей силы (ЭДС). Когда вторичная обмотка замыкается на нагрузку, по ней также начинает течь переменный ток. Этот ток во вторичной системе отличается собственными параметрами. У него индивидуальные показатели тока и напряжения, количество фаз, частота и форма кривой напряжения.

В конструкцию простейшего силового трансформатора входит магнитопровод, изготавливаемый из ферромагнитных материалов, преимущественно из листовой электротехнической стали. На стержнях магнитопровода – сердечника располагаются первичная и вторичная обмотки. Первичная обмотка соединяется с источником переменного тока, а вторичная подключается к потребителю.

 

Типы трансформаторов

В соответствии со своими параметрами и характеристиками, все виды трансформаторов разделяются:

  • По количеству фаз могут быть одно- или трехфазными
  • В соответствии с числом обмоток, трансформаторы бывают двух- или трехобмоточными, а также двух- или трехобмоточными с расщепленной обмоткой
  • По типу изоляции – сухие (С) и масляные (М) или с негорючим заполнением (Н)
  • По видам охлаждения – с естественным масляным охлаждением (М), с масляным охлаждением и воздушным дутьем (Д), принудительная циркуляция масляного охлаждения (Ц), сухие трансформаторы с воздушным охлаждением (С). Кроме того, существуют устройства без расширителей, для защиты которых используется азотная подушка.

Среди многообразных трансформаторных устройств чаще всего встречаются трансформаторы:

  • силовые
  • измерительные
  • специальные

Силовые трансформаторы

Термином «силовой» определяют назначение, связанное с преобразованием высоких мощностей. Вызвано это тем, что большинство бытовых и производственных потребителей электрических сетей нуждаются в питании напряжением 380/220 вольт. Однако доставка его на большие расстояния связана с огромными потерями энергии, которые снижаются за счет использования высоковольтных линий.

Воздушные ЛЭП высокого напряжения соединяют в единую сеть подстанции с силовыми трансформаторами соответствующего класса.

Виды трансформаторов
   Силовой трансформатор 110 кВ

А по другим линиям напряжение 6 или 10 кВ подводится к силовым трансформаторам, обеспечивающих питанием 380/220 вольт жилые комплексы и производственные предприятия.

Виды трансформаторов

   Силовой мачтовый трансформатор 10 на 0,4 кВ

Измерительные трансформаторы

В этом классе работают два вида устройств, обеспечивающих в целях измерения параметров сети преобразования:

  1. тока
  2. напряжения

Измерительные трансформаторы создаются с высоким классом точности. Во время эксплуатации их метрологические характеристики периодически подвергают поверке на правильность измерения как величин, так и углов отклонения векторов тока и напряжения.

Трансформаторы тока

Главная особенность их устройства заключается в том, что они постоянно эксплуатируются в режиме короткого замыкания. У них вторичная обмотка полностью закорочена на маленькое сопротивление, а остальная конструкция приспособлена для такой работы.

Чтобы исключить аварийный режим входная мощность ограничивается специальным устройством первичной обмотки: в ней создается всего один виток, который не может создать при протекании по нему тока большого падения напряжения на обмотке и, соответственно, передать в магнитопровод высокую мощность.

Этот виток врезается непосредственно в силовую цепь, обеспечивая его последовательное подключение. У отдельных конструкций просто создается сквозное отверстие в сердечнике, через которое пропускают провод с первичным током.

Нагрузку вторичных цепей трансформатора тока, находящегося под напряжением, нельзя разрывать. Все провода и соединительные клеммы по этой причине изготавливаются с повышенной механической прочностью. В противном случае на разорванных концах сразу возникает высоковольтное напряжение, способное повредить вторичные цепи.

Благодаря работе трансформаторов тока создается возможность обеспечения постоянного контроля и анализа нагрузок, протекающих в электрической системе. Особенно это актуально на высоковольтном оборудовании.

Виды трансформаторов

   Измерительные трансформаторы тока 110 кВ

Номинальные значения вторичных токов измерительных трансформаторов энергетики принимают в 5 ампер для оборудования до 110 кВ включительно и 1 А — выше.

Широкое применение трансформаторы тока нашли в измерительных приборах. За счет использования конструкции раздвижного магнитопровода удается быстро выполнять различные замеры без разрыва электрической цепи, что необходимо делать при использовании обычных амперметров.

Токовые клещи с раздвижным магнитопроводом трансформатора тока позволяют обхватить любой проводник с напряжением и замерить величину и угол вектора тока.

Трансформаторы напряжения

Отличительная особенность этих конструкций заключается в том, что они работают в режиме, близком к состоянию холостого хода, когда величина их выходной нагрузки невысокая. Они подключается к той системе напряжений, величина которой будет измеряться.

Виды трансформаторов

   Измерительный трансформатор напряжения 110 кВ

Измерительные трансформаторы напряжения обеспечивают гальваническую развязку оборудования первичных и вторичных цепей, работают в каждой фазе высоковольтного оборудования.

Из них создают целые комплексы систем измерения, позволяющие фильтровать и выделять различные составляющие векторов напряжения, учет которых необходим для точной работы защит, блокировок, систем сигнализации.

За счет работы трансформаторов тока и напряжения снимают вектора вторичных величин, пропорциональные первичным в реальном масштабе времени. Это позволяет не только создавать цепи измерения и защит по току и напряжению, но и за счет математических преобразований векторов анализировать состояние мощностей и сопротивлений в действующей электрической системе.

Специальные виды трансформаторов

К этой группе относят:

  • разделительные
  • согласующие
  • высокочастотные
  • сварочные и другого типа трансформаторные устройства, созданные для выполнения специальных электрических задач
Разделительные трансформаторы

Размещение двух обмоток совершенно одинаковой конструкции на общем магнитопроводе позволяет из 220 вольт 50 герц на входе получать такое же напряжение на выходе.

Напрашивается вопрос: зачем делать такое преобразование? Ответ прост: в целях обеспечения электрической безопасности.

Виды трансформаторов

   Разделительный трансформатор с системой контроля изоляции, тока нагрузки, температуры трансформатора

При пробое изоляционного слоя провода первичной схемы, на корпусе прибора появляется опасный потенциал, который по случайно сформированной цепи через землю способен поразить человека электрическим током, нанести ему электротравму.

Гальваническое разделение схемы позволяет оптимально использовать питание электрооборудования и в то же время исключает получение травм при пробоях изоляции вторичной схемы на корпус.

Поэтому разделительные трансформаторы широко используются там, где проведение работ с электроинструментом требует принятия дополнительных мер безопасности. Также они широко используются в медицинском оборудовании, допускающем непосредственный контакт с телом человека.

Высокочастотные трансформаторы

Отличаются от обычных материалом магнитопровода, который способен, в отличие от обычного трансформаторного железа, хорошо, без искажений передавать высокочастотные сигналы.

Используется в электротермии, в частности при индукционном нагреве в электротермических установках для высокочастотной сварки металлов, плавки, пайки, закалки и т.д.

Согласующие трансформаторы

Основное назначение — согласование сопротивлений разных частей в электронных схемах. Согласующие трансформаторы нашли широкое применение в антенных устройствах и конструкциях усилителей на электронных лампах звуковых частот.

Сварочные трансформаторы

Первичная обмотка создается с большим число витков, позволяющих нормально обрабатывать электрическую энергию с входным напряжением 220 или 380 вольт. Во вторичной обмотке число витков значительно меньше, а ток протекающий по ним высокий. Он может достигать тысяч ампер.

Поэтому толщина провода этой цепи выбирается повышенного поперечного сечения. Для управления сварочным током существует много различных способов.

Сварочные трансформаторы массово работают в промышленных установках и пользуются популярностью у любителей изготавливать различные самоделки своими руками.

Рассмотренные виды трансформаторов являются наиболее распространёнными. В электрических схемах работают и другие подобные устройства, выполняющие специальные задачи технологических процессов.

 

Смотрите также по теме:

   Трансформатор Тесла (Tesla coil). Делаем своими руками.

   Принцип работы трансформатора. Устройство и режимы работы.

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

Трансформатор: назначение, принципы работы и правила подключения

Автор Даниил Леонидович На чтение 9 мин. Просмотров 7.2k. Опубликовано

Свойства магнитного поля изучаются учеными давно. Впервые электромагнитную индукцию описал Майкл Фарадей. А именно как появляется прочная электромагнитная взаимосвязь в обмотках при создании переменного тока в первой катушке. Во вторичной же катушке повышается напряжение, но мощность и частота остаются прежними. Конечно, несведущему человеку в электричестве сложно понять конструкцию, принцип действия, предназначение трансформатора. Однако, это неотъемлемый прибор с установкой во многих сферах: радиотехника, электроэнергетика.

Трансформаторы напряжения: назначение и принцип действия

Трансформатор – электрическое устройство. Преобразует переменный ток одного напряжения в электрический ток другого напряжения. Частота, согласно явлению электромагнитной индукции, остается неизменной.

Состоит статический трансформатор из:

  • первичной и вторичной обмотки;
  • сердечника.

Применяется устройство в разных схемах питания и электроприборах. Передает электроэнергию на большие расстояния и:

  • снижает потери энергии;
  • уменьшает площадь сечения проводов ЛЭП.

Трансформаторы напряжения

Разновидности прибора:

  • повышающий;
  • понижающий;
  • силовой;
  • вращающийся;
  • импульсный;
  • разделительный;
  • согласующий.

Понижающий трансформатор применяется в быту. Именно через него проходит и поступает ток в домашние розетки с мощностью 220 Вт.

Силовой агрегат в составе из сердечника и нескольких обмоток преобразует напряжение в электроцепи по принципу электромагнитной индукции. Также значение напряжения переменного тока без изменений его частоты. Применяется для распределения и передачи электрической энергии. Напряжение в обмотках – свыше 300 кВ. Мощность – от 4 кВ до 200000 кВА.

Справка! Трансформатор служит для понижения либо повышения переменного напряжения. Основой является ферромагнитный сердечник. В дополнение для бесперебойной работы – обмотки, изоляция, магнитопровод, система охлаждения.

Обмотки выполнены из изолированных медных проводов прямоугольного сечения. Между их слоями находятся пустоты для циркуляции охлаждающего масла. Роль которого – отбирать тепло у обмоток, передавать через радиаторные трубки в окружающую среду.

принцип действия трансформатора

Принцип действия устройства основан на:

  • изменении магнитного потока;
  • создании электромагнитной индукции при прохождении через обмотку;
  • подаче напряжения на первичную обмотку;
  • воспроизведении магнетизма электрическим током, изменяющимся во времени.

Переменный ток, протекая по первичной обмотке, начинает создавать в магнитопроводе магнитный ток. Постепенно приводит к потоку во всех обмотках, преобразуя гальваническую развязку (переменное напряжение), но без видоизменения частоты.

Стоит знать! Действие прибора основано на электромагнитной индукции. За счет переменного тока образуется магнитное переменное поле вокруг проводника, видоизменяется в электродвижущую силу. Напряжение на выходе полностью зависит от используемого (понижающего, повышающего) трансформатора. Коэффициент ЭДС в обмотках прямо пропорционален количеству витков.

Для чего нужен трансформатор напряжения?

Трансформатор напряжения – универсальное устройство. Передает и распределяет энергию.

Используются в:

  • электроустановках;
  • блоках питания;
  • агрегатах передачи электроэнергии;
  • устройствах обработки сигналов;
  • источниках питания приборов.

Силовой трансформатор с большим напряжением применяется для:

  • подачи энергии в электросети на электростанциях;
  • повышения напряжения генератора, линии электропередач;
  • снижения напряжения, доходящего до потребительского уровня.

принцип действия силового трансформатора

Трехфазный прибор со специальной системой охлаждения используется в электросетях. Сердечник в составе – общий для всех 3-ех фаз.

Область применения сетевого трансформатора – источники электропитания, узлы электроприборов с разным напряжением. Импульсные агрегаты незаменимы для радиотехнических, электронных устройств. Сначала выпрямляют переменное напряжение в блоках питания. Далее за счет инвертора преобразуют высокочастотные импульсы, стабилизирующие постоянное напряжение.

Трансформаторы входят в состав многих схем питания для обеспечения минимального уровня высокочастотных помех. Например, разделительные установки предотвращают угрозу поражения электрическим током для человека. Ведь включение бытовых приборов в сеть через трансформатор становится безопасным.

Вторая цепь у прибора будет изолирована от контактов с землей, если конечно, речь идет о заземлении электрического оборудования. Измерительные силовые приборы применяются в схемах генераторов переменного тока. Количество фаз у генератора из трансформатора должно совпадать для достижения стабильного напряжения на выходе.

Согласующие трансформаторы незаменимы для электронных устройств с высоким входным сопротивлением и высокочастотных линий, но с разным сопротивлением нагрузки.

Как работает трансформатор напряжения?

Приборы преобразуют энергию источника в необходимый коэффициент напряжения. Работают исключительно при переменном напряжении с постоянной частотой. В основе работы – электромагнитная индукция как явление, срабатываемое при изменении во времени магнитного потока, порождении ЭДС в обмотках.

Работа трансформатора начинается в первичной обмотке, где сердечник создает магнитный поток. Далее задействуется переменный ток, намагничивает сердечник, повышает индуктивность первичной обмотки, препятствует нарастанию тока на выводах обмотки напряжения. Если первичная обмотка отдает магнитный поток, то вторичная принимает его, изменяет с определенной скоростью, пронизывая все ветки и создавая ЭДС.

принцип действия трансформатора

Напряжение на ветках в полной мере зависит от быстроты изменения магнитного потока в сердечнике. Хотя получается одинаковым на ветках первичной и вторичной обмотки благодаря прохождению через них одного и того же магнитного потока.

Он в свою очередь создает вокруг себя электрическое поле в сердечнике, некий вихрь с воздействием на электроны, начиная толкать их в определенную сторону.

Справка! Если сказать проще, то принцип работы трансформатора напряжения основан на возбуждении напряжения во второй обмотке за счет возникшего переменного тока в магнитопроводе.

Чем отличается трансформатор тока от трансформатора напряжения?

Источником питания для трансформатора тока является непосредственно ток. Если он не будет проходить через обмотки, тот агрегат быстро выйдет из строя. Питание для трансформатора напряжения – источники напряжения и он также не будет функционировать при повышенных нагрузках тока.

Отличие между устройствами в разных электрических величинах и схемах включения.

Измерительные трансформаторы напряжения и тока

Приборы с работой под высоким напряжением нуждаются в периодическом измерении.

принцип действия измерительного трансформатора

Для чего этих целей в помощь – измерительные устройства, которые:

  • снижают величину напряжения до нужного уровня;
  • обеспечивают гальваническую развязку измерительному оборудованию от цепей с повышенной опасностью.

Номинальная мощность, напряжение и ток

Номинальная – мощность, с которой трансформатор работает в определенном классе точности и в соответствии с ГОСТом. Выражается в вольтах, амперах. Незначительные отклонения мощности допускаются, но не выше нормированных величин.

Важно! Во избежание повышения погрешности вторичной нагрузки суммарное потребление обмоток измерительных приборов и реле не должно быть более номинальной мощности трансформатора. Узнать номинальную мощность можно в паспорте к агрегату либо на щитке.

Порог номинального напряжения у трансформатора – 10кВ.

Разница в зависимости от мощности электроприборов составляет для:

  • питания электроприемников – 3-6,3кВ;
  • крупногабаритных электродвигателей – до 1000В.

Мощность трехфазного трансформатора вычитается по формуле: – S=квадратный корень цифры 3 UIU—номинальное междуфазное напряжение, В; / — ток в фазе, А. Коэффициенты рабочих токов в обмотках при рабочем состоянии трансформатора не должны быть выше номинальных Хотя кратковременные перегрузки в масляных и сухих агрегатах до определенных пределов (2,5 -3%) приемлемы.

Закон Фарадея

закон Фарадея

По закону электромагнитной индукции во вторичной обмотке создается ЭДС напряжение. Вычисляется по формуле – U2 = −N2*dΦ/dt.

Справка! Фарадея – основной закон электродинамики. Гласит о том, что генерируемая электродвижущая сила равняется скорости изменения магнитного потока, но взятой со знаком минус. Именно Майкл Фарадей сделал открытие, когда в ходе экспериментов объявил, что электродвижущая сила начинает появляться в проводнике только при изменении магнитного поля. Величина этой силы прямо пропорциональна скорости изменения магнитного поля.

Все факты содержатся в одном уравнении. Однако, знак минус в законе – правило Ленца, указывающее на возникновение индукционного электрического тока при изменении магнитного поля в проводнике. Действие тока направлено на магнитное поле, начинающего противодействовать изменению магнитного потока.

Правило Ленца не подчиняется законам электродинамики, ведь индукционный ток появляется как в обмотках, так и в сплошных металлических блоках.

Уравнения идеального трансформатора

В таком трансформаторе силовые линии проходят через все ветки первичной, вторичной обмотки. Значит, отсутствуют вихревые потоки и потери энергии. Магнитное поле изменяется, но порождает идентичную ЭДС во всех витках, поэтому становится прямо пропорциональным их общему числу.

Энергия при поступлении из первичной цепи трансформируется в магнитное поле, далее поступает во вторичной цепи.

Формула уравнения идеального трансформатора – P1 = I1 • U1 = P2 = I2 • U2:

  • R1 – коэффициент поступающей мощности из первой цепи на трансформатор;
  • R2 – коэффициент преобразованной мощности с поступлением во вторичную цепь.

Если повысить напряжение на концах вторичной обмотки, то снизится уровень тока первичной цепи. Согласно уравнению – U2/U1 = N2/N1 = I1/I2 преобразование сопротивления одной цепи к сопротивлению другой возможно только при умножении величины на квадрат отношения.

Как правильно подключить

Во всех тонкостях электрики сложно разобраться простому человеку, но при использовании трансформатора понижающего типа в быту важно понимать, как происходит процесс подключения.

Бывает, что возникает потребность подключения агрегата сразу на нескольких потребителей.

Стоит знать:

  1. При подключении трансформатора сразу на несколько потребителей важно учитывать количество выходных клемм.
  2. Общая потребляемая мощность для жильцов должна быть идентичной мощности трансформатора либо немного ниже. По мнению специалистов, идеальный второй показатель выше первого – на 20%.
  3. Подключается агрегат через электрическую проводку, размер которой не должен быть слишком большим. Достаточно 2 м при монтаже светодиодного освещения во избежании потери мощности.
  4. Суммарная мощность электроприборов не должна быть выше мощности трансформатора.

Если посмотреть на схему подключения понижающего трансформатора, то видно, что монтируется между распределительной коробкой мощностью 220 Вт и лампами накаливания. Провода из распредкоробки подключаются непосредственно к выключателю.

Подключение трансформатора напряженияПодключение трансформатора напряжения

Дополнительная информация! Стоит изначально определять правильное место установки электрического понижающего трансформатора. Нельзя его усердно прятать от посторонних глаз, ведь доступ для демонтажа либо замены должен быть свободным. При этом потребляемая мощность – не ниже мощности трансформатора, иначе процесс монтажа проводить запрещено.

При подключении важно, чтобы совпадали все уравнения, касающиеся модели прибора. Также существенное значение имеет фазировка, если в одну цепь подключается сразу несколько приборов параллельно. Во избежание больших потерь мощности фазы должны быть правильно соединены между собой с образованием замкнутого контура. При несовпадении фаз начнет расти нагрузка и падать мощность. Может произойти короткое замыкание.

Важно! Смотрите на фото, как выглядит упрощенный вид трансформатора.

Трансформатор – электромагнитный аппарат. Повышает либо понижает напряжение переменного тока. Он лишен подвижных частей. Значит, является статическим. По размерам бывает с трехэтажное здание либо миниатюрное, помещаемое в руку. В составе – сердечник и несколько обмоток с расположением на магнитопроводе. Хотя может содержать всего одну обмотку без сердечника.

При работе трансформатора срабатывает принцип электромагнитного взаимодействия. Переменный ток подается на первичную обмотку, меняет направление дважды за цикл. Значит, что вокруг обмотки образуется магнитное поле, но ежесекундно исчезает. Вторичная обмотка – проводник электромагнитного взаимодействия. Там же индуцируется напряжение.

Конечно, простому человеку сложно понять конструкцию, назначение прибора. Для познания можно просто разобрать, прозвонить, подключить или демонтировать в домашних условиях.

Трансформатор своими руками: пошаговая инструкция

Несмотря на многообразие электрооборудования на рынке, далеко не во всех ситуациях можно найти подходящий преобразовательный агрегат для решения конкретной задачи. Поэтому многие обыватели пытаются изготовить  трансформатор своими руками для получения определенных параметров работы. Стоит отметить, что намотать трансформатор может каждый, даже без специализированного оборудования и особых навыков, но этот процесс довольно трудоемкий и кропотливый. Поэтому изначально вам придется определиться с типом и характеристиками прибора.

Что понадобится для сборки?

Все преобразователи подразделяются на две основные категории – повышающие и понижающие трансформаторы.

В зависимости от предназначения, конструктивных особенностей и места установки их можно разделить на такие категории:

Практически каждое из вышеперечисленных устройств вы можете воссоздать в домашних условиях. Наиболее простым вариантом является перемотка трансформатора из заводского изделия, так как он уже содержит необходимые элементы. Главное, чтобы первичная обмотка подходила по номиналу питающего напряжения и мощности. Куда хуже, если перематывать нужно обе обмотки, к примеру, если и первичная, и вторичная обмотка пробиты или получили механическое повреждение.

Для изготовления трансформатора своими руками вам понадобятся:

  • Магнитопровод – служит в качестве проводника магнитного потока, лучше взять из старого трансформатора, так как он изготовлен из электротехнической стали и обеспечивает необходимые параметры работы, характеризуется малыми потерями в железе.
  • Провода нужного вам сечения в лаковой, полимерной или стеклотканевой изоляции. Чем тоньше этот слой, тем плотнее прилягут витки к каркасу и друг к другу.
  • Каркас – служит в качестве основания для обмоток трансформатора, устанавливает габариты по ширине. Можно взять из старого трансформатора, а можно изготовить своими руками. Материалом для каркаса может послужить электротехнический картон, гетинакс или текстолит, важно чтобы он не занимал много места в зазоре между сердечником и проводом.
  • Изоляция – предназначена для электрического отделения токоведущих элементов друг от друга и от конструктивных элементов трансформатора. В промышленном производстве используется лакотканевая лента, фторопласт, парафиновая пропитка, но при самостоятельном изготовлении подойдет любой имеющийся у вас материал, главное, чтобы его диэлектрической прочности хватало для напряжения сети.
  • Намоточный станок – позволяет упростить процесс и обеспечить постоянное натяжение. Можно изготовить своими руками из ручной дрели или по принципу вертела на двух шарнирах. Важно, чтобы изготовленный станок имел как можно меньший люфт.

Помимо этого вам могут пригодиться: молоток с деревянной пресс-планкой, паяльник для соединения проводов, ножницы, пассатижи. Но перед изготовлением, обязательно рассчитайте параметры трансформатора.

Расчеты

Принципиальная схема трансформатораРис. 1: принципиальная схема трансформатора

Наиболее сложный вариант, если вы будете изготавливать трансформатор своими руками с нуля. В таком случае расчет электрической машины производится в зависимости от выходной мощности. Исходя из этого параметра, рассчитывается мощность первичной обмотки. Если вы используете заводской сердечник, то можно считать эти величины одинаковыми, если вы соберете его самостоятельно, то P2 = 0,9 * P1

Это приблизительный расчет с учетом потерь в сердечнике. В зависимости от качества шихтовки своими руками, разница мощностей может находиться в пределах от 5 до 20%.

В зависимости от мощности первички определяется сечение магнитопровода, которое вычисляется по формуле: S = √P1

Следует отметить, что мощность для вычислений берется в Ваттах, а размеры сердечника получаем в квадратных сантиметрах.

Далее определяется коэффициент передачи электромагнитной энергии: k = f/S, 

Где k – коэффициент передачи, f – частота сетевого напряжения переменного тока, S – площадь сечения магнитопровода.

Исходя из полученного коэффициента, определяется число витков в обмотках по величине входных и выходных напряжений: N1 = k*U1, N2 = k*U2

Это приблизительные вычисления, предназначенные для бытового применения радиолюбителями. Заводские трансформаторы имеют более сложную процедуру расчета, которая производится по справочникам и зависит от их типа и назначения (силовые, измерительные, трехобмоточные, тороидальные устройства и т.д.)

Далее рассчитывается сила тока в первичной обмотке трансформатора: I1 = P/ U1

Соответственно, ток, протекающий по вторичной обмотке трансформатора, вычисляется по  формуле: : I2 = P/ U2

Исходя из величины тока в каждой обмотке, выбирается сечение жилы. Но заметьте, что проводник в обмотке значительно хуже охлаждается, поэтому запас сечения делается на 20 – 30%. Проще выполнять данную работу медными проводами, но это требование не критично.

Таблица: выбор сечения, в зависимости от протекающего тока

Медный проводникАлюминиевый проводник
Сечение жил, мм2Ток, АСечение  жил. мм2Ток, А
0,511
0,7515
117
1.5192,522
2.527428
438636
6461050
10701660
16802585
2511535100
3513550135
5017570165
7021595200
95265120230
120300

Сборка повышающего трансформатора

Особенностью повышающего трансформатора является большее сечение жил первичной обмотки трансформатора по отношению к вторичной. Ярким примером может служить любой агрегат, повышающий напряжение питания 220 Вольт до 400, 500, 1000 В и т.д., соответственно класс изоляции трансформатора выбирается по номиналу вторичной обмотки, как в сетевых трансформаторах.

Заметьте, что проводник большого сечения не получится намотать самодельным станком, поскольку вы не сможете выдать достаточное усилие. Определить это довольно просто – если первые витки свободно двигаются по каркасу катушки или хуже того, вы видите явный зазор между жилой и каркасом, переходите к ручной намотке.

Для сборки вам потребуется выполнить такую последовательность действий:

  • Соберите основание из диэлектрического материала, для этого можно вырезать его по лекалу из картона. Сборка каркаса производится внахлест при помощи клея. Изготовьте каркас для трансформатораРис. 2: изготовьте каркас для трансформатора

Если у вас имеется готовый образец, можете переходить к следующему этапу.

  • Сделайте отверстия в щеке катушки под выводы в электрическую сеть и к потребителю. Проденьте в них выводы. Проденьте вывод первичной обмоткиРис. 3: проденьте вывод первичной обмотки
  • Уложите первый слой изоляции под первичку. Нанесите слой изоляции на катушкуРис. 4: нанесите слой изоляции на катушку
  • Намотайте первичную обмотку трансформатора – если позволяет толщина, используйте станок, в противном случае, сделайте это руками. При намотке каждые 4 -5 витков проверяйте жесткость фиксации и плотность прилегания. Намотайте первичкуРис. 5: намотайте первичку

В случае наличия видимых зазоров рекомендуется придавливать витки деревянной пресс-плашкой или прибивать их через плашку молотком.

  • Посчитайте количество витков, оно должно соответствовать расчетному, выводы проденьте в отверстия. Уложите слой изоляции на первичку.
  • После слоя изоляции намотайте вторичку, так как здесь будет использоваться более тонкий провод, эту процедуру проще выполнять на станке. Намотайте вторичную обмоткуРис. 6: намотайте вторичную обмотку

Периодически проверяйте плотность витков и их фиксацию на стержне. Хорошая фиксация не должна прогибаться и деформироваться при нажатии пальцами.

  • Если все витки не помещаются в один слой, их выкладывают в несколько, тогда важно соблюдать одно и то же количество витков в каждом из них. Слои перекладываются диэлектрическим материалом, заметьте, что толщина изоляции не должна существенно влиять на общие габариты катушек. Заизолируйте первый слойРис. 7: заизолируйте первый слой
  • Выведете концы вторичной обмотки на щечку каркаса.
  • Поместите магнитопровод в окно каркаса, сборка сердечника выполняется поочередно с каждой стороны, иначе потери окажутся слишком большими. Затем сердечник распирается для плотности фиксации. Поместите катушки на сердечникРис. 8: поместите катушки на сердечник

Мощные трансформаторы на большой номинал напряжения дополнительно пропитывается парафиновой изоляцией. Такая процедура приводит к повышению емкостных потерь, но создает дополнительную защиту от электрического тока.

Сборка понижающего трансформатора

Понижающий трансформатор будет отличаться большим количеством витков на первичке. В быту их можно часто встретить в блоках питания, сварочных аппаратах и прочем оборудовании. Правда, в импульсных блоках используется другая технология, поэтому ремонт таких устройств производится без трансформаторов.

Так как изготовление сварочного трансформатора своими руками довольно актуально для домашних самоделок, рассмотрим на примере этот вариант. Требования к процессу сборки соответствует предыдущему. Отличительной особенностью такого агрегата является большое сечение провода во вторичной обмотке, так как сварочный ток может достигать сотен ампер.

Процесс изготовления заключается в следующем:

  1. Возьмите старое или изготовьте основание для катушки.
  2. Зафиксируйте на трансформаторном каркасе слой изоляции.
  3. Намотайте первичную обмотку с попеременной изоляцией слоев.
  4. Заизолируйте первичку и намотайте вторичную обмотку, так как большой диаметр проводов не позволит сделать это вручную, используйте слесарный инструмент.
  5. Зафиксируйте выводы обеих катушек.
  6. Установите пластины сердечника.

Испытание

Для проверки работоспособности П-образных или тороидальных трансформаторов в домашних условиях можно воспользоваться обычным мультиметром. Для этого переведите измерительный прибор в режим прозвона и проверьте целостность каждой из обмоток. Затем  проверьте изоляцию между каждой из обмоток и магнитопроводом и сопротивление между обеими обмотками. Это наиболее простой комплекс испытаний, который даст общее представление об исправности самодельного агрегата.

Для проверки отсутствия короткозамкнутых витков используется лампа, включающаяся последовательно к первичной обмотке.

Помимо этого электрические машины испытываются в режиме холостого хода и короткого замыкания. Такие проверки показывают, насколько качественно собран преобразователь, но выполнять их в домашних условиях не обязательно.

Видео инструкции


Трансформатор | Устройство, виды, принцип работы

Слово “трансформатор” образуется от английского слова “transform”  – преобразовывать, изменяться. Но дело в том, что сам трансформатор не может как-либо измениться либо поменять форму и так далее. Он обладает еще более удивительный свойством – преобразует переменное напряжение одного значения в переменное напряжение другого значения. Ну разве это не чудо? В этой статье мы будем рассматривать именно трансформаторы напряжения.

Трансформатор напряжения

Трансформатор напряжения можно отнести больше к электротехнике, чем к электронике. Самый обыкновенный однофазный трансформатор напряжения выглядит вот так.

трансформатор напряжения

Если откинуть верхнюю защиту трансформатора, то мы можем четко увидеть, то он состоит из какого-то железного каркаса, который собран из металлических пластин, а также из двух катушек, которые намотаны на этот железный каркас. Здесь мы видим, что из одной катушки выходит два черных провода

трансформатор в разборе

а с другой катушки два красных провода

обмотки трансформатора

Эти обе катушки одеваются на сердечник трансформатора. То есть в результате мы получаем что-то типа этого

трансформатор однофазный

Ничего сложного, правда ведь?

Но дальше самое интересное. Если подать на одну из этих катушек переменное напряжение, то в другой катушке тоже появляется переменное напряжение. Но как же так возможно? Ведь эти обмотки абсолютно не касаются друг друга и они изолированы друг от друга. Во чудеса! Все дело, в так называемой электромагнитной индукции.

Если объяснить простым языком, то когда на первичную обмотку подают переменное напряжение, то в сердечнике возникнет переменное магнитное поле с такой же частой. Вторая катушка улавливает это переменное магнитное поле и уже выдает переменное напряжение на своих концах.

Обмотки трансформатора

Эти самые катушки с проводом в трансформаторе называются обмотками. В основном обмотки состоят из медного лакированного провода. Такой провод находится в лаковой изоляции, поэтому, провод в обмотке не коротит друг с другом. Выглядит такой обмоточный трансформаторный провод примерно вот так.

ПЭТВ-2

Он может быть разного диаметра. Все зависит от того, на какую нагрузку рассчитан тот или иной трансформатор.

У самого простого однофазного трансформатора можно увидеть две такие обмотки.

трансформатор напряжения

Обмотка, на которую подают напряжение называется первичной. В народе ее еще называют “первичка”. Обмотка, с которой уже снимают напряжение называется вторичной или “вторичка”.

Для того, чтобы узнать, где первичная обмотка, а где вторичная, достаточно посмотреть на шильдик трансформатора.

шильдик трансформатора

I/P: 220М50Hz (RED-RED) – это говорит нам о том, что два красных провода – это первичная обмотка трансформатора, на которую мы подаем сетевое напряжение 220 Вольт. Почему я думаю, что это первичка? I/P – значит InPut, что в переводе “входной”.

O/P: 12V 0,4A (BLACK, BLACK) – вторичная обмотка трансформатора с выходным напряжением в 12 Вольт (OutPut). Максимальная сила тока, которую может выдать в нагрузку этот трансформатор – это 0,4 Ампера или 400 мА.

 

Как работает трансформатор

Чтобы разобраться с принципом работы, давайте рассмотрим рисунок.

как работает трансформатор

Здесь мы видим простую модель трансформатора. Подавая на вход переменное напряжение U1 в первичной обмотке возникает ток I1 . Так как первичная обмотка намотана на замкнутый магнитопровод, то в нем начинает возникать магнитный поток, который возбуждает во вторичной обмотке напряжение U2 и ток I2 . Как вы можете заметить, между первичной и вторичной обмотками трансформатора нет электрического контакта. В электронике это называется гальванически развязаны.

Формула трансформатора

Главная формула трансформатора выглядит так.

формула трансформатора

где

U2  – напряжение на вторичной обмотке

U1 – напряжение на первичной обмотке

N1 – количество витков первичной обмотки

N2 – количество витков вторичной обмотки

k – коэффициент трансформации

В трансформаторе соблюдается также закон сохранения энергии, то есть какая мощность заходит в трансформатор, такая мощность выходит из трансформатора:

Эта формула справедлива для идеального трансформатора. Реальный же трансформатор будет выдавать на выходе чуть меньше мощности, чем на его входе. КПД трансформаторов очень высок и порой составляет даже 98%.

Типы трансформаторов по конструкции

Однофазные трансформаторы

Это трансформаторы, которые преобразуют однофазное переменное напряжение одного значения в однофазное переменное напряжение другого значения.

однофазный трансформатор

В основном однофазные трансформаторы имеют две обмотки, первичную и вторичную. На первичную обмотку подают одно значение напряжения, а со вторичной снимают нужное нам напряжение. Чаще всего в повседневной жизни можно увидеть так называемые сетевые трансформаторы, у которых первичная обмотка рассчитана на сетевое напряжение, то есть 220 В.

На схемах однофазный трансформатор обозначается так:

однофазный трансформатор обозначение на схеме

Первичная обмотка слева, а вторичная – справа.

Иногда требуется множество различных напряжений для питания различных приборов. Зачем ставить на каждый прибор свой трансформатор, если можно с одного трансформатора получить сразу несколько напряжений? Поэтому, иногда вторичных обмоток бывает несколько пар, а иногда даже некоторые обмотки выводят прямо из имеющихся вторичных обмоток. Такой трансформатор называется трансформатором со множеством вторичных обмоток. На схемах можно увидеть что-то подобное:

вторичные обмотки трансформатора

Трехфазные трансформаторы

Эти трансформаторы в основном используются в промышленности и чаще всего превосходят по габаритам простые однофазные трансформаторы. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.

трехфазный трансформатор

На схемах трехфазные трансформаторы обозначаются вот так:

виды соединений обмоток трехфазного трансформатора

Первичные обмотки обозначаются заглавными буквами, а вторичные обмотки – маленькими буквами.

Здесь мы видим три типа соединения обмоток (слева-направо)

  • звезда-звезда
  • звезда-треугольник
  • треугольник-звезда

В 90% случаев используется именно звезда-звезда.

Типы трансформаторов по напряжению

Понижающий трансформатор

Это трансформатор, которые понижает напряжение. Допустим, на первичную обмотку мы подаем 220 Вольт, а снимаем 12 Вольт. В этом случае коэффициент трансформации (k) будет больше 1.

Повышающий трансформатор

Это трансформатор, который  повышает напряжение. Допустим,  на первичную обмотку мы подаем 10 Вольт, а со вторичной снимаем уже 110 В. То есть мы повысили наше напряжение 11 раз. У повышающих трансформаторов коэффициент трансформации меньше 1.

Разделительный или развязывающий трансформатор

Такой трансформатор используется в целях электробезопасности. В основном это трансформатор с одинаковым числом обмоток на входе и выходе, то есть его напряжение на первичной обмотке будет равняться напряжению на вторичной обмотке. Нулевой вывод вторичной обмотки такого трансформатора не заземлен. Поэтому, при касании фазы на таком трансформаторе вас не ударит электрическим током. Про его использование можете прочесть в статье про ЛАТР. У развязывающих трансформаторов коэффициент трансформации равен 1.

Согласующий трансформатор

Такой трансформатор используется для согласования входного и выходного сопротивления между каскадами схем.

Работа понижающего трансформатора на практике

Понижающий трансформатор – это такой трансформатор, который выдает на выходе напряжение меньше, чем на входе. Коэффициент трансформации (k) у таких трансформаторов больше 1 . Понижающие трансформаторы – это самый распространенный класс трансформаторов в электротехнике и электронике. Давайте же рассмотрим, как он работает на примере трансформатора 220 В —> 12 В .

Итак, имеем простой однофазный понижающий трансформатор.

трансформатор напряжения

Именно на нем мы будем проводить различные опыты.

Подключаем красную первичную обмотку к сети 220 Вольт и замеряем напряжение на вторичной обмотке трансформатора без нагрузки. 13, 21 Вольт, хотя на трансформаторе написано, что он должен выдавать 12 Вольт.

работа трансформатора на холостом ходу

Теперь подключаем нагрузку на вторичную обмотку и видим, что напряжение просело.

работа трансформатора на нагрузку

Интересно, какую силу тока кушает наша лампа накаливания? Вставляем мультиметр в разрыв цепи и замеряем.

потребление тока лампочкой накаливания

Если судить по шильдику, то на нем написано, что он может выдать в нагрузку 400 мА и напряжение будет 12 Вольт, но как вы видите, при нагрузку близкой к 400 мА у нас напряжение просело почти до 11 Вольт. Вот тебе и китайский трансформатор. Нагружать более, чем 400 мА его не следует. В этом случае напряжение просядет еще больше, и трансформатор будет греться, как утюг.

Как проверить трансформатор

Как проверить на короткое замыкание обмоток

Хотя обмотки  прилегают очень плотно к друг другу, их разделяет лаковый диэлектрик, которым покрываются и первичная и вторичная обмотка. Если где-то возникло короткое замыкание между проводами, то трансформатор будет сильно греться или издавать сильный гул при работе. Также он будет пахнуть горелым лаком. В этом случае стоит замерить напряжение на вторичной обмотке и сравнить, чтобы оно совпадало с паспортным значением.

Проверка на обрыв обмоток

При  обрыве все намного проще. Для этого с помощью мультиметра мы проверяем целостность первичной и вторичной обмотки. Итак, сопротивление первичной обмотки нашего трансформатора чуть более 1 КОм. Значит обмотка целая.

сопротивление первичной обмотки

Таким же образом проверяем и вторичную обмотку.

проверка вторичной обмотки

Отсюда делаем вывод, что наш трансформатор жив и здоров.

Похожие статьи по теме “трансформатор”

Лабораторный автотрансформатор (ЛАТР)

Программа для расчета трансформатора

Как получить постоянное напряжение из переменного

90000 What is a Transformer, How they work & Different Types of Transformers 90001 90002 If you’ve been around electric appliances for any amount of time, you’d probably have heard of the transformer. Yes, they are those huge bulky things found in street corners, which make random scary noises and occasionally spit sparks. Your phone charger also has a kind of small transformer too, but much, much smaller and with a completely different mechanism. 90003 90002 90003 90006 90007 What is a Transformer? 90008 90009 90002 A 90007 transformer 90008 is a device that uses the principles of electromagnetism to convert one voltage or current to another.It consists of a pair of insulated wire wound around a magnetic core. The winding to which we connect the voltage or current to be converted is called the primary winding and the output winding is called the secondary winding. 90003 90002 Transformers come in two varieties — step up, which increase the voltage or current, and steps down, which decreases the voltage or current input. For example, the transformers in your microwave Oven is a secondary transformer that is used to supply around 2200Volts to the vacuum tube in the Microwave Oven.90003 90002 One thing to note is that transformers work only with changing or AC voltages and do not work with DC. We shall now learn why. 90003 90002 90003 90006 90007 How important are transformers in electrical system? 90008 90009 90002 It was around 1856 when two brilliant minds Nikola Tesla and Thomas Edison were having a rivalry against each other. Those were the times when electricity and its applications of glowing a bulb and running a motor were just being noticed. It was Edison and his associates who first discovered DC (Direct Current) system, then some time after that Tesla came up with his AC (Alternating current) system.Since then, the both were trying to prove that their system is more advantageous than the other. 90003 90002 By then, the time has come for houses to get electricity. While Edison was busy demonstrating how dangerous AC is by electrocuting elephants, Tesla and his team came up with the transformers which made transmitting electricity a lot easier and efficient. Even, today Transformers play a vital role in the transmission system. Let’s know why. 90003 90002 Transmitting electricity with high voltages and low currents will help us reduce the thickness of the transmission wires and thus the cost, it also increase the efficiency of the system.For this reason a standard transmission system can be anywhere between 22KV to 66KV, while some generators in the power plant has an output voltage of only 11kV and the household AC appliance require only 220V / 110V. So where does this voltage conversion take place and who does it. 90003 90002 The answer to the question is transformers. From the power plant to your home there will be transformers in the system which will either step-up (increase voltage) or step-down (decrease voltage) the voltage to maintain the efficiency of the system.This is why the transformers are called as the heart of an electrical transmission system. We will learn more about them in this article. 90003 90002 90003 90006 90007 Transformer Symbols 90008 90009 90002 90039 90003 90002 The circuit symbol for a transformer is simply two inductors put together side by side sharing the same core. The nature of the line in between the two windings indicates the type of core used: A dashed line represents ferrite, two parallel lines represent laminated iron and no line represents air core.90003 90002 Sometimes the number of ‘bumps’ is used as a rough indicator of the transformer function — less bumps on one side and more on the other may mean that the first side has a smaller number of turns than the other. 90003 90002 90003 90006 90007 Working of a Transformer 90008 90009 90002 To 90007 understand the working of a transformer 90008, we need to go back in time, to Michael Faraday’s laboratory. 90003 90002 Michael Faraday can perhaps be called the father of the transformer, since it was his experiments that helped us understand electromagnetism and develop devices like motors and generators.90003 90002 In the late 1800s, when it was discovered that electricity and magnetism were related phenomena, there was a race to try and build a practical device that could harness the power of magnets to generate electricity. 90003 90002 Faraday found out that electricity could be generated by bringing a magnet close to a coil of wire. What he discovered was that voltage will be produced only when the magnetic field was changing, that is, if he moved either the coil or the magnet relative to the other.90003 90002 In DC, the current flow is steady and so is the magnetic field. Since the field is steady and not changing, there is no voltage induced on the secondary and the transformer just looks like a normal coil of resistive wire to the power supply. So transformers do not work with DC currents. 90003 90002 He also found that when two coils of wire were kept close to each other, a current flowing in one coil could induce current in the other coil. This principle is called mutual inductance, and governs the working of all modern transformers.90003 90002 90003 90002 As shown in the figure, the transformer consists of two windings wound on a magnetic core. 90003 90002 The purpose of having a core is because air is not a very good supporter of magnetic fields, so having a magnetic core increases the magnetic field for a given amount of current flowing through one winding, which in turn creates a stronger current in the other , increasing the overall efficiency of the device. 90003 90002 When a current passes through the primary, a magnetic field is set up in the core and is confined mostly to the core.90003 90002 This magnetic field passes through the middle of the secondary and hence induces a current in the other by the law of mutual induction. 90003 90002 The beauty of this system is that the ratio of the input voltage to the output voltage is simply the ratio of the primary and the secondary windings, summed up by this formula: 90003 90002 90007 Vout / Vin = Nsec / Npri 90008 90003 90002 Where Vout is the output voltage, Vin is the input voltage, Nsec is the number of turns in the secondary winding and Npri is the number of turns in the primary winding.90003 90002 So if you have two transformers, one with 100 turns on the primary and 1000 on the secondary and another with 10 turns on the primary and 100 turns on the secondary, you can calculate the turns ratio to be 1:10 for both, so they both step up voltage to the same level. 90003 90002 90003 90006 90007 Transformer Properties 90008 90009 90002 If we have a closer look at the example given above, the first transformer will have a greater winding resistance (since more wire is used) and in some cases that might limit the amount of current that can be drawn from the transformer.This property is called winding resistance, but in most cases it does not really matter since the copper wire used generally has a low resistance. 90003 90002 Another thing you notice is that there is no direct electrical connection between the primary and secondary windings. This is called galvanic isolation, and can be very useful, as we shall see. 90003 90002 Looking at each of the transformer windings, we can see that they are constructed just like inductors — a coil of wire wound around a magnetic core — and have an inductance too.90003 90002 This inductance is proportional to the square of the number of turns, given by this formula: 90003 90002 90007 Lpri / Lsec = Npri2 / Nsec2 90008 90003 90002 Where Lpri is the inductance of the primary winding, Lsec is the inductance of the secondary winding, Npri is the number of turns on the primary and Nsec is the number of turns on the secondary windings. 90003 90002 The proportionality constant for a given core can be found in the datasheet and is usually given in units of μH / turn2.The exact value depends on the type and size of core. 90003 90002 Supposing you have a transformer core with a specification of 1uH / turn2. If you wind one winding on that core, then the inductance will be the value of the constant multiplied by the number of turns squared, in this case 1. So the inductance of that one winding will be 1μH. If you wind another winding with 10 turns on the same core, then the inductance will be: 90003 90002 90007 (1μH / turn2) * (10 turns) 2 = 100μH 90008 90003 90002 Since the windings have inductance, they provide an impedance to AC signals, given by the formula: 90003 90002 90007 XL = 2π * f * L 90008 90003 90002 Where XL is the impedance in ohms, f is the frequency in ohms and L is the inductance in Henries.90003 90002 Say you want to design a transformer that draws 3A at 220V AC at 50Hz, which is standard power line frequency. Then the impedance of the primary would need to be 73.3 Ohms by Ohm’s law. Now that we know the impedance required and the frequency, we can rearrange the formula to find out the inductance necessary for the winding: 90003 90002 90007 L = (XL) / (2π * f) 90008 90003 90002 Substituting the values, we find that the inductance needed would be 233mH. 90003 90002 Using this information and the value of μH / turns2 from the datasheet, we can calculate the windings required to get the inductance required.90003 90002 Supposing that value is 50μH / turns2, then we can rearrange the formula to find out the inductance: 90003 90002 90134 90003 90002 Where N is the number of turns, L is the required inductance, and the t2 / μH term is just the inverse of the datasheet value. 90003 90002 Applying our values ​​in the formula, we get a required number of turns of 2158. So as you can see, one you get the hang of the formulas, you can design transformers for nearly any application! 90003 90002 90003 90006 90007 Transformer Construction 90008 90009 90002 For anyone who needs to wind their own transformers, a knowledge of 90007 transformer construction 90008 is essential.90003 90002 A transformer consists of a few basic components: 90003 90002 90007 1.BOBBIN: 90008 90003 90002 90157 90003 90002 The bobbin is the basic framework for any transformers. It provides a spool on which to wind the windings and also holds the core in place. It is usually made up of a heat resistant plastic. It also sometimes contains metal pins onto which you can solder the ends of the windings if you want to mount it to a PCB, for instance. 90003 90002 90007 2.CORE 90008 90003 90002 90166 90003 90002 This is probably the most important part of the transformer.As shown in the picture, the cores can come in many shapes and sizes. It is the magnetic properties of the core that determine the electrical properties of the transformer which is built around the core. 90003 90002 90007 3.WINDINGS 90008 90003 90002 90175 90003 90002 Thought it may seem like a trivial thing, the wire used in the construction is as important as any other aspect. Solid enameled copper wire is generally used, since the insulation is strong and thin, so no wasted space due to plastic insulating sheaths.90003 90002 90003 90006 90007 Application of Transformers 90008 90009 90002 90007 1.MAINS VOLTAGE CONVERSION 90008 90003 90002 90003 90002 This is probably the most common application for transformers — stepping down mains voltage for low voltage appliances. You might even find these inside things like microwaves and old TVs and wall brick power supplies. These transformers have iron cores which gives excellent permeability but makes them bulky and somewhat less powerful than other types.90003 90002 They are marked like 12-0-12 or 6-0-6 with three secondary wires. This means that the outer two wires have an output of 12V AC RMS if you make the center wire the ground reference. If you measure across both the 12v winding, you will get 24V AC RMS. This gives you flexibility on how you might want to use the transformer. 90003 90002 90003 90002 90007 2.SWITCH MODE POWER SUPPLIES 90008 90003 90002 90003 90002 These are a very special type of power supplies that take a DC input and produce a DC output.They are found all modern phone chargers. The transformers used in these PSUs are designed more like inductors with a small number of turns and ferrite cores with medium-to-high permeability. A DC voltage is applied across the ‘primary’ for a short time so that the current ramps up to a certain level and stores some magnetic energy in the core. This energy is then transferred to the secondary at a lower voltage because it has a smaller number of turns. They operate at high frequencies and achieve excellent efficiencies and are very small.90003 90002 90003 90002 90007 3. ELECTRICAL ISOLATION 90008 90003 90002 90212 90003 90002 These are special transformers with a 1: 1 turns ratio, so that the input and output voltages are the same. They are used to decouple appliances from mains earth. Since mains is earth referenced, touching even one wire can result in a shock since the return path is literally the ground. Using isolation transformers ‘disconnects’ the appliance from the mains earth, since transformers are galvanically isolated.90003 90002 90003 90002 90007 4.VOLTAGE CONVERSION TRANSFORMERS 90008 90003 90002 90003 90002 Most countries around the world use 220V AC as the standard supply voltage, but some countries like the US use 110V AC. This means that some devices like blenders can not be operated in all countries. For this purpose we can use transformers that convert 110V to 220V or vice versa to make sure that appliances can be used in any country. 90003 90002 90003 90002 90007 5. IMPEDANCE MATCHING 90008 90003 90002 90233 90003 90002 These are special kinds of transformers that are used to match the impedance of the source and the load.They see extensive use in RF and audio circuits. 90003 90002 The turns ratio is equal to the square root of the source and load impedances. 90003 90002 90003 90002 90007 6. AUTOTRANSFORMER 90008 90003 90002 90003 90002 This is a special type of transformer that has only one winding with a ‘tap’ output that forms the secondary. Usually this tap is variable, and so you can vary the output AC voltage, somewhat like a voltage divider. 90003 90002 90003 90006 90007 Conclusion 90008 90009 90002 Transformers are useful devices and learning how to design and work with them can come in very handy! While we have covered the basics here, designing a transformer right from scratch is something that can discussed in another entire article hence lets have that for some other time.So now, when you see a transformer again you will know why it is there and how it works. 90003.90000 How do electricity transformers work? 90001 90002 Advertisement 90003 90002 90003 90006 90007 90008 90009 90010 90002 by Chris Woodford. Last updated: May 27, 2020. 90003 90013 The mighty power lines that criss-cross our countryside or wiggle unseen beneath city streets carry electricity at enormously high voltages from power plants to our homes. It’s not unusual for a power line to be rated at 400,000 to 750,000 volts! But the appliances in our homes use voltages thousands of times smaller-typically just 110 to 250 volts.If you tried to power a toaster or a TV set from an electricity pylon, it would instantly explode! (Do not even think about trying, because the electricity in overhead lines will almost certainly kill you.) So there has to some way of reducing the high voltage electricity from power plants to the lower voltage electricity used by factories, offices, and homes. The piece of equipment that does this, humming with electromagnetic energy as it goes, is called a transformer. Let’s take a closer look at how it works! 90003 90002 Photo: Blast from the past: A strangely shaped transformer at the Chickamauga Dam near Chattanooga, Tenn.Photographed in 1942 by Alfred T. Palmer, Office of War Administration, courtesy of US Library of Congress. 90003 90017 Why do we use high voltages? 90018 90002 90003 90002 Photo: Coming down: This old substation (step-down electricity transformer) supplies power in the small English village where I live. It’s about 1.5m (5ft) high and its job is to convert several thousand volts of incoming electricity to the hundreds of volts we use in our homes. 90003 90002 Your first question is probably this: if our homes and offices are using photocopiers, computers, washing machines, and electric shavers rated at 110-250 volts, why do not power stations simply transmit electricity at that voltage? Why do they use such high voltages? To explain that, we need to know a little about how electricity travels.90003 90002 As electricity flows down a metal wire, the electrons that carry its energy jiggle through the metal structure, bashing and crashing about and generally wasting energy like unruly schoolchildren running down a corridor. That’s why wires get hot when electricity flows through them (something that’s very useful in electric toasters and other appliances that use heating elements). It turns out that the higher the voltage electricity you use, and the lower the current, the less energy is wasted in this way.So the electricity that comes from power plants is sent down the wires at extremely high voltages to save energy. 90003 90002 But there’s another reason too. Industrial plants have huge factory machines that are much bigger and more energy-hungry than anything you have at home. The energy an appliance uses is directly related (proportional) to the voltage it uses. So, instead of running on 110-250 volts, power-hungry machines might use 10,000-30,000 volts. Smaller factories and machine shops may need supplies of 400 volts or so.In other words, different electricity users need different voltages. It makes sense to ship high-voltage electricity from the power station and then transform it to lower voltages when it reaches its various destinations. (Even so, centralized power stations are still very inefficient. About two thirds of the energy that arrives at a power plant, in the form of raw fuel, is wasted in the plant itself and on the journey to your home.) 90003 90002 90003 90002 Photo: Making large electricity transformers at a Westinghouse factory during World War II.Photo by Alfred T. Palmer, Office of War Administration, courtesy of US Library of Congress. 90003 90017 How does a transformer work? 90018 90002 A transformer is based on a very simple fact about electricity: when a fluctuating electric current flows through a wire, it generates a magnetic field (an invisible pattern of magnetism) or «magnetic flux» all around it. The strength of the magnetism (which has the rather technical name of magnetic flux density) is directly related to the size of the electric current.So the bigger the current, the stronger the magnetic field. Now there’s another interesting fact about electricity too. When a magnetic field fluctuates around a piece of wire, it generates an electric current in the wire. So if we put a second coil of wire next to the first one, and send a fluctuating electric current into the first coil, we will create an electric current in the second wire. The current in the first coil is usually called the primary current and the current in the second wire is (surprise, surprise) the secondary current.What we’ve done here is pass an electric current through empty space from one coil of wire to another. This is called electromagnetic induction because the current in the first coil causes (or «induces») a current in the second coil. We can make electrical energy pass more efficiently from one coil to the other by wrapping them around a soft iron bar (sometimes called a core): 90003 90002 90003 90002 To make a coil of wire, we simply curl the wire round into loops or ( «Turns» as physicists like to call them).If the second coil has the same number of turns as the first coil, the electric current in the second coil will be virtually the same size as the one in the first coil. But (and here’s the clever part) if we have more or fewer turns in the second coil, we can make the secondary current and voltage bigger or smaller than the primary current and voltage. 90003 90002 One important thing to note is that this trick works only if the electric current is fluctuating in some way. In other words, you have to use a type of constantly reversing electricity called alternating current (AC) with a transformer.Transformers do not work with direct current (DC), where a steady current constantly flows in the same direction. 90003 90017 Step-down transformers 90018 90002 If the first coil has more turns that the second coil, the secondary voltage is smaller than the primary voltage: 90003 90002 90003 90002 This is called a step-down transformer. If the second coil has half as many turns as the first coil, the secondary voltage will be half the size of the primary voltage; if the second coil has one tenth as many turns, it has one tenth the voltage.In general: 90003 90002 Secondary voltage ÷ Primary voltage = Number of turns in secondary ÷ Number of turns in primary 90003 90002 The current is transformed the opposite way-increased in size-in a step-down transformer: 90003 90002 Secondary current ÷ Primary current = Number of turns in primary ÷ Number of turns in secondary 90003 90002 So a step-down transformer with 100 coils in the primary and 10 coils in the secondary will reduce the voltage by a factor of 10 but multiply the current by a factor of 10 at the same time.The power in an electric current is equal to the current times the voltage (watts = volts x amps is one way to remember this), so you can see the power in the secondary coil is theoretically the same as the power in the primary coil. (In reality, there is some loss of power between the primary and the secondary because some of the «magnetic flux» leaks out of the core, some energy is lost because the core heats up, and so on.) 90003 90017 Step-up transformers 90018 90002 Reversing the situation, we can make a step-up transformer that boosts a low voltage into a high one: 90003 90002 90003 90002 This time, we have more turns on the secondary coil than the primary.It’s still true that: 90003 90002 Secondary voltage ÷ Primary voltage = Number of turns in secondary ÷ Number of turns in primary 90003 90002 and 90003 90002 Secondary current ÷ Primary current = Number of turns in primary ÷ Number of turns in secondary 90003 90002 In a step-up transformer, we use more turns in the secondary than in the primary to get a bigger secondary voltage and a smaller secondary current. 90003 90002 Considering both step-down and step-up transformers, you can see it’s a general rule that the coil with the most turns has the highest voltage, while the coil with the fewest turns has the highest current.90003 90017 Transformers in your home 90018 90002 90003 90002 Photo: Typical home transformers. Anticlockwise from top left: A modem transformer, the white transformer in an iPod charger, and a cellphone charger. 90003 90002 As we’ve already seen, there are lots of huge transformers in towns and cities where the high-voltage electricity from incoming power lines is converted into lower-voltages. But there are lots of transformers in your home also. Big electric appliances such as washing machines and dishwashers use relatively high voltages of 110-240 volts, but electronic devices such as laptop computers and chargers for MP3 players and mobile cellphones use relatively tiny voltages: a laptop needs about 15 volts, an iPod charger needs 12 volts, and a cellphone typically needs less than 6 volts when you charge up its battery.So electronic appliances like these have small transformers built into them (often mounted at the end of the power lead) to convert the 110-240 volt domestic supply into a smaller voltage they can use. If you’ve ever wondered why things like cellphones have those big fat chunky power cords, it’s because they contain transformers! 90003 90002 90003 90002 Photos: An electric toothbrush standing on its charger. The battery in the brush charges by induction: there is no direct electrical contact between the plastic brush and the plastic charger unit in the base.An induction charger is a special kind of transformer split into two pieces, one in the base and one in the brush. An invisible magnetic field links the two parts of the transformer together. 90003 90089 Induction chargers 90090 90002 Many home transformers (like the ones used by iPods and cellphones) are designed to charge up rechargeable batteries. You can see exactly how they work: electricity flows into the transformer from the electricity outlet on your wall, gets transformed down to a lower voltage, and flows into the battery in your iPod or phone.But what happens with something like an electric toothbrush, which has no power lead? It charges up with a slightly different type of transformer, which has one of its coils in the base of the brush and the other in the charger that the brush stands on. You can find out how transformers like this work in our article about induction chargers. 90003 90017 Transformers in practice 90018 90002 If you’ve got some of these transformer chargers at home (normal ones or induction chargers), you’ll have noticed that they get warm after they’ve been on for a while.Because all transformers produce some waste heat, none of them are perfectly efficient: less electrical energy is produced by the secondary coil than we feed into the primary, and the waste heat accounts for most of the difference. On a small home cellphone charger, the heat loss is fairly minimal (less than that from an old-fashioned, incandescent light bulb) and not usually something to worry about. But the bigger the transformer, the bigger the current it carries and the more heat it produces.For a substation transformer like the one in our top photo, which is about as wide as a small car, the waste heat can be really significant: it can damage the transformer’s insulation, seriously shorten its life, and make it much less reliable (let’s not forget that hundreds or even thousands of people can depend on the power from a single transformer, which needs to operate reliably not just from day to day, but from year to year). That’s why the likely temperature rise of a transformer during operation is a very important factor in its design.The typical «load» (how heavily it’s used), the seasonal range of outdoor (ambient) temperatures, and even the altitude (which reduces the density of the air and therefore how effectively it cools something) all need to be taken into account to figure out how effectively an outdoor transformer will operate. 90003 90002 In practice, most large transformers have built-in cooling systems that use air, liquid (oil or water), or both to remove any waste heat. Typically, the main part of the transformer (the core, and the primary and secondary windings) is immersed in an oil tank with a heat exchanger, pump, and cooling fins attached.Hot oil is pumped from the top of the transformer through the heat exchanger (which cools it down) and back into the bottom, ready to repeat the cycle. Sometimes the oil moves around a cooling circuit by convection alone without the use of a separate pump. Some transformers have electric fans that blow air past the heat exchanger’s cooling fins to dissipate heat more effectively. 90003 90002 90003 90002 Artwork: Large transformers have built-in cooling systems. In this case, the transformer core and coil (red) sit inside a large oil tank (gray).Hot oil taken from the top of the tank circulates through one or more heat exchangers, which dissipate the waste heat using cooling fins (green), before returning the oil to the same tank at the bottom. Artwork from US Patent 4,413,674: Transformer Cooling Structure by Randall N. Avery et al, Westinghouse Electric Corp., courtesy of US Patent and Trademark Office. 90003 90017 What are solid-state transformers? 90018 90002 You will have gathered from reading what’s above that transformers can be very big, very clumsy, and sometimes very inefficient.Since the mid-20th century, all kinds of neat electric tricks that used to be carried out by large (and sometimes mechanical) components have been done electronically instead, using what’s called «solid-state» technology. So, for example, switching and amplifying relays have been swapped for transistors, while magnetic hard drives have increasingly been replaced by flash memory (In such things as solid-state drives, SSDs, and USB memory sticks). 90003 90002 Over the last few decades, electronic engineers have been working to develop what are called solid-state transformers (SST).These are essentially compact, high-power, high-frequency semiconductor circuits that increase or decrease voltages with better reliability and efficiency than traditional transformers; they’re also much more controllable, so more responsive to changes in supply and demand. «Smart grids» (future power-transmission systems, fed by intermittent sources of renewable energy, such as wind turbines and solar farms), are therefore going to be a major application. Despite huge interest, SST technology remains relatively little used so far, but it’s likely to be the most exciting area of ​​transformer design in the future.90003 90006 90007 90008 90009 90010 90017 Find out more 90018 90089 On this website 90090 90089 On other websites 90090 90089 Books 90090 90122 For older readers 90123 90006 90008 Transformers Design and Applications by Robert M. Del Vecchio et al. CRC Press, 2018. A detailed guide to power supply transformers. 90009 90008 Transformer and Inductor Design Handbook by Colonel William T. McLyman. CRC Press, 2011. A detailed, practical guide to designing electrical machines using inductance.90009 90008 Electrical Transformers and Power Equipment by Anthony J. Pansini. Fairmont Press, 1999. Explains the theory, construction, installation, and maintenance of transformers and the different types of transformers before going on to cover related power devices such as circuit breakers, fuses, and protective relays. 90009 90008 Transformers and Motors by George Patrick Schultz. Newnes, 1997. This book has a much more «hands-on,» practical feel than some of the other books listed here; it’s intended more for electricians and people who have to work with transformers than those who want to design them.90009 90008 Transformers & Induction Machines by M.V.Bakshi and U.A.Bakshi. Technical Publications, 2009. Explains different kinds of transformers and related electrical equipment that works by induction. 90009 90010 90122 More general books for younger readers 90123 90006 90008 DK Eyewitness: Electricity by Steve Parker. Dorling Kindersley, 2005. A historic look at electricity and how people have put it to practical use. 90009 90008 Power and Energy by Chris Woodford. Facts on File, 2004.One of my own books, this describes how humans have harnessed energy (including electricity) throughout history. 90009 90010 90089 Patents 90090 90002 There are hundreds of patents covering electricity transformers of different kinds. Here are a few particularly interesting (early) ones from the US Patent and Trademark Office database: 90003 90006 90008 US Patent 351,589: System of electric distribution by Lucien Gaulard and John Gibbs, October 26, 1886. Gaulard and Gibbs outline how transformers can be used to step up and step down voltages for efficient power distribution-the basis of the modern electricity supply system throughout the world.90009 90008 US Patent 433,702: Electrical transformer or induction device by Nikola Tesla, August 5, 1890. Tesla outlines a phase-shift transformer (one that can produce a phase difference between the primary and secondary currents). 90009 90008 US Patent 497,113: Transformer motor by Otto Titus Bláthy, May 9, 1893. A combined transformer and motor produced by one of the inventors of the transformer. 90009 90008 US Patent 1,422,653: Electrical transformer for regulating or varying the voltage of the current supplied therefrom by Edmund Berry, July 11, 1922.A transformer with a dial that allows you to adjust the output voltage. 90009 90010 90089 News articles 90090 90002 Please do NOT copy our articles onto blogs and other websites 90003 90002 Articles from this website are registered at the US Copyright Office. Copying or otherwise using registered works without permission, removing this or other copyright notices, and / or infringing related rights could make you liable to severe civil or criminal penalties. 90003 90002 Text copyright © Chris Woodford 2007, 2020.All rights reserved. Full copyright notice and terms of use. 90003 90017 Follow us 90018 90006 90008 90009 90008 90009 90010 90017 Share this page 90018 90002 Press CTRL + D to bookmark this page for later or tell your friends about it with: 90003 90017 Cite this page 90018 90002 Woodford, Chris. (2007/2020) Electricity transformers. Retrieved from https://www.explainthatstuff.com/transformers.html. [Accessed (Insert date here)] 90003 .90000 Transformers (2007) — Frequently Asked Questions 90001 90002 [Hr] Autobots (Logo wallpaper here) 90003 90002 Optimus Prime — The Altruistic leader of the Autobots who comes to Earth to destroy the AllSpark in order to end the war. He transforms into a Peterbilt 379 semi truck, blue with red flame decals and which is a modernized version of his G1 mode. His weapons include an energy rifle that unveils from his back, two retractable Energon blades that extend from both forearms, Ion cannons on both of his arms, as well as two retractable Energon hooks on both of his forearms.Optimus Prime arrives on Earth at the same time as Ironhide, Jazz and Ratchet as a protoform, landing in a field. He scans the new alternate mode of a semi-truck and quickly joins up with Bumblebee and his human companions and tells them of Megatron and his Decepticons. Later on, While evacuating the AllSpark from Hoover Dam, Optimus Prime attempts to thwart the Decepticon Bonecrusher’s pursuit. After a short battle, Prime beheads Bonecrusher with his retractable blade. Although Prime fights Megatron in a final battle, Sam kills Megatron ramming the AllSpark into his chest.Prime, who had planned to destroy the AllSpark by placing it into his own chest, is immensely grateful to Sam for saving him. Afterwards, Optimus then takes the remaining fragment of the AllSpark. Despite all that has happened, Prime deeply regrets Megatron’s death, evidenced by his parting words: «You left me no choice, brother.» The film ends with Optimus sending out a deep-space signal, inviting other Autobots to join them on Earth. Screen shot of Optimus as a protoform here. Concept art of Optimus here.90003 90002 Bumblebee — The youngest Autobot that befriends Sam that turns into a yellow-and-black 1976 Chevrolet Camaro as a disguise for Sam to buy him from Bobby Bolivia. They eventually purchase Bumblebee, due in no small part to Bumblebee damaging every other car at the dealership to ensure his purchase. Later, Bumblebee drives away from Sam’s home to summon the Autobots. Sam witnesses Bumblebee transforming into robot mode at a junk yard where he sends out a signal for his fellow Autobots.Bumblebee battles Barricade and defeats him in order to protect Sam and Mikaela. Later he upgrades as a Fifth Generation Chevrolet Camaro after Mikaela criticizes the poor condition of Bumblebee’s vehicle mode. It is revealed later on that his vocal processors were damaged and has to communicate by radio. He can transform his right arm into a plasma cannon and has missile launchers in his shoulders. Bumblebee survives the massive battle at the film’s climax, although he loses the use of his legs after helping Ironhide deflect missiles from Starscream.With Mikaela’s aid, he is able to rejoin the battle supported by a tow truck and destroys Brawl. After the battle, Bumblebee is fully repaired and asks to stay with Sam and is granted permission from both Sam and Optimus Prime. He is later seen alongside Ironhide, Ratchet, and Optimus watching the sunset while Sam and Mikaela recline on his hood at the end of the movie. Both of the cars he was seen as are original to the movie. Concept art of Bumblebee here. 90003 90002 Jazz — The Autobot lieutenant who develops a fondness for urban culture.His vehicle form is original to the movie modified hardtop Pontiac Solstice GXP. He is described as a happy-go-lucky Autobot. Good-natured and always able to take things in stride, he provides a decent contrast to the more serious demeanor of Ironhide or Prime himself. Jazz’s weapons include a shield and a shield-mounted machine gun. He also possesses a type of electromagnet in his right arm, which he uses to disarm humans of their guns without causing them injury, curiously leaving jewellery and electronics unaffected.One weapon considered for Jazz was a plasma cannon that combined with his shield, shown in concept art by Hasbro at BotCon 2007. Arriving on Earth at the same time as Optimus Prime, Ironhide and Ratchet, Jazz’s protoform lands in Dodger Stadium then re-appears near the Casa De Cadillac car dealership (Sherman Oaks, California). Jazz jumps off the roof of the car shop and quickly scans a modified Pontiac Solstice before meeting up with the other Autobots at Bumblebee’s location. In the final battle, when Bumblebee is unable to fight, Jazz provides cover despite being outnumbered three to one.He fights Brawl alongside Ironhide and Ratchet, and then takes on the Decepticon leader, Megatron. He orders Ironhide and Ratchet to fall back, deciding to stand his ground in order to protect the humans running away. Despite his efforts trying to injure Megatron, he is carried atop a building and torn in half by him. Despite Ironhide and Ratchet’s best efforts, Jazz does not survive. After Megatron’s death by Sam, Prime and the remaining Autobots mourn for Jazz. Concept art of Jazz here. He is the only Autobot killed in the movie.90003 90002 Ironhide — The Autobots trigger happy weapon specialist and Optimus’s friend that turns into a GMC Topkick pickup truck which is original to the movie. His weapons include an energy rocket launcher on his left arm, a plasma rocket launcher on his right arm, with a super Gatling gun connected around the outside of the right forearm plasma rocket launcher. Arriving on Earth at the same time as Optimus Prime, (in a pool, to which a young girl asks him if he’s the tooth fairy) Jazz and Ratchet.Ironhide quickly sneaks away to a driveway, scans a family’s GMC Topkick pickup truck and reconfigures his alternate mode to a new camouflaged form before meeting up with the other Autobots at Bumblebee’s location. Upon meeting Sam, Ironhide displays an eagerness to show off his cannons, and made a classic Harry Callahan impression to show it by saying «You feeling lucky, punk?». At one point, he becomes so frustrated with Sam’s parents that he asks Optimus if he can «take them out». He then gets a stern scolding from Optimus, who is frustrated at Ironhide’s overuse of cannons.He also ask Sam’s permission of exterminating his dog after urinating on his foot as he believes it is a rodent. He is also shown to be slightly contemptuous towards the humans; he questions Prime as to why they should protect the human race, describing them as «primitive» and «violent», only to be reminded that the Autobots were not so different from them once. Ironhide is, despite being easily the bulkiest of the Autobots, a tough warrior endowed with surprising agility, shown in the final battle when he transforms, flips forward, and dodges Brawl’s missiles while doing a helix twist at the same time.He was also able to maneuver through the city, and flip over a nearby human without injuring her, rocket jumping over her right after transforming. Ironhide plays a large role in the final battle: when Bumblebee is unable to fight, he provides cover despite being outnumbered three to one. He battles Brawl alongside Jazz and Ratchet in the movie, and engages in a battle with Starscream, with the aid of Ratchet. However, damage sustained in the brief brawl with Starscream leaves both him and Ratchet unable to further protect Sam.After the battle is over, Ironhide brings the remains of his destroyed Autobot brother Jazz to Optimus Prime. Ironhide then gives Captain William Lennox a ride home, and is seen alongside Ratchet, Bumblebee, and Optimus watching the sunset or watching Sam kiss Mikaela at the end of the film. Concept art of Ironhide here. 90003 90002 Ratchet — The Autobot Medic that transforms into a Search and Rescue Hummer h3. His weapons include a Cybertronian rotary saw that emerges from his left arm, and he can transform his right and left arm into a medigun.Ratchet also has an assortment of other tools at his disposal, he uses a red laser to scan and try to calibrate Bumblebee’s voicebox as they are introduced to Sam Witwicky and Mikaela Banes. He has an enhanced sense of smell. Arriving on Earth at the same time as Optimus Prime, Jazz and Ironhide, Ratchet’s protoform crash-lands outside a local diner. Ratchet quickly scans a yellow emergency Hummer h3 and reconfigures his protoform to a new camouflaged form before meeting up with the other Autobots at Bumblebee’s location.In the Autobots introductions, Ratchet unintentionally embarrasses Sam in front of Mikaela, as he does not fully understand human social norms yet, commenting, «The boy’s pheromone levels suggest he wants to mate with the female», after having used his enhanced senses. Ratchet also accidentally gets entangled in power lines, sending him spasming to the ground and causing a blackout in the neighborhood. Ratchet also appears to be a very wise Autobot in the film. After Bumblebee’s capture, when the Autobots are discussing about the location of the AllSpark and their war with the Decepticons for acquiring it first, Optimus states that he intends to unite the Cube with his spark.Ratchet warns him that the Cube’s raw power would destroy them both. Moreover, he also tells the Autobots, «I sense the Decepticons are getting ready to mobilize.» Ratchet plays a large role in the final battle, where he, Jazz and Ironhide first battle Brawl. Later, he and Ironhide provide cover for Sam against Blackout and Brawl as the latter tries to escape with the AllSpark and also engage in a battle with Starscream, who disables both of the Autobots, causing Sam to reach his destination building alone.Ratchet’s injuries at the hands of Starscream keep him from getting to Jazz in time before the small Autobot is torn in half by Megatron. Concept art of Ratchet somewhere. Ratchet was originally meant to look different but the producers wanted something else. Hasbro did not mind if the character was either an ambulance or a fire apparatus. 90003 90002 Note: Optimus, Jazz, Ironhide and Ratchet arrived on earth as protoforms using a Cybertronian meteorite. Also Five Dead Autobots are shown in Optimus Prime’s flashback to Sam and Mikaela, they were killed by Megatron.[Hr] Decepticons (Logo wallpaper here) 90003 90002 Megatron — The leader of the Decepticons and primary Antagonist who transforms into an alien / Cybertronian jet, a version that appears to be entirely unique for the character. He can transform his right hand into a gun, combine both of his arms to form his iconic fusion cannon, and can transform his right arm into a steel flail..Several years after being discovered by Captain Archibald Witwicky, Megatron’s frozen body is transported from the Arctic Circle to Hoover Dam to be guarded by Sector 7, a secret government organization that studies extraterrestrial activities.Agent Seymour Simmons explains that the Earth’s magnetic field may have interfered with Megatron’s telemetry, causing him to crash during the Ice Age. He also explains that his technology was reverse-engineered, producing the world’s modern technology. Megatron’s location, as well as the AllSpark’s, is located by a group of Decepticons led by Starscream. After sneaking into Hoover Dam Frenzy thaws out Megatron, who escapes outside and learns from Starscream that the humans and the Autobots have taken the AllSpark.Megatron pursues the Autobots and their allies to Mission City, where he quickly disposes of Jazz before battling Optimus Prime. He defeats Optimus and then pursues Sam Witwicky up a condemned building, attempting to taunt and threaten the human into giving him the AllSpark. Sam declines, prompting Megatron to knock the boy off the roof of the building with his flail. Optimus saves Sam and battles Megatron again. During the battle, Megatron attempts to seize the AllSpark once again, only to have it shoved into his exposed spark chamber by Sam, killing him.Megatron’s body is then dumped in the Laurentian Abyss with the other deceased Decepticons. Concept art of Megatron somewhere. 90003 90002 Starscream — The Decepticon Air Commander and Megatron’s second-in-command. Despite being a popular character, his role is limited because of the film’s running time. His Alt Form is a F-22 Raptor fighter jet, a modernized version of his G1 mode, which is the successor to his original form, the F-15 Eagle. This keeps the character’s role as the powerful and technologically advanced air commander.His arms store heavy weaponry, with a missile launcher carrying six missiles in both arms, a saw in his right arm, and a high caliber machine gun. He also has the ability to leap great heights into the air and take flight using the jet’s powerful main engines on his back. Starscream rallies the other Decepticons to battle when Frenzy alerts them to the AllSpark’s location. He destroys the electrical substation that powers Sector 7’s base, allowing Megatron to come out of his deep freeze. Upon being reunited with Megatron, however, he is scolded by his leader for letting the AllSpark escape in a manner reminiscent of his G1 counterpart: «You’ve failed me yet again, Starscream.»In the final battle between the Autobots and Decepticons, he is the first Decepticon to arrive on the scene thanks to his flight capability, which he also uses to ambush the Autobots when their human allies mistake him for a friendly Air Force pilot. He aids Brawl and Megatron by firing missiles in his Raptor form at Bumblebee and Ironhide, destroying the former’s legs and injuring the latter. Later, he stops Sam Witwicky from fleeing by land with the AllSpark, easily disabling both Ratchet and Ironhide in the process; however, he does not take the AllSpark with him.When Sam is about to hand off the AllSpark to a Black Hawk crewman, Starscream shoots down the helicopter. Later, when a full airstrike has been called in on Megatron and Blackout, Starscream conceals himself among the attacking jets in order to ambush them. He destroys three of the jets, but retreats from the battle after the F-22 pilots regroup and engage him, allowing the jets to complete their mission. An interlude during the end cre 90003.90000 Simple English Wikipedia, the free encyclopedia 90001 90002 90003 Transformers 90004 are make-believe robots that are made by a toy company named Hasbro. In the story, they come from a planet called Cybertron. There are two main types of Transformers. These are the Autobots, the good guys, and the Decepticons, the bad guys. The leader of the Autobots is named Optimus Prime, and the leader of the Decepticons is named Megatron. Transformers can transform into different things like cars, planes, guns, and animals.Transformers were first made in 1984. There have been many different Transformers toys and stories since then. 90005 90002 Some people call the first Transformers toys, shows, and comics «G1» or «Generation One». The first Transformers toys were made in Japan. In Japan, the toys were from different toy lines called Microman and Diaclone. Hasbro took some of the same toys, gave some of them different colors, and called them Transformers. They asked a comic book writer named Bob Budiansky to name the robots.Bob Budiansky also decided what the robots liked, what they disliked, and how they felt about things. In Japan, at first the robots did not have names and were not alive. They were just machines that were driven by people. Bob Budiansky also wrote the Transformers comic book that was made by Marvel Comics. Spider-Man was even in one of the early Transformers comics. 90005 90002 There was also a Transformers cartoon on TV. The TV show told a different story than the comic book. In the cartoon, the Autobots were looking for energy and the Decepticons chased them to Earth.In the comic book, the Autobots had to stop an asteroid (a big rock in space) from crashing into Cybertron. Another difference is that the story behind each character is different in the cartoon for a lot of robots, like the Dinobots, Jetfire (who is called Skyfire on TV), the Constructicons, and Omega Supreme. Even the way new robots were created was different. In the comic book, Optimus Prime uses the Creation Matrix to make new Transformers. In the cartoon, there is a computer called Vector Sigma that can make new robots.90005 90002 In 1986, a Transformers movie was made. It was called The Transformers: the Movie and was a story about the future. In the story, it is the year 2005. Optimus Prime is killed by Megatron, and a new Autobot called Ultra Magnus becomes the new Autobot leader. The Autobots have to stop a planet-eating monster called Unicron, who can also transform into a giant robot. Unicron also meets Megatron and gives him a new body and a new name, and he becomes Galvatron. At the end of the movie, Unicron is destroyed.90005 90002 The TV show also told the story of the year 2005. We learn that the Transformers were once robot slaves who had to work for aliens called Quintessons. The Autobots did not like being slaves, so they chased the Quintessons away from Cybertron. Kids liked Optimus Prime and were sad that he died, so the writers made a story in which he came back to life. In Japan, the TV show continued with new cartoons that were not seen in America. 90005 90002 The comic book was still being made after the TV show ended.Many robots who were not seen in the cartoon were in the comic book, like Darkwing and Skids. There was even a story about how the Transformers met G.I. Joe, another Hasbro toy line. 90005 90016 Beast Wars and Beast Machines (1996-2001) [change | change source] 90017 90002 Beast Wars was about Transformers who could turn into animals. They looked like real animals, but they were robots in disguise. The good guys were called Maximals, and their leader was Optimus Primal. The bad guys were called Predacons, and their leader’s name was Megatron.(He was a different Megatron from the Decepticon leader.) In the story, the Maximals and Predacons crashed on Earth a very long time ago, but they did not know where they were. Also, there was too much energy on the planet and it hurt their bodies. They turned into animals to protect themselves from the energy. They could only turn into robots for a short time before the energy started to hurt them. 90005 90002 Later in the story, many of the robots turn into Transmetals, which means they looked like robot animals instead of real animals.The Predacons find out they are on Earth, and Megatron tries to find the Autobots and Decepticons, who are on a space ship called the Ark. Megatron tries to kill Optimus Prime, who is still sleeping, so that he can change the future. 90005 90002 There was another show called Beast Machines that continues the story that started in Beast Wars. At the end of Beast Wars, the Maximals tried to catch Megatron. At the beginning of Beast Machines, he escapes and takes control over Cybertron. There are only four Maximals left and Megatron tries to stop them.Megatron creates new robots called Vehicons, who try to catch the Maximals. Later, we learn that the Vehicons are really Maximals or Predacons that Megatron caught and tried to control. In the story, we also learn that even though Cybertron is a dead, metal planet, it used to be a living planet like Earth. 90005 .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *