Закрыть

Из чего состоит ротор электродвигателя: Ротор электродвигателя » Гиброид.ру

Содержание

Ротор электродвигателя » Гиброид.ру

Ротор электродвигателя — это подвижная часть, в машинах переменного тока его роль исполняет якорь. Электродвигатель – это машина, которая преобразует электрическую энергию в механическую. Электрическая машина состоит из неподвижной и подвижной частей – статора и ротора. Ротор электродвигателя постоянного тока часто называют якорем.

Различают короткозамкнутые и фазные роторы. Фазные используются с обмоткой и применяются в тех случаях, когда необходимо уменьшить пусковой ток, а также регулировать частоту вращения асинхронного электродвигателя. Такие двигатели раньше использовались в крановых установках, теперь же на смену фазным роторам пришли преобразователи частоты.

При включении машины в электрическую сеть в статоре возникает магнитное поле, которое пронизывает обмотку ротора, тем самым, наводя в ней ток индукции и приводя его во вращение. Если используется преобразователь частоты вращения, то часто вращение ротора устанавливается вручную. Если же такое устройство не применяется, то частота вращения зависит от числа пар полюсов и частоты питающего напряжения. Разность между частотами вращения магнитного поля подвижной и неподвижной частей характеризуется скольжением. Если эти частоты не совпадают между собой, то двигатель называется асинхронным. Конструкция подвижной части синхронного двигателя отличается. Она выполнена либо с постоянным магнитом, либо с электромагнитом, который имеет в себе часть беличьей клетки для запуска. В синхронных двигателях частоты вращения магнитных полей статора и ротора совпадают.

Ротор асинхронного электродвигателя состоит из листов электромеханической стали, и может быть выполнен с контактными кольцами либо короткозамкнутым с беличьей клеткой. При короткозамкнутой конструкции обмотка состоит из металлических стержней (чаще всего бронза, медь или алюминий), которые располагаются в пазах и соединены на концах кольцами. Соединение колец осуществляется с помощью припоя или сварки. Если же стержни изготавливаются из алюминия или алюминиевых сплавов, то припой и сварку провести нельзя. В таком случае необходимо выполнять кольца, вместе с расположенными на них лопастями, в виде литой детали или же штамповкой под давлением.

Ротор электродвигателя с контактными кольцами в пазах имеет трехфазную обмотку, которая очень похожа на обмотку статора, включенную в цепь соединением типа «Звезда». Начала фаз соединяются с контактными кольцами, которые закреплены на концах валов. Для регулирования частоты вращения и для плавного пуска двигателя можно к фазам обмотки через кольца и щетки подключить реостаты. После того, как подвижная часть двигателя успешно разгонится, контактные кольца накоротко замыкаются.

В шаговых электродвигателях ротор устанавливается с дискретным угловым перемещением. Заданное положение вала фиксируется с помощью подачи питания на соответствующую обмотку. Для того чтобы перейти в другое положение необходимо снять напряжение с одной обмотки и подать на другую. В вентильных электродвигателях питание обмоток осуществляется с помощью полупроводниковых элементов.

Ротор электродвигателя - что это?

В каждом аппарате, работающем от электрической энергии, используется такое устройство как электродвигатель, который состоит из статора – неподвижной части и ротора – подвижной. Далеко не каждому известно что такое ротор электродвигателя и какие его функции, поэтому, возникают ложные представления.


Состоит ротор из цилиндра, составленного из листов штампованной электротехнической стали, которые одеты на вал. По своей природе роторы бывают фазными и короткозамкнутыми. Фазные роторы имеют обмотку трёхфазного типа со схемой соединения «звезда» и вращающимися вместе с валом контактными кольцами. К данным кольцам с помощью определённых щёток возможно подключить:

  • дроссели для удержания токов ротора и стабилизации работы электродвигателя в моменты возможных перегрузок и падения оборотов;
  • источник постоянного тока;
  • пускорегулирующий реостат, для увеличения пускового момента с помощью снижения пускового тока;
  • инверторное питание, для управления моментных характеристик и оборотов двигателя.

Таким образом, фазные роторы снабжают асинхронные электродвигатели  рабочей стабильностью, позволяя использовать их в различных установках по типу мостовых кранов и других устройств, где не требуются широкая и плавна регулировка скорости электродвигателей большой мощности.

Короткозамкнутый ротор, имеющий обмотку с названием «беличье колесо» состоит из вставленных в сердечник стержней алюминиевого или медного происхождения и коротко замыкающих колец с торцевым лопастями. Для улучшения его пусковые характеристики на роторе выполняют паз специальной формы, создающий из-за своей неординарной относительно оси вращения структуры эффект вытеснения тока, вызывающего большие показатели сопротивлений, например, при пуске. Применяют такие роторы в двигателях асинхронного типа в приводах, которые не используют большие пусковые моменты, например, это могут быть водные насосы небольших мощностей без возможности регулировки рабочей скорости.

Среди всех преимуществ двигателей с короткозамкнутым ротором можно выделить:

  • практически одинаковая скорость с применением разных нагрузок;
  • допустимость больших рабочих перегрузок;
  • простота и удобство автоматизации пуска;
  • высокие показатели КПД;
  • конструктивная простота.

Как видим, хотя внешне и функционально роторы и имеют различия, влияющие существенно на область их применения, используются они в равных долях во всех сферах деятельности человека. Так, электродвигатели от Siemens изготавливаются с роторами и того и другого типа, что способствовало крупному внедрению этих агрегатов во многие производственные процессы.

Так же, кроме вышеперечисленных типов ротора стоит отметить и существование массивного ротора, состоящего из материала ферромагнитного происхождения, играющего роль магнитопровода и проводника одновременно. Быть может он не нашёл столь широкого применения как фазный ли короткозамкнутый, но имеет ряд преимуществ:

  • низкая себестоимость;
  • простота изготовления;
  • высокий пусковой момент;
  • высоких показатель механической прочности, что немаловажно в машинах работающих на высоких скоростях.
Электродвигатели

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Строение электродвигателя и его особенности

Электродвигатель – это устройство, назначение которого преобразовывать энергию электрическую в энергию механическую. Его главными элементами, которые помогают выполнять данное условие, являются ротор и статор. При этом, ротор – это вращающийся компонент двигателя, в то время как статор находится в неподвижном состоянии. Благодаря подаваемому напряжению возникает электромагнитное поле, которое и вращает ротор, выполняя механические действия. В зависимости о того, какие принципы используются в устройстве электродвигателей, их различают по следующим параметрам:

  1. По типу питания:
    • Электродвигатели постоянного тока, работающие от блоков питания, аккумуляторных батарей и прочих источников;
    • Электродвигатели переменного тока, работающие от электрических сетей.
  2. По принципу работы:
  • Синхронные, состоящие из обмоток на роторе и щёточного механизма, предназначенного для подачи электрического тока на эти же обмотки;
  • Асинхронные двигатели, не имеющие на роторе ни щёток, ни обмоток. Скорость вращения такого мотора медленнее, чем у созданного магнитного поля статора, что отличается от синхронных.

На сегодняшний день, любой каталог электродвигателей имеет в своём наборе больше агрегатов асинхронного действия. В корпусе такого двигателя установлены обмотки статора, создающие при вращении магнитное поле. Для охлаждения такой системы используется вентилятор, устанавливаемый на конце вала электродвигателя. При этом понятно, что вал и ротор являются одним целым. Изготовляется он из металлических, замкнутых между собой с обеих сторон стержней. Такая конструкция считается самой долговечной, надёжной и безотказной. Поэтому, если поломки и возникают, то это получается не из-за износа стержней, а через короткие замыкания либо износ подшипников.

Если же необходимо вращение в постоянной скорости с возможностью её регулировки, особенно в бытовых условиях, используют синхронный электродвигатель, работающий на переменном токе. Этот тип двигателя, не превосходит асинхронный в системе защиты от перепадов напряжения, коротких замыканий и прочих воздействий, поэтому, применяемая система плавного пуска электродвигателя здесь будет так же обязательным условием. Состоит синхронный двигатель из следующих элементов:

  • металлический корпус;
  • обмотки полюса;
  • ротор или якорь, на котором имеются обмотки;
  • коллектор или токосъёмное кольцо, к которым припаяны выводы с упомянутых выше обмоток;
  • графитовые стержни, передающие напряжение на коллектор.

В процессе работы синхронного двигателя между потоком магнитных полей в обмотке возбуждения и током ротора возникает взаимодействие, которое создаёт вращающий момент. Если выполнять смену направления тока, будет выполняться и смена направления магнитных потоков. Это явление будет поддерживать вращение вала в одном и том же направлении. Для смены скорости таких двигателей, прежде всего, используют метод изменения напряжения, подаваемого в определённой величине на электродвигатель. Благодаря видоизменениям конструкций и мощностным показателям, двигатели переменного тока представлены к продаже в самом разнообразном модельном ряде, позволяющим использовать приводы не только в промышленных целях, но и бытовых, сельскохозяйственных и многих прочих.

Электродвигатели

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Строение ротора асинхронного двигателя - Морской флот

Немало техники — бытовой, строительной, производственной имеют двигатели.

Если задаться целью и проверить тип мотора, в 90% окажется, что стоит асинхронный двигатель. Это обусловлено простотой конструкции, высоким КПД, отсутствием электрического контакта с движущейся частью (в моделях с короткозамкнутым ротором). В общем, причин достаточно.

Что такое асинхронный двигатель и принцип его действия

Любой электродвигатель — устройство для преобразования электрической энергии в механическую. Электрический двигатель состоит из неподвижной (статор) и подвижной части (ротор). Строение статора таково, что он имеет вид полого цилиндра, внутри которого имеется обмотка. В это цилиндрическое отверстие вставляется подвижная часть — ротор. Он также имеет вид цилиндра, но меньшего размера. Между статором и ротором имеется воздушный зазор, позволяющий ротору свободно вращаться. Ротор вращается из-за наводимых магнитным полем статора токов. По способу вращения двигатели делят на синхронные и асинхронные.

Так выглядит разобранный асинхронный двигатель с короткозамкнутым ротором

Асинхронный электродвигатель отличается тем, что частота вращения ротора и магнитного поля, создаваемого статором, у него неравны. То есть, ротор вращается несинхронно с полем, что и дало название этому типу машин. Характерно, в рабочем режиме скорость его вращения меньше. Второе название этого типа двигателей — индукционные. Это название связано с тем, что движение происходит за счёт наводимых на нём токов индукции.

Асинхронный двигатель в разобранном виде: основные узлы и части

Коротко описать принцип работы асинхронного двигателя можно так. При включении мотора на обмотки статора подаётся ток, из-за чего возникает переменное магнитное поле. В область действия силовых линий этого попадает ротор, который начинает вращаться вслед за переменным полем статора.

Статор

Статор асинхронного двигателя состоит из трёх частей: корпуса, сердечника и обмотки. Корпус статора служит в качестве опоры для электродвигателя. Изготавливают его из стали или чугуна, сваркой или литьём. К прочности корпуса предъявляются высокие требования, так как при работе возникают вибрации в результате которых может сместиться ротор, что приведёт к заклиниванию мотора и выходу его из строя.

Статор асинхронного двигателя

Есть и ещё одно требование — геометрия корпуса должна быть идеальной. Между обмоткой статора и ротором зазор делают в несколько миллиметров, так что малейшие отклонения могут быть критичны.

Сердечник статора

Сердечник статора асинхронного электродвигателя изготавливают из наборных металлических пластин. Так как сердечник является магнитопроводом, металл используется магнитная электротехническая сталь. Для уменьшения потерь из-за вихревых потоков сердечник набирается из пластин, покрытых слоем диэлектрика (лак).

Сердечник статора набирается из тонких металлических изолированных пластин

Толщина одной пластины — 0,35-0,5 мм. Они собираются в единый пакет, так чтобы пазы всех пластин совпадали. В эти пазы затем укладываются витки обмотки.

Обмотка статора и количество оборотов электродвигателя

Статор асинхронного электромотора чаще всего имеет трёхфазную обмотку возбуждения. Она называется так, потому что является причиной движения ротора. Обмотка статора состоит из катушек, навитых из медной проволоки которые укладываются в пазы сердечника. Каждая обмотка может состоять из нескольких витков проволоки или из одного витка. Провод используется специальный, с лаковым покрытием, которое изолирует витки друг от друга и от стенок сердечника.

Как уже говорили, чаще всего обмотка статора асинхронного двигателя имеет три фазы. В этом случае оси катушек расположены со сдвигом 120°. При таком строении магнитное поле имеет два полюса и делает один полный оборот за один цикл трёхфазного питания. При частоте в электросети равной 50 Гц, скорость вращения поля (и ротора) 50 об/сек или 3000 об/мин.

Укладка катушек обмотки статора асинхронного двигателя

Для уменьшения скорости вращения ротора в асинхронном двигателе обмотку делают с большим количеством полюсов. Так с четырехполюсным стартером скорость вращения будет вдвое меньше — 1500 об/мин. Обмотка с шестью полюсами статора даёт втрое меньшую скорость — 1000 об/мин. С восемью полюсами — в четыре раза меньше, т. е. 750 об/мин. Ещё более «медленные» электромоторы делают очень редко.

Концы обмоток статора выводятся на клеммную коробку корпуса. Тут они могут соединяться по принципу «звезда» или «треугольник» в зависимости от типа подаваемого питания (220 В или 380 В).

Ротор

Ротор асинхронного электродвигателя бывает двух видов: короткозамкнутым и фазным. Чаще всего встречаются машины с короткозамкнутым ротором. Их преимущество в простоте конструкция и несложной технологии изготовления. Что еще важно, в таких моторах отсутствует контакт с динамической конструкцией. Это повышает долговечность, делает обслуживание более редким и простым.

Асинхронный двигатель может быть с короткозамкнутым и фазным

Асинхронные электромоторы с фазным ротором имеют более сложную конструкцию. Но они позволяют плавно регулировать скорость без дополнительных устройств, со старта имеют высокий крутящий момент. Так что приходится выбирать: более простая конструкция или возможность регулировки скорости вращения.

Устройство короткозамкнутого ротора

Ротор состоит из вала и цилиндрической конструкции из короткозамкнутых стержней. Внешне эта конструкция очень напоминает беличье колесо, поэтому так часто называют короткозамкнутую обмотку ротора.

Устройство короткозамкнутого ротора

Изначально и стержни, и замыкающие кольца изготавливались из меди. Роторы современных асинхронных двигателей мощностью до 100 кВт делают из алюминиевых стержней, с алюминиевыми же замыкающими дисками. Расстояние между стержнями заливается снова-таки алюминиевым сплавом. Получается короткозамкнутый ротор, но уже со сплошным покрытием.

Так как при работе выделяется значительное количество тепла, для охлаждения перемычки «беличьего колеса» делают с дополнительными вентиляционными лопатками. Так во время работы происходит самоохлаждение. Оно работает тем эффективнее, чем выше скорость вращения.

Как устроен асинхронный двигатель: устройство и компоновка деталей

Ротор устанавливается в статор, концы вала фиксируются при помощи крышек с вмонтированными подшипниками. Это двигатель без щеток (безщеточный). Никаких дополнительных контактов и электрических соединений. Подвижная часть мотора начинает вращаться при наличии магнитного поля на статоре. Оно возникает после подачи питания. Это поле вращается, заставляя вращаться и предметы, которые находятся в его поле. Простая и надёжная конструкция, которая обусловила популярность электрических двигателей этого типа.

Как сделан фазный ротор

Устройство фазного ротора мало чем отличается от обмотки статора. Те же наборные кольца с пазами под укладку медных катушек. Количество обмоток ротора три, соединены они обычно «звездой».

Так выглядит фазный ротор асинхронного двигателя

Концы роторных обмоток крепят к контактным кольцам из меди. Эти кольца жёстко закреплены на валу. Кроме того, они обязательно изолированы между собой, не имеют электрического контакта со стальным валом (крепятся к стержню через диэлектрические прокладки). Так как наличие колец отличительная черта этого типа движков, иногда их называют кольцевыми.

Асинхронный двигатель с фазным ротором

Для фиксации ротора к корпусу статора делают две крышки с подшипниками. На одной из крышек закрепляются щетки, которые прижимаются к кольцам на валу, за счёт чего имеют с ними хороший контакт. Для регулировки скорости вращения щетки соединены с реостатом. Изменяя его сопротивление, меняем напряжение, а с ним и скорость вращения.

Что лучше короткозамкнутый или фазный?

Несмотря на то что двигатели с фазовым ротором лучше стартуют, позволяют в процессе работы плавно менять скорость при помощи обычного реостата, чаще применяется моторы короткозамкнутого типа. В этой конструкции отсутствуют щетки, которые выходят из строя первыми. Кроме того, более простое устройство подвижной части снижает стоимость двигателя, агрегат служит дольше, уход и техобслуживание проще.

Какой лучше: короткозамкнутый ротор или фазный

Тем не менее стоит более подробно ознакомиться с достоинствами и недостатками обоих типов асинхронных двигателей. Итак, достоинства короткозамкнутого асинхронного двигателя:

  • Простая конструкция.
  • Лёгкое обслуживание.
  • Более высокий КПД.
  • Нет искрообразования.
  • Малый пусковой крутящий момент.
  • Высокий пусковой ток (в 4-7 раз выше номинального).
  • Нет возможности регулировать скорость.

Магнитное поле трехфазного статора толкает ротор

Из-за высокого пускового тока прямое включение допускается для двигателей мощностью до 200 кВт. Более мощные требуют пускорегулирующей аппаратуры. Обычно используют частотный преобразователь, который плавно увеличивает ток, обеспечивая плавный старт без перегрузок.

Преимущество асинхронного фазного двигателя:

  • Быстрый и беспроблемный старт.
  • Позволяет менять скорость в процессе работы.
  • Прямое подключение возможно, практически без ограничения мощности.

Недостатки тоже есть: наличие щёток, возможность искрения, сложное и частое обслуживание.

Как регулируется частота вращения

Как уже писали, частота вращения ротора зависит от количества полюсов статора. Чем больше количество полюсов, тем меньше скорость. Но это не только так можно регулировать скорость вращения. Она еще зависит от напряжения и частоты питания.

Способы регулирования частоты асинхронного двигателя

Напряжение можно регулировать, установив потенциометр на входе. Частоту регулируют поставив частотный преобразователь. Частотник — более выгодное решение, так как он ещё и снижает стартовые токи и может быть программируемым.

Однофазный асинхронный двигатель

Выше рассматривался трехфазный асинхронный двигатель, в однофазном асинхронном двигателе их две. Одна рабочая, вторая вспомогательная. Вспомогательная нужна для того, чтобы придать первоначальное вращение ротору. Потому может называться ещё пусковой или стартовой.

Однофазный асинхронный двигатель имеет две обмотки: рабочую и вспомогательную (стартовую или пусковую)

Когда в статоре включена одна обмотка, она создаёт два равных магнитных поля, вращающихся в разные стороны. Если ввести в это поле ротор, который уже имеет какое-то начальное вращение, магнитное поле будет поддерживать это вращение. Но как запустить ротор на старте? Как придать ему вращение, ведь от одной обмотки возникают два равноценных магнитных поля, направленные в разные стороны. Так что с их помощью заставить вращаться ротор невозможно. В простейшем варианте вращение задаётся вручную — механически. Затем вращение подхватывает поле.

Чтобы автоматизировать запуск однофазного асинхронного двигателя и сделана вспомогательная обмотка. Она сконструирована так, что подавляет одну из составляющих магнитного поля основной обмотки и усиливает вторую. Соответственно, одна из составляющих перевешивает, задавая вращение ротора. Затем стартовая обмотка отключается, вращение поддерживает основная.

Широкое распространение асинхронного электродвигателя (АД) вызвано его надежностью и простотой конструкции. Статор такого двигателя стандартный, представляет собой изготовленный из пластин электростатической стали полый цилиндр с трехфазной обмоткой. Ротор же может быть короткозамкнутым и фазным. Последний вариант получил более широкое распространение по ряду причин, хотя его конструкция намного сложнее, чем у короткозамкнутого ротора.

Конструкция фазного ротора

Фазный ротор АД конструктивно напоминает его статор. Основа ротора набирается из пластин электростатической стали, которые насаживаются на вал. Конструкция имеет продольные пазы, в которые укладываются витки катушек фазной обмотки. Количество фаз ротора строго соответствует количеству фаз статора. Для подключения обмотки ротора к цепи, на валу последнего устанавливаются 3 контактных кольца, к которым подведены концы обмотки, находящиеся в соприкосновении с токопроводящими щетками. В свою очередь щетки имеют выходы в коробку корпуса, что позволят подключать внешнее дополнительное сопротивление.

В зависимости от напряжения сети, фазы обмотки соединяются “треугольником” или “звездой”. Оси катушек двухполюсного электродвигателя смещены на 120 градусов относительно друг друга.

Контактные кольца изготавливаются из латуни или стали. На вал они посажены с обязательной изоляцией между собой. Щетки расположены на щеткодержатле, изготовлены из металлографита, к кольцам прижимаются посредством пружин.

Зачем нужно добавочное сопротивление?

Добавочное сопротивление служит для запуска двигателя с нагрузкой на его валу. Как только достигаются номинальные обороты вала, сопротивление отключается за ненадобность, а кольца закорачиваются. В противном случае работа электродвигателя будет нестабильной, возникнут потери КПД.

Роль добавочного внешнего сопротивления, как правило, выполняет ступенчатый реостат. В этом случае двигатель будет разгонятся тоже ступенчато. Часто используются устройства, способные поднять КПД двигателя, при этом избавляя щетки от излишнего трения о кольца. После разгона устройство поднимает щетки и замыкает кольца.

Для реализации автоматического пуска электродвигателя используется подключенная индуктивность к обмотке ротора. Дело в том, что в тот момент, когда осуществляется пуск, в роторе показатели индуктивности и частоты тока максимальны. При разгоне двигателя эти показатели падают, а в конечном итоге двигатель выходит на нормальный рабочий режим.

Отличие короткозамкнутого ротора от фазного

В короткозамкнутом роторе электродвигателя, в отличие от фазного варианта, нет обмоток. Их заменяют замкнутые с торцов между собой кольцами стержни, изготовленные из алюминия или меди. Визуально конструкция такого ротора напоминает беличье колесо, от чего он и получил свое название – “беличья клетка”.

Короткозамкнутый ротор приводится во вращение за счет наведения тока магнитным полем статора. Чтобы исключить пульсирование магнитного поля в роторе, стержни “беличьей клетки” располагаются параллельно между собой, но под наклоном относительно оси вращения. АД с короткозамкнутым ротором обладают высокой надежностью за счет отсутствия щеток, которые со временем перетираются. Кроме того, их стоимость меньше, чем у вариантов с фазным ротором.

Преимущества и недостатки электродвигателя с фазным ротором

Широкое распространение АД с фазным ротором получил за счет ряда серьезных преимуществ перед другими машинами подобного рода. Среди них следует отметить большой вращающий момент при запуске, а также относительно постоянную скорость вращения даже при высоких нагрузках. Такие электродвигатели для запуска требуют меньший пусковой ток, а конструкция позволяет использовать автоматические пусковые устройства. Кроме того, эти электрические машины хорошо переносят продолжительные перегрузки.

Как и любой электрический механизм, электродвигатели с фазным ротором имеют ряд недостатков:

  • Чувствительность к перепадам напряжения;
  • Большие габаритные размеры
  • Высокая стоимость;;
  • Более сложная конструкция за счет цепи ротора с добавочным сопротивлением;
  • Меньшие показатели коэффициента мощности и КПД (относительно АД с короткозамкнутым ротором).

Область применения электродвигателей с фазным ротором

Ад с фазным ротором, за счет высокого крутящего момента, низких пусковых токов и способности долговременно работать при повышенных нагрузках, используются там, где необходима большая мощность электродвигателя, но нет необходимости плавно регулировать скорость вращения в широких диапазонах. Кроме того, эти машины отлично приспособлены под пуск с нагрузкой на валу.

За счет высокой производительности, наиболее часто АД с фазным ротором используются на различном серьезном, тяжелом силовом оборудовании, например, подъемных кранах, лифтовых приводах, станках, различных подъемниках. Иными словами, эти двигатели используются там, где есть необходимость запуска под нагрузкой, а не на холостом ходу.

Проверка электродвигателя с фазным ротором

Для проверки обмоток статора трехфазного АД на целостность, необходимо добраться до клемм их подключения. Затем нужно произвести замеры сопротивлений между фазными клеммами по отдельности, предварительно сняв перемычки. Если сопротивление какой-либо обмотки меньше, чем у других, это свидетельствует о замыкании между ее витками. В этом случае двигатель отдается на перемотку.

Для проверки обмоток ротора, необходимо отыскать выводы от контактных колец. Затем нужно убедиться, что сопротивления обмоток совпадают. Если конструкция электродвигателя предусматривает наличие системы отключения обмоток ротора, отсутствие контакта может быть обусловлено именно поломкой данного механизма, а не обрывом витков.

О наличие какой-либо неисправности АД могут свидетельствовать следующие факторы:

  • Снижение скорости вращения при нагрузке. Характерно для высокого сопротивления в цепи ротора, слабого контакта в его обмотке, низкого напряжения электросети
  • Разворачивание АД, когда цепь ротора разомкнута – КЗ в обмотке ротора
  • Чрезмерное равномерное повышение температуры двигателя – длительная перегрузка АД или его недостаточное охлаждение
  • Нагрев статорной обмотки местного характера – двойное замыкание катушек статора на корпус или между фазами, КЗ между витками, неверное подключение катушек в фазе между собой
  • Нагрев стали статора местного характера – нарушение изоляции между листами стали, их оплавление и выгорание, замыкание
  • Посторонний шум при работе АД. Может быть вызван как выходом из строя подшипников, так и недостаточной запрессовкой активной стали. Определяется на слух по характеру постороннего шума
  • Перегорание в обмотке якоря предохранителей, отсутствие контакта в подводящей проводке, выход из строя реостата

Для самостоятельной диагностики и исправления неисправностей электродвигателя необходимыми являются хотя-бы минимальные познания в устройстве АД и электрических цепях в целом. Все же крайне не рекомендуется самостоятельно заниматься ремонтом электродвигателя с фазным ротором, так как это может привести к поражению электрическим током.

Асинхронный двигатель представляет собой мотор переменного тока, скорость вращения которого не равна частоте напряжения в обмотках статора. Эти электродвигатели получили широкое распространение, потому что являются достаточно выносливыми. Асинхронный однофазный, трехфазный моторы могут работать при значительной нагрузке продолжительное время, не перегреваясь, держать свой крутящий момент. Работа асинхронного двигателя проста, но при этом его характеристики напрямую зависят от параметров обмоток и технологии их укладки.

Область применения

Асинхронный двигатель получил широкое распространение в качестве тягового, второстепенного и прочих видов силовых компонентов. Учитывая особенности его конструкции, отсутствие скользящих контактов, эксплуатация такого мотора намного проще. Также, схема подключения не требует сложных устройств управления, если говорить о простом режиме работы с постоянной частотой. Плюс ко всему и срок службы до сервисного обслуживания намного дольше, так как внутреннее пространство и обмотки не загрязняются графитом.

Применяется асинхронный электродвигатель во многих сферах:

  • Системы вентиляции – благодаря выносливости и неприхотливости при эксплуатации моторы с короткозамкнутыми роторами достаточно часто используются в качестве вентиляторов. Они хорошо переживают продолжительную работу на максимальных оборотах, обеспечивая пользователей или технологическое оборудование интенсивным воздушным потоком.
  • Конвейеры – благодаря высокому моменту, способности его поддерживать при нагрузках моторы асинхронного типа стали идеальным вариантом для реализации управления подвижными производственными линиями.
  • Следящие системы и приводные устройства – особо часто применяют асинхронные двигатели в приводных системах на технологическом оборудовании. Но для организации управления таким типом двигателя потребуется особая схема подключения и частотный блок управления, а ротор асинхронного двигателя оснащается неодимовыми магнитами. Такие моторы рассчитаны на работы с частотой до 400 Гц.
  • Бытовая сфера. Из такого мотора можно сделать различные рабочие агрегаты бытового назначения или для небольшой мастерской: вентилятор, управляемые заслонки, циркулярная пила, фуганок, прочее оборудование.

Разновидности моторов

От типа питающей сети асинхронные электродвигатели подразделяются на:

  1. Трехфазные. Обмотки асинхронных двигателей такого типа состоят из 3 катушек, специальным образом уложенных в пазах статора. Они предназначены для работы в промышленности, так как имеют высокий КПД и cosφ приближенный к 1, а для обеспечения дополнительной экономии работают с системой рекуперации энергии при торможении, выступая генератором.
  2. Однофазный асинхронный двигатель. Применяется в быту и промышленности: старые стиральные машины, бытовые вентиляторы, холодильное и прочие виды оборудования. Имеют меньший КПД, мощность, по сравнению с трехфазными, что объясняется потерями в статоре из-за отсутствия дополнительной фазы.

Устройство асинхронного двигателя

Устройство асинхронного двигателя является достаточно простым:

  • Статор – является неподвижной частью электрического двигателя, который снабжен обмотками возбуждения.
  • Ротор – вращающийся элемент мотора, который крутится под действием магнитного поля, создаваемым обмотками возбуждения, расположенными на статоре. Различают 2 типа двигателя от конструкции ротора: короткозамкнутые и фазные.
  • Фланцы – статическая часть электрического двигателя, в которой находятся опорные подшипники, удерживающие ротор и являющиеся своего рода крепежом для статора. Он зажимается между двумя фланцами-крышками стяжными болтами. Либо они прикручены к корпусу статора.
  • Клеммная коробка – часть статической конструкции двигателя, в которую выводятся концы обмоток со статора. Посредством его осуществляется подключение двигателя к схеме управления.
  • Крыльчатка и защитный кожух – используется для обеспечения принудительной вентиляции, а кожух предохранит обслуживающий персонал от травматизма.
  • Дополнительные сервисные обмотки – при необходимости совместно с обмоткой возбуждения на статоре может быть дополнительная, предназначенная для контроля и измерения рабочих параметров мотора во время его работы.
  • Термодатчики – промышленные асинхронные двигателя, кроме обмоток, также имеются датчики температуры, контролирующие перегрев на случай резкого возрастания тока потребления.

Также двигателя могут быть оборудованными планарными редукторами и изготовленными в едином корпусе. Это преимущественно промышленные типы агрегатов, применяемые на станках, конвейерах и прочих видах оборудования.

Особенности устройства каждого из элементов

Статор асинхронного электродвигателя представляет собой цилиндр, изготовленный из листов специальной электротехнической стали толщиной до 0.5 мм, покрытых лаком. Этот цилиндр является сердечником, с внутренней стороны имеются пазы, куда укладываются обмотки. В трехфазных, соответственно, сдвинутые на 120 градусов, в однофазных – на 90. Обмотки могут быть уложены несколькими способами в зависимости от схемы их подключения и эксплуатационных требований. Именно от этого зависит такой показатель, как момент и мощность на валу. А при наличии количества полюсов более, чем 2 пары, то он может использоваться в следящих системах управления приводными механизмами.

Статор запрессован в корпус либо же расположен между фланцами. Корпус и боковые крышки изготовлены из чугуна или сплава алюминия. На них имеются ребра для увеличения площади и повышения эффективности отведения тепла при работе. Такое устройство позволяет лучше охлаждать двигатель, обеспечивая продолжительную работу при предельных нагрузках.

Однополюсная обмотка такого электродвигателя наматывается из 3-х катушек. Каждая из них называется фазой. Для достижения требуемых параметров работы мотора обмотка укладывается в противоположных пазах сердечника. Катушки соединяются между собой специальным образом в соответствии со схемой подключения и ожидаемых характеристик, обеспечивая возбуждение магнитного поля и необходимый момент при вращении.

Все концы датчиков выводятся в клеммную коробку, что позволяет их соединять в звезду или треугольник, что зависит от схемы подключения системы управления, величины питания. 3-фазный электродвигатель является универсальным, при необходимости его можно подключать к однофазному питанию с линейным напряжением. При соединении обмоток треугольником напряжение обмоток равно линейному Uф, а при подключении по схеме звезды – √3Uф.

Ротор

Ротор в асинхронном электродвигателе представляет собой вал, на котором закрепляется сердечник, набранный из листов электротехнической стали. Что трехфазный, что однофазный мотор, ротор имеет практически одинаковую конструкцию. В качестве обмотки в обычных асинхронных моторах на рабочую частоту 50Гц используются куски медного или алюминиевого провода большой толщины или стержни, соединенные между собой торцевыми замыкающими кольцами.

Для того чтобы обмотка надежно удерживалась в сердечнике, имеются специальные пазы, куда она запрессована. Торцевые кольца могут быть снабжены вентиляционными лопатками, предназначенными для улучшения интенсивности охлаждения внутреннего пространства. Вал закреплен на подшипниках, впрессованных во фланцы или плитах, закрепленных к станине в зависимости от устройства.

Между валом и статором имеется зазор, величина которого зависит от пусковых параметров мотора. Если необходимо увеличить мощность и момент, то он должен быть как можно меньше. Одновременно с ростом мощности увеличиваются и добавочные потери в верхних слоях статора и ротора.

Принцип работы

Асинхронный двигатель принцип работы имеет достаточно простой. Он основан на двух физических явлениях:

  1. При подаче напряжения на статорные обмотки в двигателе возникает вращающееся магнитное поле.
  2. Поле оказывает воздействие на ток, индуцируемый в роторе. А это создает крутящий момент, поворачивающий вал двигателя относительно полюсов.

За каждый поворот вала полюса меняются полярностью с частотой сети. Поэтому напряжение обмотки статора имеет стандартную частоту, а скорость вращения зависит от:

  • нагрузки на валу;
  • количества пар полюсов;
  • особенностей намотки статора.

Маркировка электродвигателя

Для упрощения процесса подключения и выбора схемы асинхронного 3-фазного ЭД на каждом из них имеется соответствующая маркировка. В ней указываются такие характеристики, как:

  • крутящий момент;
  • мощность;
  • максимальная скорость вращения;
  • cosφ.

Также в зашифрованной маркировке имеется указание типа двигателя, количества полюсов. Их необходимо учитывать при выборе мотора для тех или для других нужд. А для облегчения процесса подключения все концы сводятся в клеммную коробку, где подписаны следующим образом:

Если мотор подключается к сети 380 В с линейным напряжением обмоток 220В, то его схема обмоток должна быть треугольником. Но если двигатель подключается к стандартной сети 380В, то схема включения обмоток должна быть звездой.

Скольжение

При рассмотрении принципа работы асинхронного электрического двигателя применяют такое понятие, как скольжение, и обозначается параметр буквой «s». Оно возникает из-за разницы в скоростях вращения магнитного поля статора и реальной частоты вращения ротора. При этом первый показатель на порядок больше. Следовательно, чем выше разница, тем сильнее скольжение.

Скольжение позволяет объяснить принцип работы. За счет отставания частоты вращения ротора от магнитного поля статора и обеспечивается наведение ЭДС в короткозамкнутом роторе. Но если бы поле вращалось со скоростью частоты ЭДС в роторе, то собственно вращения не происходило.

Скольжение, являясь относительной величиной, измеряется в %. И становится больше при увеличении нагрузки на валу двигателя.

Двигателя с фазным ротором

Когда речь идет о моторах с фазным ротором, то он имеет немного иное устройство. Также имеется 3 обмотки, которые соединены в звезду, а их начала выведены на подводящие кольца. Сравнивая два типа двигателя с короткозамкнутым и фазным роторами, то у второго развивается момент сразу же под высокой нагрузкой. Такие моторы получили применение в системах, где требуется сделать мощный приводной агрегат с высокой тягой. Также такие моторы являются более удобными для регулируемого управления посредством регулятора частоты.

Недостатки асинхронных электродвигателей

В стандартном исполнении без магнитов на роторе асинхронные электродвигатели являются маломощными. Они неспособны сразу обеспечить высокий крутящий момент. А также для их запуска требуется большое количество электрической мощности, которая может превышать предельно допустимые показатели системы питания. Поэтому их пуск должен выполняться без нагрузки. Кроме этого, асинхронные электродвигатели являются мощными источниками электромагнитных помех, сопровождающимися сбоями в работе различных других устройств, находящихся вблизи. Для снижения их влияния необходимо предусматривать качественное заземление и обязательное экранирование.

Фазный ротор электродвигателя

Широкое распространение асинхронного электродвигателя (АД) вызвано его надежностью и простотой конструкции. Статор такого двигателя стандартный, представляет собой изготовленный из пластин электростатической стали полый цилиндр с трехфазной обмоткой. Ротор же может быть короткозамкнутым и фазным. Последний вариант получил более широкое распространение по ряду причин, хотя его конструкция намного сложнее, чем у короткозамкнутого ротора.



 

Конструкция фазного ротора


 

Фазный ротор  АД конструктивно напоминает его статор. Основа ротора набирается из пластин электростатической стали, которые насаживаются на вал. Конструкция имеет продольные пазы, в которые укладываются витки катушек фазной обмотки. Количество фаз ротора строго соответствует количеству фаз статора. Для подключения обмотки ротора к цепи, на валу последнего устанавливаются 3 контактных кольца, к которым подведены концы обмотки, находящиеся в соприкосновении с токопроводящими щетками. В свою очередь щетки имеют выходы в коробку корпуса, что позволят подключать внешнее дополнительное сопротивление.

В зависимости от напряжения сети, фазы обмотки соединяются “треугольником” или “звездой”. Оси катушек двухполюсного электродвигателя смещены на 120 градусов относительно друг друга.

Контактные кольца изготавливаются из латуни или стали. На вал они посажены с обязательной изоляцией между собой. Щетки расположены на щеткодержатле, изготовлены из металлографита, к кольцам прижимаются посредством пружин.


Зачем нужно добавочное сопротивление?

Добавочное сопротивление служит для запуска двигателя с нагрузкой на его валу. Как только достигаются номинальные обороты вала, сопротивление отключается за ненадобность, а кольца закорачиваются. В противном случае работа электродвигателя будет нестабильной, возникнут потери КПД.

Роль добавочного внешнего сопротивления, как правило, выполняет ступенчатый реостат. В этом случае двигатель будет разгонятся тоже ступенчато. Часто используются устройства, способные поднять КПД двигателя, при этом избавляя щетки от излишнего трения о кольца. После разгона устройство поднимает щетки и замыкает кольца.

Для реализации автоматического пуска электродвигателя используется подключенная индуктивность к обмотке ротора. Дело в том, что в тот момент, когда осуществляется пуск, в роторе показатели индуктивности и частоты тока максимальны. При разгоне двигателя эти показатели падают, а в конечном итоге двигатель выходит на нормальный рабочий режим.


Отличие короткозамкнутого ротора от фазного

В короткозамкнутом роторе электродвигателя, в отличие от фазного варианта, нет обмоток. Их заменяют замкнутые с торцов между собой кольцами стержни, изготовленные из алюминия или меди. Визуально конструкция такого ротора напоминает беличье колесо, от чего он и получил свое название - “беличья клетка”.

Короткозамкнутый ротор приводится во вращение за счет наведения тока магнитным полем статора. Чтобы исключить пульсирование магнитного поля в роторе, стержни “беличьей клетки” располагаются параллельно между собой, но под наклоном относительно оси вращения. АД с короткозамкнутым ротором обладают высокой надежностью за счет отсутствия щеток, которые со временем перетираются. Кроме того, их стоимость меньше, чем у вариантов с фазным ротором.


Преимущества и недостатки электродвигателя с фазным ротором

Широкое распространение АД с фазным ротором получил за счет ряда серьезных преимуществ перед другими машинами подобного рода. Среди них следует отметить большой вращающий момент при запуске, а также относительно постоянную скорость вращения даже при высоких нагрузках. Такие электродвигатели для запуска требуют меньший пусковой ток, а конструкция позволяет использовать автоматические пусковые устройства. Кроме того, эти электрические машины хорошо переносят продолжительные перегрузки.

Как и любой электрический механизм, электродвигатели с фазным ротором имеют ряд недостатков:

  • Чувствительность к перепадам напряжения;
  • Большие габаритные размеры
  • Высокая стоимость;;
  • Более сложная конструкция за счет цепи ротора с добавочным сопротивлением;
  • Меньшие показатели коэффициента мощности и КПД (относительно АД с короткозамкнутым ротором).

  Область применения электродвигателей с фазным ротором

Ад с фазным ротором, за счет высокого крутящего момента, низких пусковых токов и способности долговременно работать при повышенных нагрузках, используются там, где необходима большая мощность электродвигателя, но нет необходимости плавно регулировать скорость вращения в широких диапазонах. Кроме того, эти машины отлично приспособлены под пуск с нагрузкой на валу.

За счет высокой производительности, наиболее часто АД с фазным ротором используются на различном серьезном, тяжелом силовом оборудовании, например, подъемных кранах, лифтовых приводах, станках, различных подъемниках. Иными словами, эти двигатели используются там, где есть необходимость запуска под нагрузкой, а не на холостом ходу.


  Проверка электродвигателя с фазным ротором


Как известно, электродвигатели с фазным ротором имеют обмотки как на статоре, так и на роторе, что повышает вероятность выхода из строя именно одной из них.

Для проверки обмоток статора трехфазного АД на целостность, необходимо добраться до клемм их подключения. Затем нужно произвести замеры сопротивлений между фазными клеммами по отдельности, предварительно сняв перемычки. Если сопротивление какой-либо обмотки меньше, чем у других, это свидетельствует о замыкании между ее витками. В этом случае двигатель отдается на перемотку.

Для проверки обмоток ротора, необходимо отыскать выводы от контактных колец. Затем нужно убедиться, что сопротивления обмоток совпадают. Если конструкция электродвигателя предусматривает наличие системы отключения обмоток ротора, отсутствие контакта может быть обусловлено именно поломкой данного механизма, а не обрывом витков.

О наличие какой-либо неисправности АД могут свидетельствовать следующие факторы:


  • Снижение скорости вращения при нагрузке. Характерно для высокого сопротивления в цепи ротора, слабого контакта в его обмотке, низкого напряжения электросети
  • Разворачивание АД, когда цепь ротора разомкнута – КЗ в обмотке ротора
  • Чрезмерное равномерное повышение температуры двигателя – длительная перегрузка АД или его недостаточное охлаждение
  • Нагрев статорной обмотки местного характера – двойное замыкание катушек статора на корпус или между фазами, КЗ между витками, неверное подключение катушек в фазе между собой
  • Нагрев стали статора местного характера – нарушение изоляции между листами стали, их оплавление и выгорание, замыкание
  • Посторонний шум при работе АД. Может быть вызван как выходом из строя подшипников, так и недостаточной запрессовкой активной стали. Определяется на слух по характеру постороннего шума
  • Перегорание в обмотке якоря предохранителей, отсутствие контакта в подводящей проводке, выход из строя реостата

 Для самостоятельной диагностики и исправления неисправностей электродвигателя необходимыми являются хотя-бы минимальные познания в устройстве АД и электрических цепях в целом. Все же крайне не рекомендуется самостоятельно заниматься ремонтом электродвигателя с фазным ротором, так как это может привести к поражению электрическим током.

Электродвигатели

Электрические двигатели обычно состоят из двух частей. Первая – стационарная, или статор. Вторая – подвижная, или ротор, которая вращается внутри статора. В статоре находятся многочисленные обмотки. Проходящий по обмоткам электрический ток создает концентрированное магнитное поле, которое вращает ротор, в результате чего возникает механическая энергия. 
Вдоль оси статора сделаны специальные бороздки, в каждую из которых вставлен моток медной проволоки.

Чем более мощный двигатель, тем больше статор, и тем крупнее бороздки с мотками проволоки.

Первый шаг в производстве электрических двигателей – покрытие изоляцией бороздок, что обеспечивает поддержание напряжения на выводах мотков проволоки. Мотки состоят из множества витков медной проволоки, намотанных на станке с компьютерным управлением. Чем мощнее двигатель, тем больше витков в мотке.

Рабочие скрепляют витки проволоки на мотках для того, чтобы проволока не расходилась во время операции по установке мотков в бороздки статора. Каждый моток накрывается изоляцией из стекловолокна. Затем стекловолокном изолируется часть мотков, оставшихся за пределами бороздок. Далее, вставляются клинья из стекловолокна, чтобы заблокировать мотки в бороздках.

Когда все мотки вставлены и изолированы, рабочие начинают подготовку к сборке двигателя. Они надевают акриловые изоляционные трубки на оба конца мотка с проволокой, который имеет два вывода. Далее, изолированные провода собираются в силовые кабели. Количество проводов в силовом кабеле сильно варьируется в зависимости от напряжения данного типа оборудования.

Рабочие спаивают провода мотков и изолируют их, затем провода укладываются внутри статора и выводятся таким образом, чтобы они были доступны для последующего соединения к источнику энергии, когда двигатель будет установлен. Теперь с помощью термостойкого полиэфирного корда рабочие плотно связывают мотки для того, чтобы они не смещались во время работы двигателя. Этот узел связанных между собой мотков проволоки называется статором. Теперь рабочие погружают статор в емкость с лаком на основе полиэфира, что делает статор водонепроницаемым. Далее, статор помещают в печь при температуре 135-150 градусов Цельсия. Лак затвердевает и придает жесткость моткам проволоки в статоре. 

Следующий этап – балансировка ротора. Это очень важный этап, потому что, если ротор не сбалансирован, двигатель будет вибрировать, что недопустимо. Ротор балансируется так же, как колеса автомобиля. Только точность такой балансировки в несколько раз выше.

Ротор вставляется в статор. Эта операция выполняется с предельной осторожностью, чтобы не повредить статор. Ротор будет вращаться на стальных подшипниках, которые нагревают, чтобы произошло их расширение, тем самым установка облегчается.

Затем подшипники охлаждаются струей воздуха, и проверяется плотность их посадки на ротор. Такой же процесс происходит с задней стенкой двигателя.

Рабочие нагревают вентилятор и устанавливают его на вал ротора. Роль вентилятора состоит в том, чтобы охлаждать работающий двигатель и предохранять его от перегрева. Вентилятор закрывается защитным кожухом. Готовый двигатель проходит ряд испытаний для оценки качества изоляции и его работоспособность в целом. Такие промышленные двигатели предназначены для использования на заводах в таком оборудовании, как ленточные конвейеры, насосы, вентиляторы и компрессоры.

Асинхронный электродвигатель: виды и принцип работы

В наши дни электрооборудование выглядит совсем иначе, чем изобретение российского электротехника, но по-прежнему используются для превращения электрической энергии в механическую. Надежность в работе, простая конструкция и невысокая себестоимость были по достоинству оценены покупателями. Сегодня асинхронные двигатели — наиболее распространенный во всем мире тип моторов. Их используют для комплектации промышленного оборудования, бытовой техники и электроинструментов в девяти случаев из десяти.

Какие бывают виды асинхронных механизмов

Асинхронный мотор имеет самую простую конструкцию. Классическое устройство электродвигателя состоит из статора, а также ротора.

Статор выполнен в форме классического цилиндра. Для изготовления статора производители используют тонкие стальные листы, обмотка в пазах сердечника сделана из специального провода. Оси обмоток расположены друг к другу под углом 120°. Их концы соединяются по-разному — все зависит от допустимой величины напряжения. В одних случаях соединение напоминаем звезду, в других - треугольник.

В отличие от статора, роторы бывают нескольких типов. Производители классифицируют выпущенные моторы именно по типу ротора — виды асинхронных двигателей: с короткозамкнутым и фазным ротором. Давайте рассмотрим каждый их подробнее.

  • Фазный — это ротор с трехфазной обмоткой, которая напоминает обмотку статора. Ее концы соединяются в форме звезды, края крепятся к контактным кольцам. К этим же кольцам присоединяются добавочные резисторы, которые меняют активное сопротивление в цепи и уменьшают большие пусковые токи.
  • Короткозамкнутый ротор — сердечник, изготовленный из стальных листов. Для серийного производства, как правило, используется расплавленный алюминий, который заливается и образовывает стержни между торцевых колец. Конструкция ротора получила в обиходе название «беличья клетка», так как внешне напоминает бочку для грызунов. Когда заходит речь об изготовлении мощных двигателей, производители используют не алюминий, а медь.

Асинхронный электродвигатель: принцип работы

Напряжение подается на обмотку статора. В этот момент возникает магнитный поток, величина которого меняется с изменением частоты напряжения. Потоки сдвинуты во времени и пространстве по отношению друг к другу на 120°. Вращающим оказывается результирующий магнитный поток, который движется, тем самым создавая в проводниках ротора ЭДС. Обмотка ротора исполняет роль замкнутой электрической цепи, в ней появляется ток, который, взаимодействуя с потоками статора, создает пусковой момент. Мотор стремится повернуть ротор в направлении движения магнитного поля статора. В тот момент, когда он достигает значения тормозного момента ротора и превышает его, ротор начинает вращаться, вызывая скольжение.

Что такое скольжение? Это величина, которая показывает нам, насколько синхронная частота магнитного поля статора больше, чем частота вращения ротора.

S = ((n1 - n2)/n1) х 100 %, где:

S - скольжение;

n1 - синхронная частота магнитного поля статора, n2 - ротора.

Почему так важно скольжение? Его используют для характеристики асинхронных электродвигателей, ведь изначально скольжение равно единице, но по мере роста n1 относительная разность частот n1-n2 становится меньше. В результате этого, падает ЭДС и ток в проводниках ротора, что в свою очередь приводит к уменьшению вращающего момента. Если провести анализ, в состоянии холостого хода, в тот момент, когда мотор работает без нагрузки на валу, показатель скольжения минимален. Как только возрастает статический момент, скольжение растет до величины Skp — критического скольжения. Этот показатель очень важен, ведь как только будет превышена точка критического скольжения, асинхронные двигатели перестают стабильно работать. Значение скольжения колеблется в пределах от нуля до единицы, асинхронных моторов универсального назначения в номинальном режиме до 8 %. Как только наступает равновесие между электромагнитным и тормозным моментом изменение величин прекратится.

Если говорить простыми словами, принцип работы мотора состоит во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Вращающий момент возникает только тогда, когда появляется разность частот вращения магнитных полей.

Электродвигатель

| Encyclopedia.com

Двигатель постоянного тока

Типы двигателей постоянного тока

Двигатели переменного тока

Принципы работы трехфазного двигателя

Ресурсы

Электродвигатель - это машина, используемая для преобразования электрической энергии в механическую. Электродвигатели важны для современной жизни, они используются в пылесосах, посудомоечных машинах, компьютерных принтерах, факсах, водяных насосах, производстве, автомобилях (как обычных, так и гибридных), станках, печатных станках, системах метро и т. Д.

Основные физические принципы работы электродвигателя известны как закон Ампера и закон Фарадея. Первая гласит, что электрический проводник, находящийся в магнитном поле, будет испытывать силу, если любой ток, протекающий через проводник, имеет компонент, расположенный под прямым углом к ​​этому полю. Изменение направления тока или магнитного поля приведет к возникновению силы, действующей в противоположном направлении. Второй принцип гласит, что если проводник перемещается через магнитное поле, то любой компонент движения, перпендикулярный этому полю, будет создавать разность потенциалов между концами проводника.

Электродвигатель состоит из двух основных элементов. Первый, статический компонент, который состоит из магнитных материалов и электрических проводников для создания магнитных полей желаемой формы, известен как статор . Второй, который также сделан из магнитных и электрических проводников для создания определенных магнитных полей, которые взаимодействуют с полями, создаваемыми статором, известен как ротор . Ротор содержит движущийся компонент двигателя, имеющий вращающийся вал для соединения с приводимой в действие машиной и некоторые средства поддержания электрического контакта между ротором и корпусом двигателя (обычно угольные щетки, прижатые к контактным кольцам).В процессе работы электрический ток, подаваемый на двигатель, используется для создания магнитных полей как в роторе, так и в статоре. Эти поля сталкиваются друг с другом, в результате чего ротор испытывает крутящий момент и, следовательно, вращается.

Электродвигатели делятся на две широкие категории, в зависимости от типа применяемой электроэнергии: двигатели постоянного (DC) и переменного тока (AC).

Первый электродвигатель постоянного тока был продемонстрирован Майклом Фарадеем в Англии в 1821 году.Поскольку единственными доступными электрическими источниками был постоянный ток, первые коммерчески доступные двигатели были электродвигателями постоянного тока, которые стали популярными в 1880-х годах. Эти двигатели использовались как для маломощных, так и для больших мощностей, таких как электрические уличные железные дороги. Только в 1890-х годах, когда появилась электроэнергия переменного тока, двигатель переменного тока был разработан, в первую очередь, корпорациями Westinghouse и General Electric. В течение этого десятилетия было решено большинство проблем, связанных с однофазными и многофазными двигателями переменного тока.Следовательно, все основные характеристики электродвигателей были разработаны к 1900 году.

Работа двигателя постоянного тока зависит от взаимодействия полюсов статора с частью ротора или якоря. Статор содержит четное количество полюсов переменной магнитной полярности, каждый полюс состоит из электромагнита, образованного из обмотки полюса, намотанной на сердечник полюса. Когда через обмотку протекает постоянный ток, создается магнитное поле. Якорь также содержит обмотку, в которой ток течет в указанном направлении.Этот ток якоря взаимодействует с магнитным полем в соответствии с законом Ампера, создавая крутящий момент, который поворачивает якорь.

Если бы обмотки якоря вращались вокруг следующего полюса противоположной полярности, крутящий момент работал бы в противоположном направлении, останавливая якорь. Чтобы предотвратить это, ротор содержит коммутатор, который изменяет направление тока якоря для каждого полюсного наконечника, мимо которого вращается якорь, таким образом гарантируя, что все обмотки, проходящие, например, через полюс северной полярности, будут иметь ток, протекающий в в том же направлении, в то время как обмотки, проходящие через южные полюса, будут иметь противоположно протекающий ток, чтобы создать крутящий момент в том же направлении, что и крутящий момент, создаваемый северными полюсами.Коммутатор обычно состоит из разъемного контактного кольца, по которому движутся щетки, протекающие по постоянному току.

Вращение обмоток якоря через поле статора создает напряжение на якоре, известное как противо-ЭДС (электродвижущая сила), поскольку оно противостоит приложенному напряжению: это следствие закона Фарадея. Величина противо-ЭДС зависит от напряженности магнитного поля и скорости вращения якоря. При первоначальном включении двигателя постоянного тока нет встречной ЭДС, и якорь начинает вращаться.Счетчик ЭДС увеличивается с вращением. Действующее напряжение на обмотках якоря - это приложенное напряжение за вычетом противо-ЭДС.

Двигатели постоянного тока встречаются чаще, чем мы думаем. Автомобиль может иметь до 20 двигателей постоянного тока для привода вентиляторов, сидений и окон. Они бывают трех разных типов, классифицируемых в зависимости от используемой электрической схемы. В параллельном двигателе якорь и обмотка возбуждения соединены параллельно, поэтому токи через каждую из них относительно независимы.Ток через обмотку возбуждения можно контролировать с помощью реостата возбуждения (переменного резистора), что позволяет изменять скорость двигателя в широком диапазоне условий нагрузки. Этот тип двигателя используется для привода станков или вентиляторов, для которых требуется широкий диапазон скоростей.

В последовательном двигателе обмотка возбуждения соединена последовательно с обмоткой якоря, что приводит к очень высокому пусковому моменту, поскольку как ток якоря, так и напряженность поля максимальны.Однако, как только якорь начинает вращаться, противо-ЭДС снижает ток в цепи, тем самым уменьшая напряженность поля. Серийный двигатель используется там, где требуется большой пусковой крутящий момент, например, в автомобильных стартерах, кранах и подъемниках.

Составной двигатель представляет собой комбинацию последовательного и параллельного двигателей с параллельными и последовательными обмотками возбуждения. Этот тип двигателя имеет высокий пусковой момент и способность изменять скорость и используется в ситуациях, требующих обоих этих свойств, таких как пробивные прессы, конвейеры и лифты.

Двигатели

переменного тока встречаются гораздо чаще, чем двигатели постоянного тока, потому что почти все системы электроснабжения работают с переменным током. Существует три основных типа двигателей: многофазные асинхронные, многофазные синхронные и однофазные. Поскольку трехфазные источники питания являются наиболее распространенными многофазными источниками, большинство многофазных двигателей работают от трехфазных. Трехфазные источники питания широко используются в коммерческих и промышленных условиях, тогда как однофазные источники питания почти всегда используются в домашних условиях.

Основное различие между двигателями переменного и постоянного тока заключается в том, что магнитное поле, создаваемое статором, вращается в корпусе переменного тока. Через клеммы вводятся три электрические фазы, каждая фаза питает отдельный полюс поля. Когда каждая фаза достигает своего максимального тока, магнитное поле на этом полюсе достигает максимального значения. По мере уменьшения тока уменьшается и магнитное поле. Поскольку каждая фаза достигает своего максимума в разное время в пределах цикла тока, тот полюс поля, магнитное поле которого является наибольшим, постоянно изменяется между тремя полюсами, в результате чего магнитное поле, видимое ротором, вращается.Скорость вращения магнитного поля, известная как синхронная скорость, зависит от частоты источника питания и количества полюсов, создаваемых обмоткой статора. Для стандартного источника питания 60 Гц, используемого в США, максимальная синхронная скорость составляет 3 600 об / мин.

В трехфазном асинхронном двигателе обмотки ротора не подключены к источнику питания, а

Ключевые термины

AC - Переменный ток, при котором ток, проходящий через цепь, меняет направление потока через равные промежутки времени.

DC— Постоянный ток, при котором ток в цепи примерно постоянен во времени.

Ротор— Та часть электродвигателя, которая может свободно вращаться, включая вал, якорь и связь с машиной.

Статор - Та часть электродвигателя, которая не может вращаться, включая катушки возбуждения.

Крутящий момент - Способность или сила, необходимые для поворота или скручивания вала или другого объекта.

- это, по сути, короткие замыкания.Самый распространенный тип обмотки ротора, обмотка с короткозамкнутым ротором, очень похожа на ходовое колесо, используемое в клетках для домашних песчанок. Когда двигатель изначально включен, а ротор неподвижен, проводники ротора испытывают изменяющееся магнитное поле, перемещающееся с синхронной скоростью. Согласно закону Фарадея, эта ситуация приводит к индукции токов вокруг обмоток ротора; величина этого тока зависит от импеданса обмоток ротора. Поскольку условия для работы двигателя теперь выполнены, то есть проводники с током находятся в магнитном поле, ротор испытывает крутящий момент и начинает вращаться.Ротор никогда не может вращаться с синхронной скоростью, потому что не будет относительного движения между магнитным полем и обмотками ротора, и ток не может быть индуцирован. Асинхронный двигатель имеет высокий пусковой момент.

В двигателях с короткозамкнутым ротором скорость двигателя определяется нагрузкой, которую он передает, и числом полюсов, создающих магнитное поле в статоре. Если некоторые полюса включаются или выключаются, скорость двигателя можно регулировать с приращением. В двигателях с фазным ротором сопротивление обмоток ротора может быть изменено извне, что изменяет ток в обмотках и, таким образом, обеспечивает непрерывное регулирование скорости.

Трехфазные синхронные двигатели сильно отличаются от асинхронных двигателей. В синхронном двигателе ротор использует катушку под напряжением постоянного тока для создания постоянного магнитного поля. После того, как ротор приближается к синхронной скорости двигателя, северный (южный) полюс магнита ротора блокируется с южным (северным) полюсом вращающегося поля статора, и ротор вращается с синхронной скоростью. Ротор синхронного двигателя обычно включает в себя обмотку с короткозамкнутым ротором, которая используется для запуска вращения двигателя до подачи питания на катушку постоянного тока.Беличья клетка не действует на синхронных скоростях по причине, описанной выше.

Однофазные асинхронные двигатели и синхронные двигатели, используемые в большинстве бытовых ситуаций, работают по принципам, аналогичным принципам, описанным для трехфазных двигателей. Однако для создания пусковых моментов необходимо внести различные модификации, поскольку одна фаза не будет генерировать только вращающееся магнитное поле. Следовательно, в асинхронных двигателях используются конструкции с разделенной фазой, конденсаторным пуском или с экранированными полюсами.Небольшие синхронные однофазные двигатели, используемые для таймеров, часов, магнитофонов и т. П., Основаны на конструкциях с реактивным сопротивлением или гистерезисом.

КНИГИ

Красильщик. Катушки силы тока: как сделаны и как используются: с описанием электрического света, электрических звонков, электродвигателей, телефона, микрофона и фонографа . Бостон: Adamant Media Corporation, 2005.

Эмади, Али. Энергоэффективные электродвигатели . Нью-Йорк: CRC, 2004.

Hughes, Austin. Электродвигатели и приводы . Оксфорд, Великобритания: Newnes, 2005.

Иэн А. Макинтайр

Детали двигателя | Sciencing

Конструкции электродвигателей могут сильно различаться, хотя в целом они состоят из трех основных частей: ротора, статора и коммутатора. Эти три части используют силы притяжения и отталкивания электромагнетизма, заставляя двигатель непрерывно вращаться, пока он получает постоянный поток электрического тока.

Основные принципы

Двигатели работают на принципах электромагнетизма.Если вы пропустите электричество по проводу, он создаст магнитное поле. Если вы намотаете проволоку на стержень и пропустите по ней электричество, вокруг стержня будет создано магнитное поле. Один конец стержня будет иметь северный магнитный полюс, а другой - южный. Противоположные полюса притягиваются друг к другу, как отталкиваются. Когда вы окружите этот стержень другими магнитами, стержень будет вращаться под действием сил притяжения и отталкивания.

Статор

Каждый электродвигатель состоит из двух основных частей: неподвижной и вращающейся.Стационарная часть - это статор. Хотя конфигурации различаются, статор чаще всего представляет собой постоянный магнит или ряд магнитов, выстилающих край корпуса двигателя, который обычно представляет собой круглый пластиковый барабан.

Ротор

В статор вставлен ротор, обычно состоящий из медной проволоки, намотанной на катушку вокруг оси. Когда через катушку протекает электрический ток, возникающее магнитное поле противодействует полю, создаваемому статором, и заставляет ось вращаться.

Коммутатор: основы

Электродвигатель имеет еще один важный компонент, коммутатор, который находится на одном конце катушки.Это металлическое кольцо, разделенное на две половины. Он меняет местами электрический ток в катушке каждый раз, когда катушка вращается на пол-оборота. Коммутатор периодически меняет направление тока между ротором и внешней цепью или батареей. Это гарантирует, что концы катушек не будут двигаться в противоположных направлениях, и гарантирует, что ось вращается в одном направлении.

Подробнее Коммутатор: магнитные полюса

Коммутатор необходим, потому что вращающийся ротор получает свое движение от магнитного притяжения и отталкивания между ротором и статором.Чтобы понять это, представьте, что двигатель медленно вращается. Когда ротор вращается до точки, где южный полюс магнита ротора встречается с северным полюсом статора, притяжение между двумя полюсами останавливает вращение. Чтобы ротор продолжал вращаться, коммутатор меняет полярность магнита, поэтому южный полюс ротора становится северным. Затем северный полюс ротора и северный полюс статора отталкиваются друг от друга, заставляя ротор продолжать вращаться.

Щетки и выводы

На одном конце двигателя находятся щетки и выводы.Они находятся на противоположном конце от того места, где ротор выходит из корпуса двигателя. Щетки подают электрический ток на коммутатор и обычно сделаны из графита. Клеммы - это места, где аккумулятор прикрепляется к двигателю и посылает ток для вращения ротора.

Шесть ключевых компонентов, из которых состоит ваш промышленный электродвигатель

Ваш промышленный электродвигатель имеет несколько важных компонентов, которые позволяют ему эффективно преобразовывать электрическую энергию в механическую.Каждый из них помогает управлять критическим взаимодействием между магнитным полем вашего двигателя и электрическим током в его проволочной обмотке, создавая силу в виде вращения вала. Именно механическая энергия, производимая этим вращением вала, помогает поддерживать бесперебойную работу вашего предприятия.

Эти шесть компонентов включают:

1) Ротор

Ротор - это движущаяся часть вашего электродвигателя. Он вращает вал, который передает указанную выше механическую мощность.В типичной конфигурации ротор имеет проложенные в нем проводники, по которым проходят токи, которые затем взаимодействуют с магнитным полем статора, создавая силы, которые вращают вал. При этом некоторые роторы несут постоянные магниты, и именно статор удерживает проводники.

2) Статор (и сердечник статора)

Статор - это неподвижная часть электромагнитной цепи вашего двигателя и обычно состоит из обмоток или постоянных магнитов. Сердечник статора состоит из множества тонких металлических листов, называемых пластинами.Ламинирование используется для уменьшения потерь энергии, которые могут возникнуть при использовании твердого сердечника.

3) Подшипники

Ротор вашего электродвигателя поддерживается подшипниками, которые позволяют ему вращаться вокруг своей оси. Эти подшипники, в свою очередь, поддерживаются корпусом двигателя. Вал двигателя проходит через подшипники за пределы двигателя, где действует нагрузка. Поскольку силы нагрузки действуют за пределы самой внешней опоры, нагрузка называется «выступающей».

4) Обмотки

Обмотки - это провода, уложенные в катушки, обычно намотанные вокруг многослойного магнитного сердечника из мягкого железа, чтобы образовывать магнитные полюса при возбуждении током.Электродвигатели бывают двух основных конфигураций полюсов магнитного поля: явнополюсной и невыраженной. В двигателе с явнополюсным двигателем магнитное поле полюса создается обмоткой, намотанной вокруг полюса под лицевой стороной полюса. В двигателе с невыпадающими полюсами обмотка распределена в пазах на лицевой стороне полюсов. Двигатель с экранированными полюсами имеет обмотку вокруг части полюса, которая задерживает фазу магнитного поля для этого полюса.

5) Воздушный зазор

Воздушный зазор - это расстояние между ротором и статором, хотя и не является физическим компонентом.Воздушный зазор вашего двигателя имеет важное значение и, как правило, должен быть как можно меньше, поскольку большой зазор оказывает сильное негативное влияние на производительность. Это основной источник низкого коэффициента мощности, с которым работают двигатели. Поскольку ток намагничивания увеличивается с увеличением воздушного зазора, ваш воздушный зазор должен быть минимальным. При этом очень маленькие зазоры могут создавать механические проблемы в дополнение к шуму и потерям.

6) Коммутатор

И, наконец, коммутатор - это механизм, используемый вашим двигателем для переключения входа большинства двигателей постоянного тока и некоторых двигателей переменного тока.Он состоит из сегментов контактного кольца, которые изолированы друг от друга и от вала. Ток якоря вашего двигателя подается через неподвижные щетки, контактирующие с вращающимся коммутатором, что вызывает требуемое реверсирование тока и подает мощность на машину оптимальным образом по мере вращения ротора от полюса к полюсу. (Отсутствие такого реверсирования тока может привести к остановке двигателя.)

Что общего у всех этих компонентов?

Каждый из них может нуждаться в техническом обслуживании, ремонте или замене в любой момент.Именно здесь на помощь приходит Red Stick Armature Works. Мы обеспечиваем более 60 лет передового опыта в области обслуживания, хранения и продажи промышленных электродвигателей. Наши преданные своему делу и опытные специалисты доступны на месте 24-7-365, чтобы помочь вам поддерживать ваши двигатели - и ваши операции - в рабочем состоянии и работать без сбоев. Свяжитесь с нами или позвоните нам сегодня по телефону 800-895-0443, чтобы узнать больше.

Вращение ротора двигателей переменного тока

Как упоминалось в нашей предыдущей статье о вращающихся магнитных полях двигателей переменного тока, в этой статье будет рассмотрено, как магнитное поле на самом деле создает крутящий момент и вращает нагрузку.Если вы новичок в этой серии, вы можете начать с нашей статьи о конструкции двигателей переменного тока. В противном случае мы сразу перейдем к вращению ротора.

МАГНИТ ПОСТОЯННЫЙ

Чтобы проиллюстрировать, как работает ротор, представьте себе установку магнита на вал в качестве замены ротора с короткозамкнутым ротором. Как подробно рассказывалось в нашей последней статье, когда энергия проходит через обмотки статора, образуется вращающееся магнитное поле. Вращающееся магнитное поле, образованное обмотками статора, затем будет взаимодействовать с отдельным магнитным полем, создаваемым установленным на валу магнитом.Это взаимодействие между магнитными полями следует основам моторного магнетизма и полярности.

Например, южный полюс магнита притягивается к северному полюсу вращающегося магнитного поля. Точно так же северный полюс магнита притягивается к южному полюсу вращающегося магнитного поля. В результате магнит может вращаться, когда его тянет вращающееся магнитное поле. Эта конструкция, используемая в некоторых двигателях, известна как синхронный двигатель с постоянными магнитами.

ЭЛЕКТРОМАГНИТ НАПРЯЖЕНИЯ НАПРЯЖЕНИЯ

Теперь давайте вернем ротор с короткозамкнутым ротором вместо установленного на валу магнита. В основном они ведут себя одинаково. Если на статор подается электричество, ток будет проходить через обмотку и расширять электромагнитное поле. Это расширенное поле будет пересекать стержни ротора.

Напряжение (или электродвижущая сила [ЭДС]) индуцируется, когда стержень ротора или другой тип проводника попадает в магнитное поле. В стержне ротора индуцированное напряжение создает ток.Ток протекает через стержни ротора и вокруг концевого кольца. По мере протекания тока вокруг каждого стержня ротора создается больше магнитных полей.

В цепи переменного тока ток регулярно меняется по направлению и величине. Вот почему ток также вызывает регулярное изменение полярности магнитного поля ротора и статора. В результате ротор с короткозамкнутым ротором образует электромагнит с чередующимися северным и южным полюсами.

На рисунке ниже представлен момент времени, когда ток через обмотку A1 создает северный полюс.Увеличивающееся магнитное поле распространяется по соседнему стержню ротора, что индуцирует напряжение. В результате в зубе ротора создается магнитное поле южного полюса. Затем ротор следует вращающемуся магнитному полю статора.

SLIP

Поскольку ротор следует вращающемуся магнитному полю статора, необходимо различать скорость. Причина этого в том, что если бы оба они вращались с одинаковой скоростью, они бы не разделяли относительное движение. Без относительного движения никакие линии магнитного потока не будут обрезаны, а ротор не получит индуцированного напряжения.Различие в скорости известно как «скольжение». НЕОБХОДИМО СКОЛЬЖЕНИЕ ДЛЯ СОЗДАНИЯ МОМЕНТА МОМЕНТА . Величина нагрузки определяет скольжение. Если величина нагрузки увеличивается, скольжение увеличивает или замедляет ротор. При уменьшении нагрузки скольжение уменьшится или ускорит ротор. Скольжение отображается в процентах и ​​рассчитывается по формуле ниже.

В качестве примера представьте, что четырехполюсный двигатель 60 Гц имеет синхронную скорость (NS) 1800 об / мин. Предположим, что частота вращения ротора (при полной нагрузке) составляет 1765 об / мин (NR).Если следовать формуле, скольжение составляет 1,9%.

ДВИГАТЕЛЬ РОТОРА С НАЗНАЧЕНИЕМ

Теперь давайте отойдем от более распространенного ротора с короткозамкнутым ротором и рассмотрим ротор с обмоткой. Одно из отличий ротора с обмоткой от ротора с короткозамкнутым ротором состоит в том, что он состоит из катушек, а не стержней. Эти катушки подключены к внешним переменным резисторам через щетки и контактные кольца. Напряжение индуцируется в обмотках ротора вращающимся магнитным полем. Скорость двигателя можно регулировать, увеличивая или уменьшая сопротивление обмотки ротора:

  • Скорость двигателя может быть уменьшена на увеличена сопротивление обмоток ротора, что приводит к меньшему протеканию тока.
  • Скорость двигателя может быть увеличена на уменьшено сопротивление обмоток ротора, что позволяет увеличить ток.

СИНХРОННЫЙ ДВИГАТЕЛЬ

Третий тип двигателя переменного тока - это синхронный двигатель, который не является асинхронным. Один тип построен аналогично ротору с короткозамкнутым ротором; однако он имеет обмотки катушки И стержни ротора. Щетки и контактные кольца подключают обмотки катушки к внешнему источнику постоянного тока. Когда к статору подается переменный ток, синхронный двигатель запускается подобно ротору с короткозамкнутым ротором.После того, как двигатель наберет максимальную скорость, на катушки ротора подается постоянный ток. Это создает сильное постоянное магнитное поле в роторе, которое соответствует вращающемуся магнитному полю. В результате ротор вращается с той же скоростью, что и вращающееся магнитное поле (или синхронной скоростью). Следовательно, нет пробуксовки. Различные типы синхронных двигателей имеют ротор с постоянными магнитами. В этом случае внешний источник постоянного тока не нужен, потому что ротор представляет собой постоянный магнит. Эти типы можно найти на синхронных двигателях малой мощности.

УЗНАТЬ БОЛЬШЕ О ДВИГАТЕЛЯХ ПЕРЕМЕННОГО ТОКА

Мы надеемся, что это руководство по вращению ротора двигателей переменного тока помогло вам лучше понять, как работают электродвигатели. Если вы хотите узнать больше, ознакомьтесь с другими нашими ресурсами, посвященными терминологии двигателей переменного тока и тому, как читать паспортные таблички электродвигателей.

6 частей электродвигателя

Отправлено Мэтт Пассаннанте

Электродвигатели играют большую роль в обеспечении бесперебойной работы промышленных предприятий.Электродвигатели состоят из нескольких ключевых частей, которые позволяют им эффективно преобразовывать электрическую энергию в механическую, которая затем создает вращение вала для поддержания работы вашего предприятия. Как могут объяснить специалисты Kurz Industrial, электродвигатель состоит из шести основных частей, которые позволяют ему правильно работать.

Ротор

Ротор - это часть электродвигателя, отвечающая за вращение вала, который, в свою очередь, передает механическую энергию вашему предприятию. Ротор содержит другие компоненты, называемые проводниками, у которых есть токи, которые работают с магнитным полем, расположенным в статоре, другой части двигателя, чтобы помочь управлять валом.

Статор и сердечник статора

В отличие от ротора, статор представляет собой неподвижную часть электродвигателя, которая не движется. Статор и связанная с ним часть, называемая сердечником статора, являются частями электромагнитной цепи в двигателях. Статор состоит из постоянных магнитов или обмоток. Сердечник статора состоит из частей, называемых пластинами, которые представляют собой тонкие металлические листы. Пластины предназначены для минимизации потерь энергии, которые в противном случае могли бы возникнуть, если бы статор содержал твердый сердечник.

Подшипники

Подшипники находятся в корпусе двигателя. Они также поддерживают ротор, позволяя ему вращаться вокруг своей оси. Подшипники соединены с валом двигателя, который выходит за пределы подшипников к внешней оболочке двигателя.

Обмотки

Обмотки - это другие важные части двигателей. Их часто можно найти встроенными в катушки, и они обычно обернуты вокруг железного сердечника, чтобы они могли создавать магнитные полюса, когда они заряжаются током.В электродвигателях используются две распространенные конструкции магнитных полюсов: выступающие и незаметные. У двигателей с явнополюсными полюсами есть магнитные полюса, которые образуются, когда обмотка наматывается на полюс под лицевой стороной полюса. В системе с невыпадающими полюсами обмотка размещается в пазах на лицевой стороне полюса. Двигатели также могут иметь конфигурацию с заштрихованными полюсами, которая задерживает фазу магнитного поля.

Воздушный зазор

Воздушный зазор также является важной частью двигателя. Воздушный зазор означает расстояние между статором и ротором.Это термин, обозначающий пространство между двумя компонентами, хотя технически это не сам компонент. В идеале воздушный зазор должен быть небольшим, так как больший воздушный зазор может отрицательно сказаться на характеристиках двигателя. Воздушный зазор также является основным источником низкого коэффициента мощности двигателя.

Коммутатор

Коммутатор - шестой важный компонент двигателя. Коммутатор используется для изменения входа некоторых двигателей переменного и постоянного тока. Он содержит сегменты контактных колец, которые защищены от вала и других сегментов слоем изоляции.Вращающийся коммутатор обеспечивает питание оборудования, используемого на вашем предприятии, позволяя ротору вращаться от одного полюса к другому. Коммутатор достигает этого за счет реверсирования тока.

Если вы хотите узнать больше о том, как работают электродвигатели, не стесняйтесь обращаться к экспертам Kurz Industrial прямо сегодня.

Эта запись была размещена в Промышленные решения. Добавьте в закладки постоянную ссылку.

Комментарии закрыты.

Проблемы с электродвигателем - надежность Accendo

В этой статье представлено базовое объяснение конструкции и работы электродвигателя, а также одиннадцать проблем, с которыми можно столкнуться при их использовании.

Большинство электродвигателей в промышленном оборудовании представляют собой трехфазные асинхронные двигатели переменного тока. Индукция - это создание электрического тока через зазор. Обычно используются два типа асинхронных двигателей: с короткозамкнутым ротором и с фазным ротором. Имена происходят от того, как они устроены.

Асинхронный двигатель Конструкция

Электродвигатель состоит из железного роторного колеса, установленного на валу, поддерживаемого подшипниками на каждом конце, вращающегося в многокатушечной проволочной клетке, называемой статором.Медные или алюминиевые стержни вставлены во внешнюю поверхность ротора и соединены вместе, образуя цепь. Проволочные обмотки статора образуют электромагнит. На рисунке 1 показана упрощенная конструкция двигателя. Электрические токи, протекающие через внешние катушки статора, создают магнитное поле через ротор, вызывая электрический ток в стержнях ротора.

Рисунок 1. Простая конструкция асинхронного электродвигателя с клеткой.

Когда переменный ток (AC) протекает через катушку статора, на концах каждой катушки создаются возвратно-поступательные северный и южный магнитные полюса.В то же время, как и в трансформаторе, электрические поля в катушках статора также создают электрический ток в роторе. Когда электрический ток прерывается движущимся магнитным полем, в проводнике с током возникает сила реакции. Стержни в роторе, теперь индуцированные током, реагируют на магнитное поле и заставляют ротор вращаться. Затем в соседней катушке создается переменное магнитное поле, и ротор продолжает вращаться.

Для создания движения на роторе электрический проводник должен отсекать магнитное поле.Это означает, что ротор должен двигаться медленнее, чем циклическое магнитное поле. Крутящий момент на роторе создается только при прорезании силовых линий магнитного поля. Электродвигатель всегда будет работать немного медленнее, чем вращающееся магнитное поле.

Скорость двигателя зависит от количества отдельных магнитных полей, создаваемых катушками статора. Двухполюсный двигатель имеет одну катушку и одно магнитное поле, расположенные вокруг статора, четырехполюсный двигатель имеет две катушки, расположенные вокруг статора, причем каждая обмотка размещена между собой последовательно.Шестиполюсный двигатель имеет три катушки с последовательно расположенными обмотками вокруг статора и т. Д.

Характеристики электродвигателей

Крутящий момент, создаваемый на роторе и прикрепленном к нему валу, является результатом взаимодействия нескольких электрических, магнитных и физических переменных, которые изменяются со скоростью ротора.

При выборе электродвигателя необходимо учитывать, соответствует ли поведение нагрузки, прикрепленной к двигателю, характеристикам нагрузки электродвигателя.Ротор запускается из состояния покоя и должен набрать полную скорость, таща за собой свой груз. Электрические токи, возникающие в роторе при запуске и работе, сильно различаются и влияют на допустимую нагрузку двигателя.

Проблемы с электродвигателями

Ниже приведен ряд проблем, которые часто встречаются при использовании электродвигателей.

  • Попадание воды в двигатель будет происходить между катушками статора или в клеммную коробку, короткое замыкание и сгорание двигателя.Ни в коем случае нельзя допускать попадания воды в мотор. Если двигатели будут использоваться во влажных помещениях, они должны иметь соответствующий класс защиты от проникновения (IP).
  • Перегрев может произойти из-за недостаточного размера двигателя, недостаточного охлаждения на низкой скорости при использовании частотно-регулируемых приводов (VSD), изменения нагрузки на двигатель, например, заклинивания оборудования и высоких температур окружающей среды. Могут быть установлены устройства обнаружения температуры (термистор) и автоматического отключения. Установка отдельного вспомогательного вентилятора для помощи двигателю-вентилятору решает проблему перегрева, когда частотно-регулируемый привод используется для управления скоростью двигателя.
  • Неисправность подшипников в двигателях может указывать на то, что подшипники не подходят для данной области применения. Для двигателя, установленного вертикально, нужны другие подшипники, чем для двигателя, установленного горизонтально. Для двигателя, приводящего в движение большой или многоканальный привод, потребуются подшипники, которые выдерживают большие радиальные нагрузки. Двигатель, прикрепленный болтами к деформированной опорной плите, будет скручиваться (см. «Мягкая опора»). Типы подшипников уточняйте у производителя.
  • Двигатели, находящиеся в запасе или не эксплуатируемые длительное время, получают подшипники с ложным бринеллированием, где нижние подшипники врезаются в вал.Ежемесячно проворачивайте вал двигателя на четверть оборота. Подшипники в двигателях в магазине, подверженные слабым вибрациям через землю, могут быть повреждены. Установите двигатели на лист резины толщиной 3 мм, чтобы изолировать их от колебаний грунта.
  • Сгоревшие обмотки означают короткое замыкание в двигателе или в цепи питания двигателя. Защита от перегрузки по току может быть установлена ​​как часть схемы источника питания.
  • Попадание пыли в обмотки статора или клеммную коробку приводит к короткому замыканию.Если двигатель должен находиться в пыльной среде, держите зону вокруг двигателя в чистоте или используйте методы защиты от проникновения пыли (DIP).
  • Двигатели для взрывоопасных зон должны соответствовать типу опасности в данной зоне. Двигатели в легковоспламеняющихся парах, таких как бензин, во взрывоопасных паровых средах и во взрывоопасных пылевых средах, таких как зерновая пыль, должны быть рассчитаны и защищены для конкретного местоположения. Существуют различные методы защиты электродвигателей в опасных зонах, но они не переносятся на разные типы опасности.Например, двигатель, защищенный от взрывоопасной пыли, не подходит для использования в огнеопасной среде.
  • Температурные характеристики корпусов различаются. Корпуса двигателей нагреваются во время работы, и для двигателей доступны шесть различных температурных диапазонов в зависимости от среды, в которой они должны работать.
  • Движение задним ходом - обычная проблема. Переключение любых двух клемм приводит к изменению направления двигателя. Всегда выполняйте тестовый запуск двигателя, чтобы проверить направление после подключения.Разъедините муфту вала, чтобы при необходимости защитить приводимое оборудование от повреждений. Реле автоматического реверса тока доступны для обеспечения правильного направления двигателя.
  • Несоосность вала приведет к разрушению подшипников задолго до их полного срока службы. Вал двигателя должен находиться прямо на одной линии с валом, который он приводит. Этого можно достичь только с помощью таких методов точной юстировки, как лазерные или двойные циферблатные индикаторы. Вал двигателя должен проворачиваться по всей длине с точностью до 0.05 мм (0,002 дюйма) от истинного центра ведомого вала. Это сводит к минимуму вибрацию, силы и нагрузки, которые может создать планетарное вращение одного вала по отношению к другому.
  • Мягкая лапа возникает, когда опоры двигателя скручены не по уровню. Если все ножки не находятся в одной плоскости при опускании на опорную плиту, корпус двигателя скручивается и подшипники деформируются. Приложите линейку к опорной плите и измерьте зазоры с помощью щупа. Поместите двигатель на плоскую обработанную станину и проверьте зазор под каждой опорой.Подложите прокладки из нержавеющей стали 316 под высокие ножки, чтобы выровнять их при закреплении болтами.

Майк Сондалини - инженер по техническому обслуживанию


Мы (Accendo Reliability) опубликовали эту статью с любезного разрешения Feed Forward Publishing, дочерней компании BIN95.com

.

Интернет: trade-school.education
Эл. Почта: [email protected]

Если вам это показалось интересным, вам может понравиться электронная книга Process Control Essentials.

Электродвигатели

Что внутри электродвигателя?

Катушка ротора

Катушка сделана из медной проволоки, потому что медь - отличный проводник.Он наматывается на арматуру. Катушка становится электромагнитом, когда через нее протекает ток.

Арматура

Якорь поддерживает катушку и может помочь сделать электромагнит сильнее. Это делает мотор более эффективным.

Постоянные магниты

Есть два постоянных магнита. Они создают постоянное магнитное поле, так что катушка будет вращаться, когда в ней протекает ток.

Некоторые двигатели имеют электромагниты вместо постоянных магнитов (Рисунок 9).Они сделаны из большего количества катушек медной проволоки.

Коммутатор

Каждый конец катушки подключен к одной из двух половин коммутатора. Коммутатор меняет местами контакты каждые пол-оборота. Ротор на Рисунке 8 имеет две катушки, поэтому для него необходимы четыре сегмента коммутатора.

Щетки

Щетки давят на коммутатор. Они поддерживают контакт с коммутатором, даже если он вращается. Ток течет в двигатель и выходит через щетки.В реальных двигателях щетки сделаны из угля.

S тележка

Каркас из магнитного материала связывает два постоянных магнита и, по сути, превращает их в один подковообразный магнит.

Рисунок 6: Детали модели двигателя постоянного тока. Двигатели постоянного тока с питанием от низковольтных батарей приводят в движение моторизованные игрушки. Их легко разобрать. Вы можете обнаружить, что они используют несколько катушек и имеют соответствующий многосегментный коммутатор.

Рисунок 7 - Простой двухполюсный двигатель постоянного тока (один N и один S).

Почему он поворачивается?

На странице, посвященной электромагнитам, показано, как катушка с проволокой становится магнитом, когда через нее протекает электрический ток. Катушка двигателя, намотанная на якорь, становится электромагнитом, но электромагнит находится внутри второго постоянного магнитного поля. Эти поля взаимодействуют как два стержневых магнита. Результатом является притяжение или отталкивание, в зависимости от текущего направления.Ток течет в одном направлении справа от катушки и в противоположном направлении слева.

Сила, действующая на провод, направлена ​​под прямым углом к ​​магнитному полю, а также под прямым углом к ​​току. Это называется моторным эффектом. Правило Флеминга использует ваши пальцы, расположенные под прямым углом друг к другу, чтобы предсказать силу, действующую на провод в магнитном поле. Для моторов вы используете левую руку.

См. Рис. 7. Когда ток включен, он течет в направлении зеленой стрелки и вызывает восходящую силу.Попытайтесь совместить схему левой рукой. Поскольку он течет обратно вниз с другой стороны в противоположном направлении, он вызывает силу, направленную вниз. Двигайте рукой, чтобы соответствовать этому направлению. Силы объединяются, чтобы вращать катушку.

Это может работать только на пол-оборота. Разъем с разрезным кольцом, называемый коммутатором, меняет местами соединения, чтобы можно было начать следующую половину оборота. Это происходит на каждые пол-оборота, поэтому двигатель вращается. Электрический ток через щетки подается в катушку.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *