Закрыть

Измерение тока в цепи производят путем – Измерение тока. Виды и приборы. Принцип измерений и особенности

Содержание

Измерение тока. Виды и приборы. Принцип измерений и особенности

Нагрузка в электрической цепи характеризуется силой тока, измерение тока в амперах. Силу тока иногда приходится измерять для проверки допустимой величины нагрузки на кабель. Для прокладки электрической линии применяются кабели разного сечения. Если кабель работает с нагрузкой выше допустимой величины, то он нагревается, а изоляция постепенно разрушается. В результате это приводит к короткому замыканию и замене кабеля.

Измерение тока рекомендуется делать в следующих случаях:
  • После прокладки нового кабеля необходимо измерить проходящий через него ток при всех работающих электрических устройствах.
  • Если к старой электропроводке подключена дополнительная нагрузка, то также следует проверить величину тока, которая не должна превышать допустимые пределы.
  • При нагрузке, равной верхнему допустимому пределу, проверяется соответствие тока, протекающего через электрические автоматы. Его величина не должна превышать номинальное значение рабочего тока автоматов. В противном случае автоматический выключатель обесточит сеть из-за перегрузки.
  • Измерение тока также необходимо для определения режимов эксплуатации электрических устройств. Измерение токовой нагрузки электродвигателей выполняется не только для проверки их работоспособности, но и для выявления превышения нагрузки выше допустимой, которая может возникнуть из-за большого механического усилия при работе устройства.
  • Если измерить ток в цепи работающего обогревателя, то он покажет исправность нагревательных элементов.
  • Работоспособность теплого пола в квартире также проверяется измерением тока.
Мощность тока

Кроме силы тока, существует понятие мощности тока. Этот параметр определяет работу тока, выполненную в единицу времени. Мощность тока равна отношению выполненной работы к промежутку времени, за которое эта работа была выполнена. Обозначают буквой «Р» и измеряют в ваттах.

Мощность рассчитывается путем перемножения напряжения сети на силу тока, потребляемого подключенными электрическими устройствами: Р = U х I. Обычно на электроприборах указывают потребляемую мощность, с помощью которой можно определить ток. Если ваш телевизор имеет мощность 140 Вт, то для определения тока делим эту величину на 220 В, в результате получаем 0,64 ампера. Это значение максимального тока, на практике ток может быть меньше при снижении яркости экрана или других изменениях настроек.

Измерение тока приборами

Для определения потребления электрической энергии с учетом эксплуатации потребителей в разных режимах, необходимы электрические измерительные приборы, способные выполнить измерение параметров тока.

  • Амперметр. Для измерения величины тока в цепи используют специальные приборы, называемые амперметрами. Они включаются в измеряемую цепь по последовательной схеме. Внутреннее сопротивление амперметра очень мало, поэтому он не влияет на параметры работы цепи.Шкала амперметра может быть размечена в амперах или других долях ампера: микроамперах, миллиамперах и т.д. Существует несколько видов амперметров: электронные, механические и т.д.

  • Мультиметр является электронным измерительным прибором, способным измерить различные параметры электрической цепи (сопротивление, напряжение, обрыв проводника, пригодность батарейки и т.д.), в том числе и силу тока. Существуют два вида мультиметров: цифровой и аналоговый. В мультиметре имеются различные настройки измерений.

Порядок измерения силы тока мультиметром:
  • Выяснить, какой интервал измерения вашего мультиметра. Каждый прибор рассчитан на измерение тока в некотором интервале, который должен соответствовать измеряемой электрической цепи. Наибольший допустимый ток измерения должен быть указан в инструкции.
  • Выбрать соответствующий режим измерений. Многие мультиметры способны работать в разных режимах, и измерять разные величины. Для замеров силы тока нужно переключиться на соответствующий режим, учитывая вид тока (постоянный или переменный).
  • Установить на приборе необходимый интервал измерений. Лучше установить верхний предел силы тока несколько выше предполагаемой величины. Снизить этот предел можно в любое время. Зато будет гарантия, что вы не выведете прибор из строя.
  • Вставить измерительные штекеры проводов в гнезда. В комплекте прибора имеются два провода со щупами и разъемами. Гнезда должны быть отмечены на приборе или изображены в паспорте.

  • Для начала измерения необходимо подключить мультиметр в цепь. При этом следует соблюдать правила безопасности и не касаться токоведущих частей незащищенными частями тела. Нельзя проводить измерения во влажной среде, так как влага проводит электрический ток. На руки следует надеть резиновые перчатки. Чтобы разорвать цепь для проведения измерений, следует разрезать проводник и зачистить изоляцию на обоих концах. Затем подсоединить щупы мультиметра к зачищенным концам провода и убедиться в хорошем контакте.
  • Включить питание цепи и зафиксировать показания прибора. В случае необходимости откорректировать верхний предел измерений.
  • Отключить питание цепи и отсоединить мультиметр.
  • Измерительные клещи. Если необходимо произвести измерение тока без разрыва электрической цепи, то измерительные клещи будут отличным вариантом для выполнения этой задачи. Этот прибор выпускают нескольких видов, и разной конструкции. Некоторые модели могут измерять и другие параметры цепи. Пользоваться измерительными токовыми клещами очень удобно.

Способы измерения тока

Для измерения силы тока в электрической цепи, необходимо один вывод амперметра или другого прибора, способного измерять силу тока, подключить к положительной клемме источника тока или блока питания, а другой вывод к проводу потребителя. После этого можно измерять силу тока.

При измерениях необходимо соблюдать аккуратность, так как при размыкании действующей электрической цепи может возникнуть электрическая дуга.

Для измерения силы тока электрических устройств, подключаемых непосредственно к розетке или кабелю бытовой сети, измерительный прибор настраивается на режим переменного тока с завышенной верхней границей. Затем измерительный прибор подключают в разрыв провода фазы.

Все работы по подключению и отключению допускается производить только в обесточенной цепи. После всех подключений можно подавать питание и измерять силу тока. При этом нельзя касаться оголенных токоведущих частей, во избежание поражения электрическим током. Такие методы измерения неудобны и создают определенную опасность.

Значительно удобнее проводить измерения токоизмерительными клещами, которые могут выполнять все функции мультиметра, в зависимости от исполнения прибора. Работать такими клещами очень просто. Необходимо настроить режим измерения постоянного или переменного тока, развести усы и охватить ими фазный провод. Затем нужно проконтролировать плотность прилегания усов между собой и измерить ток. Для правильных показаний необходимо охватывать усами только фазный провод. Если охватить сразу два провода, то измерения не получится.

Токоизмерительные клещи служат только для замеров параметров переменного тока. Если их использовать для измерения постоянного тока, то усы сожмутся с большой силой, и раздвинуть их можно будет только, отключив питание.

Похожие темы:

electrosam.ru

§101. Измерение тока и напряжения

Измерение тока. Для измерения тока в цепи амперметр 2 (рис. 332, а) или миллиамперметр включают в электрическую цепь последовательно с приемником 3 электрической энергии.

Для того чтобы включение амперметра не оказывало влияния на работу электрических установок и он не создавал больших потерь энергии, амперметры выполняют с малым внутренним сопротивлением. Поэтому практически сопротивление его можно считать равным нулю и пренебрегать вызываемым им падением напряжения. Амперметр можно включать в цепь только последовательно с нагрузкой. Если амперметр подключить непосредственно к источнику 1, то через катушку прибора пойдет очень большой ток (сопротивление амперметра мало) и она сгорит.

Для расширения пределов измерения амперметров, предназначенных для работы в цепях постоянного тока, их включают в цепь параллельно шунту 4 (рис. 332,б). При этом через прибор проходит только часть I

А измеряемого тока I, обратно пропорциональная его сопротивлению RА. Большая часть Iш этого тока проходит через шунт. Прибор измеряет падение напряжения на шунте, зависящее от проходящего через шунт тока, т. е. используется в качестве милливольтметра. Шкала прибора градуируется в амперах. Зная сопротивления прибора RA и шунта Rш можно по току IА, фиксируемому прибором, определить измеряемый ток:

I = IА (RА+Rш)/Rш = IАn (105)

где n = I/IА = (RA + Rш)/Rш — коэффициент шунтирования. Его обычно выбирают равным или кратным 10. Сопротивление шунта, необходимое для измерения тока I, в n раз большего, чем ток прибора IА,

Rш = RA/(n-1) (106)

Конструктивно шунты либо монтируют в корпус прибора (шунты на токи до 50 А), либо устанавливают вне его и соединяют с прибором проводами. Если прибор предназначен для постоянной работы с шунтом, то шкала его градуируется сразу в значениях измеряемого тока с учетом коэффициента шунтирования и никаких расчетов для определения тока выполнять не требуется. В случае применения наружных (отдельных от приборов) шунтов на них указывают номинальный ток, на который они рассчитаны, и номинальное напряжение на зажимах (калиброванные шунты). Согласно стандартам это напряжение может быть равно 45, 75, 100 и 150 мВ. Шунты подбирают к приборам так, чтобы при номинальном напряжении на зажимах шунта стрелка прибора отклонялась на всю шкалу. Следовательно, номинальные напряжения прибора и шунта должны быть одинаковыми. Имеются также индивидуальные шунты, предназначенные для работы с определенным прибором. Шунты делят на пять классов точности (0,02; 0,05; 0,1; 0,2; 0,5). Обозначение класса соответствует допустимой погрешности в процентах.

Для того чтобы повышение температуры шунта при прохождении по нему тока не оказывало влияния на показания прибора, шунты изготовляют из материалов с большим удельным сопротивлением и малым температурным коэффициентом (константан, манганин, никелин и пр.). Для уменьшения влияния температуры на показания амперметра последовательно с катушкой прибора в некоторых случаях включают добавочный резистор из констан-тана или другого подобного материала.

Рис. 332. Схемы для измерения тока (а, б) и напряжения (в, г)

Измерение напряжения. Для измерения напряжения U, действующего между какими-либо двумя точками электрической цепи, вольтметр 2 (рис. 332, в) присоединяют к этим точкам, т. е. параллельно источнику 1 электрической энергии или приемнику 3.

Для того чтобы включение вольтметра не оказывало влияния на работу электрических установок и он не создавал больших потерь энергии, вольтметры выполняют с большим сопротивлением. Поэтому практически можно пренебрегать проходящим по вольтметру током.

Для расширения пределов измерения вольтметров последовательно с обмоткой прибора включают добавочный резистор 4 (Rд) (рис. 332,г). При этом на прибор приходится лишь часть Uv измеряемого напряжения U, пропорциональная сопротивлению прибора Rv.

Зная сопротивление добавочного резистора и вольтметра, можно по значению напряжения Uv, фиксируемого вольтметром, определить напряжение, действующее в цепи:

U = (Rv+Rд)/Rv * Uv = nUv (107)

Величина n = U/Uv=(Rv+Rд)/Rv показывает, во сколько раз измеряемое напряжение U больше напряжения Uv, приходящегося на прибор, т. е. во сколько раз увеличивается предел измерения напряжения вольтметром при применении добавочного резистора.

Сопротивление добавочного резистора, необходимое для измерения напряжения U, в п раз большего напряжения прибора Uv, определяется по формуле Rд=(n— 1) Rv.

Добавочный резистор может встраиваться в прибор и одновременно использоваться для уменьшения влияния температуры окружающей среды на показания прибора. Для этой цели резистор выполняется из материала, имеющего малый температурный коэффициент, и его сопротивление значительно превышает сопротивление катушки, вследствие чего общее сопротивление прибора становится почти независимым от изменения температуры. По точности добавочные резисторы подразделяются на те же классы точности, что и шунты.

Делители напряжения. Для расширения пределов измерения вольтметров применяют также делители напряжения. Они позволяют уменьшить подлежащее измерению напряжение до значения, соответствующего номинальному напряжению данного вольтметра (предельного напряжения на его шкале). Отношение входного напряжения делителя U

1 к выходному U2 (рис. 333, а) называется коэффициентом деления. При холостом ходе U1/U2 = (R1+R2)/R2 = 1 + R1/R2. В делителях напряжения это отношение может быть выбрано равным 10, 100, 500 и т. д. в зависимости от того, к каким

Рис. 333. Схемы включения делителей напряжения

выводам делителя подключен вольтметр (рис. 333,б). Делитель напряжения вносит малую погрешность в измерения только в том случае, если сопротивление вольтметра Rv достаточно велико (ток, проходящий через делитель, мал), а сопротивление источника, к которому подключен делитель, мало.

Измерительные трансформаторы. Для включения электроизмерительных приборов в цепи переменного тока служат измерительные трансформаторы, обеспечивающие безопасность обслуживающего персонала при выполнении электрических измерений в цепях высокого напряжения. Включение электроизмерительных приборов в эти цепи без таких трансформаторов запрещается правилами техники безопасности. Кроме того, измерительные трансформаторы расширяют пределы измерения приборов, т. е. позволяют измерять большие токи и напряжения с помощью несложных приборов, рассчитанных для измерения малых токов и напряжений.

Измерительные трансформаторы подразделяют на трансформаторы напряжения и трансформаторы тока. Трансформатор напряжения 1 (рис. 334, а) служит для подключения вольтметров и других приборов, которые должны реагировать на напряжение. Его выполняют, как обычный двухобмоточный понижающий трансформатор: первичную обмотку подключают к двум точкам, между которыми требуется измерить напряжение, а вторичную — к вольтметру 2.

На схемах измерительный трансформатор напряжения изображают как обычный трансформатор (на рис. 334, а показано в круге).

Так как сопротивление обмотки вольтметра, подключаемого к трансформатору напряжения, велико, трансформатор практически работает в режиме холостого хода, и можно с достаточной степенью точности считать, что напряжения U1 и U2 на первичной и вторичной обмотках будут прямо пропорциональны числу витков ?1 и ?2 обеих обмоток трансформатора, т. е.

U1/U2 = ?1/?2 = n (108)

Таким образом, подобрав соответствующее число витков ?1 и ?2 обмоток трансформатора, можно измерять высокие напряжения, подавая на электроизмерительный прибор небольшие напряжения.

Напряжение U1 может быть определено умножением измеренного вторичного напряжения U2 на коэффициент трансформации трансформатора n.

Вольтметры, предназначенные для постоянной работы с трансформаторами напряжения, градуируют на заводе с учетом коэффициента трансформации, и значения измеряемого напряжения могут быть непосредственно отсчитаны по шкале прибора.

Для предотвращения опасности поражения обслуживающего персонала электрическим током в случае повреждения изоляции трансформатора один выэод его вторичной обмотки и стальной кожух трансформатора должны быть заземлены.

Трансформатор тока 3 (рис. 334,б) служит для подключения амперметров и других приборов, которые должны реагировать на протекающий по цепи переменный ток. Его выполняют в виде

Рис. 334. Включение электроизмерительных приборов посредством измерительных трансформаторов напряжения (а) и тока (б)

обычного двухобмоточного повышающего трансформатора; первичную обмотку включают последовательно в цепь измеряемого тока, к вторичной обмотке подключают амперметр 4.

Схемное обозначение измерительных трансформаторов тока показано на рис. 334, б в круге.

Так как сопротивление обмотки амперметра, подключаемого к трансформатору тока, обычно мало, трансформатор практически работает в режиме короткого замыкания, и с достаточной степенью точности можно считать, что токи I

1 и I2, проходящие по его обмоткам, будут обратно пропорциональны числу витков ?1 и ?2 этих обмоток, т.е.

I1/I2 = ?1/?2 = n (109)

Следовательно, подобрав соответствующим образом число витков ?1 и ?2 обмоток трансформатора, можно измерять большие токи I1, пропуская через электроизмерительный прибор малые токи I2. Ток I1 может быть при этом определен умножением измеренного вторичного тока I2 на величину n.

Амперметры, предназначенные для постоянной работы совместно с трансформаторами тока, градуируют на заводе с учетом коэффициента трансформации, и значения измеряемого тока I1 могут быть непосредственно отсчитаны по шкале прибора.

Для предотвращения опасности поражения обслуживающего персонала электрическим током в случае повреждения изоляции трансформатора один из зажимов вторичной обмотки и кожух трансформатора заземляют.

На э. п. с. применяют так называемые проходные трансформаторы тока (рис. 335). В таком трансформаторе магнитопровод 3 и вторичная обмотка 2 смонтированы на проходном изоляторе 4, служащем для ввода высокого напряжения в кузов, а роль первичной обмотки трансформатора выполняет медный стержень 1, проходящий внутри изолятора.

Условия работы трансформаторов тока отличаются от обычных. Например, размыкание вторичной обмотки трансформатора тока при включенной первичной обмотке недопустимо, так как это вызовет значительное увеличение магнитного потока и, как следствие, температуры сердечника и обмотки трансформатора, т. е. выход его из строя. Кроме того, в разомкнутой вторичной обмотке трансформатора может индуцироваться большая э. д. с, опасная для персонала, производящего измерения.

При включении приборов посредством измерительных трансформаторов возникают погрешности двух видов: погрешность в коэффициенте трансформации и угловая погрешность (при изменениях напряжения или тока отношенияU1/U2 и I1/I2 несколько изменяются и угол сдвига фаз между первичным и вторичным напряжениями и токами отклоняется от 180°). Эти погрешности возрастают при нагрузке трансформатора свыше номинальной. Угловая погрешность оказывает влияние на результаты измере-

Рис. 335. Проходной измерительный трансформатор тока

ний приборами, показания которых зависят от угла сдвига фаз между напряжением и током (например, ваттметров, счетчиков электрической энергии и пр.). В зависимости от допускаемых погрешностей измерительные трансформаторы подразделяют по классам точности. Класс точности (0,2; 0,5; 1 и т. д.) соответствует наибольшей допускаемой погрешности в коэффициенте трансформации в процентах от его номинального значения.

electrono.ru

Измерение напряжения, тока, споротивления, емкости, индуктивности, мощности в электрических цепях

Методика измерений в электрических цепях


Измерение постоянного и переменного напряжения

Измерение как постоянного, так и переменного напряжения может производиться непосредственно вольтметрами, рассчитанными для работы соответствующего типа напряжения. В тех случаях, когда необходимо измерить напряжение больше того, на которое рассчитан вольтметр, необходимо последовательно с ним включить добавочный резистор. Тогда часть измеряемого напряжения будет падать на добавочный резистор, а часть — на прибор. Подбирая величину сопротивления добавочного резистора, можно в широких пределах расширять возможности измерения больших напряжений. Известно сопротивление вольтметра Rпp и выбран коэффициент расширения пределов расширения:

n = Ux/Uпp

где Ux — максимальное напряжение на входе схемы, подлежащее измерению; Uпp — максимальные пределы измерения непосредственно вольтметром.

Величина сопротивления добавочного резистора может быть найдена по следующей формуле:

Rдоб = Rпр(n-1)

Обычно для удобства производства отсчетов коэффициент п выбирают кратным 2, 5 или 10.

Для измерения высоких значений переменных напряжений могут быть использованы так называемые измерительные трансформаторы напряжения.

Они представляют собой понижающие трансформаторы, т. е. такие, у которых число витков вторичной обмотки W2, к которой подключается вольтметр, меньше числа витков W1 первичной обмотки. Коэффициент расширения пределов измерения n = W1/W2. Схемы подключения вольтметров для измерения напряжения приведены на рис. 1.



Рис. 1. Схемы измерения напряжения


Измерение электродвижущей силы (ЭДС)

Измерение Е имеет свои особенности. При подключении вольтметра к источнику ЭДС для ее измерения через него всегда будет проходить ток, а так как любой источник ЭДС обладает внутренним сопротивлением Rвн, то напряжение на таком источнике и вольтметр будет измерять величину меньшую, чем ЭДС Е.

U = E – IRвн

Если нет требований к высокой точности измерения ЭДС, то для уменьшения тока можно воспользоваться вольтметром с большим внутренним сопротивлением, например электронным. В этом случае можно считать, что измеренное напряжение U ~ Е. Более точные методы измерения ЭДС связаны с использованием компенсационных схем (рис. 2).



Рис. 2. Схемы измерения ЭДС

В них напряжение, измеряемое вольтметром PV, снимаемое с переменного резистора R, сравнивается с напряжением на источнике ЭДС.

Изменяя напряжение на выходе переменного резистора (потенциометра), можно добиться такого условия, когда измерительный прибор Р покажет отсутствие тока через источник ЭДС. В этом случае показания вольтметра будут точно соответствовать величине ЭДС источника, т. е. U = Е .


Измерение тока

Можно производить измерение тока непосредственно амперметром, включенным в разрыв измеряемой цепи (рис. 3, а).



Рис. 3. Схемы измерения силы тока

При необходимости расширить пределы измерения амперметра необходимо параллельно амперметру включить резистор (рис. 3, б), который чаще всего называют шунтом. Тогда через амперметр будет проходить только часть тока, а остальная — через шунт. Так как сопротивление амперметров обычно небольшое, то для существенного расширения пределов измерения сопротивление шунта должно быть очень небольшим. Существуют формулы для расчета сопротивления шунта, но обычно на практике приходится вручную подгонять его сопротивление, контролируя ток эталонным амперметром.

Для измерения больших переменных токов часто используют измерительные трансформаторы токов (рис. 3, в). У них первичная обмотка, включаемая в разрыв измеряемой цепи, имеет число витков W1 меньшее, чем число витков W2 вторичной обмотки, т. е. трансформатор является повышающим по напряжению, но по току он понижающий. Амперметр подключается к выходу вторичной обмотки трансформатора тока. Часто лабораторные трансформаторы тока вообще не имеют изготовленной заранее первичной обмотки, а в их корпусе имеется широкое сквозное отверстие, через которое сам экспериментатор наматывает необходимое число витков (рис. 3, г). Зная число витков вторичной обмотки (оно обычно указано на корпусе трансформатора тока), можно выбрать коэффициент трансформации n = W1/W2 и определить измеряемый ток Iх по показаниям амперметра Iпр по следующей формуле:

Iх = Iпр/n

Совершенно по-иному производят измерение токов в электронных схемах, которые обычно спаяны, изготовлены на печатных платах; произвести какой-либо разрыв в них практически невозможно. Для измерения токов в этих случаях используют вольтметры (обычно электронные с большим внутренним сопротивлением для устранения влияния прибора на работу электронной схемы), подключая их к резисторам схемы, величины которых либо известны, либо могут быть предварительно измерены. Воспользовавшись законом Ома, можно определить силу тока:

I = U/R


Измерение сопротивлений

Часто при работе с электрическими установками или при наладке электронных схем необходимо производить измерение различных сопротивлений. Простейший способ измерения сопротивлений заключается в использовании двух измерительных приборов: амперметра и вольтметра. С их помощью измеряют напряжение и ток в сопротивлении R, подключенном к источнику питания, и по закону Ома находят величину искомого сопротивления:

R = U/I

Однако этот способ измерения сопротивлений не позволяет получить результаты измерения с высокой точностью, так как на результаты измерения оказывают влияние собственные внутренние сопротивления амперметра и вольтметра. Так, на изображенной на рис. 4, а схеме амперметр измеряет не только ток, проходящий через сопротивление, но и ток, проходящий через вольтметр, чем вносится методическая погрешность измерений.



Рис. 4. Схема для измерения сопротивлений методом амперметра и вольтметра (а) и схема омметра (б)

 

Этим способом производят измерение обычно в тех случаях, когда нет специальных приборов — омметров. Одна из возможных схем омметра (рис. 4, б) — последовательная. Она состоит из автономного источника питания Е, переменного резистора R и миллиамперметра магнитоэлектрического типа РА. В качестве источника питания обычно используют сухие элементы или батареи напряжением 1,4…4,5 В. Если к выводам прибора подключить сопротивление Rx, величину которого необходимо определить, то по цепи пойдет ток, величина которого будет зависеть от величины сопротивления. Так как миллиамперметр измеряет этот ток, то его шкала может быть непосредственно отградуирована в омах. Шкала у такого омметра обратная, т. е. нуль находится в правой части шкалы, так как при сопротивлении на входе, равном нулю (режим короткого замыкания), через амперметр будет протекать максимальный ток. Если внешняя цепь разорвана, что соответствует бесконечно большому сопротивлению на входе, то стрелка миллиамперметра будет находиться в самой левой части шкалы, где стоит знак х . Шкала такого омметра резко нелинейная, что в какой-то мере затрудняет считывание результатов. Переменный резистор омметра служит для установки прибора на нуль перед началом работы с ним. Для этого замыкают выводы омметра накоротко и, вращая ручку переменного резистора, добиваются нулевых показаний прибора. Так как ЭДС элемента питания с течением времени за счет разряда уменьшается, такую установку нуля необходимо периодически контролировать. С помощью подобных омметров можно измерять сопротивления от нескольких омов до сотен килоомов.



Рис. 5. Схемы мегометра (а) и электрического моста (б)

Измерение больших сопротивлений до 100 МОм обычно производят с помощью мегометров (рис. 5, а). В своем классическом виде он представляет собой комбинацию автономного источника питания и измерительного прибора — логометра. Логометр — разновидность магнитоэлектрического прибора, у которого вместо одной рамки имеются две, соединенные жестко между собой под некоторым утлом. Так же, как и в обычном магнитоэлектрическом приборе, с ними связана стрелка прибора и находятся они в магнитном поле постоянного магнита. При пропускании тока через обмотки рамок они создают вращающие моменты противоположных знаков, в результате чего положение стрелки будет зависеть от отношения токов в рамках. В цепь одной из рамок включен резистор R, а в цепь другой — сопротивление Rx, величина которого должна быть определена. Применение логометра объясняется тем, что его показания определяются только отношением токов в рамках и не зависят от изменения питающего напряжения Uпит. В качестве источника напряжения для мегометра используют либо индуктор, приводимый во вращение рукой оператора, либо аккумуляторную батарею с электронным преобразователем напряжения. Такая система питания определяется тем, что для работы прибора требуются большие напряжения — порядка 500 В, так как при меньших напряжениях токи в обмотках прибора были бы слишком малыми для его нормальной работы. Использование автономного источника питания диктуется тем, что мегометром часто измеряют сопротивление изоляции кабелей; при этом, естественно, напряжение в них бывает отключенным. Кроме того, с его помощью часто проводят измерения вне помещений, где нет электрической сети.

Измерение малых сопротивлений (меньше 1 Ом), а также измерения других сопротивлений в широком диапазоне значений с высокой точностью могут проводиться с помощью электрических мостов.

Электрический мост (рис. 5, б) представляет собой четыре сопротивления (одно из них — Rx подлежит измерению), включенные по кольцевой схеме. Каждое из сопротивлений образует плечо моста. В одну диагональ моста подают постоянное напряжение питания Uпит , а к другой подключают измерительный прибор — гальванометр Р. Он представляет собой высокочувствительный магнитоэлектрический прибор с нулем посередине шкалы. Его назначение — фиксировать момент, когда ток будет отсутствовать. Приборы подобного типа часто называются нуль-индикаторами. Одно или два сопротивления в плечах моста делаются переменными, и именно ими добиваются нулевых показаний прибора. Мост при этом считается сбалансированным. Как показывает теория электрических мостов, условие баланса достигается при равенстве произведения сопротивлений противоположных плеч, т. е. при условии R1Rx = R2R3. Следовательно, после балансировки моста можно, зная величины всех сопротивлений, определить значение неизвестного сопротивления



где N = R2/R1 — множитель.

Точность измерения с помощью мостов постоянного тока может быть очень велика. Результирующие значения сопротивлений могут иметь более пяти значащих цифр. В то же время мост не позволяет оперативно производить измерения, так как процесс балансировки требует определенного времени и навыка оператора.


Измерение емкостей

Определение емкости конденсатора или других устройств емкостного характера также может осуществляться различными способами. Простейший из них — метод амперметра-вольтметра (рис. 6, а).



Рис. 6. Схемы измерения емкости

Он во многом аналогичен такому же методу измерения сопротивлений, с той только разницей, что схема питается переменным синусоидальным напряжением от генератора низкой или высокой частоты (или от сети). Емкостное сопротивление конденсатора определяется по следующей формуле:



где f — частота переменного напряжения.

Емкостное сопротивление находится по закону Ома по показаниям приборов



Измерение малых по величине емкостей удобнее производить методом резонанса (рис. 6, б). Измеряемый конденсатор Сх подключается к известной индуктивности L, образуя колебательный контур. На контур подается синусоидальное напряжение от генератора. С помощью электронного вольтметра измеряют напряжение на контуре. При резонансе оно достигает максимума.

Известно, что резонансная частота контура может быть выражена следующей формулой:



Следовательно, при известной величине индуктивности в контуре и определенной по максимальным показаниям вольтметра частоте резонанса можно найти искомое значение емкости Сх.

Измерение больших емкостей (например, электролитических конденсаторов) проще всего производить путем разряда конденсатора на известное сопротивление R. Известно, что за время, равное постоянной времени цепи разряда конденсатора, его напряжение уменьшается в е раз, где е = 2,71… — основание натурального логарифма. Постоянная времени цепи разряда конденсатора на резистор определяется соотношением



Схема измерения емкости этим методом (рис. 6, в) состоит из источника постоянного напряжения питания, известного по величине сопротивления резистора R, электронного вольтметра PV, переключателя S и клемм для подключения конденсатора. С помощью переключателя S конденсатор Сх заряжается до напряжения источника питания, а после переключения конденсатора на разряд с помощью секундомера измеряют время t, по истечении которого конденсатор разрядится до напряжения Uпит/е. Емкость конденсатора определяется по формуле



Емкости конденсаторов можно измерять также с помощью мостов переменного тока.


Измерение индуктивностей

Измерение индуктивностей несколько сложнее. Это связано с тем, что любая катушка (обмотка трансформатора и т. п.) имеет кроме индуктивности еще и резистивное сопротивление. Поэтому во многих случаях измеряют предварительно полное сопротивление катушки индуктивности:



Оно может быть определено методом амперметра и вольтметра путем измерения напряжения и тока измерительными приборами схемы на переменном напряжении (рис. 7, a) z = U/I. При подаче на схему постоянного напряжения (рис. 7, б), как уже рассматривалось выше, можно определить резистивное сопротивление катушки R.



Рис. 7. Схемы измерения индуктивностей

Тогда



В свою очередь, индуктивное сопротивление



При известном значении частоты / напряжения питания легко найти величину искомого значения индуктивности



При малых значениях индуктивности (например, контурных катушек радиоэлектронных устройств) можно воспользоваться резонансной схемой, аналогичной схеме определения емкости резонансным методом.

Для измерения индуктивности можно использовать также мосты переменного тока, специальные измерительные приборы — ку- метры, позволяющие определять не только величину индуктивности, но и такую характеристику, как добротность катушки, характеризующие качество работы катушки в электронных схемах.


Измерение мощности

В электрических цепях измерение мощности удобнее рассматривать отдельно для цепей постоянного и переменного тока.

На постоянном токе основные формулы для определения мощности следующие:



В соответствии с приведенными формулами мощность в каком-то сопротивлении нагрузки R можно измерить тремя способами: с помощью вольтметра и амперметра (рис. 8, а), только вольтметром (рис. 8, б) и только амперметром (рис. 8, в). Во всех случаях после снятия показаний с приборов необходимо провести математические расчеты для определения собственно мощности.



Рис. 8. Схемы измерения мощности в цепях постоянного тока

Этого можно избежать, если для измерения мощности воспользоваться специальным прибором ваттметром (рис. 8, г). Как правило, выпускаемые промышленностью ваттметры изготавливаются на базе ферродинамического прибора (см. рис. 2.105). У ваттметров имеются две обмотки и соответственно четыре вывода. Одна из обмоток является токовой, через нее проходит ток к нагрузке, расходуемая мощность в которой подлежит измерению, а вторая — обмоткой напряжения. Она подключается непосредственно к источнику питания.

Измерение мощности на переменном токе имеет свои особенности. Во-первых, здесь существуют три различные мощности:

полная мощность, В * А,

S= UI,

активная мощность, Вт,

Р = UIcosφ;

реактивная мощность, вар,

Q = UIsinφ.

В этих формулах (φ — угол сдвига по фазе между током и напряжением.

Чаще всего интересуются полной и активной мощностями. Знание полной мощности необходимо для расчета токов в нагрузке, выбора сечения проводов и предохранителей. Активная мощность важна потому, что именно она характеризует ту мощность, которая в нагрузке преобразуется в теплоту, свет, звук и т.д.

Измерение полной мощности обычно производят, измеряя напряжение и ток вольтметром и амперметром и перемножая полученные значения. Активную мощность чаще всего измеряют с помощью ферродинамических ваттметров, которые кроме напряжения и тока учитывают и так называемый коэффициент мощности cosφ.

При подключении обмоток ваттметра к нагрузке, так же как и при постоянном напряжении, ваттметр непосредственно произведет измерение активной мощности.

На переменном токе достаточно часто приходится решать задачу измерения активной мощности в трехфазных цепях. Трехфазные цепи могут быть двух типов: трехпроводные и четырехпроводные. В трехпроводных цепях к нагрузке подходят три провода, обозначаемые буквами А, В, С. Для измерения активной мощности в такой цепи при любом варианте подключения элементов нагрузки к проводам достаточно подключить только два ваттметра так, как это показано на рис. 9.



Рис. 9. Схемы измерения мощности на переменном токе: а — трехпроводная система; б — четырехпроводная система

При этом необходимо соблюсти определенные правила подключения ваттметров. Выводы обмоток ваттметра, обозначенные на его корпусе звездочками, должны быть обращены в сторону источника энергии. Поэтому эти выводы получили название генераторные (подключаются к проводам, идущим от генератора). Суммарная активная мощность такой трехфазной системы находится как алгебраическая сумма показаний двух ваттметров. При этом возможен вариант, когда показания одного из ваттметров могут быть отрицательными, т. е. его стрелка уйдет влево. Для снятия показаний с такого ваттметра необходимо поменять местами провода, подходящие к любой из обмоток, прочесть результат измерения, но в формулу подставить с отрицательным знаком.

Измерение активной мощности в четырехпроводных цепях требует использования трех ваттметров. Один из выводов каждого ваттметра здесь подключается к четвертому проводу, обычно называемому нулевым. Показания всех ваттметров могут быть только положительными, и суммарная активная мощность, потребляемая трехфазной цепью, будет равна сумме мощностей, измеряемых каждым из ваттметров:

Ре = Р1 + Р2 + Р3.

Один из наиболее простых методов измерения количества электричества — метод измерения с помощью так называемого баллистического гальванометра. Он представляет собой прибор магнитоэлектрической системы (см. рис. 2.103) с умышленно утяжеленной подвижной частью (с большим моментом инерции). Если на вход такого баллистического гальванометра подать кратковременный импульс напряжения, то подвижная часть прибора, получив как бы импульсный вращающий момент, начнет движение, причем уже после окончания входного импульса это движение еще будет продолжаться и стрелка прибора, двигаясь по инерции, отклонится до какого-то значения шкалы, а затем возвратится в исходное нулевое положение. В качестве отсчета на таком приборе необходимо отметить то максимальное отклонение стрелки αmах от нулевого значения, которое наблюдалось во время ее движения по «баллистической траектории». Теория такого баллистического гальванометра показывает, что этот отсчет по максимальному отклонению стрелки оказывается пропорциональным количеству электричества, прошедшего через рамку такого прибора, т. е.

αmах = Q/С6,

где Сб—баллистическая постоянная, зависящая от конструктивных особенностей гальванометра.

Измерение количества электричества Q на обкладках предварительно заряженного конденсатора можно осуществить, разрядив его через баллистический гальванометр, и по максимальному отклонению его стрелки найти искомое значение количества электричества:

Q = С6αmах

При разработке новых сплавов, предназначенных для использования в электротехнических цепях, возникает необходимость в определении их удельного сопротивления. Под удельным сопротивлением понимают сопротивление проводника сечением 1 мм2

и длиной 1м. Соответственно такое удельное сопротивление р измеряется в единицах Ом — (мм2/м). Для его измерения выбирают отрезок проводника, желательно небольшого сечения, и измеряют его сопротивление любым из рассмотренных выше методов. После этого расчетным путем приводят величину этого сопротивления к сечению 1 мм2 и длине 1 м, что не представляет каких- либо трудностей, и получают значение удельного сопротивления. Для получения большей точности измерения желательно длину проводника брать по возможности большей.

Для многих изоляционных материалов представляет определенную ценность определение их диэлектрической проницаемости ε. Одним из простейших способов ее измерения является способ косвенного измерения с последующим расчетом величины диэлектрической проницаемости. Известно, что емкость простейшего конденсатора, состоящего из двух одинаковых пластин площадью S, расположенных на расстоянии δ друг от друга, с диэлектриком, заполняющим все пространство между пластинами, определяется по формуле



где ε — диэлектрическая проницаемость материала между пластинами.

Рис. 10. Схема для измерения диэлектрической постоянной изоляционных материалов

Измерение диэлектрической проницаемости материала производят с помощью конденсатора (рис. 10), между пластинами которого помещают испытуемый материал, а также измерения емкости такого элементарного конденсатора любым из описанных выше методов. Численную величину диэлектрической проницаемости определяют по формуле



Развитие радиоэлектроники и установок для высокочастотного воздействия на материалы машиностроения привело к тому, что практически все пространство заполнено электромагнитными волнами.

В мире работают миллионы передающих радиостанций, многие из которых излучают значительные мощности (например, радиолокационные станции дальнего обнаружения, вещательные радиостанции и т. п.). Для оценки электромагнитных волн часто возникает необходимость определения их уровня. Обычно об уровне электромагнитных волн судят по напряженности электрического поля, величина которого аналитически может быть пересчитана в мощность электромагнитного поля. Напряженность электрического поля наиболее часто измеряют с помощью рамочной антенны (рис. 11), которая представляет собой плоскую катушку, намотанную на каркас Е из какого- либо диэлектрика. (На рис. 11 для простоты изображен только один виток.)



Рис. 11. Измерение напряженности электрического поля

Диаграмма направленности такой антенны показывает, что максимум принимаемого излучения идет со стороны, лежащей в плоскости витков катушки. Это позволяет не только производить измерение напряженности электрического поля, но и определять направление на источник высокочастотных излучений по максимальной величине напряжения на выходе рамки при ее поворотах относительно вертикальной оси. Напряженность электрического поля определяется по величине напряжения на выходе рамки по следующей формуле, В/м:



где U — напряжение на выходе рамки, В; f — частота принимаемого сигнала, Гц; n — число витков в рамке; S— площадь рамки, м2.

Обычно на геометрические размеры рамки в зависимости от частоты сигнала напряженность поля которого определяется, накладываются определенные ограничения. В частности, на частотах более 30 МГц более точные результаты получаются, если вместо рамочной антенны использовать полуволновый диполь, представляющий собой проводник длиной в половину длины волны, разрезанный посередине. Напряжение с диполя снимается с центральной разрезанной части. Значение напряженности электрического поля можно определить по следующей формуле:



где f— частота, Гц; U— напряжение на выходе диполя, В.

Диполь, так же как и рамка, позволяет определять направление, с которого приходит сигнал, так как обладает определенной направленностью, что видно из диаграммы направленности. Максимум принимаемых сигналов определяется перпендикуляром к плоскости диполя. Именно так ориентированы телевизионные антенны по отношению к телевизионной вышке.

Напряжение на выходе рамки или диполя можно измерять с помощью электронного вольтметра непосредственно при сильных сигналах или применяя электронные усилители. В этом случае, используя селективные свойства усилителей, можно определить уровень напряженности электрического поля определенной частоты. Нужно учесть, что уровень сигнала на выходе рамки и частично диполя складывается из большого числа электромагнитных полей, существующих в пространстве в районе расположения приемного устройства от различных источников (передатчиков).

При необходимости определить частоту высокочастотного сигнала можно, если он сильный, используя непосредственное включение электронного частотомера на выход рамки или диполя. При слабых сигналах и использовании усилителей можно по их частотной настройке определять частоты сигналов, наведенные в рамке или диполе, т. е. так, как обычно по шкале радиоприемника можно определить длину волны или частоту принимаемой станции.

www.eti.su

Как измерить силу тока в цепи постоянного и переменного тока

Любая электротехническая система не обходится без расчета силы тока в цепях, проводниках и приборах. Например, при монтаже электрической проводки в однофазной сети или в трехфазной сети для расчета толщины проводников и автоматических защитных выключателей необходимо знать силу тока, который будет протекать в данных линиях. Правильное измерение – залог безопасной и надежной эксплуатации любого электрического устройства.

Как измерить силу тока

Измерения силы тока проводят не только для расчета цепей, но и для диагностики электрического оборудования (например, измерения на трехфазном двигателе) и бытовых электроприборов (в нагревателе, лампочках, блоках питания, зарядных устройствах USB и пр.). Автомобильные электрики, для выявления неисправности в электрических системах автомобиля (например, в прикуривателе) проводят измерения силы тока на аккумуляторе или на генераторе автомобиля. В этой статье мы подробно расскажем, как правильно измерять ток в различных ситуациях.

Как измерить ток

Для того, чтобы уметь правильно измерить силу тока, не обязательно быть профессиональным электриком, но необходимо иметь некоторые познания в электротехнике.

Что же такое сила тока? Сила тока – физическая величина, которая равна отношению количества заряда, который проходит через определенную поверхность за некоторое время, к величине этого промежутка времени. Данная величина измеряется в Амперах и обозначается буквой «А». Хоть определение силы тока и звучит достаточно мудрено, но в этой физической величине нет ничего сложного.

Применение токоизмерительных клещейНо как измерить амперы? Чтобы провести измерения силы тока необходимо иметь определенный инструмент или оборудование для этого. Обычно измерения в цепи постоянного напряжения проводят мультиметром или тестером, а в сетях переменного напряжения токоизмерительными клещами или амперметром.

Измерение тока автомобильного аккумулятора

Постоянный ток

Как уже было сказано выше, измерения силы тока в цепях постоянного напряжения удобнее всего проводить мультиметром. Для того, чтобы осуществить измерение необходимо взять мультиметр и настроить его для работы с силой тока.

Для этого переключатель режимов перемещается в положение DCA (измерение постоянного тока), а красный и черный штекеры щупов мультиметра подключаются к гнездам с обозначением «10А» и «COM», а другие концы подключаются в разрыв цепи (то есть красный подключается к положительной полярности, а черный к отрицательной).

Разные пределы измерения силы тока, для предела 10А выделено отдельное гнездо и отдельный предел измерения

На современных китайских мультиметрах есть два гнезда для измерения силы тока. Одно из них подписано mA. Оно защищено предохранителем и предназначено для измерения малых токов, зачастую не более 200 мА. А второе гнездо подписывается либо просто «А», либо «10А». Оно не защищено предохранителем и предназначено для измерения тока большой величины. При этом время измерения обычно ограничивается периодом в 10-20 секунд.

Измерения производят с максимального значения, постепенно уменьшая для получения на экране необходимой размерности значения. Важно понимать примерную мощность электрической сети, в которой проводятся измерения, и выбирать прибор в соответствии с этим. Если прибор не рассчитан на такую величину, то он может выйти из строя или произойдет короткое замыкание.

В быту измерения силы тока постоянного напряжения проводят, например, у светодиода на светодиодной ленте или на плате телевизора (или другой техники) при его ремонте, а также в других случаях.

Измерение постоянного тока мультиметром

Многие думают, что для измерений силы тока нужно покупать дорогой мультиметр. Но тут надо понимать, для каких целей и задач будет использоваться прибор. Если работу выполняет профессиональный электрик, то приобретается более точный и дорогой инструмент, а домашние измерения можно производить и китайским мультиметром.

Подробно о том, как пользоваться мультиметром, мы рассказали в статье: https://samelectrik.ru/kak-pravilno-ispolzovat-multimetr-prostaya-instrukciya-s-kartinkami.html.

Переменный ток

Измерение силы тока в цепи переменного тока сложнее, чем для постоянного. Для этого применяют такие приборы, как амперметр или токоизмерительные клещи. Использование токоизмерительных клещей – самый удобный и безопасный способ, но он подходит только при открытой прокладке проводки или кабеля. Такой способ позволяет измерить ток без разрыва цепи, что существенно безопаснее и быстрее.

Измерение токоизмерительными клещами фазного тока в трёхфазной цепи

Измерение производится путем помещения проводника под напряжением в разъёмный магнитопровод со вторичной обмоткой (конструкция почти аналогична трансформатору тока). Благодаря явлению электромагнитной индукции можно измерить вторичный ток в обмотке, а после этого прибор рассчитывает первичный в измеряемой цепи. При измерении токоизмерительными клещами проводник заводится в раствор клещей и на дисплее прибора отображается сила тока в цепи переменного напряжения.

Чтобы применять амперметр для измерений силы тока нужно обладать определенными навыками и знать, как следует включить в цепь амперметр чтобы измерить силу тока.

Амперметр, как и мультиметр включается в разрыв цепи. При этом важно понимать, что переменный ток наиболее опасен, поэтому требует серьезного отношения к электробезопасности. При включении амперметра в цепь, подачи напряжения и подключения нагрузки на дисплее или табло амперметра будет указана сила тока в цепи.

Подключение амперметра и вольтметра в цепь

Примеры измерения тока

Для понимания принципов измерения силы тока в различных электроприборах и цепях ниже приведены варианты устройств и способы измерения силы тока.

Электродвигатель

Измерения силы тока в обмотках электродвигателя производят для проверки наличия коротких замыканий, неисправностей и для настройки правильного алгоритма управления электродвигателем. Так как ток в трехфазном асинхронном двигателе в каждой фазе одинаковый, то достаточно подключить один амперметр к одной фазе для проверки его потребления.

Для диагностики каждой из обмоток замеряют ток в каждой фазе, и если в каждой из фаз он отличается, то в какой-то из обмоток возможно межвитковое замыкание, а если в одной из фаз вообще нет тока — то либо обрыв на линии либо обрыв в обмотке. Если в одной из фаз ток есть но он меньше чем в двух других – возможен плохой контакт в брно или в коммутационных приборах.

У однофазного электромотора все проще: ток измеряется на единственной фазе. Но нужно иметь в виду, что максимальная сила тока амперметра ограничена и обычно составляет не более 5А, поэтому при для больших токов используют токовые клещи или другие схемы с трансформаторами тока и амперметром.

Сварочный аппарат

Для того, чтобы понимать какие электроды использовать и в каком режиме производить сварочные работы можно измерить силу тока на проводе выхода у сварочного аппарата под нагрузкой. Измерение производят аналогично другим приборам, включая в цепь на сварочном инверторе амперметр с трансформатором (бывают и старые модели амперметров с возможностью измерения до 200 А) или используя токоизмерительные клещи.

Батарейки и аккумуляторы

В быту часто бывает необходимо измерить ток электроприбора на батарейках (в качестве батареек могут быть кроны, пальчиковые батарейки и прочие аккумуляторы). Важно понимать, что просто подключить мультиметр или амперметр к источнику нельзя, потому что силу тока измеряют только под нагрузкой.

Измерение тока батарейки в цепи с резистором

В качестве нагрузки можно остановится на лампе накаливания или на резисторе или включится в цепь самого прибора. Для замера нужно выбрать на мультиметре необходимый режим (для измерения постоянного тока), правильно подключить клеммы к прибору и на участке цепи. При этом на экране мы получим искомое значение для той нагрузки, которая подключена к аккумулятору.

Измерение в цепи с резистором и аккумулятором «крона»

Заключение

Как можно убедится, существует всего два способа измерения силы тока:

  1. С помощью амперметра или мультиметра — в этом способе важно чтобы прибор выдерживал и его предел измерения был рассчитан на измеряемую силу тока. Недостаток у этого способа состоит в том, что необходимо разрывать цепь. Тогда при измерениях на плате придется перерезать дорожку, а при измерении потребления приборов – разделывать их кабель и выделять одну из жил, или отключать от прибора один провод и включать в его цепь измерительный прибор.
  2. С помощью токоизмерительных клещей. Зачастую этот способ используются для измерения переменного тока, но современной промышленностью выпускают токоизмерительные клещи для постоянного тока, принцип действия которых основан на эффекте Холла (только такие клещи дороговаты — стоят от 50$). Удобен способ тем, что не нужно разрывать цепь – нужно лишь ОДНУ жилу вложить в клещи и на экране высветится сила тока в цепи (или стрелка подскочит, если прибор стрелочный).

Существуют и комбинированные способы, когда измерительный прибор не рассчитан на измеряемую величину – можно использовать трансформатор тока. Например, электросчетчики прямого включения не всегда могут измерять большие токи для учета электроэнергии. Тогда их подключают не напрямую, а через трансформатор тока.

Теперь вы знаете, как измерить силу тока в цепи постоянного и переменного тока. Надеемся, наша инструкция и примеры помогли вам разобраться в вопросе. Если что-либо осталось непонятным, задавайте вопросы в комментариях под статьей!

Материалы по теме:

samelectrik.ru

Измерение тока и напряжения — Знаешь как

Содержание статьи

Схемы включения амперметра и вольтметра

Измерение тока и напряженияПоказание амперметра определяется током в его измерительном механизме. Поэтому для измерения тока в каком-либо участке электрической цепи, приемнике или генераторе амперметр надо включить так, чтобы измеряемый ток проходил через него. Следовательно, амперметр включается последовательно с приемником, генератором или участком цепи (рис. 7-7).

Рис. 7-7. Включение амперметров и вольтметров.

Включение амперметра не должно изменить режим работы цепи» следовательно, сопротивление его должно быть малым по сравнению с сопротивлением приемника или участка цепи. При малом сопротивлении амперметра (ra) и номинальном токе его (Ia,н) мала и номинальная мощность потерь в нем

Рa.н = I2а.нra

Если измеряемый ток больше номинального тока измерительного механизма (амперметра), то для расширения предела измерения тока в цепях постоянного тока применяют шунты, рассмотренные ниже, а в цепях переменного тока — трансфо рматоры тока.

Показание вольтметра определяется напряжением на его зажимах. Поэтому для измерения напряжения на зажимах приемника или генератора необходимо его зажимы соединить с зажимами вольтметра, т. е. присоединить вольтметр п араллельно потребителю или генератору (рис. 7-7).

Сопротивление вольтметра должно быть большим по сравнению с сопротивлением приемника энергии (генератора), параллельно которому он включается с тем, чтобы его включение не влияло на измеряемое напряжение (на режим работы цепи). При большом сопротивлении вольтметра (ra) номинальный ток ero(Iв,н) мал, мала и номинальная мощность потерь в нем (Рв,н), так как

Iв.н = Uв.н /rв и Рв.н =U2в.н /rв

Напряжение на зажимах измерительного механизма

Uи = Iиrи

Так как сопротивление медной обмотки измерительного механизма rи изменяется на 4% при изменении температуры на 10° С, то напряжение Uи не пропорционально току Iи, а следовательно, и углу поворота подвижной части. Таким образом, точное измерение напряжения невозможно.

Включив последовательно с измерительным механизмом большое добавочное сопротивление (rД > rи) из манганина, температурный коэффициент которого близок к нулю, получим сопротивление вольтметра rвrиrД практически независимым от температуры.

Таким образом, угол поворота подвижной части вольтметра будет пропорционален не только току, но и напряжению на зажимах

Uв = Iи(rи + rд) = Iиrв = Iиconst.

Добавочное сопротивление, кроме того, применяется для увеличения номинального напряжения вольтметра, так как номинальное напряжение измерительного механизма обычно мало.

Для расширения предела измерения напряжения в цепях переменного тока высокого напряжения наряду с добавочным сопротивлением применяют измерительные трансформаторы напряжения.

Из изложенного следует, что амперметр и вольтметр могут иметь измерительные механизмы одинакового устройства, отличающиеся только своими параметрами. Но амперметр и вольтметр по разному включаются в измеряемую цепь и имеют разные внутренние измерительные схемы.

Магнитоэлектрические амперметры и вольтметры

Выше указывалось, что наибольший номинальный ток, на который изготовляются магнитоэлектрические измерительные механизмы, не превышает 100 ма. Таким образом, магнитоэлектрические приборы для измерения малых токов (гальванометры, микроамперметры, миллиамперметры) представляют собой измерительный механизм, катушка которого присоединена к зажимам прибора, расположенным на его корпусе, а на шкалах непосредственно наносятся значения измеряемого тока.

Измерительный механизм с шунтом

Рис. 7-8. Измерительный механизм с шунтом.

Магнитоэлектрический амперметр представляет собой измерительный механизм той же системы с шунтом для расширения предела измерения тока. Шунт присоединяется параллельно измерительному механизму (рис. 7-8).

Измеряемый ток в узле а делится на две части: ток шунта Iɯ и ток измерительного механизма IиПадение напряжения на разветвлении (рис. 7-8)

Uаб = Iиrи = I((rиrш)/rи+rш)

откуда

I = Iи((rи+rш) /rш) = Iиp

Амперметр с многопредельным шунтом

Рис. 7-9. Амперметр с многопредельным шунтом.

При постоянных значениях сопротивления шунта rш и сопротивлении измерителя rи измеряемым током итоком измерительного механизма Iи будет постоянное отношение р.. Следовательно, по углу поворота подвижной части измерительного механизма можно определять измеряемый ток. Шунты должны иметь достаточное сечение, исключающее возможность их нагревания и связанных с этим погрешностей, Шунты на токи до 25—50 а обычно помещаются в кожухе прибора, а на большие токи — вне прибора отдельно от него.

Технические амперметры имеют однопредельные шунты, а образцовые и лабораторные—многопредельные (рис. 7-9).

Рис. 7-10. Измерительный механизм с добавочным сопротивлениемИзмерительный механизм с добавочным сопротивлением

Различные пределы измерения получаются изменением сопротивления шунта при перестановке штепселя из одного гнездами другое. Магнитоэлектрический вольтметр представляет собой измерительный механизм той же системы с добавочным сопротивлением для расширения предела измерения напряжения (рис. 7-10). На шкале вольтметра наносятся деления, дающие значения напряжения на его зажимах:

U = I(rи + rд)

которое больше напряжений на измерительном механизме

Uи = Irи в р = (rи + rд)/rи раз

Технические вольтметры имеют однопредельное, а образцовые и лабораторные — многопредельные добавочные сопротивления (рис. 7-11). Различные номинальные напряжения получаются использованием различных добавочных сопротивлении, что достигается переносом одного из проводов с одного зажима вольтметра на другой, или переключением переключателя или штепселя.

Вольтметр с многопредельным добавочным сопротивлением

Рис 7-11. Вольтметр с многопредельным добавочным сопротивлением.

Магнитоэлектрические амперметры и вольтметры изготовляются как образцовые и лабораторные (класс точности 0,1—0,5), так и технические (класс 1—2,5).

Они обладают высокой чувствительностью, малым влиянием внешних магнитных полей, незначительным влиянием температуры, малой мощностью потерь, чувствительностью к перегрузкам.

Выпрямительные амперметры и вольтметры

Выпрямительные амперметры представляют собой сочетание магнитоэлектрического измерительного механизма с полупроводниковым выпрямителем (рис. 7-12).

В течение одного пол у пер иода ток идет по пути абгв, в течение второго пол у периода по пути вбга. Следовательно, через измерительный механизм в течение каждого полупериода переменного тока проходит полуволна тока одного и того же направления. Средний вращающий момент и угол поворота подвижной части зависят от среднего тока, а этот последний при синусоидальном токе пропорционален действующему значению тока, значения которого и наносятся на шкале амперметра.

Расширение предела измерения тока достигается применением шунтов.

Схема выпрямительного амперметра и кривая тока в измерительном механизме

Рис. 7-12. Схема выпрямительного амперметра и кривая тока в измерительном механизме.

Выпрямительные вольтметры представляют собой сочетание магнитоэлектрического измерительного механизма с полупроводниковым выпрямителем и добавочным сопротивлением (рис. 7-13).

Угол поворота подвижной части, как и у амперметра, при синусоидальной измеряемой величине пропорционален действующему значению тока, а при постоянном сопротивлении вольтметра — действующему значению напряжения,  которые и наносятся на шкале вольтметра.

Выпрямительные амперметры и вольтметры имеют класс точности 1,5—2,5. Они применяются главным образом в цепях переменного тока повышенной частоты до 10 кгц.

Схема выпрямительного вольтметра

Рис 7.13 Схема выпрямительного вольтметра

Термоэлектрические амперметры и вольтметры

Термоэлектрический амперметр представляет собой сочетание магнитоэлектрического измерительного механизма с термопреобразователем (рис. 7-14), а вольтметр, кроме того, имеет добавочное сопротивление.

Два сваренных конца двух проводов из разных металлов называются термопарой. Несваренные концы термопары называются с в о б о д н ы м и, сваренные — рабочими.

При нагреве рабочих концов термопары на свободных концах появится разность потенциалов называемая термоэлектродвижущей силой — термо-э д. с. Термо-э. д. с. зависит от металлов, образующих термопару, и разности температур между рабочими и свободными концами термопары, а при постоянной температуре свободных концов — от температуры рабочего конца термопары. Приварив к рабочему концу термопары проводник — нагреватель, получим термопреобразователь.

Термоэлектрический амперметр

Рис. 7-14. Термоэлектрический амперметр.

При прохождении переменного тока по нагревателю он нагревается, нагревает рабочий конец термопары и на свободных концах ее появится термо-э. д. с. Если к этим концам присоединен измерительный механизм, то в нем появится ток и подвижная часть повернется на угол зависящий как от термо-э. д. с.,так и от измеряемого переменного тока, проходящего по нагревателю. На шкале амперметра наносятся действующие значения тока.

Вольтметр отличается от амперметра добавочным сопротивлением, соединенным последовательно с нагревателем термопреобразователя. В этом случае угол поворота подвижной части зависит не только от тока, но и от напряжения на зажимах вольтметра. На шкале наносится действующее значение этого напряжения.

Точность термоэлектрических приборов соответствует классам 1,5—2,5.

Термоэлектрические приборы применяются в цепях переменного тока повышенной и высокой частоты (до 10— 50 Мгц).

Электромагнитные амперметры и вольтметры

Показание электромагнитного измерительного механизма зависит от тока в его катушке, значения которого и наносятся на шкале амперметра. Катушка электромагнитного амперметра неподвижна вес ее не влияет на погрешность от трения, поэтому она может быть изготовлена из провода любого сечения и, следовательно, на любой номинальный ток. Щитовые амперметры изготовляются нашими заводами на номинальный ток до 300 а.

Схема электродинамического миллиамперметра

Рис. 7-15. Схема электродинамического миллиамперметра.

Электромагнитный вольтметр состоит из одноименного измерительного механизма на номинальный ток 20—30 ма и последовательно соединенного с ним добавочного сопротивления из манганина (рис. 7-10).Добавочное сопротивление — активное и несоизмеримо больше реактивного сопротивления катушки измерительного механизма, поэтому общее сопротивление вольтметра практически активное и мало зависит от рода тока и частоты. При постоянном сопротивлении вольтметра угол поворота подвижной части зависит не только от тока в катушке, но и пропорционального ему напряжения на зажимах вольтметра, значения которого и наносятся на шкале прибора.

Электромагнитные амперметры и вольтметры широко применяются в установках переменного тока технической частоты как щитовые, приборы классов точности 1,5—2,5. Наша промышленность наряду с техническими приборами выпускает также переносные амперметры и вольтметры для постоянного и переменного тока класса точности 0,5,

Электродинамические и ферродинамические амперметры  и вольтметры

Электродинамический амперметр представляет собой измерительный механизм того же названия, катушки которого соединены последовательно или параллельно в зависимости от его номинального тока, а на шкале нанесены деления, соответствующие значениям тока, проходящего по амперметру.

Подвижная катушка для уменьшения погрешности от трения делается легкой из провода малого сечения на номинальный ток не выше 100 ма. Неподвижную катушку изготовляют из провода разного сечения в зависимости от номинального тока, который может быть 5 а и выше. Поэтому в миллиамперметрах катушки соединяются последовательно (рис. 7-15), а в амперметрах — параллельно (рис. 7-16).

Схема электродинамического амперметра

Рис. 7-16. Схема электродинамического амперметра.

При последовательном соединении катушек токи в них одинаковы и совпадают по фазе, следовательно, угол поворота подвижной части прибора пропорционален квадрату тока

α = Ʀ1I1I2 cosΨ = Ʀ2I2

При параллельном соединении катушек амперметра и постоянных сопротивлениях ветвей каждый из токов катушек I1 и I2 пропорционален измеряемому току Если, кроме того, активные и реактивные сопротивления ветвей подобраны так, что токи I1 и I2 совпадают по фазам (Ψ — 0), то как и в предыдущем случае угол поворота подвижной части амперметра будет пропорционален квадрату измеряемого тока, т. е.

α = Ʀ1I1I2 cosΨ = Ʀ2I2

Электродинамические вольтметры состоят из измерительного механизма того же названия, катушки которого изготовлены из провода малого сечения на номинальный ток 20—50 ма и соединены последовательно между собой и с добавочным сопротивлением (рис. 7-17).

Схема электродинамического вольтметра

Рис. 7-17. Схема электродинамического вольтметра.

Добавочное сопротивление предназначено для расширения предела измерения напряжения и уменьшения влияния температуры, рода тока и частоты на показание вольтметра.

Электродинамические амперметры и вольтметры изготовляются в качестве образцовых и лабораторных приборов (класс точности 0,1—0,5) для цепей переменного тока стандартной и повышенной частоты до 2 000 гц. Электродинамические приборы обладают высокой точностью и пригодны для постоянного и переменного тока.

Они чувствительны к перегрузкам и к влиянию внешних магнитных полей.

Ферродинамические амперметры и вольтметры имеют те же внутренние измерительные схемы, что и электродинамические приборы. Они применяются главным образом как самопишущие приборы для цепей переменного тока. Ферродинамические приборы обладают невысокой точностью (класс точности 1,5—2,5), большим вращающим моментом, прочной и надежной конструкцией. Они практически не чувствительны к влиянию внешних магнитных полей.

 

Статья на тему Измерение тока и напряжения

znaesh-kak.com

Измерение основных электрических величин

1. Измерение электрического тока

Электрический ток измеряется амперметром.

Если измеряемый ток не превышает пределов измерения данного амперметра, то его можно измерить включением амперметра непосредственно в цепь (рис. 1).

Для измерения больших токов используются шунты на постоянном токе (рис. 2) и трансформаторы тока на переменном токе (рис. 3).

Рис. 1. Схема включения амперметра непосредственно в цепь

Рис. 2. Схема включения амперметра с шунтом

Рис. 3. Схема включения амперметра с помощью трансформаторов тока: Л1, Л2 — зажимы первичной обмотки трансформатора тока; И1, И2 — зажимы вторичной обмотки трансформатора


2. Измерение электрического напряжения

Электрическое напряжение измеряется вольтметром.

Если измеряемое напряжение не превышает пределов измерения данного вольтметра, то оно может быть измерено путем непосредственного включения вольтметра в сеть (рис. 4).

Для расширения пределов измерения применяют добавочное сопротивление при измерении постоянного напряжения и трансформаторы напряжения (можно использовать и добавочное сопротивление) при измерении переменного напряжения (рис. 5 и 46).

Необходимо иметь в виду, что должно быть использовано то добавочное сопротивление, которое предназначено для данного вольтметра.

Рис. 4. Схема включения вольтметра непосредственно в цепь

Рис. 5. Схема включения вольтметра с добавочным сопротивлением

Рис. 6. Схема включения вольтметра с помощью трансформатора напряжения: А, Х — зажимы первичной обмотки трансформатора напряжения; а, х — зажимы вторичной обмотки трансформатора напряжения; ПР — плавкие предохранители


3. Измерение электрической мощности

Электрическая мощность измеряется ваттметром — прибором, имеющим две обмотки: токовую и напряжения (рис. 7).

Шкала ваттметра проградуирована в ваттах или киловаттах.

Расширение пределов измерения на постоянном токе по напряжению производится с помощью добавочных сопротивлений — шунтов. При измерениях на переменном токе расширение пределов производится с помощью трансформаторов тока и напряжения (рис. 8). При этом необходимо соблюдать правильность включения генераторных клемм (*) ваттметра.

Измерение мощности в трехфазных трехпроводных сетях производится с помощью двух однофазных ваттметров, включенных в две фазы по схеме (рис. 9). В трехфазных четырехпроводных сетях измерение активной мощности производится с помощью трех однофазных ваттметров (рис. 10) или одним трехэлементным ваттметром.

Расширение пределов измерения производится с помощью трансформаторов тока и напряжения. В этих же сетях для измерения мощности применяется трехфазный ваттметр (рис. 11).

Рис. 7. Схема включения однофазного ваттметра: 1 — последовательная (токовая) катушка; 2 — параллельная (напряжения) катушка; rg — добавочное сопротивление

Рис. 8. Схема включения ваттметра с помощью трансформаторов тока и напряжения

Рис. 9. Схема измерения активной мощности в трехфазной трехпроводной сети двумя ваттметрами: Робщ = Р1 + Р2

Рис. 10. Схема измерения активной мощности в трехфазной четырехпроводной сети тремя ваттметрами: Робщ = Р1 + Р2 + Р3

Рис. 11. Схема включения трехфазного ферродинамического ваттметра


4. Измерение электроэнергии

Выбор приборов. Учет электроэнергии в сетях переменного тока производится с помощью счетчика индукционной системы. Индукционные счетчики выпускаются в однофазном и трехфазном исполнении, причем последние бывают двух модификаций — для трехи четырехпроводной сети.

Измерение расхода активной и реактивной энергии в трехфазной сети может в принципе производиться счетчиками одного и того же типа при включении их по соответствующим схемам.

Чтобы исключить возможность неправильного подключения счетчика и обеспечить правильный учет расхода активной и реактивной энергии, промышленностью выпускаются специальные счетчики активной и реактивной энергии.

Для измерения в трехфазных сетях активной энергии применяются счетчики типов СА3, СА4, СА4У; реактивной энергии — СР3, СР4, СР4У. Цифра 3 в обозначении типа счетчика указывает, что он предназначен для трехпроводной сети, 4 — для четырехпроводной.

Счетчики типов СА4У, СР4У — универсальные, выполняются для включения только с измерительными трансформаторами. Концы обмоток тока и напряжения этих счетчиков выведены на отдельные изолированные друг от друга зажимы. Благодаря этому имеется возможность включать токовые цепи счетчиков активной и реактивной энергии на общие трансформаторы тока.

Остальные типы трехфазных счетчиков Ч трансформаторного и непосредственного (прямого) включения.

Для учета энергии в цепях однофазного тока используются счетчики типа СО. Счетчики активной энергии выпускаются классов точности 1,0; 2,0; 2,5; счетчики реактивной энергии — классов точности 2,0; 2,5; 4,0.

Погрешности измерений электроэнергии, требования к измерительным трансформаторам. При непосредственном включении счетчика в сеть погрешность измерения расхода электроэнергии определяется классом точности самого счетчика. Включение счетчика через измерительные трансформаторы вносит дополнительную погрешность, и точность измерений уменьшается.

Для учета электроэнергии применяются трансформаторы тока класса 0,2; 0,5; 1. Обеспечить необходимую точность измерений можно при условии, что сопротивление токовых катушек всех счетчиков и соединительных проводов, включенных во вторичную цепь, не превышает допустимую номинальную нагрузку трансформаторов тока.

Для ориентировочных расчетов следует принимать сопротивление токовой катушки счетчика равным 0,05 Ом, а сопротивление соединительных проводов — 0,2 Ом.

Рассчитанные из этих соображений наименьшие допустимые сечения соединительных проводов указанных цепей приведены в таблице.

Таблица 4.1. Наименьшие допустимые сечения проводов от трансформаторов тока к счетчикам


Длина провода в один конец, м

До 10

10—15

15—25

25—35

35—50

Наименьшее сечение медных проводов, мм2

2,5

4

6

8

10

Трансформаторы напряжения, работающие в цепях учета электроэнергии, должны быть класса 0,5. Для питания счетчиков применяются трехфазные и однофазные трансформаторы напряжения. Последние включаются в звезду или по схеме открытого треугольника. Для защиты трансформаторов напряжения предохранители устанавливаются в цепь первичной высоковольтной обмотки; в цепь вторичной обмотки, питающей счетчики, ставить предохранители запрещается. Вторичные обмотки и корпус трансформаторов напряжения заземляются, также заземляются вторичные обмотки трансформаторов тока (одноименные зажимы). Класс точности счетчиков и измерительных трансформаторов, предназначенных для целей коммерческого и технического (контрольного) учета, должен быть

не ниже указанного в таблице.

Таблица 4.2. Выбор классов точности счетчиков и измерительных трансформаторов


Наименование счетчиков

Счетчики непосредственного включения

Счетчики, включаемые через разделительные трансформаторы

Класс точности измерительных трансформаторов для счетчиков

активный

реактивный

активный

реактивный

активный

реактивный

Коммерческий учет

2,5

2,5

2,0

2,5

0,5

0,5

Технический (контрольный) учет

2,5

2,5

2,0

2,5

0,5 и 1

0,5 и 1

Схемы включения счетчиков. С целью исключения ошибок учета, связанных с необходимостью пересчета показаний счетчика и введением коэффициентов, обусловленных схемой включения, рекомендуется использовать счетчики в строгом соответствии с назначением и подключать их по схемам, предусмотренным для данного типа счетчика и изображенным на крышке, закрывающей выводные зажимы прибора

Поскольку в основу схем включения счетчиков положены соответствующие схемы измерения мощности, счетчики будут обеспечивать точный учет расхода электроэнергии только для тех условий (равномерная или неравномерная нагрузка), в которых аналогичная схема подключения ваттметров обеспечивает необходимую точность.

Ниже в качестве примеров приведены несколько типов схем включения счетчиков. При подключении счетчика через трансформаторы тока следует помнить, что к генератору (сторона питания) первичная обмотка подключается зажимом Л1, а вторичная обмотка зажимом И1 включается на генераторный вход счетчика.

Рис. 12. Схема включения однофазного счетчика

Рис. 13. Схема прямого включения трехфазного счетчика активной энергии

Рис. 14. Схема включения трехфазного счетчика реактивной энергии



Рис. 15. Схема включения трехфазного счетчика активной энергии через трансформаторы тока

Рис. 16. Схема совместного включения универсальных счетчиков активной и реактивной энергии

www.eti.su

Как измерить ток в цепи с любой точностью

В ряде случаев возникает необходимость в измерении тока. Например, при контроле тока отдаваемого источником питания в нагрузку или при измерениях. Конечно можно воспользоваться мультиметром, однако его точность не так велика. Рассмотрим, как измерить ток в любой цепи..

Как измерить ток

Измерить напрямую величину тока невозможно. Для измерения величины протекающего тока, в разрыв цепи устанавливается низкоомный резистор, на котором измеряется падение напряжения.

Аналогичным образом работает и обычный стрелочный амперметр, показанный в обложке статьи. Он представляет из себя вольтметр, шунтированный низкоомной проволочкой. Но сегодня стрелочные приборы уже не так актуальны.

Рассмотрим как измерить ток источника питания через нагрузку. Однако таким же образом можно мерить ток в любой цепи, в которую вы засунете резистор.

Обычно резистор для измерения тока устанавливается в разрыв между нагрузкой и землей. Падение напряжения снимается на выводах этого резистора, т.е. между точками A и B:

Зная сопротивление резистора и величину падения напряжения на нем, по закону дедушки Ома не составит труда посчитать ток в цепи:

Из закона Ома следует, что при токе величиной в 1 Ампер на резисторе, сопротивлением в 1 Ом будет падать 1 Вольт.

В качестве резистора можно использовать и отрезок проволоки из метала с высоким удельным сопротивлением. Например из константана. Добыть такую проволоку можно из проволочного переменного резистора.

На деле лучше использовать резисторы с сопротивлением меньше 1 Ома. При выборе конкретной величины сопротивления резистора следует учитывать несколько важных моментов, которые мы сейчас и рассмотрим.

Резистор не должен ограничивать ток в цепи

Допустим у нас имеется источник постоянного напряжения в 4 вольта, который может давать ток до 1 Ампера. В таком случае можно использовать резистор в 1 Ом.

Найти максимальный ток через резистор можно из того же закона Ома:

I = 4В / 1Ом = 4 A.

Максимальный ток источника ограничивается 1 Ампером, соответственно ограничение в 4 Ампера его в принципе не касается. Однако лучше взять резистор меньшего номинала. Почему? Вникаем дальше.

Выделяемая на резисторе мощность

Чем больше величина резистора, тем проще и точнее можно измерить падающее на нем напряжение, а следовательно и ток. Но обязательно стоит учитывать мощность, которая будет выделяться на резисторе в виде тепла. Мощность (P) находится из соотношения:

P = R*I2

Для примера, если предполагается измерять токи, величиной около 10 Ампер, то на резисторе сопротивлением всего 0.1 Ом будет может выделяться около 10 Ватт тепловой энергии.

Учитывая хотя бы двухкратный запас по мощности, для нормальной работы потребуется резистор мощностью в 20Ватт, а еще лучше на 50 Ватт. Проволочный резистор такой мощности выглядит например так:

резистор на 50 ваттрезистор на 50 ваттИспользовать кипятильник таких размеров, крайне нерезонно по двум причинам:

  • Резистор будет сильно греться, а изменение температуры вызовет изменение сопротивления.
  • Такой резистор создаст приличную дополнительную нагрузку для источника в те самые 10 ватт.

Логичнее использовать резистор сопротивлением 0.01 Ом и мощностью в 2 или 3 ватта. А еще лучше использовать маломощный прецизионный резистор сопротивлением 0.001 Ом.

Точность снятие напряжения

Использование резистора со столь малым сопротивлением вызывает некоторые трудности с измерениями. Величина падения напряжения на нем может лежать не намного выше уровня шумов.

По этой причине снимать падение напряжения необходимо не относительно земли, а непосредственно между выводами резистора (точки A и B), как это было показано выше. Иначе сопротивление соединений и наводки на них могут дать ошибку измерений более 10%.

Наилучшим решением для снятия разности напряжений между двумя точками является дифференциальный усилитель. Он обладает симметричным входом, благодаря чему хорошо подавляет синфазные помехи.

Так же усилитель имеет огромное входное сопротивление, исключающее шунтирование измерительного резистора. При этом усилитель обладает низким выходным сопротивлением и к нему можно смело подключать любой вольтметр для зрительного контроля. Подробному рассмотрению схемы дифференциального усилителя посвящена отдельная статья.

Применительно к нашему случаю общая схема для измерения тока выглядит следующим образом:

Коэффициент усиления следует подбирать исходя из собственных нужд. Например, если необходимо измерять токи до 10 Ампер используя резистор 0.01 Ом, то максимальное падение напряжения на нем составит не более 0.1 вольта.

Установив коэффициент усиления равным 100, мы получим, что каждый вольт на выходе усилителя равен 1 амперу в измеряемой цепи.

Если вам требуется высокая точность измерений, то в описанной схеме необходимо применять прецизионные детали. В частности резисторы точностью не хуже 1% и операционный усилитель на подобии AD8066, AD8116, OPA2132 и тд. Но можно ограничиться и применением NE5532

Еще бОльшую точность при измерении тока даст применение инструментального усилителя:

Он является более совершенной версией описанного дифференциального усилителя. Это особенно актуально в случае использовании измерительного резистора сопротивлением 0.001 Ом.

Рассмотренный способ измерения тока является классическим и применяется повсеместно. Таким образом можно производить измерение тока практически в любой цепи и с любой точностью. В одной из следующих статей будет показано, как измерить ток если он переменный.

Не стесняйтесь делиться своим мнением в комментариях 🙂

 

audiogeek.ru

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *