Закрыть

Из чего состоит бензогенератор: Подробно изучаем устройство бензогенератора

Содержание

Подробно изучаем устройство бензогенератора

Автономные генераторы зачастую бывают незаменимыми, и полный список их возможных применений будет очень длинным — от обеспечения электроэнергией пляжной вечеринки на выходных до постоянной работы у частного здания. Широкий спектр выполняемых работ породил большое количество типов автономных генераторов, отличающихся как конструктивно, так и по характеристикам. Общим же у них является принцип действия — двигатель внутреннего сгорания того или иного типа вращает вал электрогенератора, преобразуя механическую энергию в электрическую.

Наиболее очевидное разделение групп генераторов — на профессиональные и бытовые.

  • Бытовой генератор — это, как правило, переносной агрегат с бензиновым двигателем, не предназначенный для длительной работы, имеющий мощность в несколько кВА.
  • Профессиональные генераторы имеют повышенные мощность и время беспрерывной работы, а для большей топливной экономичности и увеличения ресурса на них, как правило, устанавливаются дизельные двигатели.
    При этом, если бытовые электрогенераторы вырабатывают однофазный ток напряжением 220 В, то профессиональные генераторы в подавляющем большинстве трехфазные, рассчитанные на 380 В выходного напряжения. Большие габариты и масса заставляют либо размещать мощные генераторы на колесном шасси, либо делать их стационарными.

Итак, в этой классификации мы уже обнаружили ряд конструктивных различий. Рассмотрим их по порядку.

Двигатель

Как известно, бензиновый двигатель может работать как по двухтактному циклу, так и по четырехтактному. При этом низкая экономичность и ограниченный ресурс делает двухтактные двигатели не самым лучшим выбором для привода электрогенератора, хотя они и проще в конструкции, а значит — дешевле и легче.

Четырехтактный же двигатель, хотя он сложнее и дороже, расходует значительно меньше топлива и способен проработать гораздо больше. Поэтому генераторы мощностью до 10 кВА, как правило, оснащаются двигателями именно такого типа.

Бензиновые двигатели электрогенераторов — это в основном одноцилиндровые агрегаты с принудительным воздушным охлаждением, приготовление горючей смеси осуществляется при помощи карбюратора. Для запуска их применяется либо тросовый стартер, либо в конструкцию дополнительно включается электрозапуск (тогда, помимо аккумулятора, такие генераторы имеют и 12 В выход: от этой цепи заряжается аккумулятор и к ней же могут подключаться потребители, рассчитанные на низковольтное питание). Наиболее распространены моторы с чугунной гильзой и верхнеклапанным газораспределительным механизмом — как правило, это моторы Honda GX и их китайские копии.

Двигатели бытовых бензогенераторов не предназначены для длительной беспрерывной эксплуатации. Превышение времени работы, указанного в инструкции по эксплуатации (как правило, не более 5-7 часов), сократит ресурс мотора.

Однако же, даже самые совершенные бензиновые двигатели имеют ограниченный ресурс: при должном уходе они проработают 3-4 тысячи моточасов. Много это или мало? При эпизодическом использовании на выезде, например, для подключения электроинструмента — это достаточно большой ресурс, а вот постоянно запитывать частный дом от бензогенератора значит ежегодно перебирать его двигатель.

Значительно больший ресурс имеют дизельные силовые агрегаты, кроме того, они выгоднее при длительной эксплуатации за счет большей экономичности. По этой причине все мощные генераторные установки, как переносные, так и стационарные, используют дизельные моторы.

Для таких агрегатов ряд недостатков дизельных моторов по сравнению с бензиновыми (дороговизна, больший вес и шумность) не являются принципиальными, определенное неудобство есть лишь при запуске дизельных моторов в холодное время.

При эксплуатации дизельного генератора нужно учитывать, что длительная работа на холостом ходу без нагрузки для них вредна: нарушается полнота сгорания топлива, что приводит к повышенному образованию сажи, забивающей выпуск, и разжижению моторного масла просачивающимся через поршневые кольца дизельным топливом.

Поэтому в список регламентных работ для дизельных электростанций обязательно включается периодический вывод их на полную мощность.

Кроме того, существуют и генераторы, работающие на природном газу. Конструктивно они ничем не отличаются от бензиновых, кроме системы питания: вместо карбюратора они оснащены редуктором для регулирования давления газа и калиброванной форсункой, подающей газ во впускной коллектор. При этом такие генераторы в качестве источника топлива могут использовать не только баллон со сжиженным газом, но и газовую сеть — в этом случае расходы на топливо становятся минимальными. Недостатком подобных генераторов является низкая мобильность (газовый баллон габаритнее и тяжелее бензобака, который, к тому же, можно дозаправлять прямо на месте), а также повышенная пожароопасность, особенно при неграмотной эксплуатации. Однако в качестве источника резервного питания в доме, подключенном к газовой магистрали, это неплохой вариант: нет необходимости заботиться о поддержании уровня и качества топлива в бензобаке, а ресурс двигателя при работе на газу выше, чем при работе на бензине.

Электрогенератор

Это основной узел бензогенератора, определяющий его характеристики и область применения. Принцип его действия заключается в возбуждении тока в неподвижной обмотке статора переменным магнитным полем, создаваемым вращающейся обмоткой (ротором) в генераторах синхронного типа или постоянным магнитом в асинхронных генераторах. При этом количество обмоток статора определяет количество фаз на выходе:

  • Однофазные генераторы имеют одну силовую обмотку, такая схема распространена в бытовых генераторах небольшой и средней мощности;
  • Трехфазные генераторы имеют три силовые обмотки и могут запитывать как нагрузку, рассчитанную на трехфазное питание напряжением 380 вольт, так и однофазные потребители (в этом случае с такой схемой их необходимо распределить по трем группам равной мощности).

Мощность же генератора тесно связана и с количеством фаз, и с его общей конструкцией:

  • Маломощные генераторы (до 2 кВА) — это легкие бензиновые агрегаты, не предназначенные для профессионального применения. Типичное их применение — обеспечение энергией уличных торговых точек;
  • Генераторы средней мощности (до 6,5 кВА) — это техника, относящаяся к полупрофессиональному и профессиональному классам, но при этом достаточно компактная. Используются также бензиновые моторы. Подобный генератор сможет питать гаражную мастерскую или небольшой дом;
  • Среди агрегатов высокой мощности (до 15 кВА) можно встретить как бензиновые, так и дизельные, часто имеющие более одного цилиндра. Высокая мощность делает нецелесообразным использование однофазной схемы, поэтому такие генераторы часто имеют трехфазный выход 380 В, а более мощные генераторные установки выпускаются исключительно трехфазными.

Кроме высоковольтной обмотки, многие генераторы оснащаются дополнительной, которая через выпрямитель питает потребители, рассчитанные на 12 В постоянного тока: безопасные переноски, автомобильные компрессоры и так далее.

Тип возбуждения генератора зависит от его мощности и области применения. Асинхронные генераторы значительно проще и дешевле синхронных за счет отсутствия обмотки возбуждения и щеточного узла, а их ресурс выше. С другой стороны, синхронные генераторы изменением тока обмотки позволяют легко и точно регулировать выходное напряжение, а также значительно лучше работают при резких изменениях нагрузки, особенно имеющей высокую индуктивность — например, при подключении мощного электродвигателя величина и длительность просадки напряжения будут выше у асинхронного генератора. По этой причине бензогенераторы, выполненные по асинхронной схеме, часто снабжаются специальной системой пускового усиления, кратковременно повышающей отдаваемую генератором мощность.

Принцип работы асинхронного генератора показан на видео

Есть и еще один важный параметр переменного тока, о котором нельзя забывать — это его частота. И если для ряда потребителей наподобие ламп накаливания она не имеет большого значения, то для блоков питания электронных устройств отклонение частоты питающего напряжения от номинальной чревато не только нарушением их работы, но и повреждением.

Частота тока, выдаваемого генератором, определяется двумя параметрами: частотой вращения ротора и количеством полюсов на нем. Таким образом, двухполюсный ротор для создания тока с частотой 50 Гц должен вращаться с частотой 3000 об/мин, а четырехполюсный — 1500 об/мин. Поддержание заданных оборотов обеспечивается механическим регулятором, управляющим дроссельной заслонкой карбюратора на бензогенераторах или топливным насосом высокого давления — на дизельных. Такой механизм прост и достаточно эффективен при постоянной нагрузке, в то время как при резком изменении потребляемого тока частота меняется на короткий промежуток времени. Кроме того, необходимость поддержания постоянной частоты вынуждает двигатель генератора постоянно работать на одних и тех же оборотах максимальной мощности, хотя при низком энергопотреблении двигатель мог бы обеспечить электропитание и на меньших оборотах — отсюда снижение ресурса мотора и повышенный расход топлива.

Этих недостатков удалось избежать с появлением в широком доступе мощной коммутирующей электроники, позволившей создать инверторные генераторы. Принцип действия силового инвертора прост: переменный ток, выработанный генератором, выпрямляется, после чего преобразуется электронным блоком вновь в переменный, но уже строго заданной частоты. Это делает частоту выходного напряжения абсолютно не зависящей от частоты вращения ротора генератора, а следовательно — позволяет двигателю изменять обороты в зависимости от нагрузки, сберегая ресурс и топливо.

Дешевые инверторы, как правило, могут выдавать напряжение, по форме далекое от идеальной синусоиды. Подключение мощной индуктивной нагрузки к такому инвертору приведет к перегреву и возможному повреждению силового каскада инвертора!

Есть у инверторных генераторов и определенные минусы: за счет наличия электронного блока они дороже, чем обычные бензогенераторы, а также теоретически менее надежны.

Кроме того, возможности силовой электроники не безграничны, и максимальная мощность инверторных генераторов сейчас не превышает 7 кВА.

На видео показано устройство бензогенератора на примере модели марки Зубр

Выбор генератора


При выборе генератора нужно начать с определения необходимой мощности. Этот вопрос не так прост, как кажется, поскольку потребители в цепях переменного тока имеют как активное (омическое) сопротивление, так и реактивное (емкостное и индуктивное), а также зачастую до выхода на рабочий режим имеют энергопотребление значительно больше номинального.

Простейший пример: нам нужен переносной генератор, от которого мы запитаем перфоратор мощностью 800 Вт. Его электродвигатель имеет значительную индуктивную составляющую сопротивления, которая при расчете энергопотребления описывается так называемым коэффициентом мощности, обозначаемым как cosφ. Если для нагрузки, не обладающей реактивным сопротивлением, он равен единице, то с ростом емкости либо индуктивности нагрузки растет. Кроме того, нельзя забывать и то, что сам генератор имеет значительную индуктивность.

Именно из-за индуктивного сопротивления обмоток генератора его мощность обозначается не в ваттах, а в вольт-амперах при заданном коэффициенте мощности: например, бензогенератор мощностью 5 кВА при собственном cosφ=0,8 реально имеет максимальную мощность 4 кВт.

Таким образом, при необходимости запитать 800-ваттный электродвигатель с собственным cosφ=0,5 нам потребуется генератор, способный длительно отдавать мощность 1600 Вт, то есть его пиковая мощность, обозначаемая в характеристиках, должна быть в полтора-два раза больше. С учетом же потерь в самом генераторе для нашего перфоратора придется приобрести бензогенератор на 4 кВА.

В то же время, если нам нужно будет запитать от этого же генератора освещение и электрообогреватель (потребители, не имеющие реактивного сопротивления), их суммарная мощность сможет быть в два раза больше при той же нагрузке на сам генератор.

Далее определимся со временем работы генератора. Как уже говорилось, для длительной работы предпочтительнее дизельный силовой агрегат — поэтому рассматривая агрегат для постоянного обеспечения энергией здания (частного дома или небольшого цеха), стоит рассмотреть этот вариант, особенно с учетом вышеописанного расчета требуемой мощности генератора — бензиновый агрегат окажется слишком прожорливым. Поскольку постоянный контроль над длительно работающим генератором осуществлять будет невозможно, он обязательно должен оснащаться защитным устройством, глушащим двигатель при падении уровня моторного масла либо его давления.

В ряде случаев (необходимость частой транспортировки, особенно ручной) меньшая масса бензогенератора может оказаться более важным фактором, чем экономичность дизельного. Также бензиновый агрегат является более предпочтительным вариантом для кратковременной эксплуатации — в этом случае экономичность и ресурс играют значительно меньшую роль, чем цена самой установки.

Для аварийного снабжения дома электроэнергией стоит рассмотреть вариант подключения к газовой сети генератора, рассчитанного на использование природного газа.

Запуск

Переносной генератор необходимо разместить на ровной сухой поверхности, а в случае работы на открытом пространстве — защитить его от попадания осадков. Поскольку одноцилиндровые двигатели, применяемые в бензогенервторах, отличаются высоким уровнем вибраций, нельзя располагать на генераторе посторонние предметы, а особенно — емкости с топливом, во избежание их падения. Перед запуском необходимо удостовериться в достаточном уровне моторного масла и при необходимости долить его, после чего двигатель генератора можно запускать.


Подключать нагрузку к генератору можно только после того, как двигатель будет запущен.

Не запускайте генератор, если к нему подключены электроприборы.

Для запуска бензинового мотора служит специальная воздушная заслонка, в закрытом положении обогащающая топливную смесь. При первом запуске двигателя, особенно в холодную погоду, ее необходимо закрыть тем больше, чем ниже температура воздуха, а по мере прогрева двигателя плавно открыть. Прогретый двигатель должен запускаться без прикрытия заслонки, в противном случае стоит обратить внимание на регулировки карбюратора. Запуск в зависимости от конструкции двигателя осуществляется либо тросовым стартером (плавно вытяните его до ощущения сопротивления, после чего резко увеличьте усилие), либо электрическим (для запуска нажмите и удерживайте пусковую кнопку).

Запуск дизельного мотора отличается только тем, что нет необходимости использовать воздушную заслонку, но вместо этого нужно приоткрывать декомпрессор — устройство, снижающее давление в камере сгорания для облегчения проворота коленчатого вала при запуске. Кроме того, запуск дизельного мотора может сильно затруднить завоздушенная топливная система (первый запуск нового генератора или если до этого бак был выработан насухо). В таком случае придется прокачать топливную систему (порядок прокачки отличается для разных двигателей и описывается в руководстве по эксплуатации).

Дав поработать генератору некоторое время (в теплое время года бензиновый двигатель прогреется достаточно быстро, не более минуты), можно подключать нагрузку, убедившись, что индикаторы работоспособности или указатель напряжения генераторной установки указывают на ее полную работоспособность.

Техническое обслуживание

Своевременное обслуживание генераторной установки заметно сказывается на ее ресурсе. Наиболее частого внимания требует двигатель, как ее наиболее сложный узел. Согласно заданной производителем периодичности, указываемой в часах работы, необходимо заменять моторное масло и обслуживать воздушный фильтр. На мощных генераторах, оснащенных более сложными двигателями, также меняются масляный и топливный фильтры. Бензиновые и дизельные двигатели (газовые — гораздо реже) требуют замены свечей зажигания.

Если генератор используется эпизодически, не стоит хранить его заправленным — окисляющееся и разлагающееся со временем может привести к засорению отложениями карбюратора на беногенераторах и выпадению парафина на дизельных моторах, способному полностью перекрыть поступление топлива. Также старое топливо затруднит запуск.

Непосредственно генератор — узел практически вечный, лишь время от времени необходимо очищать щеточный узел синхронного генератора от пыли и менять сами щетки, а иногда — несущие подшипники ротора.

Источник: https://generatorexperts.ru


Устройство бензинового генератора и его эксплуатация

Бензогенераторы на сегодняшний день являются довольно таки популярным портативным источником электроэнергии. Однако, несмотря на свою простоту и практичность, прибор требует от пользователя соблюдения различных правил эксплуатации, о которых вы узнаете в этой статье.

Итак, перед началом пользоваться генератором настоятельно рекомендуем вам ознакомиться с руководством по бензиновой генераторной установке. Составляющие большинства бензиновых агрегатов состоят из:
Датчики и индикаторы:
Вольтметр. Устройство, которое измеряет уровень выходной мощности генерируемой электроэнергии. В зависимости вида от модели электрогенератора он может быть или аналоговым, или электронным. Электронный вольтметр как правило лучше, так как он предоставляет намного больше данных, в число которых входит: общее количество энергии, потребляемой различными устройствами. Его можно заменить и приобрести отдельно.
Индикатор уровня топлива. Показывает количество бензина в баке. Включает плавающий индикатор,а так же измеряет уровень оставшегося бензина в баке. Мы рекомендуем выбирать генераторы с цифровым датчиком топлива. Они более точно показывают уровень топлива и могут подать сигнал необходимости дозаправки
Переключатели панели управления:
Кнопка питания 12 Вольт. Включает питание через розетку 12 Вольт.
Моторный выключатель. Выключателем может быть кнопка запуска двигателя с внешним стартером или же с автоматикой.
Предохранитель (выключатель). Обеспечивает аварийную и безопасную остановку устройства в случае короткого замыкания, а также защищая генератор от перегрева и несчастных случаев.
Розетки:
Розетка мощностью 12 Вольт. Подходит для питания неэнергоемких приборов.
Розетки 220 В. Стандартные розетки постоянного тока, они используются для подключения агрегата к сети потребления.
Заземляющий терминал. При подключении к корпусу и заземляющему проводнику устройство предоставляет надежное заземление.
Корпус генератора:
Рама. Это основа, на которую устанавливается бензогенератор.
Бак для топлива. Топливный бак, благодаря которому работает наш бензогенератор.
Ручка стартера. Она запускает двигатель.
Воздушный фильтр. Предназначен для очистки выхлопных газов. Его регулярно необходимо очищать и проводить замену загрязненных элементов.
Топливный кран. Он отвечает за запуск и остановку и подачи бензина в камеру сгорания.
Прибор для определения уровня масла в генераторе.
Специальная крышка для слива масла.
Глушитель щит

Особенности эксплуатации бензогенератора


Заземление
Очень важным условием работы бензогенератора есть правильная настройка его заземления. Категорически запрещается использовать генератор при не правильной установке заземления, так как существует довольно таки высокий риск поражения электрическим током для пользователя во время работы генератора. Наиболее часто используемым заземлением является лист железа (не менее 1000 х 500 мм) или металлическая сердцевина диаметром не менее 1,5 см.
Генератор должен быть оборудован клеммой заземления, соединенной с заземляющим устройством, погруженным в землю на уровне слоев влажного грунта, с помощью жестко установленного провода. Минимально необходимое сопротивление, требуемое цепью для обеспечения достаточно надежного заземления, составляет 4 Ом.
Для установки заземления необходимо привлечь специалиста, который обладает квалифицированным оборудованием для подобной работы и защитой.

Проверка уровня масла и заправка агрегата



Бензиновый генератор, как и любое другое сложное оборудование нуждается в техническом уходе. Прежде всего, мы имеем в виду своевременную замену масла и дозаправка топлива. Если электростанция не может работать без топлива, то недостаток масла в двигателе часто приводит к повреждению самого двигателя генераторной установки и его быстрому выходу из строя. Заметим, что уровень масла проверяется специальным щупом, установленным в пробке. Перед чисткой окуните щуп в маслозаливную горловину до дна, затем проверьте, какой уровень на щупе покрыт маслом. Следует отметить, что такую проверку необходимо проводить только тогда, когда двигатель находиться в выключенном состоянии и охлажден (не ранее, чем через 5-10 минут после выключения генератора), и рекомендуется выполнять его до запуска бензогенератора.
Перед заправкой обязательно заливайте топливо, указанное производителем, указанное в руководстве пользователя. В зависимости от типа двигателя вашего генератора топливо может быть разным. Также важно учитывать погодные условия. Вид топлива необходимо менять в зависимости от погоды. Для работы в низких и высоких температурах.

Запуск бензогенератора


Запуск бензогенератора состоит из нескольких последовательностей:

  • Убедитесь, что генератор заправлен топливом и в нем достаточный уровень масла.
  • Выключите предохранитель.
  • Откройте топливный кран для обеспечения генератора бензином.
  • Если двигатель генератора работал на холостом ходу в течение нескольких часов или уже остыл (или вообще не запустился), закройте стартер с помощью специальной ручки. В противном случае оставьте его открытым.
  • Прежде чем перевести устройство в положение «Вкл.», Запустите двигатель агрегата с помощью стартера (если он у вас не автоматический). Заведенный двигатель должен прогреться в течение нескольких минут, затем можно подключать нагрузку.

Выключение бензинового генератора


Также как и при запуске генератора необходимо придерживаться определенной последовательности действия при отключении генератора.

  • Снять нагрузку с генератора и переведя его в холосту работу.
  • Выключить предохранитель.
  • После чего отключаем зажигание.
  • Перекрываем топливо.


Здесь следует отметить, что, когда генератор работает при высоких нагрузках, ему следует дать поработать двигателю в течение нескольких минут в нормальном режиме, прежде чем выключать его.

Генераторы и динамо-машины


Разработка и история компонента, который первым сделал электричество коммерчески осуществимый

Динамо Генераторы преобразуют механическое вращение в электрическую энергию.

Динамо — устройство, производящее постоянного тока электроэнергии с помощью электромагнетизма. Он также известен как генератор, однако термин генератор обычно относится к «генератору переменного тока», который создает мощность переменного тока.

Генератор — обычно этот термин используется для описания генератора , который создает мощность переменного тока с помощью электромагнетизма.

Генераторы, Динамо и Батареи — это три инструмента, необходимые для создания/хранения значительное количество электроэнергии для нужд человека. Батареи возможно, были обнаружены еще в 248 г. до н.э. Они просто используют химические реакция на производство и хранение электроэнергии. Ученые экспериментировали с батареи, чтобы изобрести раннюю лампу накаливания, электродвигатели и поезда и научные испытания. Однако батареи не были надежными или экономически эффективным для любого регулярного использования электричества, именно динамо-машина коренным образом превратил электричество из диковинки в выгодный, надежный технологии.

1. Как это работает
2. Краткая история динамо-машин и генераторов
3. Видео генераторов

1.) Как Работает:

Базовый:

Сначала вам понадобится механический источник энергии, такой как турбина (работает от падения воды), ветряная турбина, газовая турбина или паровая турбина. Вал от одного из этих устройств соединен к генератору для выработки электроэнергии.

Динамо и генераторы работают используя дикие сложные явления электромагнетизма . Понимание поведение электромагнетизма, его полей и его эффектов является большим предмет исследования. Есть причина, по которой прошло 60 лет ПОСЛЕ Вольты. первая батарея, на которой заработала хорошая мощная динамо-машина. Мы будет упрощать вещи, чтобы помочь вам познакомить вас с интересной темой производства электроэнергии.

В самом общем смысле генератор / динамо-машина — это один магнит, вращающийся внутри воздействия магнитного поля другого магнита. Вы не можете видеть магнитное поле, но это часто иллюстрируется линиями потока. На иллюстрации выше линии магнитного потока будут следовать линиям, созданным железом опилки.

Произведен генератор/динамо набор стационарных магнитов (статоров), создающих мощное магнитное поле, и вращающийся магнит (ротор), который искажает и прорезает магнитное линии потока статора. Когда ротор пересекает линии магнитного поток делает электричество.

Но почему?

В соответствии с законом индукции Фарадея если вы возьмете проволоку и будете двигать ее туда-сюда в магнитном поле, поле отталкивает электроны в металле. Медь имеет 27 электронов, два последних на орбите легко отталкиваются к следующему атому. Это движение электронов представляет собой электрический поток.

Посмотреть видео ниже показано, как индуцируется ток в проводе:

Если взять много провода например, в катушке и перемещая ее в поле, вы создаете более мощный «поток» электронов. Мощность вашего генератора зависит на:

«l»-Длина проводник в магнитном поле
«v»-скорость проводника (скорость вращения ротора)
«B»-напряженность электромагнитного поля

Вы можете выполнять вычисления, используя эта формула: е = В х Д х В

Посмотреть видео чтобы увидеть все это продемонстрировано:

О магнитах:

Вверху: простой электромагнит называется соленоидом. Термин «соленоид» на самом деле описывает трубчатая форма, созданная спиральной проволокой.

Магниты обычно не из природного магнетита или постоянного магнит (если это не небольшой генератор), но они медные или алюминиевая проволока, намотанная на железный сердечник. Каждая катушка должна быть под напряжением с некоторой силой, чтобы превратить его в магнит. Эта катушка вокруг железа называется соленоид. Соленоиды используются вместо природного магнетита, потому что соленоид НАМНОГО мощнее. Небольшой соленоид может создать очень сильное магнитное поле.

Выше: Витки провода в генераторах должны быть изолированы. Отказ генератора вызвано слишком высоким повышением температуры, что приводит к поломке изоляции и короткого замыкания между параллельными проводами. Подробнее о проводах >

Термины :
Электромагнетизм — изучение сил, которые происходит между электрически заряженными частицами
Ротор — часть генератора динамо, который вращается
Якорь — то же, что и ротор
Поток — силовые линии в магнитном поле, это измеряется в плотности, единица СИ Вебера
Статор — магниты в генераторе/динамо, которые не двигаются, они создают стационарное магнитное поле
Соленоид — магнит, созданный проволочной катушкой вокруг железа/ферриса сердечник (соленоид технически означает форму этого магнита, но инженеры ссылаются на соленоид и электромагнит взаимозаменяемо.
Коллектор — Подробнее о них читайте здесь
Момент затяжки — сила при вращательном движении

 

См. также нашу страницу Induction .

Динамо

Динамо есть старый термин, используемый для описания генератора, который производит постоянного тока. мощность . Сила постоянного тока посылает электроны только в одном направлении. Проблема с простым генератором заключается в том, что когда ротор вращается, он в конце концов полностью поворачивается, обращая ток. Ранние изобретатели не знать, что делать с этим переменным током, переменный ток более сложные для управления и проектирования двигателей и освещения. Ранние изобретатели должен был придумать способ улавливать только положительную энергию генератора, поэтому они изобрели коммутатор. Коммутатор – это переключатель, который позволяет ток течет только в одном направлении.

См. видео ниже, чтобы увидеть, как работает коммутатор:

Динамо состоит из трех основных компонентов : статора, якоря и коммутатор.

Щетки входят в состав коммутатор, щетки должны проводить электричество, чтобы сохранить контакт с вращающимся якорем. Первые кисти были настоящими проволочные «щетки» из мелкой проволоки. Эти легко изнашивались и они разработали графические блоки для выполнения той же работы.

статор представляет собой фиксированную конструкцию, которая делает магнитным поле, вы можете сделать это в небольшой динамо-машине с помощью постоянного магнита. Большие динамо-машины требуют электромагнита.

Якорь изготовлен из спиральной медной обмотки, вращаться внутри магнитного поля, создаваемого статором. Когда обмотки движутся, они пересекают линии магнитного поля. Этот создает импульсы электроэнергии.

Коллектор необходимо для получения постоянного тока. В потоках мощности постоянного тока только в одном направлении по проводу, проблема в том, что вращающийся якорь в динамо-машине меняет направление тока каждые пол-оборота, Таким образом, коммутатор представляет собой поворотный переключатель, который отключает питание. во время обратной текущей части цикла.

 

Самовозбуждение:

Так как магниты в динамо соленоиды, для работы они должны быть запитаны. Так что помимо кистей какая мощность отвода выходит на основную цепь, есть еще набор щеток, чтобы взять питание от якоря для питания статора магниты. Хорошо, если динамо работает, но как запустить динамо-машина, если у вас нет сил начать?

Иногда арматура остается некоторый магнетизм в железном сердечнике, и когда он начинает вращаться, он делает небольшая мощность, достаточная для возбуждения соленоидов в статоре. Затем напряжение начинает расти, пока динамо-машина не выйдет на полную мощность.

Если нет магнетизма остается в железе якоря, чем часто для возбуждения используется батарея соленоиды в динамо, чтобы запустить его. Это называется «поле мигает».

Ниже в обсуждении подключив динамо-машину, вы заметите, как мощность направляется через соленоиды. иначе.

Есть два способа проводка динамо: серия рана и шунт ранить. Смотрите диаграммы, чтобы узнать разницу.

А серийная намоточная машина — нажмите, чтобы увидеть крупным планом

А аппарат для шунтирования — нажмите, чтобы увидеть крупным планом

Ниже видео небольшого простая динамо-машина, аналогичная схемам выше (построена в 1890-х годах):

Генератор

Генератор отличается от динамо-машина в том, что она производит переменного тока мощностью . Электроны втекают в оба направления в сети переменного тока. Только в 1890-х годах инженеры придумали, как проектировать мощные двигатели, трансформаторы и другие устройства, которые могут использовать мощность переменного тока таким образом, чтобы конкурировать с постоянным током власть.

Пока генератор использует коллекторы, генератор использует токосъемное кольцо со щетками для отвода отключение питания ротора. К токосъемному кольцу прикреплены графит или углерод. «щетки», которые подпружинены, чтобы толкать щетку на кольцо. Это обеспечивает постоянную подачу энергии. Щетки изнашиваются время и необходимость замены.

Ниже, видео контактных колец и щеток, множество примеров от старых до новых:

Со времен Грамм в 1860-х годах было выяснено, что лучший способ построить динамо-генератор заключалась в том, чтобы расположить магнитные катушки по широкому кругу с широким вращением арматура. Это выглядит иначе, чем простые примеры небольших динамо-машин. вы видите, используется в обучении, как работают устройства.

На фото ниже вы увидите хорошо видно одну катушку на якоре (остальные сняты для обслуживания) и другие катушки, встроенные в статор.

С 1890-х годов до наших дней 3-фазная мощность переменного тока была стандартной формой питания. Три фазы сделано через конструкцию генератора.

Для изготовления трехфазного генератора вы должны разместить определенное количество магнитов на статоре и якоре, все с правильным интервалом. Электромагнетизм так же сложен, как и работа с волны и вода, поэтому вам нужно знать, как управлять полем через ваш дизайн. Проблемы включают неравномерное притяжение вашего магнита к железному сердечнику, неверные расчеты искажения магнитного поле (чем быстрее оно крутится, тем сильнее поле искажается), ложное сопротивление в обмотках якоря и множество других потенциальных проблем.

Почему 3 фазы? если ты хочешь чтобы узнать больше о фазах и почему мы используем 3 фазы, посмотрите наше видео с пионером в области силовой передачи Лайонелом Бартольдом.

2.) Краткая история динамо-машин и генераторов:

Генератор развился из работы Майкла Фарадея и Джозефа Генри в 1820-х годах. Как только эти два изобретателя обнаружили и задокументировали явления электромагнитной индукции, это привело к экспериментам другими в Европе и Северной Америке.

1832 — Ипполит Pixii (Франция) построил первое динамо с использованием коммутатора, его модель создавала импульсы электричества, разделенные отсутствием тока. Он также случайно создал первый генератор переменного тока. Он не знал, что сделать с меняющимся током, он сосредоточился на попытке устранить переменного тока для получения постоянного тока, это привело его к созданию коммутатор.

1830-1860-е годы — Аккумулятор до сих пор остается самым мощным источником питания электричество для различных экспериментов, проводившихся в тот период. Электричество по-прежнему не было коммерчески жизнеспособным. Электрический на батарейках поезд из Вашингтона в Балтимор потерпел неудачу, что вызвало большое затруднение к новой области электричества. После миллионов долларов потраченных впустую паров по-прежнему оказался лучшим источником энергии. Электричество все равно нужно зарекомендовали себя как надежные и коммерчески выгодные.

1860 — Антонио Пачинотти — Создал динамо-машину, обеспечивающую непрерывную Мощность постоянного тока

1867 — Вернер фон Сименс и Чарльз Уитстон создают более мощная и более полезная динамо-машина, в которой использовался электромагнит с автономным питанием. в статоре вместо слабого постоянного магнита.

1871 — Зеноби Грамме зажгла коммерческая революция электричества. Он заполнил магнитное поле железный сердечник, который сделал лучший путь для магнитного потока. Это увеличило мощность динамо-машины до такой степени, что ее можно было использовать для многих коммерческих Приложения.

1870-е — Произошел взрыв новых конструкций динамо-машин, конструкций располагался в диком ассортименте, лишь немногие выделялись превосходством в эффективность.

1876 — Чарльз Ф. Браш (Огайо) разработала самую эффективную и надежную конструкцию динамо-машины. к этому моменту. Его изобретения продавались через Telegraph Supply. Компания.

1877 — Франклин Институт (Филадельфия) проводит испытания динамо-машин со всего мира. Публичность этого события стимулирует развитие других, таких как Элиу. Томсон, лорд Кельвин и Томас Эдисон.

Выше: Длинноногая Мэри Эдисона, коммерчески успешная динамо-машина для его системы постоянного тока 1884

1878 — Компания Ganz начинает использовать генераторов переменного тока в небольших коммерческих установки в Будапеште.

1880 — Чарльз У Ф. Браша было более 5000 дуговых ламп в эксплуатации, что представляет 80 процентов всех ламп в мире. Экономическая сила электричества возраст начался.

1880-1886 — Системы переменного тока разрабатываются в Европе совместно с Siemens, Сабастьян Ферранти, Люсьен Голар и другие. Динамо DC правит лидерство на прибыльном американском рынке, многие скептически инвестировать в АС. Генераторы переменного тока были мощными, однако генератор само по себе не было самой большой проблемой. Системы управления и распределения мощности переменного тока необходимо улучшить, прежде чем она сможет конкурировать с ДК на рынке.

1886 — В изобретатели североамериканского рынка, такие как William Стэнли , Джордж Вестингауз, Никола Тесла и Элиу Thomson разрабатывает собственный кондиционер системы и схемы генераторов. Большинство из них использовали Сименс и генераторы Ферранти как основу их изучения. Уильям Стэнли быстро смог изобрести лучший генератор, будучи неудовлетворенным с генератором Сименса, который он использовал в своем первом эксперимент.

Выше: Генераторы переменного тока Siemens использовались в Лондоне в 1885 году, в США Эдисон не хотел прыгнуть в область переменного тока, в то время как в Европе технология развивалась быстро.


1886-1891 — Многофазные Генераторы переменного тока разработаны CS Bradly (США), August Haselwander. (Германия), Михаил Доливо-Добровский (Германия/Россия), Галилео Феррарис (Италия) и др. Системы переменного тока, которые включают в себя лучший контроль и мощный электродвигатели позволяют переменному току конкурировать.


1891 — Трехфазный Сила переменного тока оказалась лучшей системой для производства электроэнергии и распространение на Международном Электротехническая выставка во Франкфурте.

Трехфазный генератор конструкции Михаила Доливо-Добровского на выставке видно слева.

1892 — Чарльз П. Стейнмец представляет свой доклад AIEE по гистерезису. понимание Штайнмеца математики переменного тока публикуется и помогает революционизировать Проектирование энергосистемы переменного тока, включая большие генераторы переменного тока.

1890-е годы — Генератор дизайн быстро улучшается благодаря коммерческим продажам и имеющиеся деньги на исследования. Вестингауз, Сименс, Эрликон, и General Electric разрабатывают самые мощные генераторы в мире. Некоторые генераторы все еще работают 115 годы спустя. (Механивилл, Нью-Йорк)

Выше: 1894 Элиу Томсон разработал множество Генераторы переменного тока для General Electric

Более поздний генератор Westinghouse 2000 кВт 270 Вольт от после 1900

3. Видео

Механивилль Генераторы с объяснением истории (1897 г.), разработанные вдохновителем переменного тока. Чарльз П. Стейнмец

Генератор Westinghouse в настоящее время построен и испытан (1905 г. ), спроектирован Оливером Шалленбергером, Тесла и другие в Westinghouse.

1895 Ранние мощные генераторы используется в Фолсоме, Калифорния (разработан Элиу Томпсоном, доктором Луи Беллом и другие в GE)

1891 Генератор производства Oerlikon для Международной электротехнической выставки (разработан Добровольского в Германии)

Связанные темы:


Тепловозы электрические

Трансформеры

История питания переменного тока

Силовая передача

Электродвигатели

Провода и кабели

Источники:
-The General Electric Story — Зал истории , Скенектади, Нью-Йорк, 1989 г. Второе издание
— Википедия (Генераторы, Чарльз Браш)
— Википедия (Коммутатор)
— Принципы электричества — General Electric
— История переменного тока — Технический центр Эдисона
— Руководство по электрике Хокинса

Фотографии / Видео:
-Авторское право 2011 Технический центр Эдисона. Снято на месте в Немецком музее, Мюнхен
— Некоторые генераторы сфотографированы в Техническом центре Эдисона, Скенектади, NY

Как работают генераторы | Электрические генераторы

Электрические генераторы — это автономные машины, которые обеспечивают электроэнергию, когда питание из местной сети недоступно. Промышленные генераторы часто используются для резервного питания объектов, предприятий или домов во время перебоев в подаче электроэнергии, но их также можно использовать в качестве основного источника питания в районах, где местная электрическая сеть недоступна или труднодоступна, например, при добыче полезных ископаемых и сельском хозяйстве или даже новые разработки и строительство.

Можно купить генератор практически для любых нужд. Некоторые электрические генераторы представляют собой небольшие портативные устройства, которые используются для кемпинга или хобби, чтобы обеспечить небольшое количество энергии для нескольких устройств. Другие представляют собой стационарные установки, которые могут питать весь дом. Промышленные генераторы еще более мощные, они способны обеспечить полную мощность производственных помещений, больниц и офисных комплексов.

Существуют дизельные генераторы, генераторы на природном газе, генераторы на пропане и генераторы на двух видах топлива. Ниже мы рассмотрим, как работают электрические генераторы и что вам нужно знать для установки и обслуживания генератора.

Как генераторы производят электричество?

Генераторы на самом деле не производят электричества. Вместо этого они преобразуют механическую или химическую энергию в электрическую энергию. Они делают это, улавливая силу движения и превращая ее в электрическую энергию, заставляя электроны из внешнего источника проходить через электрическую цепь. Генератор — это, по сути, электрический двигатель, работающий в обратном направлении.

Некоторые электрические генераторы, такие как, например, на плотине Гувера, огромны и производят огромное количество энергии, превращая мощность, создаваемую водяными турбинами, в электричество. Однако бытовые и коммерческие генераторы намного меньше по размеру и полагаются на более традиционные источники топлива, такие как дизельное топливо, газ и пропан, для создания механической энергии, которая затем может быть включена в цепь и индуцировать электрический ток.

Как только электрический ток установлен, он направляется по медным проводам для питания внешних машин, устройств или целых электрических систем.

Современные генераторы можно отнести к принципу электромагнитной индукции Майкла Фарадея. Фарадей обнаружил, что когда проводник движется в магнитном поле, могут создаваться электрические заряды, которые направляются для создания потока тока. По сути, электрический генератор — это не что иное, как электромагнит — движущаяся проволока рядом с магнитом, чтобы направить поток электричества. Это похоже на то, как насос проталкивает воду через трубу.

Из каких частей состоит электрический генератор?

Генератор состоит из девяти частей, и все они играют роль в подаче энергии туда, где она больше всего нужна. Частями генератора являются:

  1. Двигатель. Двигатель подает энергию на генератор. Мощность двигателя определяет, сколько электроэнергии может обеспечить генератор.
  1. Генератор . Здесь происходит преобразование механической энергии в электрическую. Генератор переменного тока, также называемый «генератором», содержит как движущиеся, так и неподвижные части, которые работают вместе для создания электромагнитного поля и движения электронов, вырабатывающих электричество.
  1. Топливная система . Топливная система позволяет генератору производить необходимую энергию. Система включает в себя топливный бак, топливный насос, трубу, соединяющую бак с двигателем, и возвратную трубу. Топливный фильтр удаляет мусор до того, как он попадет в двигатель, а форсунка нагнетает топливо в камеру сгорания.
  1. Регулятор напряжения . Этот компонент помогает контролировать напряжение производимого электричества. Это также помогает преобразовать электричество из переменного тока в постоянный, если это необходимо.
  1. Системы охлаждения и выпуска . Генераторы производят много тепла. Система охлаждения гарантирует, что машина не перегревается. Выхлопная система направляет и удаляет пары, образующиеся во время работы.
  1. Система смазки . Внутри генератора много мелких движущихся частей. Очень важно правильно смазывать их моторным маслом, чтобы обеспечить плавную работу и защитить их от чрезмерного износа. Уровни смазки следует проверять регулярно, каждые 8 ​​часов работы.
  1. Зарядное устройство . Батареи используются для запуска генератора. Зарядное устройство аккумулятора — это полностью автоматический компонент, который обеспечивает готовность аккумулятора к работе, когда это необходимо, путем подачи на него постоянного низкого уровня напряжения.
  1. Панель управления . Панель управления управляет всеми аспектами работы генератора, от запуска и рабочей скорости до выходных сигналов. Современные устройства даже способны определять падение или пропадание напряжения и могут автоматически запускать или выключать генератор.
  1. Основная сборка/рама . Это корпус генератора. Это та часть, которую мы видим; структура, которая держит все это на месте.

Какое топливо нужно для электрических генераторов?

Современные электрические генераторы доступны с различными вариантами заправки. Дизельные генераторы являются самыми популярными промышленными генераторами на рынке. Бытовые генераторы чаще включают: генераторы природного газа или генераторы пропана, в то время как портативные генераторы меньшего размера обычно работают на бензине, дизельном топливе или пропане. Некоторые генераторы могут работать на двух видах топлива — как на бензине, так и на дизельном топливе.

 

 

Топливные баки генератора

Топливная система обеспечивает наличие в генераторе необходимого сырья для выработки электроэнергии путем запуска процесса внутреннего сгорания. Без топлива не может происходить горение, и генератор не может преобразовать созданную механическую энергию в электрическую. Топливо для генератора должно храниться на месте, чтобы при необходимости генератор можно было немедленно запустить в эксплуатацию.

В зависимости от типа генератора и его применения топливные баки могут быть установлены на раме генератора или могут быть внешними баками, расположенными далеко от самого генератора. Как правило, чем больше генератор и чем дольше он должен работать, тем больше топливный бак. Генераторное топливо хранится в баках различной емкости, в зависимости от предполагаемого использования генератора и требуемой мощности. Резервуары могут располагаться над землей, под землей или на подбазе. Базовые баки предназначены для хранения менее 1000 галлонов топлива и расположены над землей, но ниже основания генераторной установки.

Надземные и подземные резервуары для хранения топлива для генераторов являются лучшим выбором для нужд большой емкости. Подземные резервуары для хранения более дороги в установке, но они, как правило, служат дольше, поскольку защищены от непогоды. У обоих типов резервуаров для хранения топлива есть свои плюсы и минусы, но вы не будете одиноки в принятии решения. Топливные баки генераторов и топливные системы генераторов должны соответствовать нескольким требованиям правил и разрешений, прежде чем их можно будет установить, независимо от того, предназначена ли установка для бытового или коммерческого использования.

Основными нормами, регулирующими топливные баки генераторов в Соединенных Штатах, являются нормы и стандарты Национальной ассоциации противопожарной защиты (NFPA), особенно разделы NFPA 30 и NFPA 37. Таким образом, все запросы на топливный бак генератора должны быть представлены в штат Начальнику пожарной охраны на утверждение.

Чтобы определить минимальную емкость топливного бака, необходимо подумать о том, как вы собираетесь использовать генератор. Для коротких или нечастых отключений электроэнергии может быть приемлемым резервный генератор с меньшим резервуаром для хранения, однако вам нужно будет заправлять резервуар чаще, чем вам придется заправлять большие резервуары. Резервуары большего размера могут потребоваться, если вы планируете питать большой коммерческий объект с помощью основного генератора или если вы подвержены длительным и частым перебоям в подаче электроэнергии.

Ваш поставщик генератора может помочь вам определить оптимальный размер топливного бака, чтобы обеспечить достаточное количество топлива, когда оно вам понадобится. Еще одна вещь, о которой следует помнить как при покупке генератора, так и при выборе резервуара для хранения топлива для генератора, — это стоимость и доступность топлива в вашем регионе. Перед покупкой генератора рекомендуется поговорить с местными поставщиками топлива, чтобы лучше понять стоимость и логистику, связанные с получением топлива для генератора.

Выхлопные системы генераторов и средства контроля выбросов

Так как машины работают на ископаемом топливе и работают непрерывно, даже если это время работы непостоянно, генераторы должны быть оснащены компонентами для их охлаждения и фильтрации выбросов. Системы охлаждения и вентиляции генераторов уменьшают и отводят тепло различными способами:

  • Вода. Вода может использоваться для охлаждения компонентов генератора. Этот тип системы охлаждения обычно ограничивается конкретными ситуациями или очень большими агрегатами мощностью 2250 кВт и выше.
  • Водород. Водород является очень эффективным хладагентом, который используется для поглощения тепла, выделяемого работающим генератором. Тепло передается в теплообменник и вторичный контур охлаждения, часто расположенные в больших градирнях на месте.
  • Радиаторы и вентиляторы. Генераторы меньшего размера охлаждаются с помощью комбинации стандартного радиатора и вентилятора.

Выхлопные газы генераторов аналогичны выхлопным газам других газовых или дизельных двигателей. Они включают в себя токсичные химические вещества, такие как углекислый газ, которые должны быть отфильтрованы и удалены из выбросов. Выхлопная система генератора справляется с этой задачей.

Выхлопные трубы подсоединены к двигателю и направляют выхлопные газы вверх, наружу и в сторону от генератора и установки. Труба выходит за пределы здания, в котором находится генератор, и должна заканчиваться вдали от дверей, окон и других мест забора воздуха.

Помимо выхлопных систем, некоторые генераторы подлежат федеральному контролю за выбросами. Контролируемые выбросы генератора: оксид азота (NOx), углеводороды, окись углерода (CO) и твердые частицы.

Как правило, аварийные генераторы и генераторы, работающие менее 100 часов в год, не подпадают под действие федеральных требований по выбросам генераторов, однако на постоянно установленные основные генераторы и резервные генераторы распространяются федеральные требования по выбросам в соответствии с тремя правилами EPA:

  • Национальный стандарт выбросов опасных загрязнителей воздуха (NESHAP) – для поршневых двигателей внутреннего сгорания (RICE). 40 Свод федеральных правил, часть 63, подраздел ZZZZ. Также известен как правило RICE.
  • Стандарты характеристик нового источника (NSPS) – стандарты характеристик стационарных двигателей с искровым зажиганием . 40 CFR, часть 60, подраздел JJJJ. Также известен как правило искрового зажигания NSPS.
  • Стандарты характеристик стационарных двигателей внутреннего сгорания с воспламенением от сжатия . 40 CFR, часть 60, подраздел IIII. Также известен как правило сжатия Ignition NSPS.

Хорошей новостью является то, что многие новые генераторные установки уже соответствуют стандартам по выбросам генераторов благодаря производственным усовершенствованиям. Старые генераторные установки могут быть унаследованы, что освобождает их от федеральных правил и подчиняется только государственным и местным стандартам выбросов. Требования к контролю выбросов различаются в зависимости от производителя, размера генератора и даты производства, поэтому лучший способ определить ваши требования к выбросам — это поговорить с вашим дилером или производителем генератора.

Для более подробного ознакомления с нормами выбросов см. информационный документ Cummins «Влияние норм выбросов Уровня 4 на электроэнергетику».

Панель управления генератором и автоматический ввод резерва (АВР)

Одним из наиболее важных компонентов современных генераторов является панель управления генератором. Панель управления — это мозг генератора, а также пользовательский интерфейс генератора; точка, в которой вы будете получать доступ и управлять работой генератора.

Многие панели управления оснащены автоматическим переключателем ввода резерва (АВР), который постоянно контролирует поступающую мощность. Когда уровень мощности падает или полностью отключается, АВР подает на панель управления сигнал о запуске генератора. Аналогичным образом, когда поступающее питание восстанавливается, АВР подает на панель управления сигнал об отключении генератора и повторном подключении к электросети.

В дополнение к круглосуточному мониторингу, панель управления генератором предоставляет обширную информацию для руководителей объектов:

  • Датчики двигателя предоставляют важную информацию об уровнях масла и жидкостей, напряжении аккумуляторной батареи, частоте вращения двигателя и часах работы. Во многих генераторных установках панель даже автоматически выключает двигатель при обнаружении проблемы с уровнем жидкости или другими аспектами работы генератора.
  • Датчики генератора предоставляют ценную информацию о выходном токе, напряжении и рабочей частоте.

Какое обслуживание требуется генератору?

Генераторы — это двигатели, требующие планового технического обслуживания для обеспечения правильной работы. Поскольку многие генераторы используются для обеспечения резервного питания в случае возникновения чрезвычайных ситуаций, для операторов крайне важно проводить регулярные проверки и проверки своих генераторных установок, чтобы гарантировать, что машина будет работать так, как это необходимо, когда это необходимо.

Наилучший план технического обслуживания генератора — тот, который рекомендован производителем, но, как минимум, все планы технического обслуживания генератора должны включать регулярное и плановое:

  • Проверка и удаление изношенных деталей.
  • Проверка уровней жидкостей, включая охлаждающую жидкость и топливо.
  • Осмотр и очистка аккумулятора.
  • Проведение проверки блока нагрузки на генератор и автоматический ввод резерва.
  • Проверка панели управления на точность показаний и индикаторов.
  • Замена воздушного и топливного фильтров.
  • Проверка системы охлаждения.
  • Смазка деталей по мере необходимости.

Обязательно ведите журнал обслуживания для учета. Включите все показания, уровни жидкости и т. д., а также дату и показания счетчика моточасов генератора. Эти записи можно сравнивать с будущими записями и использовать для обнаружения отклонений или изменений в работе, которые могут указать вам на скрытые проблемы, которые могут стать серьезными проблемами, если их не проверить.

При правильном обслуживании генераторы могут работать десятилетиями. Эти простые небольшие вложения со временем окупятся за счет экономии на дорогостоящем ремонте или даже полной замене генераторной установки. Если техническое обслуживание генератора не является чем-то, чем вы можете управлять своими силами, многие дилеры генераторов предлагают контракты на техническое обслуживание или могут порекомендовать квалифицированных специалистов по техническому обслуживанию, которые помогут вам поддерживать ваш генератор в отличной форме год за годом, год за годом. Время и деньги потрачены не зря, если они могут поддерживать ваш бизнес в рабочем состоянии, когда отключается электричество.

Как определить размер генератора?

Самая важная часть установки резервного или основного генератора — правильно подобрать размер. Негабаритные генераторы не смогут предоставить вам всю необходимую мощность, и вам придется выбирать, какие электрические компоненты будут получать питание от генератора, а какие нет. Хуже того, работа малогабаритной машины может привести к перегрузке устройства, что приведет к отключению генератора в середине работы, может привести к преждевременному отказу генератора и, возможно, к повреждению подключенных к нему устройств.

Некоторые считают допустимой установку резервного генератора меньшего размера, чем необходимо, поскольку он не будет работать все время, но это ошибочная логика, поскольку, когда требуется резервный генератор, он должен питать все предприятие. Другими словами, вам по-прежнему требуется, чтобы генератор обеспечивал определенное количество энергии, независимо от того, работает ли генератор постоянно или только в аварийном режиме.

Как правило, лучше купить генератор большего размера, чем маленький, но и у генераторов больших размеров есть свои недостатки. Установка генератора, который обеспечивает гораздо большую мощность, чем вам нужно, является пустой тратой ресурсов. Вы перерасходуете на саму генераторную установку, потратите на топливо и другие расходные материалы больше, чем вам нужно, а также рискуете повредить подключенные к генератору устройства.

Генераторы мощностью от 5 кВт до 50 кВт для жилых помещений и от 50 кВт до более 3 МВт для коммерческих и промышленных рынков, что дает покупателям широкий выбор, но также вызывает множество вопросов относительно того, какой генератор подходит для них. Правильный выбор размера генератора включает в себя несколько факторов и соображений. Лучший способ убедиться, что вы правильно определили размер генератора, — это проконсультироваться с сертифицированным электриком. Электрик может определить ваши точные потребности в электроэнергии, мощность вашей электрической системы и любые необходимые обновления, а также то, как лучше всего установить генератор.

Тем не менее, вы можете сами составить представление о своих потребностях в электроэнергии:

  • Составив список всего, что должно питаться от генератора .
  • Отметив пусковую и рабочую мощность каждого из этих элементов . Вы можете найти эту информацию на идентификационной табличке устройства или в руководстве пользователя.
  • Расчет общей потребляемой мощности в кВА или кВт . Некоторые устройства обеспечивают требования к мощности в амперах. Вам нужно будет преобразовать ампер в кВт или кВА, чтобы определить требования к мощности. Используйте этот калькулятор мощности для расчета конверсий.

Как только у вас будет полная мощность, необходимая для объекта, вы сможете купить генератор, который наилучшим образом соответствует вашим потребностям. Подержанные и излишки генераторов — отличный способ сэкономить деньги и при этом получить качественную машину. Поскольку генераторы настолько прочны и долговечны, даже бывшие в употреблении генераторы в хорошем состоянии имеют большой срок службы. Поставщики генераторов с хорошей репутацией проверят устройство на наличие проблем и изучат журнал технического обслуживания и, возможно, даже произведут необходимый ремонт, прежде чем выставить генератор на продажу. Пока у вас есть запись о техническом обслуживании и вы знаете историю генератора, нет причин уклоняться от бывших в употреблении генераторов. Избыточные генераторы предлагают аналогичные преимущества, но без них или с очень небольшим количеством часов работы машины.

Где я могу купить генератор?

В США есть множество поставщиков генераторов, от магазинов товаров для дома до самих производителей генераторов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *