“Методичка” по измерению сопротивления заземляющего устройства
Зачем это делать
Измерение сопротивления заземления дает базовую информацию о его работоспособности. А так как основным средством защиты электроустановок, как правило, является именно заземляющее устройство (ЗУ), без оценки его основной характеристики не обойтись как при сдаче в эксплуатацию, так и при периодических и контрольных испытаниях в процессе эксплуатации.
Основные понятия позволяют говорить на одном языке. Вы понимаете и Вас понимают.
Согласно ПУЭ-7, сопротивлением заземляющего устройства называется отношение напряжения на ЗУ к току, стекающему с заземлителя в землю. При этом обратим внимание, что заземляющим устройством называется совокупность заземлителя и заземляющих проводников. То есть при измерении необходимо определить сопротивление всей цепи, составляющей заземлитель (распространен термин «контур заземления», обозначающий эту цепь, хотя в ПУЭ-7 он официально не закреплен).
Применительно к ЗУ различают испытания, связанные с вводом в эксплуатацию и эксплуатационные испытания. В первом случае измерение сопротивления производятся, чтобы определить, можно ли вводить ЗУ в эксплуатацию (наряду с другими видами испытаний, если они предусмотрены нормативными документами). Во втором случае оценивается работоспособность уже введенного в строй заземления в данный момент времени. Необходимость в эксплуатационных испытаниях возникает как по причине старения ЗУ, так и по причине сезонного изменения параметров заземления, связанного, например, с колебанием влажности грунтов.
Несмотря на то, что измеряется сопротивление, применение обычных омметров для проверки ЗУ практически бесполезно. Для этого вида измерений выпускаются специальные приборы. Они именуются измерителями сопротивления заземления или просто измерителями заземления.
Измерения могут проводиться на постоянном токе, переменном токе промышленной частоты (для нашей страны это частота 50 Гц), а также переменном токе высокой частоты (частота порядка сотен Гц и выше). Поскольку основой электроэнергетики все еще является переменный ток, измерения параметров заземления на постоянном токе, за исключением каких-то совсем узкоспециализированных случаев, не проводятся. При измерениях на частоте 50 Гц возникает проблема помех от блуждающих токов на той же частоте, вызванных работой электроустановок или даже ЛЭП поблизости. Эта проблема решалась возможностью вручную варьировать рабочую частоту (например, такое решение было применено в советском приборе МС-08). Измерения с использованием токов высокой частоты весьма актуальны в связи с широким распространением разного рода нелинейных нагрузок, что приводит к обилию гармоник в цепи заземления.
В современных приборах используется измерение сопротивления с использованием импульсов тока с формой «меандр», частота которых лежит в пределах от 100 до 300 Гц (например, в пользующемся большой популярностью приборе ЖГ-4300 используется частота 128 Гц). Тем самым удается отстроиться от помех с частотой 50 Гц и имитировать реальные условия, когда ток имеет множество гармоник. Дополнительная защита от действия помех достигается за счет цифровой обработки сигналов, в частности, применения быстрого преобразования Фурье.
Амплитуда напряжения на клеммах измерителей сопротивления ЗУ, как правило, не должна превышать 42 В. Благодаря этому обеспечивается безопасность процедуры измерения для персонала.
Чем измерять
Настоящей «рабочей лошадкой» для измерения сопротивления ЗУ долгие годы являлся прибор МС-08. Его выпуск был начат еще в 1957 г., при этом прибор используется кое-где до сих пор. Мало того, в интернет-магазинах можно найти новые экземпляры, продаются они по цене даже выше современных цифровых измерителей китайского производства. Кстати, упоминания о снятии с производства МС-08 найти нигде не удалось, возможно, эта легенда выпускается до сих пор?
Важным преимуществом МС-08 является то, что ему не нужны элементы питания. При измерении необходимо крутить ручку динамо-машины, вырабатывающей переменный ток. Меняя частоту вращения ручки, можно варьировать частоту, на которой производятся измерения, чтобы отстроиться от помех. С ручкой механически связана не только динамо-машина, но еще и коммутатор, выполняющий функцию выпрямителя. Коммутатор меняет полярность подключения измерительного прибора синфазно с генерируемым динамо-машиной током. Благодаря этому достаточно эффективно подавляются помехи. У прибора предусмотрено три диапазона измерений: до 10 Ом, до 100 Ом и до 1000 Ом.
В 1972 г. в СССР был налажен выпуск более совершенных измерительных приборов М416, где уже ручку крутить не нужно было. Подавление помех осуществлялось благодаря применению метода синхронного детектирования. Возможно было измерения сопротивления в пределах от 0,1 до 1000 Ом, было предусмотрено 4 диапазона измерений. В настоящее время «классический» аналоговый М416 не выпускается, тем не менее, под данным индексом на рынок сейчас поставляется цифровой измеритель сопротивления ЗУ, который, впрочем, ничего общего с «тезкой» не имеет.
Из аналоговых измерителей сопротивления ЗУ советского образца до сих пор выпускается и широко используется прибор Ф4103-М1. Он может питаться как от гальванических элементов, так и от внешнего источника. Измерения осуществляются на частоте около 300 Гц (не регулируется). Прибор способен измерять сопротивления от 0 до 15000 Ом, предусмотрено 10 диапазонов.
Современные приборы, как правило, имеют цифровую индикацию, но до сих пор есть специалисты, для которых стрелочные индикаторы являются более комфортными. Они по достоинству оценят недорогой прибор SEW 1805R со стрелочным индикатором. К преимуществам устройства, измеряющего сопротивления от 0,1 до 2000 Ом (3 диапазона), можно отнести малую силу тока, используемую при измерениях (2 мА против 80 — 200 мА у других приборов), что в ряде случаев позволяет не отключать измеряемые цепи. Другая особенность — высокая рабочая частота, составляющая 820 Гц. Недостаток прибора — он поддерживает только 2-проводную и 3-проводную схемы измерений (об этом более подробно пойдет речь далее).
Для проведения измерений в сложных условиях оптимально подойдет прибор ИС-20. В числе его преимуществ — эргономичный дизайн, степень защиты IP54, многовариантность способов питания. Диапазон измеряемых сопротивлений — от 1 микроОма до 9,99 кОм. Данные измерений могут быть переданы на компьютер беспроводным способом через Bluetooth. Рабочая частота — 128 Гц, в режиме двухпроводных измерений — 512 Гц. Важно, что прибор производится в России, что критично для ряда применений.
Современной «рабочей лошадкой» измерений сопротивления ЗУ является прибор Железный Гарри ЖГ-4300. Он очень легкий (0,9 кг с элементами питания), имеет удобный эргономичный дизайн. Можно измерять сопротивления от 0,05 Ом до 20 кОм, предусмотрено 5 диапазонов.
К топовым моделям измерителей можно отнести прибор MRU-200. Он способен измерять сопротивление защитного заземления в пределах от 0 до 19,99 кОм. Степень защиты IP54, предусмотрен встроенный NiMH аккумулятор емкостью 4,2 Ач — все это является значительными преимуществами при работе «в поле». Помимо измерения сопротивления защитного заземления, прибор также умеет определять сопротивление заземления системы молниезащиты импульсным методом, от 0 до 199 Ом. Этот измеритель сопротивления ЗУ производится на территории Евросоюза, а именно, в Польше.
Следует отметить, что перечисленные приборы, помимо основной функции, могут иметь и дополнительные, например, измерение удельного сопротивления грунта или измерение сопротивления тока утечки.
Как измерять
Наиболее распространенными являются классические методы измерения сопротивления ЗУ, основанные на применении вольтметра и амперметра с последующим вычислением сопротивления по закону Ома. Более подробно об этих методах можно прочесть здесь.
К преимуществам классических методов можно отнести возможность их использования практически для любых систем электроснабжения. Недостатки — необходимость отключения заземления от электроустановки на время измерений, влияние блуждающих токов на точность измерений.
Классические методы делятся на двух- , трех- и четырехпроводные. Из-за низкой точности двухпроводный метод практически не используется. Трехпроводный метод отличается простотой реализации, но по точности он уступает четырехпроводному.
В том случае, если измеряемое сопротивление ЗУ должно быть заведомо ниже 5 Ом, рекомендуется использовать только четырехпроводный метод.
На измерительном приборе есть потенциальные клеммы П1 и П2 и токовые клеммы Т1 и Т2. При четырехпроводном методе от П1 и Т1 к заземлению идут разные провода, которые соединяются уже непосредственно на клеммах заземления. При измерении трехпроводным методом клеммы П1 и Т1 соединяются перемычкой и от них к заземлению идет один провод. Если же прибор изначально предназначен только для измерений трехпроводным методом, то для подключения к заземлению одним проводом предусмотрена, соответственно, одна клемма.
Клеммы П2 и Т2 соединяются, соответственно, с так называемыми потенциальным штырем и токовым штырем. Измерительные штыри рекомендуется заглублять в грунт не менее, чем на 0,5 м. Обычно токовый и потенциальный штыри выстраивают в единую линию с ЗУ.
Для того, чтобы правильно определить расстояние между штырями, нужно определить максимальный размер диагонали заземлителя D. Потенциальный штырь устанавливается на расстоянии 1,5 D, но не менее 20 м от заземлителя. Токовый штырь устанавливается на расстоянии не более 3D, но не менее 40 м от заземлителя.
Но одного измерения для получения точного результата обычно недостаточно. Причина — неравномерность структуры почвы. Поэтому потенциальный штырь несколько раз устанавливают на расстоянии от 20 до 80% от исходного расстояния между потенциальным и токовым штырем. При этом каждый раз измеряется сопротивление. Чем больше точек, тем лучше, для высокой точности достаточно шага в 10%. Полученные результаты наносятся на график. Если график имеет форму плавно возрастающей кривой, то за окончательный результат берется сопротивление на участке, где разница между соседними точками не превышает 5%. Если график демонстрирует значительную крутизну либо более сложную форму, то измерения нужно повторить, изменив направление линии, на которой выставлены штыри. Возможно, придется также увеличить исходные расстояния в 1,5 — 2 раза.
Безэлектродный метод
Установить токовый и потенциальный штыри не всегда есть возможность. Например, в условиях вечной мерзлоты или когда для штырей на объекте просто нет места. В то же время, измерение заземления ЛЭП в районах вечной мерзлоты осуществляется, как правило, именно в период наибольшего промерзания грунта. Также не всегда есть возможность отключить ЗУ от электроустановки на время измерений. Тогда в ход идет безэлектродный метод измерения согласно ГОСТ Р 50571.16-2007, основанный на применении токовых клещей. Подробно он описан здесь.
На ЗУ подается от измерительного генератора переменный ток заданного напряжения с частотой, отличной от частоты сети. Сила тока в проводе заземления измеряется специальными токовыми клещами, которые чувствительны только к частоте, на которой работает измерительный генератор. Поскольку значение напряжения на ЗУ точно известно, измерив силу тока, можно вычислить, согласно закону Ома, сопротивление ЗУ.
Следует отметить, что, при всем удобстве, безэлектродный метод по точности измерений уступает правильно организованным измерениям по классическому методу. В частности, для подачи переменного тока для измерения в цепь используется прибор, аналогичный по принципу действия токовым клещам. Чтобы обеспечить нужный уровень индукции, применяется рабочая частота около 3 кГц, что также дает погрешность.
Можно считать, что безэлектродный метод дает оценку значению сопротивления ЗУ сверху. То есть реальное значение сопротивления не превысит показания прибора. С точки зрения безопасности это нормально — чем меньше реальное значение сопротивления, тем лучше.
Недостатком безэлектродного метода является то, что он может напрямую применяться только в системах ТТ и системах TN с ячеистым заземлением. Для обычных систем TN потребуется кратковременная установка перемычки между нейтралью и заземлением. Питание во всем здании, где установлено заземление, придется на время измерений отключить и преимуществ относительно классического метода уже не будет.
В качестве примеров оборудования для измерения безэлектродным способом, можно привести FLUKE-1630-2 и Greenlee CMGRT-100A. Стоимость таких систем в 5 — 10 раз выше, чем у приборов для измерения сопротивления классическим способом.
Требования к приборам, документации и персоналу лаборатории
Поскольку от исправности заземления зависит состояние здоровья, а то и жизни людей, рассматриваемые в статье приборы должны быть сертифицированы для использования на территории РФ и пройти поверку. Срок поверки измерителя сопротивления ЗУ обычно составляет 1 год, в отдельных случаях — до 2 лет. Общие требования к квалификации сотрудников, работающих с измерителем сопротивления ЗУ, как правило, приведены в технической документации к прибору.
Если измерения осуществляются в рамках текущего обслуживания электроустановки, документация по ним оформляется согласно гл. 1.8 ПТЭЭП.
Для того, чтобы лаборатория, где используется прибор, могла работать в рамках Единой системы соответствия, ее организационная структура и квалификация сотрудников должны соответствовать требованиям СДАЭ-04-2010. Лаборатория должна пройти аттестацию по правилам, приведенным в СДАЭ-01-2010 и ПОТЭЭ иметь Свидетельство о регистрации электролаборатории.
В том случае, если измерения осуществляются аккредитованной лабораторией, оформление протокола измерений осуществляется согласно ГОСТ Р 58973-2020. Этот ГОСТ дает общие правила оформления документации. Конкретный образец бланка протокола измерения сопротивления ЗУ получил название ЭЛ-8а (скачать бланк). Данный бланк соответствует требованиям ГОСТ Р 58973-2020, тем не менее, он не был введен каким-либо федеральным нормативным актом. Просто в свое время был создан типовой комплект бланков протоколов испытаний в формате *.doc. Это удобно, тем не менее, законодательно требование использовать именно такую форму нигде не закреплено.
К протоколу измерений желательно приложить копию свидетельства об аттестации лаборатории, а также копию свидетельства о поверке измерительного прибора. Эти документы сразу дадут понимание компетентности и профессионализма работников и компании производивших измерения.
Сколько должно быть Ом и как часто нужно измерять?
Некоторые нормы на сопротивление заземления приведены в таблице:
Вид заземления | Сопротивление, Ом, не более | Нормативный документ | Возможность увеличения в исключительных случаях |
Электроустановки до 1 кВ с изолированной нейтралью | 4 | п. 1.7.65 ПУЭ-7 | 10 Ом при мощности генераторов и трансформаторов не более 100 кВА |
Общее сопротивление растеканию заземлителей трехфазной ВЛ 380 В | 10 | п. 1.7.64 ПУЭ-7 | 0,01ρ раз при удельном сопротивлении земли ρ свыше 100 Ом*м, но не более 10-кратного |
Повторное сопротивление растеканию заземлителей трехфазной ВЛ 380 В | 30 | п. |
0,01ρ раз при удельном сопротивлении земли ρ свыше 100 Ом*м, но не более 10-кратного |
Заземление нейтрали генератора или трансформатора в трехфазной сети 380 В | 4 | п. 1.7.101 ПУЭ-7 | 0,01ρ раз при удельном сопротивлении земли ρ свыше 100 Ом*м, но не более 10-кратного |
ПТЭЭП рекомендует осуществлять полную проверку ЗУ со вскрытием грунта 1 раз в 12 лет. Устройства заземления опор воздушных линий менее 1000 В следует проверять чаще — 1 раз в 6 лет. Кроме этого, устройства заземления следует проверять после ремонта опор.
Нормы РД 153-34.0-20.525-00 требуют полной проверки ЗУ на объектах электроэнергетики с периодичностью 1 раз в 12 лет. Тем не менее, после возникновения короткого замыкания или аварийных ситуаций на объекте, должно быть произведено обследование ЗУ в зоне аварии и на прилегающих к ней участках ЗУ. Кроме этого, что особенно актуально в свете проводимых мероприятий по цифровизации электроэнергетики, рекомендовано проверять ЗУ после каждой реконструкции, особенно если устанавливаются электронные и микропроцессорные устройства. Вот почему по мере внедрения современных технологий в электроэнергетике приборы для измерения сопротивления ЗУ будут все более востребованы.
Получить бесплатный расчет заземления или задать вопрос эксперту ZANDZ можно используя кнопки ниже.
Смотрите также:
замер, проверка, испытания по выгодной цене от Testvolt
Для безопасности граждан, проживающих в квартирах или частных домах, работающих на предприятиях, связанных с электричеством, необходимо устанавливать защитное заземление. Для этого не только нужно правильно установить оборудование, но и соблюдать требования по эксплуатации, периодически контролировать техническое состояние. Цена на измерение и лабораторные испытания сопротивления контура заземления зависит от размера электроустановки, реального времени эксплуатации и климатических условий.
Методика работы заземляющих систем
Устройство предназначено для отведения опасности поражением электрическим током человека при появлении напряжения на оборудовании. Тело является отличным проводником, и его противодействие составляет 1000 Ом.
Поэтому для того, чтобы электричество отходило в сторону (в землю), необходимо намного меньше сопротивляемости. Как правило, по нормам ПУЭ значение не должно превышать 4 Ом. В случае неисправности электрооснащения, например, при появлении пробоя в изоляционном слое, ток может пройти при прикосновении рукой через все тело и дойти до ног. Это в итоге может привести к летальному исходу. Поэтому для предотвращения негативных последствий необходима установка защитной системы. Также следует периодически осуществлять проведение проверки заземления и измерения сопротивления изоляции.
Как происходит защита человека
Представим ситуацию, что у вас сломалось оборудование. При выходе из строя изолирующего слоя, если вы прикоснетесь рукой за корпус, то почувствуете легкое жжение и покалывание, даже в специальной одежде. Так как мы знаем, что ток течет по пути наименьшего сопротивления, а вы являетесь не самым лучшим проводником, то через тело пройдет меньшее количество энергии, а основная масса отводится в землю.
В противном случае, когда контур нарушен или неправильно установлен, то ток выбирает путь протекания через тело человека, находящегося между потенциалами грунта и поврежденного электрического оборудования. В итоге такая ситуация может привести к гибели или к серьезным проблемам со здоровьем. Поэтому необходима проверка сопротивления заземлителей и заземляющих устройств.
Для чего нужны периодические испытания
Ваше оборудование должно выполнять свои функции в полной мере. Для этого исследуют состояние системы защиты при помощи замеров специальным аппаратом – мультиметром. При нормальной работе контура во время возникновения нештатной аварийной ситуации ток будет уходить в грунт по заземляющему проводнику беспрепятственно и равномерно.
Со временем на металлических поверхностях происходит образование окисной пленки из-за постоянной связи с землей и химически активными веществами. Что, в свою очередь, приводит к коррозии металла. Отслоенные чешуйки мешают нормальному электрическому контакту. Постепенно таких мест становится больше, что ведет к увеличению противодействия, иными словами, к потере электропроводности (ведь отведенные токи проникают в землю недостаточно легко).
Поэтому в лабораторных условиях необходимо проводить проверку цепи заземления и сопротивления контура, чтобы определить реальное состояние оборудования. Данный процесс предполагает
точное соблюдение правил и методик для измерения. Процедуру невозможно выполнить самостоятельно в домашних условиях.
Как часто нужны лабораторные испытания и проверка цепи заземления
Услуга производится по заказу. Есть различные ее составляющие:
- Визуальный осмотр. Каждые 6 месяцев ответственный электрик обязан обследовать приборы на предмет обрывов, повреждений, механических дефектов, сильных загрязнений, окисления контактов или образования коррозии с последующей записью в паспорт технического средства. Если у вас нет штатного специалиста, доверьте процедуру нашей электролаборатории.
- Методика замеров специальными приборами. Состояние элемента электросети можно проверять летом или зимой, когда почва сильно промерзает.
- Анализ функционирования высоковольтных линий требуется осуществлять раз в год, а также после ремонта и модернизации.
Почему и как возникают неисправности у защитного устройства
При некорректной работе оборудования ток беспрепятственно протекает по шинам обнуления и поступает на отводящие электроды, а затем от них на потенциал земли.
В грунте содержатся большое количество химически активных веществ (солей, щелочей, кислот). Поэтому при длительном нахождении в агрессивной среде почвы металлические элементы токоотводов постепенно покрываются оксидной пленкой, что приводит к ржавчине. Чешуйки отслаиваются от железа и мешают местному электроконтакту. Через короткое время ненадежных мест становится еще больше, что влечет за собой потерю электрической проводимости. В итоге, защитное устройство теряет свою непосредственную функцию по отводу опасного потенциала в землю.
Часто в процессе реорганизации производства или переналадки технологии приходится производить манипуляции с оборудованием. Зачастую к безопасности монтажники относятся халатно. Контакт, присоединенный не по нормативам, со временем теряет свои свойства. Что приводит к травмам.
Методы измерения сопротивления изоляции и заземления
В электролаборатории «Тествольт», применяется несколько способов для выяснения надежности приборов с довольно высокой точностью. Рассмотрим каждый метод более подробно.
Применение профессионального измерительного аппарата – мультиметра
Он необходим для выявления скрытых разрывов в цепи, пропадания контактов. Такая методика позволяет выявить грубые нарушения в работе контура.
Алгоритм:
- Проводится оценка напряжения между фазой и «нулем».
- Измеряется эта же величина по отношению к корпусу.
- Сопоставляются оба значения.
Если отличия минимальные, то оборудование заземлено. В противном случае это говорит о появившейся проблеме.
С помощью амперметра и вольтметра
Измерения сопротивления заземляющих устройств можно условно поделить на проверку целостности подводящих проводников и эффективности контакта «Земля – оборудование». Для контроля второго пункта используется метод вычисления по закону Ома. Для этого необходимо собрать цепь. Между исследуемым контуром и дополнительным соединением на некотором удалении создается напряжение. Ток, инициированный источником, контролируется амперметром. Между тестируемой точкой и зондом делается замер.
Использование спецтехники
Для упрощения работы и исключения вычислительных процессов применяются автоматизированные приборы, выдающие сразу значения в Омах. Принцип функционирования такой же, как мы писали выше.
Измерения токовыми клещами
Метод позволяет оперативно оценить работоспособность без демонтажа системы и дополнительных электродов. Под рабочим напряжением контуром прибора снимается величина протекающего тока. По закону Ома вычисляются значения.
Периодичность проверок и измерений сопротивления защитного и рабочего заземления
Операцию проводят, чтобы оценить состояние токоведущих металлических систем. Ведь неисправность влечет за собой поражение человека током и, как следствие, гибель. Поэтому по нормативному предписанию исследования необходимо проводить в четырех случаях. Подробно рассмотрим каждый вид.
Плановые проверки
При установке электрооборудования вы должны прочитать прилагающуюся к ней инструкцию. По нормативам ПУЭ обязаны проводить исследования:
- Один раз в шесть месяцев – визуальный осмотр всех видимых элементов конструкции.
- Через 6 лет – измерение контура.
- Обследование металлического оборудования со вскрытием земли – не реже одного раза в 12 лет.
Всю ответственность за исследовательские работы берут на себя организации, уполномоченные соответствующими органами. Протокол, подписанный такими электролабораториями, имеет законную силу.
Внеочередные
Измерение сопротивления изоляции заземляющих устройств и электроустановок проводится после появления нештатных ситуаций, то есть, если были произведены ремонтные работы, внесены технологические изменения в конструкцию во время введения ЗК в эксплуатацию или после аварийного разрушения и последующего восстановления.
Пусковые
Перед запуском нового оборудования приглашается специалист из электролаборатории, например, из компании «Тествольт». После проверки подписывается акт приемки, на основании которого можно запускать устройство в эксплуатацию.
При каких условиях необходимо проводить обследование
Согласно действующим нормативам ПУЭ испытания возможны только в летнюю сухую погоду. Объясняется тем, что в это время получают наиболее реальные результаты. В дождь показатели будут значительно искажены, так как влажный грунт увеличивает параметры проводимости почвы.
Приборы для замеров контура заземления и сопротивления заземляющих устройств
До сих пор остаются актуальными аппараты, сделанные несколько десятилетий назад в Советском Союзе: МС-08, М 4116, Ф4103-М1. Сейчас стали использовать усовершенствованные цифровые и микропроцессорные приборы. С их помощью проводятся наиболее точные исследования. Последние вычисления хранятся в карте памяти, что значительно упрощает процесс работы.
По каким правилам проходят исследования
Любая электролаборатория использует множественные методы, о которых мы расскажем чуть позже. Но стандартная проверка всегда начинается с визуального осмотра болтовых соединений и сварных швов. Далее, проверяется удельная сопротивляемость земли и проводятся замеры заземления.
Трехпроводный способ
Прибор подсоединяется к контуру и к двум зондам, вбитых в грунт на определенном расстоянии. Между дальними контактами наводится ЭДС и замеряется ток. В промежутке до ближайшего штыря оценивается падение напряжения. Для этой операции используется специализированное устройство.
Четырехточечный метод
Отличается от предыдущего тем, что разность потенциалов измеряется с помощью заземленных электродов на участке между контуром и тестовым зондом.
Способ с токоизмерительными клещами
Этот инструмент позволяет оценить протекающий в проводнике ток без прямого подключения за счет снятия наводок с шины.
Без разрыва цепи
В данном случае клещи дают возможность произвести замер без демонтажа точек соединения.
Способ двух клещей
ЭДС в проводнике можно навести с помощью встроенной катушки. При измерениях один элемент является источником, а второй оценивает величину протекающего тока. По правилам необходимо разнести зонды на расстояние не менее 30 сантиметров для получения корректных данных.
Формулы расчета
Общая конечная цифра сопротивления вычисляется по закону Ома. Суммирование величин зависит от схемы подключения (параллельная/последовательная) и подчиняется общим физическим принципам.
Амперметр и вольтметр
Приборы – базовые. С помощью них можно получить точные результаты. Недостатком является необходимость производить простейшие вычисления, и учитывать погрешности.
Проверка в бытовых приборов
Операция сводится к оценке потенциала от фазы к «нулю» и к «земле». Результаты не должны отличаться более чем на 5%.
В нашей статье мы рассказали о необходимости и способах диагностике защитных систем. Простым выходом для поддержания уровня безопасности является привлечение специалистов. Цена замеров сопротивления контура заземления, измерения растекания тока заземлителя зависит от того, сколько их делалось и в каких условиях. Более подробно можно узнать на сайте.
По каким нормам мы работаем
Основные нормативные документы, которыми пользуются наши сотрудники, – это ПЭУ и ПТЭЭП. Они предлагают формулу для расчета величин противодействия с учетом ряда факторов: количество фаз источника, сила тока, напряжение, расстояние до заземлителя и состояние грунта. Именно поэтому обследования должны проводиться в такую погоду, когда земля обладает лучшим удельным сопротивлением.
Мы работаем только по официальному методу снятия показаний с использованием лучшего современного оборудования. У него высокая точность и результативность, поэтому он дает безошибочный результат.
Этапы нашей работы
Мы приступаем к деятельности сразу после подписания договора с заказчиком. Бригада выезжает на объект и реализует сперва камеральные исследования (на месте), а затем лабораторные.
Вся процедура состоит из следующих фаз:
- Изучение документации. По электрической схеме здания уже можно понять многое: каким моментам стоит уделить особое внимание, где максимально возможны допущенные при монтаже ошибки. Также внимательный просмотр чертежей и расчетов определяет последовательность действий.
- Визуальный осмотр системы. Все контакты, крепления, соединения исследуются на предмет деформаций, появления коррозии.
- Замеры и испытания.
- Расчеты и заполнение необходимых бумаг.
В результате вы получаете отчет по проведенной деятельности.
Использование тестера сопротивления заземления: принципы измерения и эталонные значения сопротивления
Что такое тестер сопротивления заземления?
Сопротивление между заземляющим электродом и землей обычно называют сопротивлением заземления. Точнее, сопротивление заземления представляет собой сумму сопротивления заземлителя, контактного сопротивления заземлителя и земли и сопротивления земли. Сопротивление заземления отличается от обычных резисторов тем, что оно имеет следующие особые характеристики:
• Поляризующее действие
Поскольку земля ведет себя как электролит, она проявляет поляризующее действие, так что постоянный ток создает электродвижущую силу в противоположном направлении, что делает невозможным точное измерение. Следовательно, сопротивление заземления обычно измеряют прямоугольной или синусоидальной волной на частоте от нескольких десятков герц до 1 кГц.
• Специальная измерительная установка
Сопротивление заземления — это сопротивление между заземляющим электродом и землей. Его нельзя измерить, не вставив электрод в землю. Поскольку земля имеет сравнительно низкое удельное сопротивление, вблизи электрода, от которого течет ток, используемый для измерения, возникает падение напряжения. Следовательно, чтобы точно измерить значение сопротивления каждого заземляющего электрода (электрода E, электрода S [P] и электрода H [C]), необходимо отойти примерно на 10 м.
• Наличие помех
Измерение сопротивления заземления подвержено помехам, таким как потенциал земли и влияние вспомогательных заземляющих электродов. Потенциал земли, вызванный током утечки от устройств, подключенных к заземляющему электроду, накладывается на сигнал, который обнаруживает тестер сопротивления заземления, влияя на измеряемые значения. Кроме того, если вспомогательные заземляющие электроды имеют высокое сопротивление заземления, ток измерения уменьшится, что сделает измерение более чувствительным к влиянию шума, такого как потенциал земли.
FT6031 устойчив к этим внешним воздействиям, что позволяет проводить точные измерения даже в плохих условиях.
Полный модельный ряд тестеров сопротивления заземления
Принципы измерения тестером сопротивления заземления
Напряжение источника переменного тока подается между электродами H (C) и E, и измеряется переменный ток I, который протекает в результате по амперметру. Кроме того, с помощью вольтметра переменного тока измеряют напряжение V, возникающее между электродами S (P) и E при протекании тока I.
Затем сопротивление заземления RX электрода Е рассчитывается по измеренным току I и напряжению V. Невозможно точно измерить напряжение между электродами Н (С) и Е, или напряжение между электродами Н (С) и S (П) электроды.
Полный модельный ряд измерителей сопротивления заземления
Типы заземляющих устройств и значения эталонного сопротивления заземления
Технические стандарты электроустановок устанавливают следующие типы заземляющих устройств и значения сопротивления заземления*1:
Установка заземления Значение сопротивления заземления
Класс A (ранее Класс 1) 10 Ом или меньше
Класс B (ранее Класс 2) Расчетное значение*2
Класс C (ранее Класс 3) 10 Ом или меньше*3
Класс D (ранее Класс 3) класс 3) 100 Ом или менее*3
*1 Приведены значения из японских стандартов.
Обратите внимание, что эти значения зависят от страны.
*2 Величина Ом, эквивалентная результату деления тока замыкания на землю в амперах одного провода в цепи на стороне высокого напряжения или особо высокого напряжения трансформатора на 150 (или, если напряжение цепи относительно земли превышает 150 В из-за сочетания цепи на низковольтной стороне трансформатора с [а] цепью на высоковольтной стороне трансформатора или [б] цепью на высоковольтной стороне трансформатора сторона напряжения с рабочим напряжением 35 000 В или менее, либо [1] 300, если она оборудована устройством, автоматически отключающим высоковольтную цепь или специальную высоковольтную цепь с рабочим напряжением 35 000 В или менее в течение более 1, но менее 2 секунд или [2] 600, если он оснащен устройством, автоматически отключающим высоковольтную цепь или особовысоковольтную цепь с рабочим напряжением 35 000 В менее чем за 1 секунду )
*3 При наличии устройства, автоматически отключающего рассматриваемую низковольтную цепь в течение 0,5 секунды в случае замыкания на землю, 500 Ом
Полная линейка тестеров сопротивления заземления
Что сопротивление земли? Как это измерить? | Блог
Замыкания на землю опасны и, следовательно, требуют надлежащего заземления, чтобы предотвратить попадание тока замыкания на кого-либо или металлический предмет.
Заземляющие соединения выполняются путем вбивания заземляющего электрода в несколько мест. Заземляющий электрод состоит из металлической трубы или проводящей пластины, соединенной с землей.
При изготовлении используются различные материалы, такие как медь, алюминий, сталь или оцинкованное железо. На сопротивление заземления влияют различные факторы, такие как состав почвы, температура, влажность и глубина залегания электрода. Заземление обеспечивает безопасный отвод тока утечки и связано с автоматическим отключающим устройством (обеспечивающим подачу питания). В систему заземления входят различные компоненты, такие как заземляющие электроды, основные заземляющие клеммы или стержни, заземляющие проводники, защитные проводники, проводники уравнивания потенциалов, электрически независимые заземляющие электроды (для измерений), концевые фитинги, соединения, сварочные комплекты и другие материалы.
Существуют различные методы измерения сопротивления заземления, используемые в зависимости от типа системы нейтрали, типа установки (жилая, промышленная, городская среда, сельская местность, возможность отключения электропитания. На сопротивление заземления влияют четыре переменные системы заземления, в которую входят:
1. Состав грунта
2. Влажность грунта
3. Температура грунта
4. Глубина заложения электрода
Сопротивление заземляющего электрода зависит от удельного сопротивления грунта, в который вставлен электрод. Поэтому крайне важно измерять удельное сопротивление при проектировании любых заземляющих устройств.
Сопротивление заземления — это сопротивление заземляющего электрода, измеренное для проверки сопротивления. С дополнительными измерениями, такими как напряжение, испытательный электрод сместился на 10% от исходного электрода напряжения к системе заземления, отделив его от исходного положения и на 10% ближе, чем его исходное положение.
Перед началом любых измерений сопротивления заземления необходимо измерить максимальное значение для правильного заземления. Существует шесть основных методов измерения сопротивления заземления:
1. Четырехточечный метод (метод Веннера)
2. Три терминальных метода (метод спада потенциала/метод 68,1 %)
3. Двухточечный метод (мертвая методом земли)
4. Метод испытания с зажимом5. Метод наклона
6. Метод звезда-треугольник
Одним из наиболее часто используемых методов измерения сопротивления заземления является метод падения потенциала. Он основан на стандартах IEEE и подходит для структур линий передачи. Этот метод включает заземляющий электрод и два электрически независимых испытательных электрода. Электроды (P) потенциальные и (C) токовые, которые должны быть электрически независимыми.
Рис. Метод падения потенциала
Источник - Электротехнический портал
Рассматриваются три точки заземляющих контактов: 1) заземляющий электрод, 2) датчик тока, 3) датчик напряжения. Таким образом, цифровой тестер заземления подает ток на тестируемый заземляющий электрод основания опоры. Через внешний электрод (С) пропускают переменный ток (I), напряжение измеряется внутренним электродом (Р) в промежуточной точке между внутренним и внешним электродами. Ток течет от земли к удаленному датчику тока и возвращается к тестеру. При протекании тока происходит падение напряжения. Это падение напряжения пропорционально величине протекающего тока и сопротивлению заземляющего электрода.
В некоторых местах сопротивление рассчитывается путем перемещения щупа напряжения через равные промежутки времени (каждый равен 10% расстояния) при испытании и токе. На дисплее цифрового тестера заземления отображается значение сопротивления. Сопротивление заземления рассчитывается просто по закону Ом R=V/I. Для сопротивления заземления решающим фактором является размещение вспомогательного испытательного электрода C на достаточном расстоянии от заземляющего электрода при испытании, чтобы гарантировать, что (вспомогательный испытательный электрод) P будет находиться за пределами областей сопротивления как системы заземления, так и другого испытательного электрода. .
Метод уклона для больших систем заземления, таких как электростанции. В этом методе можно рассчитать фактическое сопротивление. Метод звезда-треугольник хорошо подходит для участков с большими системами или каменистой местности, где могут возникнуть трудности с размещением тестовых электродов. В методах звезда-треугольник три испытательных электрода находятся в углах равностороннего треугольника с системой заземления в центре. Измеряют полное сопротивление между соседними электродами, между каждым электродом и системой заземления. Метод четырех потенциалов или метод Веннера аналогичен методу падения потенциала, за исключением того, что ряд измерений проводится с электродом напряжения в разных положениях, а набор уравнений вычисляет теоретическое сопротивление системы. Следовательно, в зависимости от области применяются разные методы.
Тестеры заземления — это инструменты для устранения неполадок, помогающие поддерживать безотказную работу. Все заземляющие и заземляющие соединения необходимо проверять не реже одного раза в год в рамках плана профилактического обслуживания. Сопротивление заземления будет увеличено более чем на 20% во время периодических проверок, чтобы обеспечить исследование источника проблемы и внести поправки для снижения сопротивления путем замены или добавления заземляющих стержней в систему заземления. Профиль сопротивления заземления варьируется от 10 Ом до 20 Ом. Идентификация грунта, заземление и интенсивные полевые измерения показывают, что значения удельного сопротивления грунта зависят от типа грунта.